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Abstract

Ultra-conserved genes or elements (UCGs/UCEs) in the human genome are extreme examples of conservation. We
characterized natural variations in 2884 UCEs and UCGs in two distinct populations; Singaporean Chinese (n = 280) and
Italian (n = 501) by using a pooled sample, targeted capture, sequencing approach. We identify, with high confidence, in
these regions the abundance of rare SNVs (MAF,0.5%) of which 75% is not present in dbSNP137. UCEs association studies
for complex human traits can use this information to model expected background variation and thus necessary power for
association studies. By combining our data with 1000 Genome Project data, we show in three independent datasets that
prevalent UCE variants (MAF.5%) are more often found in relatively less-conserved nucleotides within UCEs, compared to
rare variants. Moreover, prevalent variants are less likely to overlap transcription factor binding site. Using SNPfold we found
no significant influence of RNA secondary structure on UCE conservation. All together, these results suggest UCEs are not
under selective pressure as a stretch of DNA but are under differential evolutionary pressure on the single nucleotide level.
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Introduction

Evolutionary conservation has been a good measure to identify

potentially important regions in DNA and protein primary

sequences [1]. In general, protein-coding genes, especially exons,

are well conserved across species. Interestingly, a substantial

fraction of non-coding regions are also strongly conserved. In fact,

it has been proposed that conserved non-coding regions comprise

approximately 1–2% of the human genome, about the same size

as the coding regions [2]. Ultra Conserved Genes or Elements

(UCGs, UCEs) are extreme examples among these conserved non-

coding regions. In 2004 Bejerano et. al defined 481 UCEs in the

human genome as regions 100% conserved over at least 200 base

pairs when comparing human, mouse and rat reference genomes

[3]. These UCEs comprise a subset of extremely conserved DNA

elements; regions defined by extremely low nucleotide substitution

rates across species [3,4]. Although different publications come to

different numbers of UCEs, it is clear that, depending on which

genomes are compared and which conservation stringency filters

are used, there are at least several thousand extremely constrained

elements or genes present in the human genome [4–7]. Along with

different conservation scores and filtering strategies, different

groups have used many alternative names for these constrained

elements. In this study we will collectively denote them as Ultra

Conserved Elements or UCEs.

The extreme conservation of UCEs reflects a strong negative

selective pressure on these regions [8], and by inference they are

thought to have a critical function in metazoans, although the

nature of this function is still enigmatic [9]. UCEs co-localize

significantly with genes of specific ontological classes suggesting

they may have gene regulatory functions [3,4]. Analysis of fish

genomes which underwent a genome duplication event shows that

UCEs retain their conservation in cis in clusters spanning

hundreds of kb’s [6], often encompassing orthologous genes. This

supports a model in which UCEs can act in concert as long range

enhancers [4,10,11], and would explain their juxtaposition to

developmental regulators. Further supporting the enhancer

function of UCEs are the observations that UCEs can act as

developmental enhancers and ‘hubs’ for transcription factor

binding sites [4,9,10,12]. However, the reason for their extreme

conservation is not evident from this enhancer activity, especially

since other enhancers have been described which are functionally
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strongly conserved without a concomitant conservation in their

primary sequence [9].

Indeed, a different line of evidence suggests that UCEs produce

functional non-coding RNAs [13–17]. UCEs were found to

differentially generate long (.200 nt) RNA transcripts during

development or in cancer [13,15,16]. Some of these RNA

components seem functional, as siRNAs against RNAs transcribed

from highly conserved elements that act as p53-dependent long

range enhancers diminished enhancer activity [18]. Moreover,

siRNAs against a UCE-derived RNA overexpressed in a cancer

cell line induced apoptosis [13]. However, the molecular function

of ultra-conserved RNA products is unknown.

UCEs have been shown to be under negative selection in the

human population, since they are relatively devoid of common

SNPs, and are depleted among segmental duplications and copy

number variations [8,19–21]. However, the level of negative

selection has been debated. Some studies observed selection

coefficients comparable to those of protein-coding regions or even

stronger [8,19]. A study, based on early genome data which found

24 SNPs in the 481 originally defined UCGs, failed to find strong,

ongoing selection within UCEs and argued that the average level

of selection on UCEs is less than that on essential genes [20].

