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Abstract 

In this paper, five AVHRR- and four MODIS-based Adriatic-focused satellite SST products are 

analysed and compared with two sets of in situ SST measurements: a drifter-based dataset collected 

in 2003, and a platform-based dataset gathered in 2004; an additional set was used to validate the 

new SST coefficients. Analysis of satellite minus in situ SST residuals shows similar results for 

both in situ datasets, with the differences being within 0.2 K. All daytime SST biases exhibited 

positive values (less than 0.5 K). Nighttime biases for short-wave IR algorithms exhibited near zero 

and small negative values with an exceptionally low standard deviation (about 0.3 K) regardless of 

the sensor used. Analysis of filtered residual time-series allowed direct comparison between 

different SST products. The seasonal change in the daytime biases was found to covary with similar 

changes in atmospheric water vapour and the Adriatic specific wind regime.  
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1 Introduction 

Sea surface temperature is among the most important geophysical parameters used in 

oceanography, meteorology and climatology; it is a key variable at the ocean-atmosphere boundary. 

In an era of global forecasting of ocean dynamics, there is an ever-increasing emphasis on error 

assessment of this parameter (Donlon et al, 2007). Satellite SST (for all acronyms see Appendix) 

measurements allow simultaneously high spatio-temporal resolution and global coverage, 

unmatched by in situ measurements. However, the empirical nature of the coefficients in SST 

algorithms entails their calibration and validation with in situ measurements. Although global SST 

fields often exhibit a near-zero bias, appreciable differences may appear on regional scales, 

suggesting geographical and seasonal biases. Zhang et al (2004) found global averages rarely 

exceed 0.2 °C because of regional biases with opposite signs cancelling each other out. 

Acknowledging that these biases can locally exceed 0.5 °C and exhibit a seasonal relation to 

atmospheric conditions, the authors suggested that satellite SST retrieval algorithms should be 
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space and time dependent. Kumar et al (2000) investigated the performance of the global Pathfinder 

algorithm in several regional conditions. They found the best discrepancy that could be expected 

between satellite and buoy data to be ~0.5 K, with the satellite underestimating SST in most of the 

studied regions. Seasonal modulation of the differences between satellite and in situ SST was 

observed in many world-ocean regions with the residuals further exhibiting inter-annual variation. 

Validation of Pathfinder satellite data in the Mediterranean Sea with CTD and XBT in situ SST data 

revealed a bias of -0.2 K (D’Ortenzio et al, 2000), whereas validation of its accuracy with a limited 

set of M-AERI measured skin SST data exhibited a bias of 0.07 K and an exceptionally low SD of 

0.31 K (Kearns et al, 2000). Arbelo et al (2000) demonstrated an inadequate performance of the 

operational SST split-window algorithm in a subtropical region. Their locally derived set of SST 

coefficients outperformed the global counterpart whenever local atmospheric conditions differed 

from the first guess atmospheric state. Minnett et al (2004) showed an improvement in MODIS-

based SST retrieval with an SD in the range between 0.4 K and 0.5 K and a small negative bias on a 

global scale. Direct comparison between coincident observations of Terra/MODIS and 

NOAA16/AVHRR BTs (Cao and Heidneger, 2002) exhibited strong agreement within 0.3 K for 

both 11 μm and 12 μm bands. This difference vanished on average after applying SST retrieval 

coefficients for each sensor. 

Generally, biases in satellite SST retrievals combine two forms of systematic error: prior error due 

to the implicit state of the atmosphere (for which regression coefficients are derived), and an error 

coming from the non-linearities in the SST-atmospheric state relation (Merchant et al, 2006). Both 

of these errors exhibit spatial and temporal variability and arise as a consequence of the retrieval 

form, rather than an inadequate set of retrieval coefficients (Merchant et al, 2006). To eliminate 

regional biases on the global scale, Merchant et al (2008) used the OE technique, where NWP 

forecast fields were used as prior information of the atmosphere and ocean expected state to derive 

simulated BT prior observations. Using three months of Metop-A data for comparison, they showed 

that OE application reduces regional biases (an absolute bias less than 0.1 K in 64% of 10°-latitude 

by 30°-longitude cells compared to only 33% of cells in the case of the NLSST algorithm). The SD 

is also reduced from 0.83 K to 0.42 K. Another approach to reduce regional and inter-sensor biases 

is to create multidimensional lookup tables using parameters like satellite zenith angles, BT 

differences, SST, wind speed and water vapour content (Castro et al, 2008). The NOAA normally 

validates their SST products on a monthly basis, but global matchups are sparse, geographically 

biased and take time to accumulate; Dash et al (2007) used SST climatology as a reference state to 
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perform statistical analysis of anomalies and produce long-term quality control and assurance. The 

globally initiated GHRSST-PP project (Donlon et al, 2007) aims to resolve the regional and inter-

sensor discrepancy issues by providing consistent, error-bounded products that combine several 

satellite-sensor and in situ SST datasets, explicitly taking care of individual SSES. In validation 

studies focused on the Adriatic Sea, the NOAA/AVHRR SST bias exhibited values between -0.3 

and 0.5 K (Notarstefano et al, 2006, Tomazic et al, 2006), depending on the sensor, algorithm and 

analysed year. 

Bearing in mind GHRSST-PP project standards and expectations, we performed a detailed, 

comparative, Adriatic-centred study of the Adriatic remotely-sensed SST. In performing the study, 

we aimed at elucidating cross-platform and inter- and intra- algorithm differences helping produce a 

consolidated Adriatic satellite SST product of the highest resolution and quality. To that end, we 

made use of several satellite SST products (AVHRR, MODIS, Pathfinder) and several in situ 

datasets (drifter SST, platform SST, shipboard SST). Lacking the foundation temperature 

measurements (free of diurnal variability), we calculated relative residual differences between the 

satellite and bulk in situ measurements. Early results along these lines are reported in Tomazic et al 

(2007). The rest of the paper is organised as follows: satellite, in situ and ancillary data used in the 

study are presented in the Data and algorithms section; the employed methods are presented in the 

third section and obtained results are discussed in the fourth section; the findings are summarised in 

the last section.  

2 Data and algorithms 

The data used in this study are divided into three groups; the first group comprises satellite 

measurements (nine satellite products); the second covers in situ SST measurements (three datasets 

collected with drifter-based, platform-based and ship-borne instruments); and the last makes up the 

ancillary data. 

