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Abstract

Analysis of accumulation of repair and checkpoint proteins at repair sites in yeast nuclei has conventionally used chemical
agents, ionizing radiation or induction of endonucleases to inflict localized damage. In addition to these methods, similar
studies in mammalian cells have used laser irradiation, which has the advantage that damage is inflicted at a specific nuclear
region and at a precise time, and this allows accurate kinetic analysis of protein accumulation at DNA damage sites. We
show here that it is feasible to use short pulses of near-infrared laser irradiation to inflict DNA damage in subnuclear regions
of yeast nuclei by multiphoton absorption. In conjunction with use of fluorescently-tagged proteins, this allows quantitative
analysis of protein accumulation at damage sites within seconds of damage induction. PCNA accumulated at damage sites
rapidly, such that maximum accumulation was seen approximately 50 s after damage, then levels declined linearly over
200–1000 s after irradiation. RPA accumulated with slower kinetics such that hardly any accumulation was detected within
60 s of irradiation, and levels subsequently increased linearly over the next 900 s, after which levels were approximately
constant (up to ca. 2700 s) at the damage site. This approach complements existing methodologies to allow analysis of key
damage sensors and chromatin modification changes occurring within seconds of damage inception.

Citation: Guarino E, Cojoc G, Garcı́a-Ulloa A, Tolić IM, Kearsey SE (2014) Real-Time Imaging of DNA Damage in Yeast Cells Using Ultra-Short Near-Infrared Pulsed
Laser Irradiation. PLoS ONE 9(11): e113325. doi:10.1371/journal.pone.0113325

Editor: Marco Muzi-Falconi, Universita’ di Milano, Italy

Received June 25, 2014; Accepted October 22, 2014; Published November 19, 2014

Copyright: � 2014 Guarino et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by the John Fell Oxford University Press Research Fund, the European Molecular Biology Organization, the Oxford Cancer
Research Centre Development Fund and the Max Planck Society. Funding for open access charge: Department of Zoology, University of Oxford. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: stephen.kearsey@zoo.ox.ac.uk

" EG and GC are joint first authors on this work.

Introduction

Single cell analysis of the localization of repair and checkpoint

proteins has been of considerable use in both yeasts and

mammalian cells for determining the temporal order and

dependencies of protein accumulation at sites of DNA damage,

thus helping to establish the order in which proteins function in

repair and checkpoint pathways [1–3]. Protein localization can be

correlated with cell cycle stage, showing that S phase entry or G1/

G2 phase differences may affect repair pathway choices, and

effects on cell cycle progression can be monitored. A number of

methods have been used to effect DNA damage in yeasts. Double

strand breaks can be generated by expression of site-specific

endonucleases such as HO [4,5] and I-SceI [6], exposure to

chemical agents such as bleomycin-family antibiotics [7] or 4-

NQO [8], or using c or UV-C irradiation [9]. A wide range of

chemical agents can effect nucleotide damage, such as the DNA

methylating agent MMS, which generates lesions including N3-

methyl adenine that cannot be bypassed by replicative DNA

polymerases [10], potentially leading to fork stalling and collapse.

Replication stress is commonly induced using hydroxyurea which,

as a ribonucleotide reductase inhibitor reduces dNTP levels,

leading to fork stalling. Replication fork stalling can also be

induced using a polar replication fork barrier sequence such as

RTS1, which can be activated by switching on the expression of a

protein required for RTS1 function [11]. These methods can be

combined with strains expressing fluorescent fusion proteins to

allow real-time analysis of repair processes but suffer a limitation in

that there is a delay between induction of damage and analysis of

the cellular response, making it difficult to study early (,60 s)

events. An alternative method for DNA damage induction that has

been widely used in mammalian cells is to use laser irradiation,

which potentially allows repair responses to be visualized within

seconds of damage induction ([12]). This approach initially used

UVA lasers in conjunction with pre-sensitized DNA [13] and

subsequently has been applied using longer wavelength lasers (e.g.

[12,14–16]). However this method has not been used in yeasts

owing to technical problems associated with irradiation of a

smaller nuclear volume.