Alternatively, this could suggest that some positions in UCEs are

less constrained than others, and that UCEs are not under

selective pressure as a continuous stretch of DNA. Neutral

positions in an UCE could be due to relaxed evolutionary

constraint in this particular UCE during recent human develop-

ment, or in other words if the function of a UCE has recently

become irrelevant for survival in modern humans, any variant

would be neutral. On the other hand, neutral positions within

UCEs could be due to different contribution of individual

nucleotides to the structure-function relationship within a UCE.

These positions would be expected to be less severely conserved if

their identity contributes indeed less to UCE function. Regardless

of the basis of the relaxed constraint in the human population,

variations in less detrimental positions have a higher chance to

become prevalent in human populations. To reliably address these

questions, unbiased information on the occurrence and prevalence

of variations in UCEs from different populations is required.

Moreover, identifying the majority of prevalent SNVs [minor

allele frequency (MAF).5%] and accurately defining rare variants

(MAF,0.5%), requires hundreds of samples from each popula-

tion. We characterized natural variations in 2884 UCEs in two

distinct populations comprised of 280 Singaporean Chinese and

501 Italians using a pooled capture sequencing approach. We

observed that UCEs indeed contain positions that have potentially

lower impact on UCEs function, suggesting differential evolution-

ary pressure on the single nucleotide level.

Materials and Methods

Samples
We used 280 DNA samples from ethnic Chinese (n = 141 males,

n = 139 females) from the Singapore Prospective Study Program

(SP2) [22]. 501 Italian samples consisted of 126 DNA samples

from Italian female blood donors recruited through the Immuno-

hematology and Transfusion Medicine Service of INT Milan and

375 female patients affected with invasive breast cancer collected

through the Medical Genetics Unit of the INT Milan [23]. Based

on the grounds that pooling strategy anonimizes each sample,

exemption from IRB approval was obtained from the National

University of Singapore Institutional Review Board (NUS-IRB,

reference code 10-298E). The same approval waived the need for

written informed consent from the participants.

UCEs selection
Our UCEs selection combined the regions from three different

studies- [3–5] using ‘‘merge genomic intervals’’ in Galaxy [24].

Final selection of studied UCEs is shown Table S1.

Pooling and sample preparation
From the Singapore Chinese samples we created 18 pools. Each

pool contained 14–16 samples. From the Italian female samples

we created 48 total pools, 10–11 samples per pool. The DNA

concentration of each individual sample was determined by qPCR

(Singapore Chinese samples) or by NanoDrop instrument (Italian

samples). Samples were added in equal molar concentrations of

DNA in pools to obtain a final pool DNA amount of 1 mg per

pool. Pools were then carried through the standard Illumina

library preparation process. Briefly, the genomic DNA in the pools

was sheared using Covaris S2, followed by end repair, A-tailing

and ligation of unique Illumina indexes for each pool (New

England Biolabs enzymes were used).

Capture and next generation sequencing
Prepared libraries were combined in equal amounts (as

determined by qPCR with adapter primers) and captured using

Roche NimbleGen custom designed SeqCap EZ Library solution-

based capture reactions and the recommended protocol. The total

captured genomic region was ,1.39 Mb. Table S1 lists all the

regions that we captured and studied. After capture and PCR

enrichment, pools were sequenced on the Illumina HiSeq2000

platform using a 101 bp paired end (PE) multiplexed read

protocol.