2.1 Satellite SST products 

Of the nine satellite-derived SST products, the first four (based on AVHRR NOAA16/NOAA17 

data) were produced locally, whereas the other five (based on MODIS-Aqua, MODIS-Terra data 

and Pathfinder processing) were devised elsewhere (Feldman and McClain, 2007; Casey, 2007).  

Local AVHRR products are based on data acquired with the Quorum HRPT receiving station 

(nominal resolution of 1.1 km). The AVHRR data within the HRPT stream were processed to L1B 

level by the AAPP application supplied by EUMETSAT (NWP SAF) (Atkinson and Dohery, 2005) 

and additional navigational correction was performed with the ANA-3 application supplied by 
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METEO FRANCE, CMS (Brunel and Marsouin, 2002). Further processing to L2 level in the 

satellite projection was done with an ‘in-house’ application. The processing includes digital counts 

calibration to reflectance and BTs (Goodrum et al, 2000), interpolation/extrapolation of geolocation 

data to every pixel, landmasking, cloudmasking and deriving SST values from IR channels. The 

cloudmask scheme uses spectral and textural image features based on the thresholding scheme of 

Saunders and Kriebel (1988) and Stowe et al (1999) with the static thresholds tuned for the Adriatic 

Sea region (details in Tomazic, 2006). During the 2003-2004 period, 2568 NOAA16 and 2464 

NOAA17 scenes were collected, with an average number of 6.9 scenes per day for both satellites. 

The SST derivation was based on NOAA/NESDIS operational SST algorithms, the NLSST for 

daytime and nighttime and MCTriple (‘Andy’) for nighttime only (Table 1). 

The fifth AVHRR product is the 4 km Pathfinder SST version 5.0 developed at the University of 

Miami’s RSMAS and retrieved from the PO.DAAC. For the years 2003 and 2004, the Pathfinder 

program used NOAA17 data, producing two fields per day (daytime and nighttime, altogether 1460 

scenes). The Pathfinder product pixel registration exact time is partially known, introducing some 

ambiguity into the validation procedure (Casey, 2007). The problem lies in the processing 

procedure, which in the case of overlapping orbits uses multiple observations to create a single 

daytime or nighttime SST field. The approximate time of the Pathfinder pixels was found by 

analysing NOAA17 data from the local HRPT receiving station based on the assumption that if 

there are two clear pixels (maximum for the Adriatic) from two consecutive orbits for the same 

location, the pixel with the smaller satellite zenith angle is used in the Pathfinder dataset. The 

Pathfinder algorithm (Table 1) is based on the NLSST algorithm with a monthly variable set of 

coefficients for two different atmospheric regimes derived from regression with in situ buoy data 

(Kilpatrick et al, 2001). Later in the paper, we refer to this type of coefficient as ‘variable’, as 

opposed to a fixed set used in local AVHRR products. At the time of this study, there were no ‘true’ 

Pathfinder coefficients for the year 2004. Consequently, the interim version of the product was 

used.  

The SST data derived from the MODIS sensor (for both Aqua and Terra platforms) were retrieved 

for the years 2003 and 2004 from the OBPG site (Feldman and McClain, 2007) as 5-minute 

granules in L2 format (V5.3 and V5.6 processing respectively) with a nominal resolution of 1 km. 

Two MODIS SST products for each satellite platform were used: the SST derived with the LWIR 

algorithm (MODSST) available for both daytime and nighttime passes, and the SST derived with 

the SWIR algorithm (MODSST4) available only for nighttime passes (Table 1 [Brown and Minnett, 

1999]). Like Pathfinder, the MODSST/MODSST4 uses a variable set of coefficients, with the 

important difference of additionally adjustmenting the coefficients relative to the in situ skin 
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temperature measurements from the M-AERI radiometer (P.J. Minnett, personal communication). 

This correction produces skin SST for both MODSST and MODSST4 products. The other 

important difference (in this study) is the use of MODSST4 as the reference nighttime temperature 

in the MODSST algorithm (Table 1). Terra satellite Adriatic overpasses are 10:00 UTC (daytime) 

and 21:00 UTC (nighttime); the respective Aqua overpasses are 12:00 UTC and 01:00 UTC. 

Compared to the NOAA satellites, the Aqua overpass is closer to NOAA16, and the Terra to 

NOAA17. For the years 2003 and 2004, there were a total of 1790 Aqua and 1860 Terra granules 

for the Adriatic region, with an average number of 5.1 granules per day for both satellites.  

2.2 In situ SST data 

In situ data come from three sources with distinct space and time resolutions: drifter (a very high 

spatial and temporal resolution), platform (a single position but very high temporal resolution - 20 

min) and shipborne (a low to medium resolution in both space and time). The third set was used 

only as an independent in situ reference.  

Drifter-based data were collected during the DOLCEVITA project, (Ursella et al, 2004) spanning 

the time interval from 21 September 2002 to 29 February 2004. There were a total of 118 drifters 

and the majority were of the CODE type. On these drifters, the temperature sensor is positioned 40 

cm below the surface and the accuracy is ±0.1 °C in a temperature range from -5 °C to 39 °C (Leitz, 

1999). Geolocation accuracy is 200-300 metres for drifters equipped with the ARGOS system, and 

10 metres for drifters equipped with the GPS system (Poulain et al, 2001). The wintertime cloud 

cover combined with uneven drifter temporal distribution led to the use of a quasi-continuous data 

period between 10 January 2003 and 17 September 2003, with a total number of 487001 SST 

measurements (on average 194 SST measurements per day). Their spatial distribution (Figure 1) 

shows very good coverage of the northern and middle Adriatic, while the southern part is poorly 

covered due to the initial release positions of the drifters (northern and middle Adriatic) and general 

cyclonic circulation. 

Platform-based data come from the IVANA-A gas rig situated in the northern Adriatic [13° 17.9’E, 

44° 44.7’N] (Figure 1) and cover the period from 2 February 2004 to 17 September 2004. The SST 

was measured with an Aanderaa TR7 thermistor chain (only 1 m depth data were used) with a 20-

minute sampling interval. There were 15807 SST measurements in this period, with an average 

number of 69 measurements per day. Since there is no time overlap between the drifter and 

platform data, it was not possible to directly compare the two field measurement datasets. 

