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Summary 

The aim of this work has been assessment of regional atmospheric influence on 

satellite derivation of the Adriatic Sea surface temperature (SST). To that end the ECMWF 

ERA-40 reanalysis dataset has been employed to provide the temperature and humidity 

profiles and surface data, while the RTTOV 8.7 radiative transfer model was used to calculate 

the top of atmosphere brightness temperatures for the AVHRR channels. Ten ERA-40 grid 

points over the Adriatic Sea were used in the analysis, providing 29590, 00 UTC and 12 UTC, 

clear-sky profiles. 

Climatological analysis of the ERA-40 profiles demonstrated a distinct seasonal 

variability over the Adriatic. Seasonality noted in the temperature and specific humidity 

profiles also evinced in the atmospheric transmittance, thermal channels temperature deficit, 

and derived γ and ρ parameters. A multivariate analysis was applied to relate the simulated 

top of the atmosphere (TOA) brightness temperatures (BT) to the Adriatic SSTs, in order to 

generate exploratory sets of SST retrieval coefficients. All 10 derived coefficient sets 

exhibited smaller noise amplification factor than the global counterpart. A test comparison of 

satellite-derived SST with an eleven-month in situ SST series showed than locally derived 

coefficients provide smaller scatter (improved precision), and bias that requires empirical 

adjustment before operational use. Almost identical SST residual and metrics was obtained 

with seasonally adjusted “classical” split-window coefficients and with coefficients explicitly 

accommodating water vapour dependence. The comparison to data has reinforced the notion 

that the over-the-Adraitic atmosphere may exhibit variability which globally adjusted 

correction can not fully accommodate.  
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1. Introduction 

Sea surface temperature (SST) is an important variable in climate monitoring and 

weather forecasting as well as in many other atmospheric or oceanographic empirical and 

modelling studies. Satellite SST data have been collected globally for almost three decades, 

enjoying in the process all the advantages, but also suffering the drawbacks of remote sensing. 

An important problem is the atmospheric interference with the surface thermal radiation. 

When surface thermal signal is passing through the atmosphere a fraction of it is absorbed by 

atmospheric constituents (e.g. water vapour, aerosols, or ozone) and re-emitted at different 

wavelengths. Thus the information about the atmospheric along-path concentrations of 

aerosols, ozone and water vapour in particular is very important (Minnett, 1990; Tanre et al., 

1992). The net atmospheric effect is to reduce thermal radiation reaching the sensor, and 

consequently to lower the brightness temperature registered there. If one is to derive satellite 

SST properly, a correction of measured radiance is needed to account for the mentioned 

effects. The fact that these influences are wavelength dependent and spatially and temporally 

variable further aggravates the problem. 

The atmosphere exhibits spectral windows where the sea surface thermal radiation 

peaks, atmospheric attenuation is reduced and reflected solar radiation is low. The radiative 

transfer of the surface signal through the atmosphere can be defined as: 

Ltoa(ν,θ) = εs(ν,θ) B(Ts)τs(ν,θ) + Lua(ν,θ)  + Lrda(ν,θ) + Lrs(ν,θ)                          (1) 

where Ltoa is radiance emerging at the top of the atmosphere (TOA), ν is frequency, θ is the 

satellite zenith angle, and εs, Ts, and τs are surface emissivity, temperature and transmittance, 

respectively. The second, third and fourth term stand for the upwelling atmospheric thermal 

radiation, reflected downwelling atmospheric radiation, and surface-reflected solar radiance, 

respectively; B is the Planck function. If the atmospheric effects could be specified and the 
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surface effects could be well characterized, the equation (1) would render the surface 

temperature. However, direct inversion from the radiative transfer equation is a tall order, so 

approximations are necessary if one is to obtain solutions, operational ones in particular.  

Various simplified approaches have been proposed to account for atmospheric 

attenuation of the surface-leaving infrared radiance, usually ignoring the effect of non-unity 

surface emissivity. Since the work of Anding and Kauth (1970) the difference measurements 

in two separate infrared channels (differential absorption) is commonly used to estimate the 

amount of required atmospheric correction. In such a framework it is necessary to assume 

equal average atmospheric temperature in two spectral windows/channels and to have 

independent measurement of the brightness temperature in each of them (McMillin, 1975). 

The setup then leads to algorithms of the form: 

  Ts = A0(ε, wv, Lrda,θ) +A1(ε, wv, Lrda,θ)·T1 + A2(ε, wv, Lrda,θ)·T2    (2) 

often cast in somewhat modified form: 

Ts = a0 + a1·T1 + a2·[T1 - T2]         (3) 

where T1 and T2 are sensor's channel brightness temperatures (BT), and ai are empirical 

coefficients, assumed constant; wv stands for water vapour. Water vapour is the most 

important absorber in the 10-13 μm window (e.g. Anding and Kauth, 1970). Absorption by 

water vapour yields temperature deficit which, if not corrected for, creates an error in the SST 

estimates, larger for off-nadir satellite viewing angles.  The coefficients in a SST algorithm 

can be derived either by regression of satellite, or radiative-transfer model (RTM) derived 

BTs against in situ temperature data. The former approach has been practiced in numerous 

studies using the Advanced Very High Resolution Radiometer (AVHRR) retrievals (e.g. 

Strong and McClain, 1984), whereas the latter characterizes the processing of the Along 

Track Scanning Radiometer (ATSR) data (e.g. Zavody et al, 1995).  
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Although the AVHRR-related algorithms have undergone numerous changes their 

consistent performance over global range of atmospheric conditions still remains a challenge. 