Mapping and variant calling
Reads from the pools were aligned to the UCSC human

reference genome (hg19) using BWA aligner (version 0.5.6) with

default parameters [25]. PCR duplicates were removed using

MarkDuplicates in the Picard package (http://picard.sourceforge.

net). Thereafter base quality score recalibration and realignment

of the reads around the indels was performed using tools

BaseRecalibrator and IndelRealigner form the GATK package

[26,27]. The list of 1000 G phase 1 indels and dbSNP135 variants

were used to guide the realignments and base quality score

recalibration, respectively. Indel and ddbSNP135 guide files were

downloaded form the GATK bundle Variant calling was

performed with programs CRISP [28] and UnifiedGenotyper

(GATK package). CRISP is specifically designed for SNVs and

indel discovery from pooled sequencing datasets and has shown to

outperform some other widely used methods [28]. The GATK

UnifiedGenotyper is a well -recognized and -supported SNVs and

indel caller that was initially intended for variant calling from

single sample next-generation sequencing datasets that now has an

additional option for calling variants from pooled datasets.

UnifiedGenotyper called variants were filtered by VariantFiltra-

tion (GATK package) using following filter expressions: "MQ ,

40.0", "FS.60.0", "MQRankSum ,212.5", "ReadPosRankSum

,28.0", "mpql", "StBias", "MQRS", "RdPS". For the final

analysis we used only SNVs that were called by both programs

(Figure S1). We used allele frequencies predicted by CRISP to

discriminate prevalent (MAF.5%) and rare (MAF,0.5%) SNVs.

phyloP score extraction
The 46-way placental alignment phyloP conservation scores were

retrieved from the UCSC Genome archive (http://hgdownload.

cse.ucsc.edu/goldenPath/hg19/phyloP46way/) through UCSC

public MySQL server using hgWiggle.

Variants in UCEs Have Differential Functional Impact
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TFBSs overlap
TFBSs ENCODE track "wgEncodeRegTfbsClusteredV2" that

combines TFBSs data across the cell types was downloaded from

the UCSC server ftp://hgdownload.cse.ucsc.edu/goldenPath/

hg19/encodeDCC/wgEncodeRegTfbsClustered/and used for

the overlap studies [29,30]. All Italian, Singapore-Chinese and

1000 Genome Project’s rare and prevalent variants were tested for

overlap with the TFBSs and compared to randomly selected UCE

positions (G/C content corrected). Random UCE sets contained

equal number of positions to the rare or prevalent variants in the

corresponding data sets.

For the Super-Enhancer SNVs overlap, one hundred sets of

1000 random rare or prevalent SNVs were selected and each set

was tested for TFBSs overlap. From this the mean overlap and

95% confidence intervals was calculated. Random positions

selection and all overlap studies were done by BEDTools

shuffleBed and intersectBed tools, respectively [31].

External datasets
1000 Genome phase1 version3 variants were downloaded from

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/[32].

Super-enhancer regions were obtained from the study by Whyte

et.al [33]. Mouse to human conversion was done by the liftOver

tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver).

RNA secondary structure prediction
RNA secondary structure predictions were made by RNAsnp

perl script which allows large-scale analysis [34]. RNSsnp Mode 1

was used with default parameters, except minimum length of the

sequence interval was set to 25. Parameter descriptions can be

found from the RNAsnp Web Server (http://rth.dk/resources/

rnasnp/).

Statistical analyses
All statistical calculations and figures were produced using R

and its packages.

Results

General characterization of single nucleotide variations
within UCEs from three different data sets

We analyzed single nucleotide variations (SNVs) within 2884

UCE regions that span ,1.39 Mb of the human genome (Table

S1). In order to resequence this relatively large set of elements in a

comprehensive and economical manner we used a pooled sample

targeted sequencing strategy, a cost effective and reliable approach

for population resequencing studies [35,36]. We had access to

samples from two different ancestries: 501 samples from an Italian

population (ITA) and 280 samples from a Singaporean Chinese

cohort (SG-CHN) (Materials and Methods). All samples were

pooled by population and gender with each pool containing 14–16

samples from the Singapore Chinese cohort or 10–11 samples

from the Italian cohort. Pooled samples were then carried through

a library preparation protocol as though they were from a single

genomic sample. For the enrichment reactions, pools from the

same population were combined. After enrichment, all pools were

sequenced on the Illumina HiSeq2000 platform using a 101 bp PE

multiplexed read protocol. On average, each ITA pool had 430-

fold coverage and each SG-CHN pool 848- fold coverage across

the targeted regions. This translates to an average 20-fold and 27-

fold coverage per each sequenced allele, respectively. More then

97% of sequenced alleles were covered five or more times (Table

S2). This sequencing depth has been shown to be sufficient to

discover more than 90% of variants with low false discovery rate

[28].