We have previously used and characterised two-photon and

single-photon ablation of intracellular structures in fission yeast

such as microtubules and mitotic spindles [17–24]. We show here

that it is feasible to use near-infrared (NIR) pulsed lasers for the

analysis of DNA damage in yeasts. The NIR wavelength used

(745 nm) is non-destructive and causes negligible heating [25], but

irradiation with ultrashort low energy pulses (140 fs, 12–36 fJ) can

effect three photon absorption with consequent DNA damage only
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in a central focussed region (ca. 300 nm diameter), which is

considerably smaller than the diameter of yeast nuclei (1–2 mm).

The NIR laser beam and the confocal imaging laser are parfocal at

the region where multi-photon absorption occurs, allowing real

time data acquisition. This approach complements existing

techniques, and has significant advantages particularly for analysis

of events occurring within seconds of DNA damage.

Material and Methods

Strains used and sample preparation
Schizosaccharomyces pombe strains used in this work are listed in

Table S1. Cells were grown overnight (14–16 hours) on Yeast

Extract Media agar plates with supplements: adenine, leucine,

uracil, histidine and arginine (YE5S) at 25uC. For manipulation

and imaging, fresh cells were resuspended in liquid Edinburgh

Minimal Medium (EMM2) supplemented with adenine, leucine,

uracil, histidine and arginine and transferred to the base of a

35 mm petri dish (MatTeck Corporation), the central region of

which was coated with 2 ml of 2 mg/ml lectin (L2380, Sigma-

Aldrich). Free cells were removed by washing with EMM2, the

petri dish was filled with 300 ml of EMM2, covered with a

coverslip and sealed with silicone (GE Bayer Silicones). During the

manipulation and imaging of cells on the microscope, the sample

was kept at 25uC in a chamber. For analysis of bleocin-treated cells

by fluorescence microscopy, cells were washed in water and

mounted in 1.2% low melting temperature agarose. Images were

collected using a Zeiss Axioplan microscope, coupled to a

Hamamatsu ORCA ER camera; open source MicroManager

software [26] was used to control the camera and microscope.

Laser scanning confocal microscopy and laser irradiation
Live-cell images were taken using an upright microscope, with

infinity-corrected optics (Zeiss LSM 780 NLO). For GFP

excitation we used the 488 nm line of a multi-line Argon-Ion

laser (LASOS), a 488 nm notch filter and a Plan-Apochromat

63x/1.40 Oil DIC objective (Zeiss); the set-up is summarised in

Figure S1. Emission was detected in the range of 490–580 nm.

During laser irradiation no images were taken. Before and after

DNA damage, time-lapse z-stacks of 8–11 optical sections with a

500 nm z-distance, were taken at 3 or 30 s time interval using

unidirectional scanning mode at 3.38 ms scanning speed. All

images have a xy-pixel size of 225 nm.

DNA damage was performed using a two-photon Ti:Sapphire

femtosecond pulsed laser (Chameleon Vision II, Coherent), tuned

to a wavelength of 745 nm and a theoretical pulse duration of 140

femtoseconds at 80 MHz. The beam was coupled to the bleaching

port of the Zeiss LSM 780 NLO laser scanning microscope. The

light path of the pulsed laser was different from the path of the

imaging one. The pulsed laser light was reflected onto the

objective by a short pass dichroic mirror SP690. The laser power

before the objective was 857 mW, measured at the maximum

output power of 2480 mW using a power meter (Coherent). The

power at the sample corresponding to the range 12%–30% of

maximum output power was ,12–32 mW, estimated from the

objective transmission at 745 nm (12%). The irradiations were

performed on a user-defined region of interest (ROI) of

0.775 mm60.225 mm, drawn inside of the nucleus before starting

acquisition. The irradiation was achieved by scanning the laser at

the power mentioned above over the ROI, for 40 ms total

exposure time.