Shipborne CTD measurements comprise the data taken as part of the ADRICOSM project 

(ADRICOSM) in 2003. The project combines data from 5 institutions covering 4 areas of the 
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Adriatic Sea (the Emilia Romagna area, Trieste Bay, the west Istrian coast, and the Split area). All 

measurements were made with CTD data instruments and a vertical resolution of 0.5 metres; a 

depth of 1 metre was used as the SST depth. Infrequent measurements led to a relatively small data 

set. On average, there are 20 data per day (when the measurements were performed), while in the 

summer months there are 50 data per day. It should be noted that this dataset contains only daytime 

measurements. 

2.3 Ancillary data  

Two different wind datasets and two different water vapour datasets were used to aid the analysis. 

The first wind dataset is the LAMI model output (7 km resolution, 10 metres height, every 3 hours), 

whereas the second comes from the QuikSCAT COGOW database (August 1999–July 2004, 10 m 

wind) (Risien and Chelton, 2006). LAMI data for the whole Adriatic were available for the year 

2003; only the wind data closest to the IVANA-A platform were available for 2004. These wind 

data were interpolated to each matchup pair to assess their impact. In addition, LAMI and COGOW 

data were used in wind distribution calculation. Winds from the COGOW database were also used 

to compare the Adriatic wind regime with the open ocean one. The first tcwv dataset is derived 

from the MODIS data (Seemann et al, 2006) over the Adriatic Sea. Data were retrieved from NASA 

GSFC for the year 2003 and further averaged over the northern Adriatic Sea where the majority of 

matchups were located. The second tcwv dataset is an Adriatic subset of the ECMWF ERA-40 

reanalysis data (Uppala et al, 2005). Monthly tcwv climatology is derived from the subset (Tomazic 

and Kuzmic, 2009.) for the ‘wet’ points over the Adriatic Sea, covering the period from September 

1957 to August 2002. 

3 Methods 

Validation of the satellite SST products is based on the creation of an MDB of temporally and 

spatially coincident satellite and in situ SST measurements. The initial MDB is created requesting a 

maximum 1 hour of absolute time difference and a within-pixel spatial difference between the 

satellite overpass and in situ measurement. Whenever matchup criteria were satisfied, satellite data 

for the central satellite pixel and 9x9 surrounding pixels were extracted from the satellite image 

together with the corresponding in situ measurement (SST, position and date) and LAMI wind data, 

creating a matchup record. It should be noted that the vertical collocation of the satellite and in situ 

measurements is not the same for all satellite products. The AVHRR algorithms provide a bulk 

temperature suitable for comparison with in situ data, whereas MODIS-based algorithms estimate 

the skin temperature requiring a correction to the subskin temperature. The skin surface is on 
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average ~0.17 K cooler than the subskin layer ( Donlon et al 2002) and therefore this difference is 

added to the MODIS SST to allow comparison. True comparison would include modelling diurnal 

stratification from the subskin to the corresponding in situ depth, but lacking the modelling 

information, we directly compared the SSTsubskin to the SSTdepth, stressing the problems with such 

comparison. 

In local processing of AVHRR data, besides the landmasking, cloudmasking and restriction on the 

satellite zenith angle below 50°, restricting criteria on channel 4 and 5 brightness temperatures were 

also applied (based on Eugenio et al, 2005) to eliminate possible errors in geolocation near SST 

fronts and errors in cloudmasking near cloud edges. In deriving channel 4 and 5 BTs, only central 

pixels with an SD less than 0.12 K (sensor NEΔT) of the corresponding surrounding 3x3 pixel 

window are included in the analysis. This criterion reduces the number of available matchup pairs 

by 15% but improves the quality of data. For MODIS and Pathfinder products, only SST values 

with the highest quality flags (values of 0 for MODIS and 7 for Pathfinder) were included in the 

analysis. The use of the highest quality flags ensured that only a couple of matchups have residuals 

larger than 3 K, and less than 1.5% have residuals larger than 2 K for all MDBs. An absolute 

temporal difference of 1 h could create matchups where the single satellite measurement is paired 

with multiple consecutive and similar in situ SST measurements, affecting the overall statistics. A 

unique one-to-one pairing was therefore imposed. Despite the 1h temporal difference, there were 

periods lacking any matchup pairs (pronounced cloudiness). For the drifter based MDBs, there were 

two such periods (end of January 2003 - beginning of February 2003, and in the middle of 

September 2003), whereas for the platform-based MDBs there were several smaller periods in the 

first half of the year 2004 (February, March, April). 

4 Results and Analysis 

The results are presented in two ways. Firstly, the overall statistics in the form of biases (means) 

and SDs of all residuals [satellite SST – in situ SST] in given time periods were calculated for the 

drifter and platform based MDBs; the respective periods are 10 January 2003 - 17 September 2003 

and 2 February 2004 - 17 September 2004. These parameters, together with the number of matchup 

pairs, are presented for each MDB with respect to the satellite SST product, in situ database and 

time of day (daytime or nighttime). To asses the wind mixing impact and eliminate the diurnal 

warming effect, separate analyses were performed for matchup pairs with wind speeds higher than 

6 m s
-1

 (daytime) and 2 m s
-1

 (nighttime), following Donlon et al (2002).  

Secondly, all residuals are weighted averaged over a 7-day period to single out possible 

temporal/seasonal variability. The 7-day period was chosen to balance the temporal variability and 



 

 8 

the number of residuals available for averaging. There were on average 30 residuals from the drifter 

MDB and 15 residuals from the platform MDB per 7-day period. Four different time-series 

analyses (drifters-daytime, drifters-nighttime, platform-daytime, platform-nighttime) were 

performed for each satellite SST product, but only drifter results will be elaborated in more detail. 

Filtering residuals for higher wind speeds significantly decreases the number of available residuals, 

preventing a time-series analysis. 

4.1 Overall statistics 

Overall statistics for each MDB and time period is presented separately for all wind speeds (Table 

2a) and for higher wind speeds (Table 2b). For all wind speeds, positive bias values dominate the 

daytime results, while both positive and negative bias values appear for nighttime, depending on the 

algorithm and sensor. Daytime local AVHRR-derived SSTs show similar higher positive biases in 

all comparisons with in situ data (between 0.43 K to 0.52 K), whereas MODIS-derived SSTs 

exhibit smaller bias values both for the drifter and platform MDBs (between +0.10 K and +0.32 K). 

