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Abstract

Quantifying effects of toxicant exposure on metabolic processes is crucial to predicting microbial growth patterns in
different environments. Mechanistic models, such as those based on Dynamic Energy Budget (DEB) theory, can link
physiological processes to microbial growth. Here we expand the DEB framework to include explicit consideration of the
role of reactive oxygen species (ROS). Extensions considered are: (i) additional terms in the equation for the ‘‘hazard rate’’
that quantifies mortality risk; (ii) a variable representing environmental degradation; (iii) a mechanistic description of toxic
effects linked to increase in ROS production and aging acceleration, and to non-competitive inhibition of transport
channels; (iv) a new representation of the ‘‘lag time’’ based on energy required for acclimation. We estimate model
parameters using calibrated Pseudomonas aeruginosa optical density growth data for seven levels of cadmium exposure.
The model reproduces growth patterns for all treatments with a single common parameter set, and bacterial growth for
treatments of up to 150 mg(Cd)/L can be predicted reasonably well using parameters estimated from cadmium treatments
of 20 mg(Cd)/L and lower. Our approach is an important step towards connecting levels of biological organization in
ecotoxicology. The presented model reveals possible connections between processes that are not obvious from purely
empirical considerations, enables validation and hypothesis testing by creating testable predictions, and identifies research
required to further develop the theory.
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Introduction

Investigations of the dependence of bacterial growth curves on

exposure are often used to consider the ecological importance of

toxicants. Although such dependence is an aggregate, population-

level measure of all toxic effects, it is a consequence of processes at

the cellular or molecular levels.

Toxicants may affect the onset, rate, and extent of bacterial

growth curves by directly increasing mortality, impacting nutrient

uptake by affecting cross-membrane transport ([1–3]), and by

disrupting proteins and impeding enzyme function ([4]). In

addition, exposure can lead to an increase in energy required

for cellular maintenance processes such as protein turnover and

defense protein production ([2,5–7]), maintaining ion gradients

across cell membranes ([3,8]), and may affect costs of cell growth

in other ways ([7,9]). Cells can incur additional energy expenses

for expelling the toxicant ([10,11]) and mitigating the effects of

toxicant action (DNA/RNA repair, protein repair) ([2,12–15]).

Distinguishing among these possibilities using population-level

data requires models relating biomolecular-level processes to

population dynamics.

Dynamic Energy Budget (DEB) theory provides a comprehen-

sive framework for connecting molecular-level processes to

individual physiology and population growth of all organisms

([16]), and has been suggested as a way to connect multiple levels

of biological organization necessary for a comprehensive ecotox-

icological theory ([17]). DEB models describe energy and material

acquisition and accumulation, and consequential commitment of

energy to maintenance, growth, and cell division. DEB theory also

includes a description of the aging process: excess reactive oxygen

species (ROS) cause irreparable damage (e.g. to the cellular DNA).

The damaged parts of the cells are called ‘‘damage-inducing

compounds’’: they cause the cell to produce ‘incorrect’ proteins

which, in turn, accumulate as damage to the cell and increase the

probability of death. To better link the aging process to

population-level processes, the DEB theory scales damage-

inducing compounds and damage, interpreting the scaled

quantities as ‘‘aging acceleration’’ and ‘‘hazard’’, respectively.

Toxic effects are accounted for by directly modifying energy

fluxes, material fluxes, and/or the hazard rate ([7,18,19]).

In this paper, we develop a model to describe data on dissolved

cadmium toxicity effects in Pseudomonas aeruginosa growth ([20]).

These data are particularly interesting because they include those

later phases of population growth that are required to estimate

parameters pertinent to the hazard rates. Our model accounts for

ROS production, identified by many authors as the primary cause

of negative effects of various types of chemical toxicity ([21]),

including cadmium toxicity ([2,22]). The new work starts from a
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‘‘standard’’ DEB model elucidated by Kooijman (2010 [16] - see

ch. 6), and Sousa et al. (2008 [23]). Describing the population size

trajectory in the absence of toxicants required explicit represen-

tation of environmental degradation associated with the bacterial

metabolism. Modeling toxic effects involved considering acclima-

tion to the toxic metal, effects of toxicant on assimilation, and

toxicant-induced production of ROS leading to increase in

mortality (section Model Description). We first present model

simulations of the control and exposure treatments, and compare

the maximum simulated growth rates to those calculated from the

calibrated data using methods described in section Methods. Next,

we test the ability of the model to predict the bacterial growth

process for treatments not used in parameter estimation. Finally,

we compare predicted aging acceleration to ROS measurements

from Priester et al. (2009 [20]). Additional details of the model,

additional results, and possible extensions of the model can be

found in Information S1. We discuss the results and their

implications, and suggest types of data that would greatly improve

our ability to understand and model cellular processes.

Model Description
We started with the ‘‘standard’’ DEB model for bacterial

production described by Hanegraaf and Muller (2001 [24]).

