
CellMatch : combining two unit cells into a

common supercell with minimal strain

Predrag Lazić a,1,2,

aDepartment of Physics, University at Buffalo, New York 14260-1500, USA

Abstract

Recent emergence of 2D materials (the so called van der Waals materials), of which
graphene is the most famous one, opens new routes in creation of novel materials by
mere layer-by-layer combinations. Moreover, a growth of such materials is typically
done on a substrate. In both cases structures appear that are periodical in the
plane but the periodicity is very different from a simple 1×1 commensurate unit
cells combinations which appears for materials with very similar values of lattice
constants. Much more common is the case in which a new periodic cell is of a moiré
type - such as 10×10 over 9×9 in case of graphene on Ir(111). Once the shape of
the common supercell for 2 different 2D materials, or a material and the surface
is found - it is easy to do a computational treatment with appropriate method
for electronic structure - such as density functional theory, tight binding or some
other. The purpose of the CellMatch code is to generate such common super cell
given the two unit cells of selected materials. The CellMatch code searches within
given combinatorial space and sorts results by the strain imposed on one of the
components, while the other component experiences zero strain.

PACS: 71.15.-m; 71.15.Mb; 71.45.Gm

Key words: Electronic structure; Density functional theory; Van der Waals
materials; commensurate structures; moiré patterns; epitaxial growth,

PROGRAM SUMMARY/NEW VERSION PROGRAM SUMMARY

Manuscript Title:
Authors:
Program Title: CellMatch
Journal Reference:
Catalogue identifier:
Licensing provisions: none

1 Corresponding author
2 On leave of absence from the Rudjer Bošković Institute, Zagreb, Croatia.

Preprint submitted to Elsevier 29 July 2015



Programming language: python
Computer: any architecture with a python interpreter
Operating system: Linux, AIX.
RAM: even for large systems almost negligible usage of memory.
Number of processors used: 1
Supplementary material:
Keywords:
PACS:
Classification:
External routines/libraries:
• none
Subprograms used:
Catalogue identifier of previous version:*
Journal reference of previous version:*
Does the new version supersede the previous version?:*

Nature of problem:
Contracting a common supercell that fits the atoms of two unit cells with minimal
strain. This is used as input for any total energy or electronic structure code.
Solution method:
Straightforward systematic search in the phase space of combinations of unit cell
vectors.
Reasons for the new version:*

Summary of revisions:*

Restrictions:

Unusual features:
Output, atomic structure of the supercell, can be used in any total energy program.
Additional comments:

Running time:
Usually very short (seconds) if the search parameters are kept at reasonable values.
References:

[1] Reference 1

[2] Reference 2

[3] Reference 3

* Items marked with an asterisk are only required for new versions of programs

previously published in the CPC Program Library.

2



1 Introduction

The revolution that began with discovery of graphene [1] is not losing its mo-
mentum. On the contrary, since then quite a few two dimensional materials
have shown potential for applications in electronics [2], optoelectronics [3] etc.
Such materials represent a class of so called van der Waals materials [4] whose
main characteristic is that they are made of layers of atoms which are held
in bulk structure only by weak van der Waals forces (hence the name) which
enables relatively easy extraction of a single layer of such material. Layers
of such materials are characterized by the absence of dangling bonds since
within the layer atoms are bonded together by strong covalent forces. Due to
this property they tend to stick dominantly by vdW forces to other materials.
Besides the simple Scotch tape method (mechanical exfoliation) for extract-
ing a single layer of material they are also produced in monolayer thickness
by chemical vapor deposition CVD [5]. Moreover by molecular beam epitaxy
a heterostructures of vdW materials can be grown efficiently [6] with atom-
ically sharp and clean interfaces. When grown by chemical vapor deposition
different materials are used as substrates - for example graphene is very often
grown on the Ir(111) surface [7], MoS2 can be grown on a sapphire [8]. In order
to study growth of the materials on a substrate by computational method a
common supercell of at least 2 different materials (substrate and deposited
material) is required. Moreover, such class of materials opens new directions
in novel materials design by simply stacking layers of one vdW material onto
the other obtaining a so called vdW heterostructures. Additionally such struc-
tured can typically be intercalated, or decorated by adsorption giving a rather
large phase space for design of novel materials.
In order to study theoretically the smallest possible vdW heteroststructure
composed of two vdW materials a common supercell is required.
Of course, in the experimental growth common supercell will be obtained fol-
lowing the energy minimization which will typically be a competition between
bonding between the layers of vdW materials and strain since typically such
materials will have different lattice constants. Moreover, besides the CVD
procedure where some relative orientations of layers appear as preferred in
mechanical stacking procedure almost any relative orientation between the
layers can be achieved [9]. Due to the intrinsic nature of the vdW materials
that they stick to surfaces by weak vdW forces (since within the layers atoms
are strongly covalently bound) they tend to grow incommensurately with the
substrate while keeping the small strain within the layer.
The purpose of the CellMatch code is to create that common supercell for the
two given unit cells of different materials. The common supercell should ide-