SDs for all daytime MDBs are between 0.5 K and 0.7 K, with only Pathfinder exhibiting a lower 

SD (0.36 K). Nighttime results exhibit different characteristics: local AVHRR MCTriple products 

exhibit negative biases (between -0.33 K and -0.18 K), while NLSST nighttime products show a 

bias between -0.11 and 0.12 K; the MODIS products, after skin-to-sub-skin correction is performed, 

exhibit absolute biases within ±0.15 K (except the Aqua-drifter MDB, which shows a higher 

absolute bias of -0.23 K). Pathfinder MDB biases are different for drifter- and platform-based 

measurements, with values of -0.06 K and 0.21 K respectively. For all MDBs, the nighttime SDs 

span the 0.3 K to 0.6 K range, with local AVHRR and MODIS products, employing SWIR channels 

by night, staying close to 0.3 K; only the Aqua/MODSST4, when compared to drifter data, 

generated an SD of 0.4 K. It is informative to compare the SWIR-based nighttime results for fixed 

(MCTriple) and variable (MODSST4) sets of coefficients. Although the overall bias of the 

MODSST4 algorithm is closer to zero, its overall SD is higher (by up to 0.1 K, depending on the 

satellite and in situ dataset) than the one for the MCTriple product (Table 2a). This demonstrates 

that the use of a variable set of coefficients in an algorithm which utilises SWIR channels can lead 

to a degradation of results. 

For higher wind speeds (stratification destroyed), there is a drop of daytime bias in all SST 

products, while the nighttime biases perhaps predictably remain similar (Table 2b). Drifter-based 

daytime bias decreases are more pronounced for afternoon satellites (better developed prior 

stratification) and for algorithms with a fixed set of coefficients (0.3 K and 0.2 K for 

NOAA16/NLSST and Aqua/MODSST respectively). The mid-morning satellite decrease is lower 
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(about 0.15 K). For platform measurements there is practically no change in bias for mid-morning 

satellite-based (NOAA17, Terra) products, whereas the decrease for afternoon satellites is similar to 

drifter measurements. 

Intercomparison of Pathfinder-, NOAA17/NLSST- and Terra/MODSST-derived SSTs is instructive 

due to the similarities in the algorithms and overpass times. During both the daytime and nighttime, 

all three products exhibit similar biases (within 0.2 K) but different SDs. During the daytime, the 

Pathfinder algorithm has the smallest SD, while during the nighttime it has the highest. The 

nighttime difference between the Pathfinder and Terra/MODSST estimates can be ascribed to 

different reference temperatures: Reynolds OISSTv2 for Pathfinder and MODSST4 for MODSST. 

The use of MODSST4 as a nighttime reference temperature provides better precision and therefore 

a lower SD compared to the Reynolds OISSTv2. Although the same reference temperature is used 

in both the MODSST and Pathfinder algorithms, the latter outperforms the former during the 

daytime for both in situ datasets. Compared to the implicit accommodation of the skin-to-bulk 

relation in AVHRR-based coefficients, the simple MODIS skin-to-bulk correction that we applied 

appears inadequate. Another difference is coarser Pathfinder resolution, which effectively smoothes 

out the SST estimate and consequently lowers its SD. It has been demonstrated that increasing the 

area around the central pixel to 3x3 pixels correspondingly lowers the SD by up to 0.1K, without 

significantly changing the bias. Further enlargement of the area around the central pixel does not 

improve the SD, but does increase the absolute bias (Tomazic, 2006).  

The number of available residuals used in calculating statistics deserves comment. One readily 

notes certain intra-sensor similarities and inter-sensor differences. For instance, local NOAA16- 

and NOAA17-based MDBs have a similar number of matchups suggesting consistency, but not 

necessarily correctness, in cloudmasking. More conservative local AVHRR cloudmasking 

(implementing additional CH4-CH5 criteria) may result in false rejection, whereas a lack of 

additional channels is conducive to false acceptance. Compared to the AVHRR, the MODIS-based 

MDBs have a higher number of available matchups (20% to 40%), partly because of their more 

sophisticated cloudmasking, which based on extra channels suitable for cloud detection, reduces 

both false detections and false acceptances. Pathfinder has the smallest number of matchups (30% 

to 50% less than MODIS-based MDBs), which is most likely due to the lower spatial resolution (a 

higher possibility of false cloud contamination) and due to the fact that this dataset is already 

temporally sampled to only two results per 24-hour day (daytime and nighttime), eliminating 

possible multiple daily satellite observations of the same point. Higher wind-speed filtering also 

reduces the number of matchups by as much as 80% in the daytime. 
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4.2 Time-series analysis 

In order to better understand the overall statistics, it is important to look at the residuals time-series 

(Figure 2a). The AVHRR-based datasets analysis shows a high seasonal change for daytime values 

with lower absolute biases during the first two quarters and pronounced higher positive biases (up 

to 1 K) during the third quarter of the year. A higher bias is the consequence of combined 

inadequate marine (diurnal warming) and atmospheric (water vapour) correction. The operational 

coefficients used in the local NOAA16 and NOAA17 SST estimates are derived from regression 

with drifting and moored buoy data (Li et al, 2000, May et al, 1998). Buoy temperature sensors are 

located at a depth of around 1 metre (bulk), whereas satellite sensors measure infrared radiation 

from the first 10 μm of the sea (skin). During the summer season, in low wind conditions there is a 

high temperature stratification in the initial metres which can lead to differences of several Kelvins 

between the skin and bulk temperature (Minnett, 2003). This stratification breaks at higher wind 

speeds (above 6 m s
-1

) (Donlon et al, 2002) when a quasi homogenous layer is formed. Since 

operational coefficients are derived from different in situ data (drifting and moored buoys - NDBC, 

TOGA-TAO, AOML, MEDS, etc) mainly deployed in regions characterised by higher wind speed 

regimes (more than 6 m s
-1

), their application to the Adriatic is not straightforward. On a global 

scale, the wind speed distribution from the F-13 SSM/I instrument for the period between 1995 and 

1999 gives an average wind speed of 8.3 m s
-1

, with approximately 30% of all wind vectors having 

a magnitude of less than 6 m s
-1

 and only 3% less than 2 m s
-1

 (Donlon et al, 2002). For the Adriatic 

region, wind speed distribution derived at drifter positions from the LAMI model for the year 2003 

shows an average speed of 4.3 m s
-1

, with more than 70% of all wind vectors having a magnitude of 

less than 6 m s
-1

, and 25% of them having a magnitude of less than 2 m s
-1

. Partial validation of the 

LAMI wind magnitude and direction by Signell et al (2005) suggests an eight percent model 

underestimation of the wind magnitude implicit in the operational SST regression, though even 

after applying this correction the Adriatic wind speed is appreciably smaller than the ocean wind 

speed. A COGOW subset is used to further examine and confirm this wind-speed discrepancy. As 

the majority of drifter- and platform-derived data was collected in the northern half of the Adriatic 

(Figure 1), the COGOW subset was taken for that area. The resulting climatology for the 2000-

2004 period shows that the average wind magnitude for the northern Adriatic is 5.7 m s
-1

, with 60% 

of the data having a magnitude below 6 m s
-1

, in accordance with the corrected LAMI result. 