Quantification and image analysis
To analyze accumulation of proteins at damage sites in the cell

nucleus, the z-stacks were sum projected using ImageJ 1.47c

(National Institutes of Health, USA). For quantifications described

in Figures 1A, 2A, 3A and S3, sum intensities were read out using

the regular selection tools already existing in ImageJ, circle for the

nucleus and 363 pixels square for damage sites. Fluorescence

intensity of the non-irradiated part of the nucleus was calculated

by subtracting the intensity of the irradiated region from the total

intensity within the nucleus. For all ROIs the intensity values were

normalized for each time point to the intensity value at first frame

before irradiation.

For the quantifications in Figures 4A-C, we took into consid-

eration movies acquired for one hour. In this situation, the nucleus

is moving, making it difficult to use the regular selection tools from

ImageJ. A custom-made ImageJ plugin (see Script S1) was used to

perform the analysis, which consists of two modules, one for

quantifying the accumulation of proteins in the ablation region

and the other to quantify the signal in the nucleus. The irradiated

region was analyzed by fitting a circle of 3 pixels radius centred at

the most intense region of the nucleus over the duration of the

experiment. The sum of pixel intensity values in the irradiated

region was obtained as a function of time. The cell nucleus was

analyzed by detecting the region containing the nucleus over the

length of the experiment.

The total relative amount of protein accumulation and the half-

life of accumulation (time needed to accumulate 50% of the

maximum amount) were obtained by fitting the measured values

with the following exponential equation:

I tð Þ~A 1{e
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ln (2)

t1=2
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where I(t) is the normalized intensity as function of time, A is the

total amount of protein accumulation, t1/2 is the half-life and C is

the new normalized level of fluorescence immediately after laser

irradiation.

Results and Discussion

PCNA and RPA are detected at sites of DNA damage after
NIR laser irradiation of fission yeast nuclei in a
dose-dependent manner

The use of NIR laser irradiation (745 nm) for induction of DNA

damage relies on multiphoton absorption which only takes place at

a highly focussed femtolitre volume of the laser beam. This

effectively delivers UV photon quanta without the requirement for

DNA presensitization, or problems of UV absorption by

microscope components or biological material. This irradiation

is predicted to generate a variety of types of DNA damage,

including UV photoproducts such as CPDs [27], and double-

strand breaks (DSBs) [28]. For initial experiments we chose to

analyse GFP-tagged PCNA (proliferating cell nuclear antigen),

which is a central protein in repair and replication and participates

in a number of repair pathways [29–32]. PCNA encircles DNA as

a trimer, forming a sliding clamp that tethers a wide variety of

proteins such as polymerases to DNA [33] and several studies

using mammalian cells have shown a recruitment of PCNA to

DNA repair sites after local laser micro-irradiation of the nucleus

[16,34–38]. As previously reported [31], DSB generation in live

fission yeast cells caused formation of GFP-PCNA foci after

treating exponentially growing cells with bleocin (Figure S2).

Analysis of DNA Damage Responses in Yeast Using Laser Ablation
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We irradiated a specific region (7756225 nm) of the nucleus of

cells expressing GFP-PCNA, while simultaneously imaging the cell

every 3 s over 150 s. Initially, different irradiations were

performed, varying the laser power in the sample plane in a

range from 12% to 30% of total laser power (% power related to

energy delivered in Figure S3A). GFP-PCNA fluorescence was

quantified over the time course in the entire nucleus, at the

irradiated site and in the region of the nucleus that was not

irradiated (Figures 1A, 3B, Movies S1-13). After laser irradiation,

photobleaching was observed proportional to the power used,

resulting in a decreased GFP-PCNA fluorescence in the entire

nucleus compared with the intensity before irradiation. With all

powers used, an increase in GFP-PCNA fluorescence at the

irradiated region was observed in seconds, with a corresponding

decrease in fluorescence outside the irradiated region, while total

fluorescence in the entire nucleus remained constant, indicating

rapid PCNA recruitment to the damage site (Figure 1A-B). These

results were consistent with similar experiments performed in

human cells that also showed PCNA recruitment to sites of the

damage within a few seconds after irradiation [16,37].