For variant calling, we used two independent variant calling

programs, namely CRISP [28] and UnifiedGenotyper from the

GATK package [26]. Both methods have been used by several

studies for detecting variations from pooled samples [36,37]. In

this study we focused on SNVs. To obtain a confident list of SNVs

for further analysis, we used the overlap of SNVs that were called

by both algorithms. As expected, we noticed that the vast majority

(96–97%) of all called SNVs were discovered by both methods

regardless of sequenced population (Figure S1).

Within the targeted regions from the SG-CHN and ITA

cohorts, we detected about 15.1 and 12.4 SNVs per one Mb of

targeted region per sample, respectively (Figure 1A). In order to

get an additional and independent data set for our study we also

extracted all SNVs from the 1000 Genome project (1 KG) phase 1

variants within the defined UCE regions. This identified 13449

SNVs within the targeted regions from 1092 samples, which

translates into 8.7 variants per one Mb of targeted region per

sample (Figure 1A). From these numbers, it is evident that

sequencing of more samples does not lead to a proportional

increase of SNVs per sample. This is most likely due to detection

saturation of prevalent variants and a relatively low number of

private SNVs per sample (Figure 1A). Next, we discriminated

SNVs according to their minor allele frequency (MAF) in the

respective population. In concordance with previous results [8,19],

analysis of random genomic positions in the 1 KG dataset

revealed depletion of prevalent SNVs (MAF.5%) in UCEs

(Figure 1A, compare 1 KG to 1 KG random). Comparison of

three datasets revealed that almost 1400 (6.5%) of all SNVs are

present in all datasets (Figure 1B). A recent study that analyzed

202 protein coding genes in 14002 people revealed an abundance

of rare SNVs compared to common variants [38]. Similarly, our

study shows that majority of the detected SNVs in conserved non-

coding regions are rare variants (MAF,0.5%) (Figure 1A). As

expected, the majority (56%) of prevalent SNVs are present in all

three datasets (Figure 1C). In contrast, only 27 rare SNVs (0.4%)

are shared in all populations (Figure 1D).

Prevalent and rare variants show distinctive conservation
preference and potential functional consequences

Initial sets of UCEs were discovered by using the program

PhastCons that finds conserved elements in multiple genome

alignments [39]. An alternative to PhastCons is the phyloP method

[40]. The most important difference between these two methods is

that phyloP captures both conservation and acceleration of DNA

positions and operates independently at each site, whereas

PhastCons also considers neighboring positions for its calculations.

PhyloP is thus more suitable to estimate selective pressure on the

single nucleotide level. We decided to take advantage of the

phyloP method to assess whether the prevalence of SNVs in the

human population reflected different selective pressures during

evolution. Indeed, prevalent SNVs have a lower conservation

score compared to rare SNVs (P,2.2e216 two-sided Kolmo-

gorov–Smirnov test, Figure 2B–D). Importantly, this is true in all

three data sets. SNVs with a MAF between 0.5% to 5% were also

skewed towards lower conservation scores than the rare SNVs,

which occur with a distribution that is very close to random.

Altogether our data indicates that conservation score negatively

correlates with SNVs prevalence in the population (Figure 2B–D).

Boundaries of UCEs are defined as a decline in the PhastCons

conservation score. We excluded the possibility that prevalent

SNVs are clustered closer to UCE boundaries by plotting the

distance of each variant from its host UCEs start position (Figure

Variants in UCEs Have Differential Functional Impact
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S2). This analysis showed that both rare and prevalent SNVs are

randomly distributed across the UCEs length (Figure S2),

excluding border effects in the general lower phyloP score for

prevalent SNVs.

Interestingly, rare SNVs also seem to occur in slightly less

conserved positions compared to the random UCEs positions

(Figure 2B–D). UCEs in general are known to be AT rich [41],

however, SNVs are enriched in G or C positions (Figure 2A).