Another insightful result is the monthly distribution of less than 6 m s
-1

 wind speed for the northern 

half of the Adriatic (Figure 3). In the Adriatic and Mediterranean, there is again a high seasonal 

change, with lower winds during the third quarter of the year and higher ones during the first and 
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fourth quarters. The northern part of the Adriatic Sea has clearly the highest percentage of winds 

below 6 m s
-1

 (about 80% during the third quarter of the year), which is visible in both the COGOW 

and LAMI data for 2003. A similar analysis from the COGOW database, but applied to a region of 

TOGA-TAO buoy data in the open ocean, shows no seasonal change, and only 20% to 30% of the 

data have a wind speed of less than 6 m s
-1

 (Figure 3), which is similar to the global ocean result of 

Donlon et al (2002). Consequently, the use of operational coefficients is likely to produce a biased 

estimation of bulk Adriatic SST. This is evident in the third quarter of the year for all AVHRR-

based SST products with a fixed set of coefficients. 

Another important factor affecting the SST retrieval is atmospheric correction, mainly influenced 

by atmospheric water vapour. Seasonal Adriatic tcwv variability (Figure 4), derived both from 

Aqua/MODIS and ERA40, showed increased values in the summer months, but a lack of 

knowledge of the exact atmospheric a priori state for which the operational coefficients were 

derived precluded a comparison with global tcwv variability. Additionally, pronounced heating in 

the second and especially in the third quarter of the year, combined with the seasonally increased 

tcwv values, gives a masked SST signal that deserves further, separate analysis. Therefore, we can 

focus only on the end of the first quarter (March), when there were enough matchup pairs and no 

pronounced heating, making the atmospheric interference more visible. In this period, there were 

two tcwv oscillations that left their mark on all LWIR-based algorithms and satellite platforms both 

in the daytime and nighttime residuals (Figure 2a and Figure 2c). This dependence calls for further 

verification and research promising possible future improvements. 

Nighttime analysis of the SST MDBs shows a better precision than the accuracy of products that 

use SWIR channels (MCTriple and MODSST4 - Figure 2b). A relatively high but negative bias 

(different for AVHRR and MODIS sensors) is almost constant throughout the year (Figure 2b), 

creating a small SD (from 0.3 K to 0.4 K) that varies with the MDB. The nighttime algorithms that 

use only the LWIR channels (Figure 2c) show a seasonal change, probably affected by an increased 

amount of tcwv (Figure 4) not adequately accounted for derivation of the operational coefficients. 

Although the overall bias in Pathfinder is relatively small (-0.06 K for drifter-based data), the time-

series analysis (Figure 2b) suggests cancellation of higher positive biases during the third quarter 

and negative biases during the first and second quarters of the year. One should also note the 

uneven annual distribution of matchups that favour the third quarter of the year in calculating 

overall statistics. The number of matchups in the first two quarters is 10-50 per week, whereas 

during the third quarter there are 50-100 matchups per week.  
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Another piece of information which can be derived from the time-series for each MDB is the 

difference between daytime and nighttime residuals. Such a difference provides a new insight into 

the differences between the algorithms that use the same (MODIS, Pathfinder) and those that use a 

separate (local AVHRR) set of coefficients for daytime and nighttime, but also between those using 

SWIR and those employing LWIR algorithms during the nighttime. If influenced only by random 

physical factors and exposed to error cancellation, the residuals and their daytime-nighttime 

differences should be generally invariant. It is worth noting that although the absolute residuals are 

contaminated with matchup pair measurement discrepancies in space (vertical, horizontal) and time, 

all satellite products are similarly affected by these discrepancies. To eliminate the shorter period 

variability in the daytime-nighttime differences, a Butterworth filter with a cut-off period of two 

weeks was applied (Figure 5). The AVHRR-based differences are shown in Figure 5a and those 

based on MODIS in Figure 5b. We will first contrast the nighttime algorithms: 

NOAA16(NOAA17)/NLSST vs. NOAA16(NOAA17)/MCTriple, and Terra(Aqua)/MODSST vs. 

Terra(Aqua)/MODSST4. For the local AVHRR-based products (Figure 5a), there is a clear 

covariation of both algorithm solutions in the first part of the year (until late June), both for the 

NOAA16 and NOAA17 platforms, suggesting that the noted satellite-minus-in situ difference is not 

a consequence of the algorithm type. In the remaining (warmer) part of the year, the discrepancy 

between NLSST and MCTriple solutions (both NOAA16 and NOAA17) grows and culminates in 

August. The change is reflected in the pattern of covariability as well. In the first part of the year, 

the grouping was platform-based (e.g. the NOAA16 NLSST-NLSST curve covarying with the 

NOAA16 NLSST-MCTriple curve, whereas in the second it is more algorithm-based (e.g. the 

NOAA16 NLSST-MCTriple curve covarying with the NOAA17 NLSST-MCTriple). NLSST-

MCTriple differences are greater compared to NLSST-NLSST ones because the better, constant 

MCTriple nighttime residuals (Figure 2b) are smaller than the erroneous NLSST ones, whereas the 

two NLSST-based ones offer similar, albeit erroneous, solutions. The MODIS-based residual 

differences (Figure 5b) exhibit very similar variability. However, contrary to the AVHRR 

dichotomy (NLSST-NLSST vs NLSST-MCTriple), the MODSST-MODSST and MODSST-

MODSST4 residual differences are closer to each other for both Aqua and Terra mainly because the 

MODSST4 algorithm was used as the reference temperature for the MODSST algorithm. 