When analysing the total relative amount of protein accumu-

lation and the time needed for protein accumulation, we observed

that PCNA accumulation at the irradiated region increased in a

dose-dependent manner when cells were irradiated in the range of

12% to 18% (Figure 1C). When doses between 18% and 21%

were used, levels of accumulation remained constant. Finally, the

total recruitment of GFP-PCNA at the irradiated region started to

decrease if doses over 21% were applied (Figure 1C), possibly as

excessive cell damage has a detrimental effect on the response to

DNA damage. The time needed for PCNA to accumulate to 50%

of the maximum value decreased in the power range 12% to 19%,

and was approximately constant in the range 19–21% (Figure 1D).

This indicates that the rate of PCNA recruitment is dose-

dependent up to a certain level of damage.

These results show that laser irradiation of S. pombe nuclei leads

to a repair response that can be detected by monitoring the

accumulation of fluorescently labelled PCNA. From these results

we selected powers of 15% and 19% as most appropriated for

following experiments, as 19% represented the lowest power that

showed the maximum accumulation of PCNA, while 15% gave an

accumulation around 60% of this value.

The heterotrimeric replication protein A (RPA) complex plays a

similar role in replication and in repair, stabilizing regions of

single-stranded DNA during resynthesis reactions and can be used

Figure 2. RPA is recruited in sites of DNA damage after laser irradiation. (A) Cells expressing Rad11-GFP (RPA subunit) were micro-irradiated
with powers 15% and 19%, and fluorescence was quantified and plotted as indicated in Figure 1A. Between 10 and 15 cells per power were analyzed.
(B) Two examples of RPA-GFP micro-irradiated cells from Figure 2A are shown. Arrows indicate irradiated regions.
doi:10.1371/journal.pone.0113325.g002

Figure 1. PCNA is recruited at the site of DNA damage in a dose-dependent manner. (A) GFP-PCNA expressing cells were subjected to
micro-irradiation with indicated powers (P) and live series of images over a time period of 150 seconds were recorded. The average intensity of GFP-
PCNA in the entire nucleus (blue), at the irradiated site (green) and in the area of the nucleus that was not irradiated (black) was quantified as
described in Materials and Methods. Between 10 and 20 cells were processed for every power; error bars show standard deviation. The relationship
between laser power and energy delivered is shown in Figure S3A. (B) GFP-PCNA expressing cells were exposed to laser micro-irradiation with
powers shown and images were acquired at the indicated times. Arrows indicate sites of irradiation. (C) Total amount of protein accumulation for
every power was calculated as described in Materials and Methods (D) Half life of PCNA accumulation values for every power, calculated as described
in Materials and Methods.
doi:10.1371/journal.pone.0113325.g001
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as an indicator of DNA end processing for homologous

recombination [39–41]. It also plays a key role in activation of

checkpoint responses via ATR [42]. To compare the kinetics of

RPA recruitment with PCNA, we performed laser irradiation

experiments using a strain where the largest subunit of RPA is

GFP tagged (Rad11-GFP) [43], with irradiation levels of 15% and

19%. As seen with PCNA, photobleaching was detected after

irradiation (Figure 2A) and recruitment of RPA was observed

from approximately 50 s after irradiation, although levels were

continuing to rise at 150 s, unlike the situation with PCNA

(Figure 2A-B, Movies S14, S15). As expected, RPA-GFP foci

formation was also detected after treating cells with bleocin, as

seen for PCNA (Figure S2).

The slower recruitment of RPA compared to PCNA may reflect

the need for DNA end resection to generate ssDNA for RPA

loading. This result agrees with the fact that PCNA can play other

roles in some repair pathways, prior to its role as an auxiliary

factor for polymerases. Some studies propose that PCNA could

help to recruit essential proteins for nucleotide excision repair,

such as XP-G and XP-A [44–47], or for base excision repair, such

as glycosylase NEIL1 [48], AP endonucleases 1 and 2 or uracil-

DNA glycosylase 2 (reviewed in [32]), and extensive DNA

processing might not be required prior to accumulation. In

addition, a recent study proposed PCNA as a new factor in the

Exo1 resection pathway, promoting processive DNA end resection

by Exo1 binding, apparently by assembling with DNA ends in an

RFC-independent reaction [49]. Thus our results are consistent in

showing that PCNA is recruited at a very early step and potentially

could recruit other repair proteins prior to extensive generation of

ssDNA.