A major cause of poor validation statistics appears to be (over)simplifications of equation (1) 

in operational algorithms and misrepresentation of regional atmospheric spatial and temporal 

variability.  An approach that appears to partly ameliorate the problem, producing consistent 

results on global scale (accuracy of 0.02  0.5

C), is estimation of the algorithm coefficients 

on monthly basis (Kilpatrick et al., 2001), distinguishing two (wet and dry) atmospheric 

regimes. Acknowledging temporal variability still leaves open the question of regional 

suitability of global solutions. Regional and/or time-limited applications need not take into 

account the full range of atmospheric variability, but should include regional and/or seasonal 

dependence (Minnett, 1990). Exploring the errors associated with the SST retrievals from the 

Indian Ocean Shenoi (1999) obtained considerably improved validation statistics with 

regionally optimized SST algorithm coefficients. Eugenio et al. (2005) used a subset of the 

Pathfinder matchup database to derive SST algorithm coefficients optimized for the Canary 

Islands – Azores – Gibraltar region. Requesting spatial and temporal coincidence of ±10 km 

and ±30 min respectively the authors devised a new algorithm with considerably improved 

statistics (mean error of 0.0748 ºC, RMS error of 0.58ºC). Focusing on just the Canary Island 

zone, Arbelo et al. (2000) demonstrated inadequate performance of the global SST algorithm 

(derived for 6 standard atmospheres). Compared to their regional algorithm (derived for the 

local atmosphere characterized with thirty radiosonde temperature and humidity profiles) 

global algorithm generated mean error difference of +0.3 K, and about twice as large RMS 

difference. However, a recent study (Merchant et al., 2006) warns that although sub-optimal 

choice of retrieval coefficients degrades an estimate, some errors are intrinsic consequence of 

the retrieval equation form, a simplified example of which is the equation (1). 
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In this paper we study the atmospheric influence on the SST derivation from satellite 

data over the Adriatic Sea. In addressing the problem our goal is not to derive a new 

operational algorithm, but rather to assess the extent of the local atmospheric influence on 

such a product. More specifically, we have firstly addressed the seasonal temperature and 

humidity variability of the atmosphere over the Adriatic, followed by deriving test SST 

retrieval coefficients reflecting that variability, and than gauging their impact on the Adriatic 

SST estimates. The atmospheric variability over the Adriatic Sea was explored using the clear 

sky temperature and humidity profiles from the European Centre for Medium-Range Weather 

Forecast (ECMWF) ERA-40 re-analysis (Uppala et al., 2005) . An accurate fast radiative 

transfer model, RTTOV 8.7 - Saunders and Brunel (2005),  was then used to simulate 

brightness temperature in AVHRR channels (4 and 5) using atmospheric profiles and SST 

values obtained from ERA-40. 

The rest of the paper is organised as follows. The data obtained from the ERA-40 re-

analysis are discussed in the second section. In the third section we briefly present the 

RTTOV model and in the fourth section discuss results of the analysis. Conclusions are given 

in the last section. 

2. Data 

The dataset employed in this study is an Adriatic subset of the ECMWF ERA-40 

reanalysis data (Uppala et al., 2005).  The ERA-40 reanalysis covers the period from 

September 1957 to August 2002. The reanalysis was done with T159 spherical-harmonic 

representation of upper air fields, and on reduced Gaussian grid N80 providing data on the 

corresponding regular latitude/longitude resolution of 1.125

x1.125

 
at 60 vertical model-

pressure levels between the surface and the 0.1 hPa level. ERA-40 data are available at 00:00, 

06:00, 12:00 and 18:00 UTC over a 45-year period. The climatological analysis and the RT 

model simulations were done using the ERA-40 temperature, specific humidity as well as 
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integrated (total column water vapour) and surface data  (2m air temperature, sea-level 

pressure, and SST). From the global model grid, only ten grid points over the Adriatic Sea 

(“wet” as defined by the land-sea mask) were extracted. The positions of the selected Adriatic 

grid points are shown in Figure 1. We adopted the convention that the points north of the 43° 

N latitude belong to the northern Adriatic, those south of 42° N to the southern, and those 

between the two latitudes to the central Adriatic.  

One of the ERA-40 variables is the skin temperature, a post-processed variable close to 

what the model atmosphere “feels” as the sea temperature boundary condition (A. Beljaars, 

personal communication). More precisely, the open water temperature (SST in our case) is 

just one tile in an eight-tile scheme (TESSEL - Tiled ECMWF Scheme for Surface Exchanges 

over Land). The SST used in the open waters tile, and kept constant during the integration, is  

from July 2000 onward based on the NCEP daily analyses based on ship, buoy and satellite 

observations (Persson and Grazzini, 2007). Other sources and/or different schemes were used 

prior to the year 2000, but common to all is the bulk nature of this variable. Therefore, both 

the skin effect and diurnal cycle were ignored (constant SST value used during an integration 

period) in the ECMWF simulation runs (Beljaars, 1998). Furthermore, any sub-area retrieval 

from the Meteorological Archive and Retrieval System (MARS) by definition invokes 

interpolation of the archived reduced Gaussian grid values further affecting the extracted SST. 

Nevertheless the use of the SST variable in the radiative transfer modelling together with 

related ERA40 temperature and humidity profiles is deemed justified in providing TOA BT 

estimates, bearing in mind that on any given hour ERA40 SST does dot exactly correspond 

with actual surface condition. 

Since SST retrieval schemes use clear pixels, only clear sky profiles from ERA-40 were 

used in the study. Altogether, 29590 cloudless profiles of temperature, humidity and ozone 

and related surface parameters were extracted over the Adriatic (only the 00 UTC (nighttime) 
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and 12 UTC (daytime) values). The profiles exhibit seasonal and geographical distribution as 

summarized in Table 1. The smallest numbers of profiles have been obtained for the northern 

Adriatic autumn at 00 UTC (196), whereas the largest subset (5088) was collected for the 

southern Adriatic summer at 00 UTC. The ERA-40 60-level profiles were further interpolated 

to 43 RTTOV pressure levels using a spline-based program (Chevallier, 2001). 