It should be reiterated that the two tcwv oscillations in March (Figure 4) are even more strongly 

visible in the day-night differences for both AVHRR- and MODIS-based products. This provides 

further motivation for seeking improvements in SST retrieval. 
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4.3 Correlation analysis 

Correlation coefficients (Table 3) between MDB pairs systematically reveal information about 

possible residual dependencies caused by a grouped influence of physical (atmospheric correction), 

technical (sensor type) and environmental factors (satellite overpass time). The higher correlations 

obtained between MDB pairs suggest the existence of coherent influences of the above-mentioned 

factors. The correlations in Table 3 are diagonally separated in two parts, the upper-right part giving 

the daytime correlation coefficients, and the lower-left part providing the nighttime correlations. In 

the daytime correlation part, the highest correlation (about 0.8) is found between the mid-morning 

satellites (NOAA17 and Terra, regardless of the algorithm), and between the same algorithms 

(NLSST or MODSST) regardless of the satellite platform. A lower daytime correlation (0.7) is 

obtained for the afternoon satellites with different algorithms (Aqua/MODSST vs. 

NOAA16/NLSST), which can possibly be ascribed to the different parameterisation of the diurnal 

warming influence. The correlations between Pathfinder and Terra/MODSST as well as Pathfinder 

and NOAA17/NLSST are about 20% higher (~0.75) than those of Pathfinder with Aqua/MODSST 

and with NOAA16/NLSST. Nighttime results (Table 3 lower left) resemble the daytime grouping. 

Higher correlations are obtained for satellites with a similar overpass time and for the same 

algorithm types but different satellite platforms. Correlations between the algorithms with SWIR 

channels (MCTriple and MODSST4) show much lower correlations (about 0.5), but nevertheless 

exhibit the same trend of higher correlation for similar satellites and the same type of algorithms. A 

lower nighttime correlation can be ascribed to the better atmospheric correction of the SWIR 

channel algorithms and consequently less residual influence of water vapour variability.  

4.4 Local coefficients validation 

The possibility of improving the local NOAA16 and NOAA17 estimated using the drifter SST data 

was also explored. To that end, new sets of NLSST/MCTriple coefficients were generated for each 

satellite by regressing the NOAA16 and NOAA17 BTs with the coincident drifter SST 

measurements applying the same filtering criteria. The new coefficients were then used to derive a 

SST for comparison with an independent shipborne and platform in situ dataset, but also for a 

reference self-fitting to the drifter data themselves. Applying a new set of coefficients to the same 

drifter dataset gives an expectedly zero bias with a lower daytime SD (~0.6 K) and a nighttime SD 

the same as that obtained with operational coefficients (~0.3 K) (Table 4, Table 2a). For the 

independent platform dataset, the bias decreases to near-zero values (except for 

NOAA17/MCTriple) with no change in the SD. Results for the daytime shipborne dataset exhibit a 

decrease in bias by 0.2 K and 0.3 K for the local NOAA16 and NOAA17 satellites respectively; the 
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SD remains the same and relatively high (~0.65 K) for both satellites. Analysis of individual 

shipborne residuals for the drifter-based algorithm (Figure 6) shows an improvement (smaller bias) 

in the third quarter of the year for both satellites, whereas during the first half of the year the change 

for NOAA16 is for the worse, and for NOAA17 there is no change. It can be argued for both 

platforms (NOAA16 in particular) that daily warming of the surface layer and the absence of 

stronger wind adversely affects the calculation of new coefficients, thereby reversing the positive 

effect of the atmospheric correction in the first half of the year. A similar bias improvement is 

obtained with another method (not presented), namely by applying the daily biases derived from the 

drifter-based time-series analysis to each matchup in the independent shipborne MDB for each 

corresponding day. This testifies to the similar effect of the two techniques in a small region, but 

does not help in reducing the SD.  

5 Conclusions 

 Nine Adriatic-focused (five AVHRR-based and four MODIS-based) satellite SST products 

were analysed and compared with two different sets of in situ SST measurements; an additional 

shipborne set was used to validate the new SST coefficients. Four products were derived using 

locally received AVHRR telemetry and applying operational SST coefficients, whereas the other 

five were processed elsewhere. Five SST products were derived using LWIR channels and four 

were based on SWIR channels employing either fixed or variable sets of coefficients. The 

performance of each satellite SST product was analysed in two ways: in terms of overall statistics 

and as a time-series of seven-day windowed weighted moving averages. Results show an overall 

better performance for MODIS-based SST products, with a better accuracy (smaller bias) and 

similar precision (SD) compared to AVHRR-based SST products when comparing all available 

platforms, in situ datasets and day/night retrievals. Focusing on the daytime only, Aqua/MODSST 

has the lowest bias (0.1 K to 0.3 K), while Pathfinder has the lowest SD (0.3 K to 0.5 K - depending 

on the in situ dataset). During the nighttime, algorithms based on SWIR channels outperform LWIR 

channel-based algorithms with better results for MCTriple products compared to MODSST4. 

Although the MCTriple bias is negative (close to -0.3 K), the SD is exceptionally small (around 

0.3 K) providing AATSR-like precision (reported in O’Carroll et al, 2006), and with the proper bias 

correction, this product is recommended for future analysis. Negative nighttime biases, common to 

the majority of AVHRR-based SST solutions, appear to have a common regional origin, but a more 

conclusive explanation of their cause requires further analysis of the atmospheric effects. Analysis 

performed by applying seven-day-window weighted moving averaging has shown clear seasonal 

variability in all residual daytime series; the variation was in response to diurnal warming, annual 
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change in atmospheric water vapour, and the Adriatic wind regime. Obtained residual differences 

were found to covary with daily water vapour changes in the first half of 2003, when there was no 

intensive warming of the surface. Inspection and cross-comparison of wind data from several 

sources confirmed a suspected significant difference between the open ocean (implicit in 

operational coefficients) and the Adriatic wind regime. By eliminating low wind matchup pairs (for 

the daytime, those with less than 6 m s
-1

), the overall SD remains the same and biases decrease by 

up to 0.3 K, but are still mainly positive. The remaining bias could be ascribed to the overall 

atmospheric first state error. In an additional validation exercise, a new set of coefficients derived 

from the drifter data were used to generate SST estimates which were then compared to an 

independent set of shipborne and platform measurements. A decrease of absolute bias to near-zero 

values for platform-based validations, and for shipborne validations to 0.2 K to 0.3 K, suggests that 

local coefficients on average better estimate SST in the Adriatic Sea by incorporating both the 

influence of Adriatic-specific atmospheric correction and the joint effects of diurnal warming and a 

low wind regime. However, daytime SD remains the same, and relatively high for both 

comparisons calling for further separate consideration of the problem. The noted similar effect of 

the water vapour on all SST products provides a strong impetus for seeking further improvements 

on a regional, Adriatic scale, bearing in mind unavoidable systematic errors. 