Histone H3 and NLS-GFP are not accumulated at damage
sites of the ablated nucleus

Although core histones are modified after DNA damage to

trigger DNA repair [50,51], they are not accumulated at sites of

damage. We could therefore use a strain where histone H3 is GFP-

tagged to check whether accumulation of protein after irradiation

was an artefact associated with laser ablation. Contrary to

Figure 3. Histone H3 and GFP-NLS are not accumulated in the damage site of the ablated nucleus. (A) Cells expressing histone H3-GFP
or GFP-NLS were irradiated with powers of 15% and 19%, and intensity of fluorescence was measured and plotted as in Figure 1A. Between 10 and 15
cells per power and per strain were analyzed. (B) Histone H3-GFP (upper panels) or GFP-NLS (lower panels) expressing cells were laser-irradiated with
indicated powers and images from indicated time points are shown. Arrows show sites of irradiation.
doi:10.1371/journal.pone.0113325.g003
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observations made with GFP-PCNA or RPA-GFP, GFP-tagged

histone H3 was not accumulated at the irradiated region and only

bleaching was detected (Figure 3A-B upper panels, Movies S16,

S17). Most histone H3 is bound to DNA and this could impair

nonspecific recruitment of H3 to the site of DNA damage. To test

if a free nuclear protein with no DNA binding properties could

potentially bind damaged DNA nonspecifically following laser

irradiation, we also tested how GFP, tagged with a nuclear

localization sequence (NLS), was affected. Results similar to those

with histone H3 were obtained, with only bleaching of the

irradiated region during the time course (Figure 3A-B lower

panels, Movies S18, S19). This indicates that movements of PCNA

and RPA to the damage site are specific for those two proteins and

proteins are not recruited nonspecifically.

RPA remains at the damage site after PCNA is delocalized
We examined the kinetics of PCNA and RPA accumulation at

the site of damage over a longer time course of 60 min. As

previously shown in Figure 1, PCNA was very rapidly recruited at

the damage site after irradiation, and only 10–25 s were required

for PCNA to be recruited to 50% of its maximum value depending

on the power used (Figure 1D). Approximately 200 seconds after

irradiation, GFP-PCNA started to decrease at the ablated region,

and levels declined linearly with time over the next ca. 15 min,

while levels of PCNA in the rest of the nucleus recovered

(Figure 4A, Movie S20). This suggests that PCNA is released from

the damage site a few minutes after irradiation, perhaps reflecting

an initial role in DNA repair very soon after damage is generated.

Conversely, RPA was recruited at the damage site more slowly

Figure 4. PCNA is recruited to the damage site before RPA. GFP-PCNA (A) or RPA-GFP (B) expressing cells were irradiated at a
power of 15% and cells were monitored every 30 seconds over 60 minutes. The average intensity of GFP-PCNA at the irradiated site
(green), in the entire nucleus (blue) and in the area of the nucleus that was not irradiated (black) was quantified and plotted as indicated in Materials
and Methods. 10–15 cells per strain were irradiated (upper panels). Example images of both strains are shown in the lower panels (C) The intensity of
the fluorescence at the site of the damage was quantified and plotted for both strains in the same graph to allow easier comparison of the kinetics.
Black: GFP-PCNA; Red: RPA-GFP
doi:10.1371/journal.pone.0113325.g004
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and around 500 s were required for the protein to be recruited to

50% of its maximum level, reaching a constant level around

1000 s after the damage was induced. No reduction in RPA-GFP

fluorescence at the irradiated region was observed during the

subsequent 45 min (Figure 4B, Movie S21), consistent with

previous results using ionizing radiation [52]. RPA recruitment

on chromatin is almost at a maximum when PCNA is largely

released from the irradiated area (approximately 15 min after

irradiation, Figure 4C). These results fit a model where PCNA is

involved in early steps of DNA repair, and perhaps is needed for

generation of ssDNA, prior to its role at later time points during

the repair process as a polymerase loader [29,32,34,49,53].