Therefore, we compared rare SNVs to a G/C content matched

random set (Figure 2B–D). We noticed that rare SNVs have

moderate difference from the G/C matched random set,

indicating that rare SNVs positions may not occur completely

randomly or more sophisticated (dinucleotide etc.) corrections for

the random sets are required. Nevertheless, prevalent SNVs that

occur in.5% of the population show a clear pattern: they are

relatively depleted in the most conserved nucleotides.

To determine whether the pattern of conservation of the rare

and prevalent SNVs were unique to that position, or reflected a

selective pressure on the local nucleotide composition, we

determined the PhyloP score for the nucleotides immediately

upstream or downstream of the identified SNVs. The neighboring

nucleotides of prevalent SNVs are clearly more constrained

(Figure S3). Taken together, these data indicates evolutionary

pressure on the single nucleotide level.

Prevalent variations within UCEs may be tolerated because they

have lower functional impact and hence these variations may

spread in the population. UCEs are described to act as enhancers

[4,10], and therefore it is plausible that variations within UCEs

may have impact on transcription factor (TF) binding. As part of

an ENCODE consortium effort, a comprehensive set of human

TF Binding Sites (TFBS) based on ChIP-seq experiments has been

produced [42]. This dataset spans information from 91 human cell

types and 161 unique regulatory factors. Consistent with the

proposed role of UCEs, they are clearly enriched for TFBS from

this dataset when compared with randomly shuffled genomic

positions (Figure 3A). We decided to use this information in

Figure 1. General characterization of SNVs in the UCEs. (A) Number of SNVs per mega base (Mb) of UCE sequence per sample. SNVs from
three data sources- Singaporean Chinese cohort (SG-CHN), Italian cohort (ITA) and 1000 Genome Project (1 KG) were used. SNVs are discriminated
according to their minor allele frequency (MAF). Numbers in the parentheses represent sample size used in this study (Materials and Methods).
Random set represents random genomic regions that have the same total length as the UCEs set. Y-axis represents SNVs per Mb divided by sample
count in the analyzed population. (B–D) Shared and distinct SNVs between SG-CHN, ITA and 1 KG populations. Venn diagrams of (B) all, (C) prevalent
(MAF.0.5%) and rare (D) (MAF,0.5%) SNVs from three analyzed population. Numbers in the parentheses indicate analyzed SNVs in the
corresponding population.
doi:10.1371/journal.pone.0110692.g001

Variants in UCEs Have Differential Functional Impact
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combination with the three above described independent datasets

on SNV prevalence to test if we could detect a signature of

selective pressure on TFBS in UCEs. Based on a possible

functional selective pressure on enhancer activity, we speculated

that prevalent variations present in UCEs are less likely to overlap

with TFBS. Indeed, prevalent variations showed less overlap with

TFBS than rare SNVs or random positions (G/C-matched)

(Figure 3B, for all sets P,2.97e210, Pearson’s Chi-squared test).

At the same time, the overlap of rare variants with TFBS is not

significantly different from the random positions (Figure 3B).

These results are consistent across the analyzed populations and

indicate that TF binding may be one of the driving forces for the

negative selection pressure on individual nucleotides within UCEs.

Next, we were curious to see whether the conservation score of

SNVs within the non-constraint regulatory elements follows the

same pattern as we have noticed for the UCEs. Super-Enhancers

(SE) are densely occupied by TF and the Mediator co-activator

[33,43]. Contrary to UCEs, an evolutionary conservation analysis

indicates that SE are not more conserved than random genomic

positions (Figure 4A, P,2.2e216 two-sided Kolmogorov–Smir-

nov test). We also extracted all 1 KG SNVs that occur in the SE

and sub-grouped them according to MAF. This resulted in 77352

prevalent and 263379 rare SNVs, and translates to 9.3 SNVs per

Mb. Interestingly, this is not significantly different from the SNVs

count (8.7) per Mb of ultra-conserved sequence (Figure 1A).