Acknowledgements 

This work was supported by the Croatian Ministry of Science, Education and Sport under contract 

098-0982705-2707. The DOLCEVITA drifter project was supported by the United States Office of 

Naval Research. We thank Dr. J. Chiggiato for the provided LAMI wind data and anonymous 

reviewers for helpful and useful suggestions for improving this article. 

 

Appendix A 

 

AAPP  ATOVS and AVHRR Pre-Processing Package 

AATSR Advanced Along Track Scanning Radiometer 

ADRICOSM Adriatic Sea Integrated Coastal Areas and River Basin Management System 

ANA-3 Automatic Navigation Adjustment 

AOML  Atlantic Oceanographic and Meteorological Laboratory 

ATOVS  Advanced TOVS 

ARGOS Advanced Research and Global Observation Satellite 

AVHRR  Advanced Very High Resolution Radiometer  

BT  Brightness Temperature 

CMS  Centre de Météorologie Spatiale 
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CODE  Coastal Ocean Dynamics Experiment 

COGOW Climatology of Global Ocean Winds 

CTD  Conductivity, Temperature, Depth 

DOLCEVITA Dynamics of Localised Currents and Eddy Variability in the Adriatic 

ECMWF European Centre for Medium-Range Weather Forecasts 

ERA-40 ECMWF Re-Analysis for 40 years 

GHRSST-PP GODAE High-Resolution Sea Surface Temperature Pilot Project 

GODAE Global Ocean Data Assimilation Experiment 

GPS  Global Positioning System 

GSFC  Goddard Space Flight Center 

HRPT  High Resolution Picture Transmission 

IR  Infra Red 

L1B  Level 1B 

L2  Level 2 

LAMI  Local Area Model Italy 

LWIR  Long Wave Infra Red 

M-AERI Marine-Atmosphere Emitted Radiance Interferometer 

MCSST Multi Channel Split SST Algorithm 

MCTriple Multi Channel Triple SST Algorithm 

MDB  Matchup Database 

MEDS  Marine Environmental Data Service 

Metop-A (Europe's first) Meteorological Operational Polar-orbiting Satellite 

MODIS Moderate-Resolution Imaging Spectrometer 

MODSST MODIS SST algorithm based on LWIR channels 

MODSST4 MODIS SST algorithm based on SWIR channels 

NASA  National Aeronautics and Space Administration  

NDBC  National Data Buoy Center 

NESDIS National Environmental Satellite, Data, and Information Service  

NLSST Non-Linear SST algorithm 

NOAA  National Oceanic and Atmospheric Administration  

NWP  Numerical Weather Prediction 

OBPG  Ocean Biology Processing Group 

OE  Optimal Estimation 

OGS  Osservatorio Geofisico Sperimentale 

OISSTv2 Optimum Interpolation Sea Surface Temperature 2
nd

 version 

PO.DAAC Physical Oceanography Distributed Active Archive Center 

RBI  Rudjer Boskovic Institute 

RSMAS Rosenstiel School of Marine and Atmospheric Science 

SAF  Satellite Application Facility 

SD  Standard Deviation 

SSES   Sensor Specific Error Statistics  

SSM/I  Special Sensor Microwave Imager 

SST  Sea Surface Temperature 

SWIR  Short Wave Infra Red 

tcwv  Total Column Water Vapour 

TIROS  Television Infrared Observation Satellite  

TOGA-TAO Tropical Ocean-Global Atmosphere - Tropical Atmosphere Ocean 

TOVS  TIROS Operational Vertical Sounder 

UTC  Universal Time Co-ordinated 

XBT  Expendable Bathythermograph 
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Table 1. SST algorithms used in the comparison of different sensors and products. Tsfc is an a priori estimate of the surface temperature in degrees Celsius, Θ is the satellite 
zenith angle, ai are coefficients, Tλ is the brightness temperature of the sensor channel where λ (3.7, 3.9, 4.0, 11 and 12 μm) denotes the channel wavelength. The NLSST, 

Pathfinder and MODSST algorithms have the same form but different coefficients and a different estimated surface temperature. The NLSST algorithm uses the MCSST 

estimate, Pathfinder uses Reynolds OISSTv2 and MODSST uses Reynolds OISSTv2 for daytime and MODSST4 for nighttime SST estimates. The MCTriple algorithm is 

similar to the MODSST4 algorithm with the difference being that the MCTriple combines all three available AVHRR IR channels, whereas MODSST4 only uses channels in 

the short infrared region. 

 

Name Day/Night Algorithm Tsfc 

NLSST D a1T11 + a2Tsfc(T11-T12) + a3(T11-T12)(secΘ-1)+a4 MCSST 

MCTriple N a1T11+a2T3.7+a3T12+a4(T3.7-T12)(sec(Θ)-1) +a5(secΘ-1)+a6 - 

Pathfinder D/N a1T11 + a2Tsfc(T11-T12) + a3(T11-T12)(secΘ-1)+a4 Reynolds OISSTv2 

MODSST D/N a1T11 + a2Tsfc(T11-T12) + a3(T11-T12)(secΘ-1)+a4 Reynolds/MODSST4 

MODSST4 N A1T3.9 + a2(T3.9-T4.0) + a3(secΘ-1)+a4 - 
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Table 2. Statistics of matchup pairs for each satellite product and in situ database for the specified periods a) independent of the wind speed, and b) for daytime wind speeds 

higher than 6 m s-1 and nighttime wind speeds higher than 2 m s-1. ‘Bias’ represents the average value of residuals, ‘SD’ is the corresponding standard deviation and ‘N’ is the 

number of residuals used in calculating the statistics. The overall statistics for Reynolds OISSTv2 (used in the Pathfinder product as the reference SST) were added as a 

reference. 

a)  