3



ally have small strain and small number of atoms, however usually a tradeoff
is required between the two. The code performs a brute force search for a com-
mon supercell offering different possibilities in which one material is strained
to fit onto the other. The possible structures are sorted by the value of strain.
Sometimes it is relatively easy to produce a common supercell because of
the geometrical similarity of the two given unit cells - for example graphene
on Ir(111) which gives a well known moiré 10 × 10 graphene unit cells over
9 × 9 Ir(111) unit cells, structure (shown in figure 6). However, usually it is
rather difficult to perform this cell matching task manually. In this paper, af-
ter theoretical introduction of the method, somewhat mixed with description
of running the code, we demonstrate the cell matching procedure on several
selected examples.
Since the code is rather simple all available options are explained in detail in
the appendix making this paper also a complete manual for the CellMatch
code.
By recursion the code can be used to create structures with arbitrary number
of layers.

1.1 Technical remarks

The files describing input unit cells and the supercell generated by the Cell-
Match code are tailored for the VASP code [10] but it can be used easily with
any other code regardless of the concrete implementation (density functional
theory (DFT) [11], tight binding [12], empirical, etc.) - since the CellMatch
only deals with the geometry of the supercell and position of the atoms in it.
It is worth mentioning here that current state of the art DFT codes are now
mature enough to include van der Waals forces in several ways. In our ex-
amples we prefer the selfconsistent implementation of the vdW-DF functional
[13–17] as the best cost/benefit option of including vdW interaction from the
first principles - i.e. without a single empirical parameter. Alternative route
being RPA [18] or semi-empirical methods - such as DFT-D2 [19] might be
used increasing the numerical effort or decreasing the accuracy, respectively.
With the CPU power of the average cluster and vdW-DF functional approach
one can expect to treat supercells with several hundreds atoms. In lower levels
of approximation such as tight binding this number can be much higher.
Also, it is worth mentioning here that by chance, recently, dealing with super-
cells for purpose of studying impurities and alloys the so called bandstructure
unfolding procedures were developed. Such procedures enable projection of the
bandstructure of the supercell into the Brillouin zones of the original small
unit cells giving effective band structure which can be easily compared with
the pristine materials bandstructure. The theory [20] and implementation [21]
for band unfolding are readily available. In one of the examples we demon-
strate band unfolding for the vdW heterostructure consisting of MoS2 and

4



graphene.

2 Theoretical background and the description of the code

We explain the general principle of generating a common supercell out of two
unit cells by example.
Starting from the two given unit cells shown in figure 1 we search for the
common supercell in which atomic structures, defined by original unit cells,
can be fitted with smallest possible strain.

We use the example of the graphene and vicinal Ir surface with somewhat
larger indices - namely 332. This two cells are hard to fit manually in the com-
mon supercell. The unit cells are defined by the files named POSCAR GRAPHENE
and POSCAR slab 332 (given in the appendix B) and search for common su-
percell is done by using the python code:

> python match cells.py POSCAR GRAPHENE POSCAR slab 332

There are several options to the command, such as cell rotation, which are
explained in the appendix A. The first unit cell (POSCAR GRAPHENE) will
be strained in the supercell while the second will not.
For the POSCAR files we instruct the user to see VASP manual [10], however
the CellMatch code does not support all the VASP features (for example neg-
ative scaling number will not be recognized as the cell volume).
The unit cells used with the code must be of the slab type having one unit
cell vector perpendicular to the plane spanned by the other two. In figure 1 we
show both side and top views of the unit cells, while in the rest of the paper
mostly the top views are used.
Starting from the in plane unit cell vectors of the two unit cells - namely
a1,a2 and b1, b2 the code first searches for the common vectors v1 and w2

in the plane within the given tolerance. The common vectors are generated as
combinations of unit cell vectors:

v1 = n1a1 + n2a2

w2 = m1b1 + m2b2,

where indices n1, n2, m1, m2 are covering all possible combinations of integer
numbers between −nindex to nindex, avoiding the null-vectors. The default
value of nindex is 10.
In figure 2 several common vectors generated by such procedure are shown

5



Fig. 1. Unit cell of graphene - left, top and side view. Unit cell of a 332 Ir surface
slab - right, top and side view.