Nevertheless, similarly to UCEs, conservation analysis revealed

that prevalent variants in SE occur in less conserved positions

compared to the rare variants (Figure 4A, P,2.2e216 two-sided

Kolmogorov–Smirnov test).

A recent study showed that UCE are proposed to act as

transcription factor binding ‘‘hubs’’ that contain multiple overlap-

ping TFBS and this may count for the UCEs conservation [12].

Interestingly, we noticed that per 1000 randomly chosen positions,

SE have a higher overlapping TFBSs count compared to UCEs

(Figure 4B). This may indicate that UCEs are less densely

occupied with transcription factors than other regulatory regions

such as SE, or that UCEs bind different sets of proteins than those

that were studied by the ENCODE consortium. The latter

possibility likely contributes to this difference, since only 45 UCE

bound proteins identified by Viturawong et. al [12] were studied in

the ENCODE consortium (Figure 4C). To further address this

difference we did domain enrichment analysis for both, ENCODE

TFs and 481 proteins identified by Viturawong et. al [12]. We

found that ,10% of UCEs bound proteins contain the RNA

recognition domain RRM1, whereas the same domain is present

only in 1.2% ENCODE TFs (Figure 4D). All together, these

results suggest that UCEs may bind a unique set of proteins.

Figure 2. Prevalent and rare variants show distinctive conservation preference. (A) Distribution of A,T and G,C nucleotides in the UCEs and
SNV positions. (B–D) Cumulative distribution plots of phyloP scores of SNVs with different MAFs. Data from three different data sources (B) SG-CHN,
(C) ITA and (D) 1 KG are shown. Shaded grey area represents 95% confidence interval (obtained by bootstrapping) of random G/C content corrected
UCE positions (blue line). Numbers in the parentheses indicate analyzed positions or SNVs.
doi:10.1371/journal.pone.0110692.g002

Variants in UCEs Have Differential Functional Impact
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However, more importantly, the extreme conservation of UCEs is

not solely explained by dense TFBS overlap.

Analysis of UCEs encoded ncRNAs secondary structure
As enhancers, UCEs can also be transcribed to produce ncRNA

[13–17]. Many ncRNAs fulfill their function through secondary

structures that are recognized by other factors. Therefore we

considered the possibility that selective pressure on RNA

secondary structure may contribute to UCE conservation. To

begin to address this hypothesis we used a recently developed

program, RNAsnp, which predicts SNVs effects on local RNA

secondary structure [34]. However, analysis of prevalent and rare

variants from all three data sets did not show any significant

difference in the RNAsnp reported p-values (Figure S4). Since

RNA secondary structure prediction is complex with a high noise

to signal ratio, we tested whether discriminating variations based

on their conservation would result in a better discrimination. We

noticed very moderate effects, but only when we compared the

least constraint rare SNVs to the most constraint rare SNVs

(Figure S4B). Although we observe the same trend in all analyzed

datasets, the effect is not significantly different from the most

constraint SE and random genomic SNVs (Figure S4B). There-

fore, at this stage we are not able to convincingly prove that there

is additional evolutionary pressure on the UCEs encoded ncRNA

secondary structure.

Discussion

The most striking feature of UCEs is the presence of so many

consecutive conserved nucleotides. We can speculate that different

positions in the UCEs are under different levels of selection. Thus,

some positions may be neutral and with no or little effect on

fitness. Indeed, we noticed that prevalent SNVs in the UCEs have

in general lower phyloP score (based on 46 placental mammals)

compared to the rare SNVs. Importantly, the same trend was true

regardless of the analyzed population (Figure 2). This inverse

correlation between SNVs occurrence and genomic conservation

is not unique to UCEs. It has also been noticed in mRNA

processing regions [44], but was not studied before in the context

of the extremely constrained non-coding regions. These results

show clearly that SNVs within UCEs occur randomly and each

position may experience different levels of evolutionary pressure.