Satellite/ 
algorithm 

DAY NIGHT 

Drifters Platform Drifters Platform 

Bias/K  SD/K N Bias/K SD/K N Bias/K SD/K N Bias/K SD/K N 

NOAA16 NLSST +0.43 0.72 928 +0.45 0.68 57 -0.11 0.58 895 -0.10 0.59 53 

NOAA17 NLSST +0.52 0.67 981 +0.43 0.47 65 +0.08 0.57 655 +0.12 0.55 53 

NOAA16 MCTriple - - - - - - -0.33 0.32 894 -0.29 0.29 53 

NOAA17 MCTriple - - - - - - -0.30 0.31 655 -0.18 0.27 53 

Aqua MODSST +0.10 0.61 1515 +0.28 0.63 80 -0.23 0.48 997 -0.13 0.42 67 

Terra MODSST +0.32 0.65 1332 +0.29 0.64 82 -0.05 0.42 663 +0.07 0.49 55 

Aqua MODSST4 - - - - - - -0.08 0.41 1087 +0.02 0.33 72 

Terra MODSST4 - - - - - - +0.02 0.31 708 +0.16 0.36 60 

Pathfinder NOAA17 +0.40 0.52 511 +0.34 0.34 45 -0.02 0.67 380 +0.20 0.57 46 

Reynolds OISSTv2 -0.27 0.90 510 +0.18 0.70 45 -0.59 1.05 382 +0.07 0.64 46 

 

b) 

Satellite/ 

algorithm 

DAY NIGHT 

Drifters Platform Drifters Platform 

Bias/K  SD/K N Bias/K SD/K N Bias/K SD/K N Bias/K SD/K N 

NOAA16 NLSST +0.17 0.75 157 +0.08 0.31 12 -0.09 0.58 626 -0.08 0.59 46 

NOAA17 NLSST +0.33 0.67 199 +0.42 0.36 16 +0.12 0.55 438 +0.19 0.52 43 

NOAA16 MCTriple - - - - - - -0.33 0.29 625 -0.28 0.29 14 

NOAA17 MCTriple - - - - - - -0.30 0.29 438 -0.16 0.27 17 

Aqua MODSST -0.07 0.58 308 +0.06 0.27 13 -0.21 0.46 693 -0.10 0.37 55 

Terra MODSST +0.20 0.67 248 +0.28 0.55 19 -0.05 0.42 478 -0.01 0.41 41 

Aqua MODSST4 - - - - - - -0.07 0.38 746 +0.04 0.30 58 

Terra MODSST4 - - - - - - +0.01 0.30 503 +0.11 0.30 43 

Pathfinder NOAA17 +0.29 0.54 122 +0.33 0.24 10 +0.09 0.57 259 +0.24 0.61 38 

Reynolds -0.28 1.03 121 +0.44 0.76 10 -0.54 0.97 261 +0.11 0.60 38 
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Table 3. Cross-comparison of the time-series correlation coefficients. The upper-right part of the table represents daytime correlations and the lower-left part represents 

nighttime correlations. 

DAY/  

NIGHT 

NOAA16 NOAA17 AQUA TERRA NOAA17 

NLSST MCTriple NLSST MCTriple MODSST MODSST4 MODSST MODSST4 Pathfinder 

NOAA16 
NLSST 1.00   0.84  - 0.70 -  0.73 -  0.63 

MCTriple 0.44 1.00 -  - -  -    -  -  

NOAA17 
NLSST 0.89 0.41 1.00  - 0.68 -  0.79 -  0.76 

MCTriple 0.31 0.53 0.56 1.00   -    -  -  

AQUA 
MODSST 0.79 0.53 0.69 0.24 1.00 -  0.81 -  0.57 

MODSST4 0.44 0.58 0.38 0.37 0.64 1.00 -  -  -  

TERRA 
MODSST 0.65 0.48 0.72 0.54 0.72 0.51 1.00 -  0.74 

MODSST4 0.21 0.46 0.28 0.45 0.31 0.50 0.66 1.00 -  

NOAA17 Pathfinder 0.50 0.15 0.52 0.00 0.45 0.07 0.38 0.08 1.00 
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Table 4. Statistics of locally derived NLSST/MCTriple coefficients for available in situ datasets. Bias, SD and N as in Table 2. 

 

Satellite Algorithm Coefficients DAY/ 

NIGHT 

Drifters Platform Shipborne 

bias/K SD/K N bias/K SD/K N bias/K SD/K N 

NOAA16 NLSST Local DAY 0.00 0.58 933 0.01 0.68 57 0.16 0.65 93 

NOAA17 NLSST Local DAY 0.00 0.61 983 0.03 0.48 65 0.29 0.67 158 

NOAA16 MCTriple Local NIGHT 0.00 0.32 894 0.06 0.29 53 - - - 

NOAA17 MCTriple Local NIGHT 0.00 0.30 655 0.15 0.25 53 - - - 
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Figure captions 

 
Figure 1. Position of the platform (white square) and drifters before (grey dots) and after (black dots) matching with the satellite data. The black line marks the division 

between the upper and lower Adriatic used in COGOW-based wind analysis. 

 

Figure 2. Time-series of drifter-based residual statistical parameters for a) LWIR daytime, b) SWIR nighttime and c) LWIR nighttime algorithms. 

 

Figure 3. Percentage time-series of wind with less than 6 m s-1 magnitude. Wind data are derived from QuikSCAT COGOW climatology (Adriatic, Mediterranean, TOGA-

TAO) and from the LAMI model (at the location of the matchups) for the year 2003. 

 

Figure 4. Northern Adriatic time-series of moving-average filtered MODIS-derived daytime (solid) and nighttime (dashed) total column water vapour in the year 2003 

compared to 45 year climatological monthly values extracted from the ERA40 ECMWF data (dotted) for the whole Adriatic. 

 

Figure 5. Time-series of differences between moving-average filtered daytime and nighttime residuals of satellite minus drifter SST for a) AVHRR and b) MODIS products. 
Two-week Butterworth filtering was applied to eliminate shorter periodic variability. Interpolated values required for filtering are marked with a circle. Afternoon satellites 

(NOAA16 and Aqua) are marked with a full line and mid-morning satellites (NOAA17 and Terra) are marked with a dashed line. The differences obtained with the LWIR 

nighttime algorithm are black and for the SWIR nighttime algorithm are grey. 

 

Figure 6. Time-series of bias residuals obtained with operational (dot) and new (cross) sets of NLSST algorithm coefficients. New sets are derived from the drifter MDB and 

together with the operational set applied to independent shipborne-collected data, matched to NOAA16 (upper figure) and NOAA17 (lower figure) SST retrievals. 
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