The SST validation data were collected during the period February 2 - December 26 

2004 at the INAgip platform Ivana-A in the northern Adriatic (44.745N, 13.294E - Figure 

1). The Aanderaa Temperature Profile Recorder TR7 (absolute accuracy ±0.05°C) was used 

to collect the data,  with the recording depth and interval set to 1 m and 20 min, respectively. 

These data were paired with the related temperatures registered with the AVHRR/3 

instrument aboard NOAA 16 satellite to create a matchup database. Satellite data were 

received at the local HRPT receiving station (Quorum Communications) and converted to the 

level 2 format. AAPP package (Klaes, 1997) was used to convert data from the level 0 to level 

1b format, and custom build application was employed to convert the data from the level 1b to 

level 2 format. Additional navigation corrections were performed with the ANA3 application 

(Bordes et al., 1992; Brunel and Marsouin, 2000). For the time period considered there were 

576 daytime and 576 night time scenes. The pairing was performed observing relatively tight 

spatial and temporal constraints. The included satellite pixels have been located within the 

pixel-size distance from the Ivana-A platform location, and registered within 15 minutes of 

the measurement at the Ivana-A platform. These criteria provided 578 daytime and 542 

nighttime matchup records. Prior to the pairing, all scenes were cloudmasked using a suit of 

spectral tests (separately for day and night) based on visible and thermal channels data and 

related threshold values optimized for the Adriatic (Tomažić, 2006). The application of the 

cloudmasking algorithm, restriction for too large satellite zenith angle, and additional 

requirement on brightness temperatures (standard deviation in a 3x3 pixel window centred on 
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Ivana-A station less than 0.12

C, cf. Eugenio et al., 2005) further reduced the number of 

useful matchup records.  The final score was 102 daytime and 92 nighttime pairs.  

3. Radiative transfer model 

RT-model simulation of the upwelling thermal radiation requires modelling of radiation 

interaction with the atmospheric constituents. That can be computationally demanding when 

performed with line-by-line models, but simplified fast RTMs exist, providing viable 

alternative.  One such model, the RTTOV in its version 8.7, has been used in the present work 

(Saunders and Brunel, 2005). The original code has undergone several modifications, most 

recently by the EUMETSAT numerical weather prediction (NWP) Satellite Application 

Facility (SAF). It follows a line of improvements (Eyre, 1991; Rayer, 1995), originating from 

the work of Eyre and Woolf (1988), itself building on the work of McMillin and Fleming 

(1976). Given atmospheric profile of temperature and humidity together with surface 

temperature and pressure, as well as satellite zenith angle, the model in forward mode 

computes the TOA radiances in each of the channels of the sensor being simulated.  

Atmospheric profiles of ozone and carbon dioxide, and surface emissivity can be provided 

optionally, but these options were not used in the present study. 

The RTTOV model can simulate both the clear sky and cloudy radiances using an 

approximate atmospheric radiative transfer equation. The top of the atmosphere clear sky 

upwelling radiance L
clr

(ν,θ) (pertinent to our study), at the frequency ν, zenith angle θ, and 

neglecting scattering effects (Saunders and Brunel, 2005) reads: 
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where the terms on the right correspond to the terms in (1), ignoring the reflected solar 

radiation. T is atmospheric temperature.  

 In the RTTOV versions prior to number six, blackness of all surface types was default 

(emissivity equal to one). In the RTTOV 6 channel average sea surface emissivity default was 

introduced, calculated after Masuda et al. (1988), allowing for zenith angle dependence while 

keeping zero wind speed (Sherlock, 1999). The same emissivity model is in effect in the 

RTTOV version used in present study. Merchant and LeBorgne (2004) examined accuracy 

and precision of four different RTMs (including the RTTOV-7). They found the models not 

absolutely accurate enough to specify the offset coefficient to desired accuracy of 0.1K. 

Within the scope of performed validation studies the RTTOV-8 has shown performance 

similar to RTTOV-7 (Saunders and Contributors, 2005). 

 

4. Results and Discussion 

Addressing the local atmospheric influence on satellite-derived Adriatic Sea surface 

temperature we will first analyse in this section the temperature and humidity variability over 

the Adriatic Sea as derived from ERA-40 data, and then assess the influence of that variability 

on the SST retrieval coefficients. Changeable features of the atmospheric humidity exert great 

influence on the earth-emitted long-wave radiation, but specific quantitative studies of vertical 

distribution of humidity in the Mediterranean area in general, and over the Adriatic Sea in 

particular, appear to be nonexistent. We have therefore taken as the reference situations the 

average conditions embodied in the mid-latitude profiles. 

 

4.1 Seasonal atmospheric variability 

In order to examine the extent of local atmospheric variability separate analyses of the 

ERA-40 temperature and humidity profiles were performed for different seasons. Preliminary 
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analysis of intra-Adriatic geographic variability did not produce enough variability to warrant 

further consideration. The result for temperature is presented in Figure 2. The comparison of 

ERA-40 derived seasonal temperature profiles with respective mean profile for the Adriatic 

exhibits marked variability (Figure 2a-d). Seasonal temperature variations can be seen to the 

pressure levels in the higher troposphere and lower stratosphere (to the pressure level of 194 

hPa), and are the most significant at the lowest pressure levels. More significant difference in 

mean and standard deviation (horizontal bars) can be seen in the winter (Q1) and summer 

(Q3) period. We further compared the ERA-40 Adriatic seasonal average winter and summer 

profiles to the respective mid-latitude data (Figure 2e). Comparison suggests that the ERA-40 

derived winter lower troposphere is warmer than the mid-latitude average by as much as 10 

K. The summer   profile is more similar to its mid-latitude counterpart, diverging from it 

toward higher values in the lower troposphere. The Adriatic ERA40 derived multi-annual 

average turns out somewhat warmer than the US Standard Atmosphere, throughout the 

troposphere, and in its middle part in particular (Figure 2f). 