– all vectors begin at the common origin and only the tips of the common
vectors are shown represented by colored circles.

If the two common vectors generated by different unit cells v1 and w2 are
close enough – i.e. within the tolerance which is defined as distance between
ending points of the vectors divided by vector length (default being 1 percent)
- they enter a set of vectors for possible common supercell construction.
Having the set of common vectors all possible combinations of the two sets
of common vectors (v1, w1), (v2, w2) spanning the common supercell are
generated. Notice that for every two pairs of common vectors two supercells
are generated each one created from its respective unit cell.

6



Fig. 2. Example of searching for common supercell vectors. The blue dots represent
potential supercell vectors generated from the first unit cell vectors a1 and a2, while
the red dots represent potential supercell vectors generated from the second unit
cell vectors b1 and b2. In some cases the supercell vectors obtained from different
unit cells are close enough (defined by tolerance) so that they can be considered
in search for common supercell with small strain. Such cases are connected to the
origin by dashed lines – representing potential supercell vectors. For the case with
the smallest strain the indices n1, n2, m1 and m2 are given according to equation
1.

Possible common vectors are shown in figure 2 as red and blue circles. Common
vectors that satisfy tolerance criteria are shown as somewhat larger circles and
dashed lines connect them to the origin representing the possible vectors of
the common supercell.

All pairs of supercells (one supercell is generated from unit cell 1 and the other
from unit cell 2) are then considered for the common supercell which is gen-
erated so that one supercell is deformed to fit perfectly the other. The strain
due to this modification is calculated. Calculation of the strain is following
the standard unit cell strain calculation given in reference [22].

At this point the code has written files results.dat, POSCAR slab 332 copy
and POSCAR GRAPHENE rotated 0.0.

All obtained results are written, sorted by strain in ascending order, into the
file results.dat - printed here:

7



results.dat

POSCAR GRAPHENE rotated 0.0 POSCAR slab 332 copy

------------------------------------------------------- RESULTS ---------------------------------------------

--------------------------------------------------------------- ---------------------------------------------

| index | strain | atoms | surf ratio | indices1 | indices2 |

-------------------------------------------------------------------------------------------------------------

| 1 | 0.00081232 | 408 | 60 9 | -10 0 -9 0 | -3 6 0 1 |

| 2 | 0.00435935 | 364 | 54 8 | -3 6 0 1 | -9 0 -8 0 |

| 3 | 0.06861402 | 44 | 6 1 | -7 -6 -9 -1 | -6 -6 -8 -1 |

-------------------------------------------------------------------------------------------------------------

The coefficients given for the first supercell suggested in results.dat are shown
in the figure 2 next to their representative vectors.

The second python code generate cell.py, by default, uses the results.dat file
to generate the user selected common supercell.

The choice under number 1 from the results has the smallest strain of the
scanned options and should be taken as the common supercell. Selection of
the result number 1 from the results.dat is done by:

> python generate cell.py 1

Several options are available for this command - see appendix A. In particular
the options for shifting the two cells relative to each other are important since
this is only one possible relative position of one layer with respect to the other.
To establish the energetically most favorable relative positions its phase space
has to be thoroughly explored. The same is true for relative rotations between
the layers – rotation being the option for the first python code that searches for
the common supercell. The second code generates the actual supercell based
on the results of the first python code. The second code repeats periodically
the atoms from the original (input) unit cells in order to appropriately fill the
supercell. This is rather straightforward and we do not describe the procedure
here.
The final output file with the generated supercell will be named POSCAR COMMON CELL
(given in the appendix A) and it can be used as input in electronic struc-
ture/total energy codes. For VASP no modifications should be needed and for
other codes the user has to rearrange data to fit the given code.
The obtained common supercell is shown in figure 3.

8



Fig. 3. Common supercell of graphene and Ir(332) slab, top (left) and side (right)
view.