Moreover, our results support the recent finding that PCNA is

loaded onto DSBs as an early event in repair pathways [49].

In spite of intensive study of the localization of repair and

checkpoint factors to damage foci in yeasts, technical problems

with conventional damage-induction procedures make it difficult

to analyse this process on a time scale of seconds after damage has

occurred. The results described here indicate that such real-time

monitoring of repair factors after NIR laser irradiation is feasible

in fission yeast. Such monitoring is important to establish the role

of early damage events, such as the role of mammalian KDM4D

histone methylase in promoting DSB repair [54], and the

recruitment of FUS at DNA sites in neurons [55]. Single cell

irradiation also allows damage responses to be correlated with cell

cycle stage and stochastic cell-cell differences to be explored. One

issue with NIR laser irradiation and laser irradiation in general, is

that a single type of DNA damage is not generated but this may be

addressed by using longer wavelength irradiation (1050 nm),

which leads to preferential formation of DSBs [25,56].

Supporting Information

Figure S1 Confocal set up showing arrangement of NIR
irradiation laser with respect to confocal imaging laser.
NF488, notch filter reflects the 488 nm laser, but lets the rest of the

visible spectrum pass; SP690, short pass dichroic mirror, lets

wavelengths below 690 nm pass; M1 and M2, scanning mirrors.

(TIF)

Figure S2 PCNA and RPA form nuclear foci after DNA
damage generation. PCNA-GFP, RPA-GFP, Histone H3-GFP

and GFP-NLS expressing cells were grown in Yeast Extract Media

with adenine, leucine, uracil supplements (YE3S) at 30uC until

mid-log phase and then were treated with bleocin 0.5 mg/ml for

30 min before imaging. Arrows show examples of foci.

(TIF)

Figure S3 (A) Relationship between % laser power and energy

delivered. (B) PCNA is recruited to the site of DNA damage in a

dose-dependent manner. PCNA-GFP expressing cells were micro-

irradiated with indicated powers (P) and fluorescence was

quantified and plotted as in Figure 1A. Between 10 and 15 cells

were processed for every power. Error bars show standard

deviation.

(TIF)

Table S1 Strains used in this work.

(PDF)

Script S1 Script used for analysis of protein accumula-
tion for long time courses.

(PDF)

Movie S1. Cells expressing GFP-tagged proteins were micro-

irradiated as described in Materials and Methods with the

indicated power; images were recorded every 3 seconds over a

time period of 150 seconds for movies 1–19 and every 30 seconds

over 60 minutes for movies 20 and 21. This is PCNA-GFP,

P = 12%.

(M4V)

Movie S2. PCNA-GFP, P = 13%.
(M4V)

Movie S3. PCNA-GFP, P = 14%.
(M4V)

Movie S4. PCNA-GFP, P = 15%.
(M4V)

Movie S5. PCNA-GFP, P = 16%.
(M4V)

Movie S6. PCNA-GFP, P = 17%.
(M4V)

Movie S7. PCNA-GFP, P = 18%.
(M4V)

Movie S8. PCNA-GFP, P = 19%.
(M4V)

Movie S9. PCNA-GFP, P = 20%.
(M4V)

Movie S10. PCNA-GFP, P = 21%.
(M4V)

Movie S11. PCNA-GFP, P = 22%.
(M4V)

Movie S12. PCNA-GFP, P = 23%.
(M4V)

Movie S13. PCNA-GFP, P = 30%
(M4V)

Movie S14. PRPA-GFP, P = 15%.
(M4V)

Movie S15. RPA-GFP, P = 19%.
(M4V)

Movie S16. H3-GFP, P = 15%.
(M4V)

Movie S17. H3-GFP, P = 19%.
(M4V)

Movie S18. GFP-NLS, P = 15%.
(M4V)

Movie S19. GFP-NLS, P = 19%.
(M4V)

Movie S20. PCNA-GFP, P = 15%.
(M4V)

Movie S21. RPA-GFP, P = 15%.
(M4V)
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