   Monthly averaged Adriatic 2m air temperatures calculated from the ERA-40 dataset exhibit 

a clear seasonal cycle. In Figure 2g those values for two model points (R and K in Figure 1) 

are compared to related in situ climatology from the two nearest coastal stations (Rovinj and 

Korčula  – see Figure 1). The field data (http://www.hhi.hr/archi pelago/ naslov/e_temp.htm) 

were available only for the 1981-1995 period so the ERA40 series was shortened accordingly. 

One notes a close correspondence between the measured and modelled data, with the ERA40 

values being persistently somewhat higher than the measured temperatures at the northern 

(Rovinj) station; the opposite appears to hold at the southern (Korčula) station. In this 

comparison one has to bear in mind the natures of the ERA40  SST series elaborated in the 

data section. 

http://www.hhi.hr/archi%20pelago/%20naslov/e_temp.htm
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 The results of the specific humidity analysis are presented in Figure 3. Specific 

humidity seasonal variations go up to 300 hPa pressure level. Significant differences in the 

mean and standard deviation (horizontal bars) can be observed in all seasons. The only 

exception is the spring profile which remains very similar to the annual mean. Again, the most 

distinct seasonal differences in the mean are observed in winter, and least significant in spring   

(Figures 3a and 3c). It is worth noting that the winter mean profile in particular is much dryer 

than the annual mean. The seasonal difference may be further appreciated by inspecting the 

Figure 3e. One may see that the ERA-40 derived winter specific humidity follows relatively 

closely the mid-latitude average except in the lowermost layers where the Adriatic profile 

exceeds. Similar difference is observed between the average Adriatic and US Standard 

Atmosphere (Figure 3f), only the point of disagreement starts higher, close to the 700 hPa 

level.   

The noted variability is also seen in Table 2 where numerical values of seasonal and 

layer averages of temperature and specific humidity are listed. The first two columns list the 

average values of the atmospheric temperature above (TL) and bellow (TU) the 850 hPa level. 

The chosen pressure level conveniently divides the mean vertical distribution of the specific 

humidity (Minnett, 1986); in the text that follows we will refer to these parts as the upper and 

lower atmosphere. The next two columns list the respective specific humidity values.  

Seasonally, the winter   TL is about 11K lower, and summer TL some 4 K higher than the 

annual average. Similarly, winter qU is about 0.5 gkg
-1

 bellow, and the summer qU about 0.2 

gkg
-1

 above, the annual average. The lower and upper temperature and humidity annual 

averages are somewhat larger than the respective US standard atmosphere values. In a study 

based on a hundred marine radiosonde profiles over the northeastern Atlantic Ocean in July, 

Minnett (1986) simulated effects of anomalous atmospheric conditions by independently 

adjusting humidity and temperature profiles. He found that consequences of humidity 
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anomalies are greater when occurring at greater height (below the 850 hPa level, where the 

water vapour is colder), whereas temperature anomalies exhibit greater effect at lower height 

(above  the  850 hPa level, where a change of few Kelvin in the water vapour to sea surface 

temperature difference counts more).  

Another view of the noted seasonal changes of the Adriatic atmosphere is presented in 

Figure 4 where the annual cycle of monthly anomaly of several parameters is plotted. Both 

the daytime (solid line) and nighttime (dashed line) variability is plotted, exhibiting the same 

pattern and minor differences in value.  Specific humidity anomaly in the upper atmosphere 

(below 850 hPa) is plotted first (Figure 4a), crossing the 45-year average line between April 

and May on the way up, and in October on the way down.  The temperature anomaly of the 

lower troposphere (Figure 4b) exhibits the same transition points (late April, and late 

October), reaching top values in July and August. The standard deviation is lower (2.5 – 3.0 

ºC) during the period of positive anomaly than during negative (3.5 ºC). The total column 

water vapour (Figure 4c) peaks in August, exhibiting more variability during the warmer part 

of the year. The temperature difference at the air-sea interface, as registered in the ERA40 

database, shows about a month earlier transition to positive values (Figure 4d), and change to 

negative values in October, as other plotted variables. One should also note that in the peak 

months of July and August in particular there were twice as many cloud clear data points at 

00:00 UTC than at noon (Figure 4e). 

 As pointed out in the previous paragraphs the atmospheric water vapour is dominant 

cause of SST signal attenuation. In the split-window framework the differential absorption 

between AVHRR channels 4 and 5 is used to correct for its adverse effect. A closer look at 

the total column water vapour (tcwv) and thermal channels’ brightness temperatures is taken 

in Figure 5 where for each month the tcwv is plotted as a function of the T4 – T5 difference. 

The tcwv values are taken form the ERA40 database whereas the brightness temperatures 
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have been calculated using the RT model and assuming zenith angle of zero and NOAA16 

spectral response function (SRF). Only daytime result is shown; the nighttime data show 

differences in detail, but exhibit the same pattern of annual variability. Perhaps predictably, 

the cluster of data point is the smallest for winter months (December, January) with 

temperature differences spanning the 0 – 1 ºC range, and water vapour content staying bellow 

20 kgm
-2

. The cluster attains the largest size in summer (July, August) when differences larger 

than 2ºC are found, and tcwv values can reach the 40 kgm
-2

 level.  A look at the seasonally 

averaged temperature deficit in each channel (Table 3) provides a further insight. In both 

channels the temperature deficit due to the atmospheric absorbers is smallest in winter and 

largest in summer, with spring and autumn values bridging the extremes. The multi-annual 

average deficit is larger than -2.5 K in channel 5 where the atmospheric load is greater; the 

nighttime values systematically exceed the daily counterparts. Also included in the table are 

two derived parameters. The first is a ratio reflecting both the state of the sea surface and the 

atmosphere above it. It may be defined as (see e.g. Kleespies and McMillin, 1990): 