Does the conservation reflect the functional importance of each

particular nucleotide? First of all, we noticed that UCEs contain an

abundance of rare SNVs, 63–74% of all called variants have MAF

less then 0.5% (Figure 1). One explanation for the abundance of

rare variants is the rapid human population growth and weak

purifying selection [38]. However, a second reason comes from the

natural selection theory, which follows the logic that variants that

are negatively affecting evolutionary fitness of an organism should

be under purifying selection and be found only in the small

fraction of population. Thus, more constrained positions, i.e. rare

SNVs, should have more impact on the UCEs function then the

prevalent SNVs that occur in the less constrained positions.

Indeed, our analysis of prevalent and rare variants showed clearly

that prevalent SNVs avoid TFBS compared to rare SNVs

(Figure 3). These results are strong indication that more

constrained rare SNVs occur in the UCE positions that are more

likely to be functionally deleterious.

Our findings that prevalent SNVs are depleted for TFBS

(Figure 3) support a recent study by Viturawong et. al that shows

overlapping TFBS within their tested UCEs are more stringently

conserved [12]. The same study proposed that heavily overlapping

TFBSs could count for the UCEs conservation [12], although this

theory has been previously questioned by others [9]. Our study

confirmed that UCEs are enriched for TFBSs compared to the

same size of random genomic regions (Figure 3). Interestingly, our

analysis of SE, a recently described class of non-conserved

enhancers that are densely occupied by master regulators and

Mediator [33], showed that these elements have much higher TF

Figure 3. UCEs are enriched for the TFBS. (A) Box plots represent results of one hundred sets (each set contains one thousand randomly chosen
positions). The y-axis indicates actual ENCODE TFBS overlap per one thousand tested positions. Boxes show IQR, notches indicate 95% confidence
intervals of the median, whiskers extend to 1.5 times the IQR and open circles show outliers. *** P,2.2610216, two- tailed Mann–Whitney test. (B)
Prevalent SNV positions are depleted for TFBS. All rare and prevalent SNV positions from the three different populations were analyzed for the
ENCODE TFBS overlap. Random UCE set represents randomly chosen UCE positions (G,C content matched) that had the same number of analyzed
positions as the rare and prevalent SNVs. Prevalent and rare SNVs overlap with the TFBS overlap is shown as relative to random UCE positions. For the
statistical analysis each set (Pearson’s Chi-squared test) was individually tested. * P,0.01.
doi:10.1371/journal.pone.0110692.g003
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overlap per tested nucleotide compared to UCEs (Figure 4B). In

this respect, we can not conclude that UCEs are more enriched for

TFBSs compared to the SE, leaving open additional, unknown,

mechanistic pressures to contribute to their striking conservation.

Our study is the first that has specifically characterized natural

variations in UCEs at this scale. There is emerging evidence that

the non-coding genome, including regulatory regions, contribute

to complex traits [45–48]. We propose that UCEs are good

candidates for targeted sequencing projects and association

studies. Indeed, a recent paper showed that the evolutionary

constrained SNP rs6983267, that has been consistently associated

with an increased risk of colorectal cancer, is hosted by conserved

regulatory element that encodes ncRNA, and when encompassing

the rs6983267 SNP promotes tumor growth, metastasis, and

chromosomal instability [49]. Our study provides data to model

expected background variations that can be used for power

calculations of potential association studies. Moreover, we propose

that conservation phyloP score might be relevant to prioritize

potential disease-causing SNVs for replication and functional

studies.

Why are UCEs so ultra conserved? We show a clear selective

pressure that correlates with phyloP score, indicating that the

pressures that were present during evolution of vertebrates were

still relevant, at least until very recently, in the human population,

with regard to UCEs. Although there is a clear signal indicating

the importance of TF binding in UCEs, the density of in vivo

validated TFBS in UCEs or the selection against higher conserved

sites in prevalent SNVs, do not explain their conservation.

Although production of functional RNA from UCEs is an

attractive model for additional selection pressure parallel or

synergistic with pressure to bind TF, we could not confirm a role

of secondary RNA structure in our data. Better RNA prediction

algorithms and/or in vivo structure studies of nuclear noncoding,

low abundant RNAs are required to thoroughly address this

question.