Bacteria are assumed to be V1-morphs, i.e. they can be

approximated with a rod-like shape with area proportional to its

volume. With this simplification, the same equations describe the

dynamics of individual cell, and population growth without

mortality [16]. Energy flows in our model are illustrated in

Figure 1, the state variables and equations in Table 1, and

parameters and their fitted values in Table 2. Further details on

the equations are in Information S1.

In the absence of a toxicant, a ‘‘standard’’ DEB model requires

four state variables to describe a bacterial cell: structural volume,

energy reserve density, density of damage inducing compounds, and

hazard rate, a measure of mortality risk. Substrate concentration in

the supernatant is the only state variable characterizing the

environment. In the subsequent exposition, we distinguish between

cellular and supernatant quantities by using the term ‘‘concentra-

tion’’ for mass and volume per volume of supernatant, and

‘‘density’’ for cellular quantities per unit of structural volume unless

otherwise noted. Following standard practice in the DEB literature

(e.g. [16]), we reserve the notation [..] for densities.

The standard model can easily be extended to include

bioaccumulation of toxicants ([16], chapter 6). We further extend

the standard model to include important features of bacterial

physiology and the environment, especially relevant to toxic effects

and later stages of growth. Extensions of the standard model

considered here are: (i) additional terms in the equation for the

hazard rate; (ii) a variable representing environmental degrada-

tion; (iii) mechanistic description of toxic effects linked to increase

in ROS production and aging acceleration, and to non-

competitive inhibition of transport channels; (iv) implementation

of lag time using a concept of energy required for acclimation.

Bioaccumulation
Our bioaccumulation model is similar to that used in previous

work ([16], Section 6.3). Cadmium salts dissolve and release Cd(II)

ions which may form other cadmium complexes, all assumed to

exert a collective effect on cells. We use the total cadmium

concentration, COUT , as the measure of environmental dissolved

cadmium concentration, and the total cadmium density, ½CIN �, as

the measure of bioaccumulated cadmium mass per unit of

bacterial structural volume. For simplicity, and consistent with

the experimental data for which the modeling herein is compared,

COUT is assumed to be constant.

Diffusion or active transport, proportional to the surface

(membrane) area of the bacteria and the outside concentration

(COUT ) with a constant of proportionality kI
C , increases cadmium

density (½CIN �). Furthermore, we assume that the toxicant is

eliminated from the cell by virtue of efflux pumps, or complexed

and thus becoming unavailable, with a rate constant kO
C . The rate

of change of cellular Cd concentration is then

d½CIN �
dt

~kI
CCOUT{kO

C ½CIN �{r½CIN �, ð1Þ

where the last term on the right-hand side is dilution by growth

proportional to the bacterial production rate, r (Table 1; for details

see Information S1, section Model of bacterial growth dynamics).

Aging acceleration
DEB theory recognizes free radicals and reactive oxygen species

(ROS) as the main cause of production of damage-inducing

Figure 1. Outline of the model. Bacteria assimilate substrate into energy reserves, which are utilized to fuel growth (linked to increase in cell
concentration), maintenance and acclimation. Products related to respiration degrade the environment, reducing the ability of bacteria to utilize
energy reserves. Both toxicants and degradation of the supernatant inhibit assimilation of the substrate, and absorbed toxicants bioaccumulate in
bacterial cells. Toxicants in the cell, as well as the cell’s own metabolism, increase aging acceleration (by creating damage-inducing compounds), thus
increasing the hazard rate, and mortality.
doi:10.1371/journal.pone.0026955.g001
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compounds (e.g. DNA damage) and, consequently, aging and cell

damage ([16], pp. 209–214). Aging acceleration is a scaled

measure of accumulated level of damage-inducing compounds.

Just as the accumulated damage-inducing compounds determine

the rate of increase of cellular damage, aging acceleration

determines the rate of increase of the hazard rate. The

acceleration can be interpreted as increasing due to two

components: a multiplicative component corresponding to Gom-

pertz, and an additive component corresponding to Weibull

mortality (see [25] and section 6.1.1. in [16] for a detailed

discussion on the differences). Both components are assumed to be

proportional to the catabolic flux of the organism; the Gompertz

term is also proportional to the already reached aging acceleration.

Dilution by growth is the only mechanism that reduces the

average aging acceleration reached as the result of the metabolism

and cadmium exposure (see Dilution by growth terms section of

Information S1 for details on how the dilution is accounted for).

Starting with equation (6.2) in Kooijman (2010 [16]), and

modifying catabolic flux formulation to account for the bacterial

shape, the rate of change of aging acceleration, q, is

dq

dt
~e sqVqzha

� �
v{rð Þ{rq, ð2Þ

where sq is a multiplicative stress coefficient, and ha is the aging

(Weibull) acceleration as defined in Kooijman (2010 [16],

pp. 211). The stress coefficient is a constant accounting for the

ability of the culture to dilute by growth in a given environment,

and is proportional to the Gompertz stress coefficient (denoted sG

in Kooijman (2010 [16])).