ρ = ε5τ5/ ε4τ4          (5) 

where ε and τ are the sea surface emissivity and surface to TOA transmittance, and the 

subscripts refer to the AVHRR channel 4 and 5 respectively. The parameter relates the 

changes in channel 4 and channel 5 transmittances (and also the changes in respective 

brightness temperatures) for a given change in the sea surface temperature. The channel 4 and 

channel 5 transmittances (not shown) exhibit their highest values in winter, and lowest in 

summer so the ρ parameter follows the variability pattern with the minimum in summer and 

the maximum in winter. The other parameter, representing intrinsic differential absorption 

term, can be expressed as (McMillin, 1975): 

γ = (1 – τ4)/(τ4 – τ5)         (6) 
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where τ4 and τ5 are, as before, the AVHRR channel 4 and channel 5 transmittances. We list in 

Table 3 its value derived with the aid of equation (6), using transmittances calculated with the 

RTTOV model for the AVHRR sensors onboard NOAA16.  The γ values we obtained appear 

to reflect seasonal variations noted in atmospheric temperature and humidity data, exhibiting 

minor difference among parts of the Adriatic, or between daytime and nighttime. In both 

cases the values are larger in warmer and smaller in colder part of the year, and always 

smaller than a typical global value (~2.5). 

 In summary, over-the-Adriatic profiles near-surface values as well as examined RT 

model-derived parameters evince distinct seasonal variability, of water vapour in particular. 

Any algorithm devised to estimate the Adriatic SST must accommodate the impact. In the 

split-window framework the differential absorption term is meant to compensate for the 

atmospherically caused temperature deficit. In the next section we therefore examine the 

successfulness of three particular algorithms (one commonly used and two derived in present 

framework) in providing the needed correction. 

 

4.2 Derivation and assessment of the Adriatic SST coefficients 

Two methods (empirical and theoretical) are commonly employed in deriving the SST 

retrieval coefficients (see e.g. Minnett, 1990). Both rely on regression analysis but differ in 

sources of the regression pairs. In the empirical approach, as the name suggests, the satellite-

derived brightness temperatures are paired with collocated in situ measurements, whereas in 

the latter approach a radiative transfer model is used to simulate a range of atmospheric 

conditions, enabling pairing of simulated brightness temperatures with corresponding SST 

values. One particularly important difference is that the former method provides bulk 

temperature estimates (usable in comparison with the usual oceanographic measurements) 

whereas the latter estimates the skin temperature (still not routinely measured in the field). 
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  The AVHRR global coefficients are derived with the empirical method, whereas in 

this study we used theoretical method, bearing in mind the limitations outlined in the data 

section. Before reaching the satellite sensor as TOA brightness temperature (TB), the sea 

surface temperature (Ts) signal is subject to a) in situ sensor error uncertainty, b) skin/diurnal 

warming uncertainty, c) atmospheric variability, and d) satellite sensor error uncertainty. In 

our case, typical a) contribution to the overall uncertainty is ±0.05 K, that of d) is ±0.12 K 

(Trishchenko et al, 2002) but the b) part uncertainty is rather difficult to estimate (although it 

can cause differences of several K; diurnal excursions exceeding 6K have been observed with 

an estimated error of 0.3 K, Merchant et al, 2008).  The radiometric noise and in situ sensor 

errors were not explicitly considered in the validation process, but understood as contributors 

to the SST error residual. 

The split-window algorithms commonly account for intervening atmosphere using 

linear combinations of brightness temperatures in different AVHRR channels, an approach for 

which McMillin (1975) provides early justification. Studies have shown (e.g. Zhang et al., 

2004) that with such an approach globally tuned algorithms may generally have small biases 

while exhibiting large regional discrepancies, producing regionally either positive or negative 

biases. Put differently, globally fixed coefficients can produce inaccurate SST estimates 

(exhibit systematic retrieval error) when local atmospheric conditions differ from the implicit 

average state, known as the first guess and captured in the regression procedure (Eyre, 1987). 

Such an error exhibits regional and seasonal variability (O'Carroll et al, 2006).  

In order to address possible impact of the noted over-the-Adriatic atmospheric 

variability on satellite SST estimates, the ERA-40 SSTs and the RTTOV-derived TOA BTs 

were subjected to a multivariate analysis. The analysis was done for 7 different zenith angles 

(from 0° to 60°), with the ERA-40 profiles split into daytime and nighttime sets. The 

following MCSST split window algorithm  
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)1))(sec(()( 543542410  zenTTaTTaTaaSST                                     (7a) 

was used, separately for daytime and nighttime. To address the impact of the tcwv a generic 

form of algorithm is used, again separately for day and night:   

)1))(sec(()( 54354241

2

540  zenTTaTTaTaWaWaaSST         (7b) 

In the above algorithms T4 and T5 are AVHRR brightness temperatures, θzen is the satellite 

zenith angle, and a0 to a3, d or n, are the daytime and nighttime regression coefficients. W is 

equal to tcwv/cos(θzen). Ten coefficient sets (5+5) derived for NOAA16 are listed in Table 4.  