Notice that in this example it might be tempting to select the choice number
3 from the results which contains only 44 atoms in the supercell. Generating
such supercell will give the structure shown in figure 4 in which graphene is
obviously severely distorted.

Fig. 4. Common supercell of graphene and Ir(332) slab with larger strain than the
one shown in figure 3 - notice large distortion in graphene structure marked by
arrow.

This is the consequence of the definition of the tolerance when searching for
the common vectors and should be checked. Elongated cells satisfy tolerance

9



criteria more easily since the supercell vectors are long. Due to the definition
used for the common points it is not guaranteed that the angle between atoms
in the supercell will be preserved - which typically costs a lots of energy that
is not visible in the calculated ”geometrical strain” value. The user should pay
attention to this before selecting the structure with relatively small amount
of atoms and seemingly small strain.

The working of the code described above is shown as flowchart in Figure 5:

Fig. 5. Flowcharts of the two python codes - match cells.py - left and generate cell.py
- right.

3 Installation and running the code

The code consists of two python scripts (match cells.py and generate cell.py)
and requires no installation, compilation or special python packages out of the
standard Linux distributions. It is distributed as a gzipped tar file containing
the two python scripts and 2 directories with examples.
Running of the code is somewhat described in the theory part and we repeat
it here briefly. Having the POSCAR files of the selected input unit cells -
POSCAR 1 and POSCAR 2 the user first runs the first script:

> python match cells.py POSCAR 1 POSCAR 2

obtaining the output file results.dat in which typically several options are
offered for generating a common supercell - given under the index numbers.

10



Selecting the supercell with index 1 is done by a command:

> python generate cell.py 1

which produces a common supercell file named POSCAR COMMON CELL.
This ends the program run. Several options to the both python codes are
available and are described in detail in the appendix A.

4 Examples

As examples we have selected three systems. In the first two examples we shall
only demonstrate generating a supercell while for the third one we perform
a DFT calculations yielding common structure relaxed geometry, binding en-
ergy, strain energy and electronic structure.
The examples are chosen following some important challenges from vdW ma-
terials, namely: their growth by CVD, their contact with metals for electronic
and catalytic applications and the most general creation of the two layer vdW
heterostructure.
The first example of graphene on Ir(111) surface is a typical system in CVD
growth of graphene, relatively popular for having graphene with almost un-
perturbed electronic structure compared to the free standing graphene due to
its very weak interaction with the iridium substrate. Also this system has a
very famous (10 × 10 over (9 × 9) moiré structure nicely visible in the STM
experiments [23].
The second example follows not so widespread research direction of vicinal
surfaces with somewhat larger indices - namely the 331 surface of the iridium
is matched again to the graphene. The idea that metal can modify electronic
structure of the 2D materials attached to it [24] and be used for tailoring cat-
alytic properties can be pushed even further using the vicinal surfaces which
on its steps show exotic and interesting electronic properties [25]. The vicinal
surfaces with indices larger than 1 are not so popular experimentally nor com-
putationally. Regarding computation we believe that part of the problem lies
in the fact that such surfaces itself were somewhat technically challenging to
generate. Until recently there was no available code for preparing the unit cell
of arbitrary vicinal surface. The recent work of Sun and Ceder [26] published
such code that we used in generating both 332 (used in theory part of the
paper) and 331 surface of iridium used in examples.

For the final example we select a real vdW heterostructure, a type of a system
which is probably the main target for the CellMatch code. We chose graphene
and MoS2 heterostructure. Very recent development [?] shows a tremendous
potential in creating such surfaces experimentally and obtaining different phys-

11



ical properties - moreover, making very concrete devices based on them.

4.1 Graphene on Ir(111)

The system of graphene on Ir(111) is very well studied both experimentally and
computationally [23] and under the STM a very nice moiré pattern is observed.
Feeding the unit cells of the Ir(111) surface and graphene to the CellMatch
code we indeed obtain that structure as the best suggestion - shown in figure
6. Notice that default nindex parameter is just barely large enough for the
code to find this structure. If the moiré structure that is searched for has one
of the indexes larger than 10 one has to increase nindex value so that the
CellMatch discovers such structure. The lattice mismatch between graphene
and Ir(111) is around 10 percent. If one wants CellMatch code to generate
a simple 1×1 unit cell in which either graphene or Ir(111) will be strained
by ± 10 percent - it can be achieved by increasing the linear tolerance value
to around 0.1 (--tolerance option). At the same time nindex value should
be reduced to 1, otherwise with default value of 10 and tolerance of 0.1 the
number of combinations of common vectors would be enormous (2070 common
vectors) and the calculations of common supercells can take a very long time.
Also if the tolerance of 0.1 is given together with the nindex value of 3 the
code actually finds many equivalent possibilities - but always writes only the
one with the smallest possible number of atoms - to see all the --unique

0 option should be used - see appendix A.