Supporting Information

Figure S1 Comparison of SNVs called by CRISP and
GATK. SNVs from the (A) SG-CHN and (B) ITA populations

were called by programs CRISP and GATK (Material and

Figure 4. UCEs comparison to the less constraint SE. (A) SE are less constraint compared to UCEs. Cumulative distribution plots of phyloP
scores of all SE positions (purple line), all UCE positions (red line), random genomic positions (orange line) and SE rare (MAF,0.5%, green line) and
prevalent (MAF.5%, black line) SNVs. Prevalent and rare SNVs are extracted from the 1 KG project using global MAFs. Shaded grey area represents
95% confidence interval (obtained by bootstrapping) of random UCE positions (blue line). The numbers of analyzed SNVs are given in the
parentheses. (B) SE have a higher overlapping TFBSs count compared to UCEs. Box plots represent results of one hundred sets (each set contains one
thousand randomly chosen positions). The y-axis indicates actual ENCODE TFBS overlap per one thousand tested positions. Boxes show IQR, notches
indicate 95% confidence intervals of the median, whiskers extend to 1.5 times the IQR and open circles show outliers. *** P ,2.2 610216, two- tailed
Mann–Whitney test. (C) Venn diagram showing overlap of ENCODE TF and UCE bound TF described by Viturawong et. al [12]. (D) Comparison of
ENCODE TF and UCE bound TF [12] protein domains identifies RNA recognition domain,RRM1 (marked with dashed circle), as the most prevalent
domain among UCE bound proteins. Protein domain (Pfam) annotations were done by using the Perseus module in the MaxQuant software suite.
doi:10.1371/journal.pone.0110692.g004
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Methods). The overlapping regions of the Venn diagram indicate

SNVs that are called by both programs. SNVs that are called only

by CRISP or GATK are indicated by the red and green colors,

respectively.

(EPS)

Figure S2 Prevalent and rare SNVs are randomly dis-
tributed across the UCE sequence. Black dots represent the

distance (y-axis) of each UCE nucleotide and its corresponding

phyloP score (x-axis) as the percentage from the start point of the

UCE. UCE start is defined as 0% and end as 100%. UCE flanks

(same length as the UCE, shown as the grey dots) represent upstream

(100–200%) and downstream (2100–0%) regions from the UCE end

and start, respectively. Location of prevalent and rare SNVs and their

corresponding phyloP scores from the (A) 1 KG, (B) SG-CHN and

(C) ITA populations are shown as green and red dots, respectively.

UCE start and end coordinates are shown in the Table S1.

(EPS)

Figure S3 Neighboring positions of prevalent SNVs are
more constraint. Cumulative fraction of phyloP scores of

prevalent (MAF.5%) and rare (MAF,0.5%) SNVs from the (A)
ITA, (B) SG-CHN and (C) 1 KG populations are shown as black

and green lines, respectively. Upstream and downstream regions

are defined as the three bp windows from the corresponding

SNVs. Brown and red lines represent the cumulative faction of

phyloP scores of the prevalent SNVs upstream and downstream

regions, respectively. Orange and purple lines represent the

cumulative faction of phyloP scores of the rare SNVs upstream

and downstream regions, respectively. Shaded grey area represents

95% confidence interval (obtained by bootstrapping) of random

UCE positions (blue line).

(EPS)

Figure S4 Prediction of SNVs effects on the local RNA
secondary structure. (A) Analysis of prevalent and rare

variants from all three data sets. (B) Analysis of rare most

conserved (phyloP score.2) and least conserved (phyoP score ,2)

SNVs. y-axis represents RNAsnp [34] reported p-values. Mean

(open circles) and 95% confidence limits of mean (red bars) are

shown.

(EPS)

Table S1 Genomic coordinates (hg19) of analysed
UCEs. Excel sheet containing genomic coordinates of analysed

UCEs, including information about overlap with UCSC Genes

59UTR, 39UTR and exons.

(XLSX)

Table S2 General characteristics of sequenced sample
pools. This excel sheet contains following information for each

sequenced pool: mapped reads on target, average sequencing

depth, average depth per allele, % of alleles covered. = 5X.

(XLSX)
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