Four seasonal sets were derived using (7a), and just one annual was produced using the water 

vapour algorithms (7b).To those  two global sets are added for reference. Also listed, next to 

the a2 coefficient, is the noise amplification factor (NAF). NAF is defined, following Pearce et 

al., 1989, as: 

NAF = sqrt[(a1 + a2)
2
 +  a2

2
]        (8) 

where ai are appropriate coefficients from equations (7) reported in Table 4; contribution of 

off-nadir viewing (a3) is not considered. It measures the amplification of the noise due to the 

intrinsic instrumental uncertainty in channel brightness temperature measurements, introduced 

into the SST estimates with particular set of coefficients. Inspection of the coefficient values 

readily reveals a pattern in global-Adriatic differences. The values of the a1 coefficient, which 

scales the direct contribution of the channel 4 brightness temperature, is very close to one in 

the global set, as well as in all the Adriatic sets. On the other hand, for all derived sets the a2 

Adriatic values, which control the amount of the applied differential absorption correction, are 

all about 1.3 or higher, but smaller than 2. One also notes that, in keeping with the results 

reported in section 4.1, the Adriatic a2 coefficients suggest larger differential absorption 

correction (and consequent noise) in spring and summer then in autumn and winter. All 

Adriatic a2 values are also smaller than the respective global values, while exhibiting seasonal 

differences. Very similar variability pattern is observed in the γ parameter (Table 3), which 
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may be viewed as the "intrinsic a2", calculated with the aid of equation (6) and therefore 

independent of the regression analysis. The change in a2 is accompanied with changes in the 

offset coefficient a0 and the a3 coefficient, accounting for the off-nadir paths contribution to 

the atmospheric correction. It is noteworthy to reiterate that while the Adriatic a1 values are 

close to global ones, all Adriatic a2 values are smaller than 2 while the respective global 

values are larger. An important consequence of the reduced coefficient values is decreased 

noise amplification in all Adriatic algorithms. Furthermore, for both daytime and nighttime 

the autumn and winter algorithms appear less noisy than their spring and summer 

counterparts. 

To probe the extent to which noted variability affects the Adriatic SST estimates we 

calculated the SST estimates with four different algorithms/coefficient sets and compared the 

outcome with the SST Ivana-A measurements. The result of the exercise is graphically 

presented in Figure 6 and numerically summarized in Table 5. In this comparison one has to 

bear in mind the size of the data sample. There was 91 matchup pair in the nighttime case, and 

102 in the daytime, primarily concentrated in the summer period (50 and 62 pairs, 

respectively). 

The Figure 6 presents the patterns of residual temperature variability. More 

specifically, Figure 6a shows “empirically the best” solution obtained by fitting the satellite 

brightness temperatures to the bulk temperatures from Ivana-A, using all the matchup pairs 

described in the data section.  It provides zero-bias, minimum-scatter solution, suggesting 

attainable error metric as limited by the algorithm form and data quality, and offering a good 

reference for other solutions. The existence of the patterns even in this solution testifies to the 

fact that not exactly the same SST value is registered bellow the surface and at the TOA, 

either at nighttime or at daytime. Imperfect cloud masking or residual stratification may have 

contributed to the error in residuals, but diurnal warming appears to be the prime contributor 
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to the daytime residual. The global coefficient solution (Figure 6b) on the other hand is an 

example of a “routine application” of the SST algorithms. The solution exhibits much larger 

scatter, less symmetrical around zero in daytime case, therefore producing a significant bias. 

Both of these solutions provide bulk SST estimate, making it legitimate to compare them 

directly to the Ivana-A measurements (1m depth). The comparison metric is listed in Table 5.  

For the data-fit case, the table shows expected zero bias for both nighttime and daytime, with 

the scatter of 0.33 and 0.66 respectively. One notes about twice larger mad and rmsd values in 

daytime estimates, primarily due to diurnal warming effect (not addressed in the study).  

Global-coefficient solutions exhibit the largest scatter with smallest bias during night and 

largest bias during day; large mad values (0.43, 0.68) suggest considerable discrepancy 

throughout the year. Closer inspection of the Figure 6b reveals that the nighttime bias is small 

due to mutual balancing of positive (primarily in warmer part of the year) and negative 

(primarily in colder part of the year) SST residuals.  

Our two ERA40-based solutions (Figures 6c and 6d) provide remarkably similar 

residual patterns that also show persistent positive bias. The similarity implies that the 

regional and seasonal water-vapour effect can be accounted for with equal success by either 

using “classical” split-window coefficients seasonally adjusted to local climatology (four sets 

of coefficients), or by explicitly accommodating the water vapour dependence, relying on its 

own climatology as well as on the tcwv values for the year in question (2004). The plots in 

Figure 6e (the difference between the Figure 6d and Figure 6c residuals) reinforce that 

conclusion for both nighttime and daytime.  

As pointed out earlier, our ERA40-based solutions provide skin SST estimates which 

are not directly comparable with the Ivana-A measurements. Skin-to-subskin model would 

usually suffice in the nighttime case, but daytime solution further requires diurnal heating 

modelling, if one is interested in bulk solution.  These corrections are still subject to active 



 20 

research. For example, using almost 6000 skin and bulk temperature measurements collected 

over four-year period Murray et al (2000) found the mean skin-bulk SST difference of -

0.2±0.46K at night, and +0.05±0.51K during daytime; for the low wind conditions (prevailing 

in summer months over the Adriatic Sea) Murray et al found the mean skin-bulk daytime 

difference of approximately 0.8 K. On the other hand, Donlon and Robinson (1998) report 

less than 0.05K in situ skin-bulk temperature difference ascribing it to the high wind speeds 

that dominate their dataset. In an effort to avoid introduction of two more still researched 

models, which themselves require additional data and introduce their own uncertainties, we 

have kept the ERA40 solutions uncorrected, and focused more on the scatter in residuals. One 

notes in Table 5 that all ERA40 based solutions exhibit a positive bias, in line with Merchant 

and LeBorgne (2004) finding that “SSTs from RT-based coefficients are likely to be biased 

by up to several tenths of a kelvin”. An extra step is thus required for empirical adjustment of 

the offset in our ERA40 derived algorithms, based on additional accurate and representative 

validation data. It is worth noting here that such an offset correction could also include “the 

adjustment to the bulk framework”, if appropriate information is available (Merchant and 

LeBorgne, 2004). Regardless of the bias/offset issue, the RT-based solutions provide standard 

deviation much better that the global ones, numerically very close to the data-fit reference 

values. The same level of scatter is attained with either seasonal or tcwv-dependent 

coefficients. Data paucity notwithstanding, the scatter exhibits seasonal variability (not listed). 