Fig. 6. Common supercell for graphene and Ir(111). The well known moiré 10 × 10
over 9 × 9 structure is obtained.

12



4.2 Graphene on Ir(331)

Graphene on Ir(331) is chosen to demonstrate the interesting field of vicinal
surfaces. We have used the recently published code by Sun and Ceder [26] to
generate the 331 surface slab. Matching it with a graphene unit cell we obtain
a structure shown in figure 7.

Fig. 7. Common supercell for graphene and Ir(331) - top (left) and side (right) view,
obtained with default value of nindex = 10.

Notice that in this cell because of the reasons explained at the end of theoret-
ical background section the angles between graphene atoms deviate form the
ideal ones in graphene. Because of this we give it another run with --nindex

15 option which yields a larger supercell with much smaller strain shown in
figure 8.

Fig. 8. Common supercell for graphene and Ir(331) - top (left) and side (right) view,
obtained with custom value of nindex = 15. This structure has smaller strain than
the one shown in figure 7.

13



The acceptable amount of strain we leave to the user - however the physical
reasoning behind the strain value is that it has to be smaller than the charac-
teristic binding energy between the layers so that the best configuration can
be determined. In the above example the smaller supercell cell yields a strain
of 60 meV per carbon atom which is exactly the value of the average binding
energy per carbon atom in the system.
Therefore the larger cell has to be used where the strain in graphene is almost
zero. For subtle effects of cell alignment and comparable strain and binding
energies see the example of MoS2 on sapphire in reference [27].

4.3 Graphene on MoS2

Finally, we select the example of the real vdW heterostructure of MoS2 and
graphene. MoS2 has the bandgap and is probably second most popular vdW
material after graphene. Some very promising demonstrations of its usage have
been done in the past five years - the demonstration of a single layer transistor
probably being the most famous one [2]. After selecting a common supercell
shown in figure ?? we perform a DFT calculation with selfconsistently imple-
mented vdW-DF functional in VASP code to obtain the relaxed structure. In
the relaxed structure both graphene and MoS2 remain flat with the distance
between them of 3.45 Å(distance between graphene and closer sulfur atoms
plane).

Fig. 9. Graphene unit cell – left. MoS2 unit cell – middle. Common supercell for
graphene and MoS2 – right.

Such distance immediately signals the dominant vdW character of binding
(i.e. weak binding) which is confirmed by calculated binding energy of 63 meV
per C atom. However, drawing the charge transfer shown in figure 10 shows
that some small amount of charge transfer occurs. Calculating the purely

14



nonlocal binding energy density, visualized in figure 11, we establish that the
pure nonlocal binding energy is actually 90 meV per carbon atom leading to
conclusion that the charge rearrangement is actually of repulsive character.
This is not unexpected, it is rather expected, as a signature of a dominant
vdW bonding. The charge transfer is not completely absent in the dominantly
physisorbed systems (held together by vdW interaction) it appears and serves
as the counterbalance to the attractive vdW forces which would otherwise
bring together two layers to complete overlap. The repulsive character of the
charge transfer determines the equilibrium distance between the layers. This is
shown in detail for the graphene on Ir(111) in reference [23] and it is known as
a push back or pillow effect [28]. Calculating the strain value on the graphene
by comparison with the unstrained geometry of the graphene supercell we
obtain a small value of 10 meV per C atom. Based on the calculated strain
and binding energies we can not claim that the obtained structure is the most
stable one but we can definitely claim that it is stable. Of course there are
other two parameters that we did not cover - relative shift between graphene
and MoS2 and the relative orientation between the layers.

Fig. 10. Charge density difference for graphene on MoS2.

Fig. 11. Nonlocal binding energy density for graphene on MoS2. For definition see
[].

It might seem that relative shift or orientation plays a minor role in dominantly
vdW bound layers since vdW interaction is so dispersed - but the truth is
actually completely different as is shown in the reference [27].
Having the atomic structure relaxed one can explore its electronic structure by

15



looking at the density of states for example, but we decide to show the effective
bandstructure along high symmetry lines of the original (small) unit cells.
Since the interaction between the two layers is rather weak and is expected to
be weak in almost any vdW heterostructure, we expect the bandstructure of
the MoS2/Graphene to contain recognizable features from the bandstructure
of it components. However it is difficult to compare the bandstructure directly
from the supercell with the one from the small unit cell of MoS2 or graphene.
For this purpose we use the unfolding procedure for which the theory is given
in [20] and implementation from reference [21] is employed here through the
BandUp code [29]. After the unfolding procedure we obtain the bandstructure
in the Brillouin zone of the MoS2 unit cell where it can be directly compared
with the original MoS2 bandstructure - both shown in figure 12.

Fig. 12. Unfolded bandstructures from the graphene/MoS2 supercell into the small
graphene unit cell. Dashed lines represent pure graphene bandstructure.

From figure 13 it can be seen that in spite of the small charge transfer the
MoS2 lines have been shifted a lot in the energy – more precisely they are
shifted by the gap value of the MoS2. Originally fermi level in the MoS2 lies
at the top of its valence band maximum (VBM) and the smallest charge ac-
cumulation in the MoS2 will shift it to the conduction band minimum (CBM)
– which is exactly what is shown in figure 13. By shifting the original MoS2

bands by −1.55 eV – dashed lines, we can conclude that such doping of MoS2

follows closely the rigid band approximation, which can not be determined
a–priori.
In figure 12 we show the unfolded bandstructure but this time with respect to
the unit cell of graphene, so that graphene features are recognized easily.

16



Fig. 13. Unfolded bandstructures from the graphene/MoS2 supercell into the small
MoS2 unit cell. Dashed lines represent pure MoS2 bandstructure – shifted by −1.55
eV.

In all given examples once the common supercell is prepared it can be used to
further study modifications of the heterostructure (novel material) properties
through intercalation, adsorption, gating, strain, etc.

5 Conclusions

We have demonstrated a novel code which can be used as a handy tool in cre-
ating various layered type heterostructures, such as found in epitaxial growth
and in particular in the emerging field of vdW heterostructures.
The CellMatch is a universal tool which generates atomic structures regardless
of the computational method that will be applied on them afterwards. Since
it only systematically searches through a phase space of possible combinations
of the two unit cells combinations it has no convergence issues.
In principle the code generates one common supercell out of two unit cells,
but used recursively one can keep adding more layers to the structure. The
developed CellMatch code is very general and it represents a valuable tool not
only for the ab initio computational community but also for anyone studying
vdW heterostructures or epitaxial growth by other means.

17



6 Acknowledgements

P. L. was supported by U.S. ONR Grant N000141310754 and the UB Center
for Computational Research.

7 Appendix A. code options

For match cells.py

The list of available options is:

--nindex nind
Integer number nind for search of common unit cell vectors, the values in code
go from -nind to +nind, the default value is 10.

--tolerance tol
Tolerance – float value tol – for detecting that two supercell vectors con-
structed from different unit cells are considered identical. Defined as length of
the vector difference divided by vector length. Default value 0.01.

--rotate rot
Rotation angle rot (in degrees) for the first unit cell. Default value is 0. The
first unit cell (POSCAR 1) will be copied into a file POSCAR 1 rotated 0.0.

--maxatoms mat
Integer number mat for maximum number of atoms in the supercell, if the
supercell with larger number of atoms is found it will not be printed - default
value -1 - meaning that maximum number of atoms is infinite.

--maxstrain mstr
Float value mstr for maximum strain in the supercell, supercells with larger
strain value will not be printed - default value -1 - meaning that maximum
strain is infinite.

--unique 0/1
Unique switch 0 or 1, default value is 1. In case of 0 value all possible realiza-
tions of the equivalent supercells will be printed out.

--output outfile
Name of the output file outfile. Default value is results.dat, this file is used
by generate cell.py to create common supercell.

18



--show progress 0/1
Show progress switch 0 or 1. Default value is 1 and the progress is printed on
the screen. For example in high-throughput applications running on cluster
etc. it might be convenient to suppress the on screen output.

For generate cell.py

--input file infile
Input file name infile from which the parameters are read to generate the
common supercell. The default value is results.dat.