The Adriatic_seasonal winter solution provides the lowest (std=0.26) and the Adriatic_ 

water_vapor summer solution the highest (std=0.70) value. 

 

Concluding remarks 

 

The aim of this work has been exploration of the regional atmospheric influence on 

satellite estimation of the Adriatic SST. To that end an ECMWF ERA-40 reanalysis subset 
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was employed to provide the temperature and humidity profiles as well as surface data, 

whereas the RTTOV 8.7 radiative transfer model was used to calculate the top of atmosphere 

brightness temperatures in the AVHRR channels. Ten ERA-40 grid points over the Adriatic 

Sea were used in the analysis, providing 29590 clear-sky (00 UTC and 12 UTC) profiles, 

employed in the RT model to calculate respective BTs. The BTs were subsequently fit to the 

same SST series in order to derive regression coefficients that capture local atmospheric 

influence.  

Climatological analysis of the ERA-40 temperature and specific humidity profiles 

demonstrated distinct seasonal variability in the ECMWF-modelled atmosphere over the 

Adriatic. Derived Adriatic average summer vertical temperature distribution proved to be 

similar to its mid-latitude counterpart, whereas the average ECMWF winter profile exhibited 

almost 10 K higher values in the lower troposphere. The average Adriatic summer humidity 

profile has revealed values consistently higher than the mid-latitude profile, while the winter 

Adriatic and mid-latitude profiles have shown much closer agreement, except above the 900 

hPa level. Seasonality noted in temperature and specific humidity profiles also evinced in 

atmospheric transmittance, thermal channels temperature deficit, and derived parameters like 

ρ and γ. 

To explore the influence of the ERA-40 inferred atmospheric variability on the SST 

estimates ten coefficient sets were generated using multivariate analysis. Derived Adriatic 

coefficients exhibited smaller noise amplification than the global ones, also displaying 

consistent seasonal differences. The SST estimates based on the derived coefficients were 

compared to an eleven-month long series of SST measurements taken at a station in the 

northern Adriatic Sea. A least-square fit to this data set was also done, for reference, 

predictably providing the lowest bias and the smallest scatter. The application of global 

coefficients produced the largest scatter. Recognition of the local atmospheric conditions 
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primarily reduced the noise amplification of the instrumental uncertainties in the channel 

brightness temperatures and consequently lowered the scatter (improved precision) of the SST 

estimates, as evidenced by three different metrics (standard deviation, mean absolute 

difference, and root mean square difference). The ERA40-derived solutions generated bias 

known to appear in RTM-coefficient solutions, requiring further adjustment. Almost identical 

SST residual obtained using seasonally adjusted “classical” split-window coefficients and by 

explicitly accommodating water vapour dependence strengthens the credibility of regional 

coefficients. It further reinforces the notion that the over-the-Adriatic atmosphere may exhibit 

variability which globally adjusted correction can not fully accommodate.  

Although at least one more step (offset adjustment) is needed before obtained 

coefficients that can be considered as replacement of the operational ones, they are already 

demonstrating the impact that acknowledging local over-the-Adriatic atmospheric conditions 

may have on the SST estimates. We believe that the reported results, although focused on the 

Adriatic Sea are also relevant for other seas at similar latitudes. They warrant further efforts 

aimed at deriving the necessary offset adjustment, as well as improving understanding of 

regional atmospheric influence on the remotely sensed SST. In those efforts one should bear 

in mind previous findings that the use of more channels (e.g. Deschamps and Phulpin, 1980) 

or more atmospheric information (e.g. Schluessel et al, 1987) both have the potential to 

improve the SST estimates, bat also acknowledging more general limitations (Merchant et al, 

2006). 
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Table 1. Seasonal and geographic distribution of clear-sky ERA-40 profiles included in the 

analysis.  

 

Adriatic North Middle South Whole 

   Day Night   Day Night   Day Night   Day Night Total 

 Q1     273   358    509   449    925   960   1707  1767  3474 

 Q2     470   824    859  1258   1243  2257   2572  4339  6911 

 Q3    1109  1708   2041  2822   3231  5088   6381  9618 15999 

 Q4     205   196    414   427    974   990   1593  1613  3206 

ALL    2057  3086   3823  4956   6373  9295  12253 17337 29590 
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 Table 2 Seasonal distribution of average temperature (T) and specific humidity (q) in the 

upper (U) and lower (L) atmosphere. Temperatures are in Kelvins, specific humidities in 

kg/kg. Also listed are values for the mid-latitude winter, mid-latitude summer and US 

Standard atmospheres.  

 

 TU TL qU qL 

Q1 Winter 240.760 279.409 0.0004 0.0028 

Q2 Spring  246.516 290.103 0.0009 0.0059 

Q3 Summer 250.143 294.817 0.0011 0.0077 

Q4 Autumn 244.076 284.184 0.0006 0.0045 

Annual 247.537 290.755 0.0009 0.0064 

     

Mid Lat Winter 239.353 270.202 0.0005 0.0024 

Mid Lat Summer 251.268 291.586 0.0015 0.0098 

US standard 243.464 284.539 0.0008 0.0042 
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Table 3 Seasonal and geographical variability of channel temperature deficit, ρ parameter and 

γ parameter values derived for the AVHRR sensor on NOAA16 platform. 