--tolerance tol
Tolerance integer value tol used in determining repeating periodic cells in order
to generate atoms for the common supercell. This parameter with default value
of 1 should not be changed. If it happens that some atoms are missing in the
final supercell - please report, and try to increase the value.

--tolerance float tolf
Tolerance float value tolf used to determine which atoms obtained by repeat-
ing the original (small) unit cells lie within a new common supercell. This
number as well as tolerance should not be changed. In case that some atoms
are missing try to increase the value, while in case that there are too many
atoms in the supercell decrease the value. Default value is 1e− 4 - and please
report such cases.

--shift11 --shift12 --shift13 --shift21 --shift22 --shift23 shift
Shifts along the unit cell vectors for the two original unit cells. For example
−− shift110.5 option will shift the atoms of the first unit cell by 0.5 a1 unit
cell vector.

--shift1x --shift1y --shift1z --shift2x --shift2y --shift2z shift
Shifts along the Cartesian axes for the two original unit cells. For example
−− shift1x3.5 option will shift the atoms of the first unit cell by 3.5 Å along
the x–axis.

--output outfile
The name of the output file. Default value is POSCARCOMMONCELL.

--zfix zf
The value zf in Å of the z–coordinate below which the atoms of the common
super cell will be fixed for VASP selective dynamics. The option ”F F F”
will be written. In the case of negative value zf the atoms above the −zf
coordinate will be fixed.

--draw 0/1
The draw switch 0 or 1. In case of value of 1 the code will draw a supercell

19



generated from unit cell 1 and unit cell 2 - the mismatch will be visible to
estimate the strain. Original unit cells are drawn as well.

8 Appendix B. sample files

POSCAR slab 332

Ir.10 (3,3,2) static

1.0

2.740553 0.000000 0.000000

0.000000 12.854334 0.000000

0.000000 0.000000 23.220926

Ir

32

direct

0.000000 0.316932 0.964700 Ir

0.000000 0.680568 0.608854 Ir

0.000000 0.407841 0.680023 Ir

0.000000 0.589659 0.502100 Ir

0.000000 0.862386 0.430931 Ir

0.000000 0.953295 0.537685 Ir

0.000000 0.226023 0.466515 Ir

0.000000 0.044204 0.644438 Ir

0.000000 0.316932 0.573269 Ir

0.000000 0.589659 0.893531 Ir

0.000000 0.953295 0.929115 Ir

0.000000 0.226022 0.857946 Ir

0.000000 0.498750 0.786777 Ir

0.000000 0.771477 0.715608 Ir

0.000000 0.862386 0.822362 Ir

0.000000 0.135113 0.751192 Ir

0.500000 0.680568 0.804569 Ir

0.500000 0.589659 0.697815 Ir

0.500000 0.771477 0.519892 Ir

0.500000 0.226022 0.662231 Ir

0.500000 0.498750 0.591062 Ir

0.500000 0.135113 0.555477 Ir

0.500000 0.407840 0.484308 Ir

0.500000 0.862386 0.626646 Ir

0.500000 0.044204 0.448723 Ir

0.500000 0.953295 0.733400 Ir

0.500000 0.771477 0.911323 Ir

20



0.500000 0.316931 0.768985 Ir

0.500000 0.044204 0.840154 Ir

0.500000 0.407840 0.875739 Ir

0.500000 0.135113 0.946908 Ir

0.500000 0.498750 0.982492 Ir

POSCAR GRAPHENE

C

1.0000000000000000

2.4680008987391253 0.0000000000000000 0.0000000000000000

1.2340004493695627 2.1373514748709082 0.0000000000000000

0.0000000000000000 0.0000000000000000 23.220926

C

2

Cartesian

0.0000000000000000 0.0000000000000000 0.0000000000000000

2.4680008987391164 1.4249009832472670 0.0000000000000000

POSCAR COMMON CELL

C Ir.10 (3,3,2) static

1.00000000000000

-24.6649769999999968 0.0000000000000000 0.0000000000000000

-24.6649769999999968 -12.8543339999999997 0.0000000000000000

0.0000000000000000 0.0000000000000000 23.2209259999999986

C Ir

120 288

Direct

1.0000000000000000 1.0000000000000000 0.2583876284692522

0.8999999999999999 1.0000000000000000 0.2583876284692522

0.7999999999999998 1.0000000000000000 0.2583876284692522

0.9166666666666667 0.8333333333333333 0.2583876284692522

0.7000000000000001 1.0000000000000000 0.2583876284692522

0.8166666666666669 0.8333333333333333 0.2583876284692522

0.9333333333333333 0.6666666666666666 0.2583876284692522

0.6000000000000000 1.0000000000000000 0.2583876284692522

0.7166666666666668 0.8333333333333333 0.2583876284692522

0.8333333333333333 0.6666666666666666 0.2583876284692522

0.9500000000000000 0.5000000000000000 0.2583876284692522

.