 Channel Temperature Deficit 

 T4- Ts T5- Ts 

 Day Night Day Night 

Winter -1.267 -1.245 -1.920 -1.881 

Spring -1.510 -1.610 -2.306 -2.453 

Summer -2.028 -2.103 -3.098 -3.202 

Autumn -1.694 -1.719 -2.581 -2.614 

Average -1.770 -1.857 -2.700 -2.825 

 

 ρ 

Adriatic North Middle South Whole 

 Day Night Day Night Day Night Day Night 

Winter 0.951 0.947 0.948 0.944 0.948 0.945 0.948 0.945 

Spring 0.905 0.891 0.900 0.889 0.898 0.886 0.900 0.888 

Summer 0.869 0.854 0.868 0.857 0.870 0.858 0.869 0.857 

Autumn 0.929 0.918 0.923 0.914 0.920 0.915 0.922 0.915 

Average         

 

 

 γ 

Adriatic North Middle South Whole 

 Day Night Day Night Day Night Day Night 

Winter 1.630 1.646 1.638 1.664 1.646 1.660 1.641 1.658 

Spring 1.912 2.022 1.951 2.033 1.965 2.053 1.951 2.041 

Summer 2.179 2.292 2.188 2.270 2.169 2.261 2.177 2.269 

Autumn 1.758 1.838 1.802 1.858 1.821 1.851 1.808 1.851 

Average 1.870 1.950 1.895 1.956 1.900 1.956 1.894 1.955 
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Table 4. The split-window SST algorithm coefficients (equation 7) calculated acknowledging 

over-the-Adriatic conditions derived from the ERA-40 data. A constant value of 273.15 is 

subtracted from all a0 values. Also listed are the NAF (equation 8), and global coefficient 

values. NAF is calculated for nadir view. 

 

 a0 a1 a2 NAF a3 a4 10
-3

 a5 10
-5

 
 Daytime        

Global 0.91400 0.99975 2.39418 4.15342 0.73235   

Adriatic winter  2.09690 1.00875 1.33388 2.69578 0.72375   

Adriatic spring  -0.91123 0.99724 1.74531 3.25079 0.58759   

Adriatic summer  -4.83591 0.98349 1.91473 3.47360 0.54306   

Adriatic autumn  4.52428 1.01643 1.64507 3.12887 0.63682   

Adriatic w. vap -0.65025 1.00248 1.87548 3.43513 0.57931 4.67300 5.20000 

        

Nighttime        

Global -0.29200 0.99439 2.55546 4.37399 0.71418   

Adriatic winter  2.77334 1.01097 1.41862 2.81344 0.69785   

Adriatic spring  -1.89957 0.99344 1.89297 3.45177 0.53830   

Adriatic summer  -7.77068 0.97323 1.99571 3.57735 0.50638   

Adriatic autumn  4.39675 1.01589 1.69325 3.19477 0.63096   

Adriatic w. vap -0.45005 0.99843 1.99292 3.59443 0.54402 5.64600 6.70000 
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Table 5 Statistical measures (in 
o
C) for the SST residuals plotted in Figure 6a and 6b. Bias, 

standard deviation (std), mean absolute difference (mad), and root mean square difference 

(rmsd) values are listed, separately for daytime and nighttime. 

 

Coefficient set 
Night Day 

bias std mad rmsd bias std mad rmsd 

Fit to Ivana data 0.00 0.33 0.28 0.33 0.00 0.66 0.45 0.60 

Global -0.04 0.55 0.43 0.55 0.46 0.73 0.68 0.86 

Adriatic_seasonal 0.16 0.36 0.32 0.40 0.40 0.66 0.59 0.77 

Adriatic_water_vapor 0.20 0.36 0.33 0.41 0.40 0.67 0.59 0.78 

water_vapor - seasonal 0.04 0.01 0.01 0.01 0.01 0.09 0.00 0.01 
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Figure captions 

Figure 1. Location of the ERA-40 grid-points over the Adriatic Sea.  Also marked are the 

locations of the INAgip Ivana-A station, the cities of Rovinj and Korčula, as well as the 

northern, middle and southern Adriatic boundaries. 

 

Figure 2. a)- d) Comparison of the ERA-40 derived mean vertical profile of temperature for 

the entire Adriatic Sea (thin line) with the mean vertical profiles for different seasons (Q1-Q4, 

thick line); e) ERA-40 seasonal with mid-latitude winter and mid-latitude summer profiles, 

and f) ERA-40 derived mean with US standard atmosphere mean profile, at the RTTOV 

model pressure levels.; g) Annual cycle of 2m ERA-40 derived temperature with respective 

data for two coastal stations and the 1981-1995 period. Horizontal bars have the length of 

double standard deviation and are centred at the mean. 

 

Figure 3. a)- d) Comparison of the ERA-40 derived mean vertical profile of specific humidity 

for the entire Adriatic Sea (thin line) with the mean vertical profiles for different seasons (Q1-

Q4, thick line); e) ERA-40 seasonal with mid-latitude winter and mid-latitude summer 

profiles, and f) ERA-40 derived mean with US standard atmosphere mean profile, at the 

RTTOV model pressure levels. Horizontal bars have the length of double standard deviation 

and are centred at the mean. 

 

 Figure 4.  The annual cycle of monthly anomaly of a) specific humidity anomaly in the upper 

atmosphere (above 850 hPa); b) temperature anomaly of the lower troposphere; c) total 
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column water vapour; d) temperature difference at the air-sea interface; and e) number of data 

points. Separate daytime and nighttime curves are plotted. 

 

Figure 5.  Monthly scatter plots of ERA40 total column water vapour against thermal 

channels temperature difference derived from RTM calculations. All Adriatic points are 

combined. 

 

Figure 6. Nighttime and daytime sea surface temperature residuals (satellite-in situ) calculated 

with a) fit to Ivana-A; b) global; c) Adriatic seasonal; and d) Adriatic water vapour dependent 

set of coefficients. e) Difference between d) and c) residual. 
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