.

21



.

.. (for full listing see example files)

References

[1] K. S. Novoselov, A. K . Geim, S. V. Morosov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004).

[2] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat.
Nanotechnol. 6, 147 (2011).

[3] A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012).

[4] A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499,
419 (2013).

[5] S. Choon-Ming, C. Siang-Piao, M. A. Rahman, Carbon 70, 1 (2014).

[6] F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia,
K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, K. S.
Novoselov, arXiv:1412.7621

[7] M. Petrović, I. Šrut Rakić, S. Runte, C. Busse, J. T. Sadowski, P. Lazić, I.
Pletikosić, Z-H. Pan, M. Milun, P. Pervan, N. Atodiresei, R. Brako, D. Šokčević,
T. Valla, T. Michely, M. Kralj, Nat. Commun. 4, 2772 (2013).

[8] S. Entani, L. Y. Antipina, P. V. Avramov, M. Ohtomo, Y. Matsumoto, N.
Hirao, I. Shimoyama, H. Naramoto, Y. Baba, P. B. Sorokin, S. Sakai, Nano
Res., 10.1007/s12274-014-0640-7 (2014).

[9] L. Meng, R. Wu, L. Zhang, L. Li, S. Du, Y. Wang, H-J. Gao, J. Phys.: Condens.
Matter 24, 314214 (2012).

[10] G. Kresse and J. Furthmüller, Phys. Rev. B 54 11169, (1996).

[11] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[12] N. W. Ashcroft,N. D. Mermin, Solid State Physics (Thomson Learning, Toronto,
1976).

[13] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys.
Rev. Lett. 92 246401, (2004).

[14] J. Klimeš, D. R. Bowler, and A. Michelides, J. Phys.: Condens. Matter, 22,
022201 (2010).

[15] J. Klimeš, D. R. Bowler, and A. Michelides, Phys. Rev. B 83, 195131 (2011).

22



[16] G. Román-Pérez, and J. M. Soler, Phys. Rev. Lett. 103, 096102, (2009).

[17] K. Berland, V. R. Cooper,K. Lee, E. Schröder, T. Thonhauser, P. Hyldgaard,
and B. I. Lundqvist, Rep. Prog. Phys. 78, 066501 (2015).

[18] J. Harl, G. Kresse, Phys. Rev. Lett. 103, 056401 (2009).

[19] S. Grimme, J. Comput. Chem. 27, 1787 (2006).

[20] V. Popescu, A. Zunger, Phys. Rev. B, 85, 085201 (2012).

[21] P. V. C. Medeiros, S. Stafström, J. Björk, Phys. Rev. B 89, 041407(R) (2014).

[22] http://www.cryst.ehu.es/cryst/strain.html

[23] C. Busse, P. Lazić, R. Djemour, J. Coraux, T. Gerber, N. Atodiresei, V. Caciuc,
R. Brako, S. Blügel, J. Zegenhagen, T. Michely, Phys. Rev. Lett. 107, 036101
(2011).

[24] W. Chen, E. J. G. Santos, W. Zhu, E. Kaxiras, Z. Zhang, Nano Lett. 13, 509
(2013).

[25] O. P. Polyakov, O. V. Stepanyuk, A. M. Saletsky, V. S. Stepanyuk, J. Phys.:
Condens. Matter 26, 445005 (2014).

[26] W. Sun, G. Ceder, Surf. Sci. 617, 53 (2013).

[27] D. Dumenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari,
O. Lopez-Sanchez, D. Krasnozhon, M.-W. Chen, P. Gillet, A. Fontcuberta i
Moral, A. Radenovic, and A. Kis, ACS Nano 9, 4611 (2015).

[28] Vázquez, Y. J. Dappe, J. Ortega, and F. Flores, J. Chem. Phys. 126, 144703
(2007).

[29] https://www.ifm.liu.se/theomod/compphys/band-unfolding/

23