We extend the formulation to include effects of exposure

assuming that the toxicant produces ROS and, therefore, increases

aging acceleration in proportion kI
qC to bioaccumulated toxicant

concentration (½CIN �). In principle, ROS could be only one of the

ways by which toxicants affect aging acceleration, but the linear

term describes other mechanisms as well. For example, cadmium

increases aging acceleration by inhibiting DNA repair ([12,15]),

but the effect can be described by the same term. With the

additional term, the rate of change of q becomes

dq

dt
~e sqVqzha

� �
v{rð ÞzkI

qC ½CIN �{rq: ð3Þ

Hazard
The hazard rate, h, is the probability per unit time of dying at

time t:

P(dying between t and tzdt)~h(t)dt: ð4Þ

According to DEB theory ([16]), the hazard rate changes in

response to the aging acceleration:

dh

dt
~q{rh: ð5Þ

The second term on the right-hand side of (5) represents dilution

by growth (for details, see Information S1, section Dilution by

growth terms). Unlike multicellular organisms, which reduce the

proportion of damaged cells in the whole organism as the

organism grows, unicellular organisms cannot dilute hazard by

growth (see [16], section 6.1.2). We, however, choose to include

the dilution by growth term because we use the DEB model for a

population of unicellular organisms which is, in its entirety,

much more similar to a multicellular than an unicellular organism.

Table 1. Summary of state variables, units, and dynamic equations.

State or helper variable Units Symbol Dynamics

substrate concentration C{mol

L

S dS

dt
~{v’fV

scaled energy density n.d. e de

dt
~v’(f {e)

hazard rate h{1 h dh

dt
~q{rh

scaled functional response n.d.
f ~

S

SzKS

bacterial production rate h{1

r~
v’e{mg

ezg

� �
z

toxicant cellular density mg

C{mol
½CIN � d½CIN �

dt
~kI

C COUT {kO
C ½CIN �{r½CIN �

acclimation energy density n.d. a da

dt
~r 1{

a

aM

� �
z

cell structure conc. C{mol

L

V dV

dt
~(r

a

aM

{h)V

aging acceleration h{2 q dq

dt
~e sGVqzhað Þ v’{rð ÞzkI

qC ½CIN �{rq

environmental degradation n.d. E dE
dt

~vE(rzvmm)V

conductance modified by (6) and (8) h{1

v’~ve{cE E 1z
COUT

KV

� �{1

Bacterial production rate and scaled functional response (r and f ) are not state variables, but have been defined separately for brevity. Non-dimensional variables have
been labeled ‘n.d.’. Subscript ‘+’ signifies that only positive values of the expression are considered, with the expression set to zero if its value turns out to be negative.
doi:10.1371/journal.pone.0026955.t001
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Toxic effects on mortality in previous DEB models are

accounted for by adding to h(t) a term proportional to the

difference between ½CIN � and a no-effect concentration ([26]). We,

however, account for toxic effects in a different way. Experiments

show that cell death rate correlates with ROS density, even when

comparing different mechanisms of ROS production ([27]). This

implies that any source of ROS contributes to increase in aging

acceleration and, therefore, the hazard rate, and the mortality. We

take the implication further by assuming that, rather than affecting

cell death directly, all contributions of toxicants (e.g. dissolved

cadmium) to cell death come from the ROS produced by the

toxicants, and the resulting increase in aging acceleration.

Therefore, any effect the toxicant may have on hazard is

accounted for through increase in aging acceleration, and

equation (5) captures the effect of toxicants on mortality.

Environmental degradation
In addition to depleting nutrients, bacteria may degrade their

environment in other ways. Given the large cell densities reached in

bacterial cultures, the negative effects have the potential to be

significant. Yeast, for example, degrade their environment by

producing alcohol, and levels of dioxygen in post-exponential growth

in plate cultures of aerobic bacteria have shown to be immeasurably

small ([28]). In conditions of this experiment, dioxygen limitation is a

more likely cause of environmental degradation than a toxic

intermediate because CO2 is the final product of aerobic

mineralization of the provided organic carbon by P. aeruginosa.

Modeling the exact mechanism of environmental degradation is,

however, beyond the scope of this paper. We therefore account for

effects of environmental degradation in a general way.

There are a number of ways environmental degradation can

affect cellular processes. Regardless of the actual mechanism, we

suggest that respiration is a good surrogate measure of

environmental degradation. The conjecture is obvious for the

two examples given above (alcohol production and dioxygen

limitation), even though aeration through the air/supernatant

interface has not been accounted for. In microplates, as evidenced

by dioxygen concentrations presented in Kocincova et al. (2008

[28]), aeration seems not to be significant; in other experimental

setups it might be and needs to be taken into the account if lack of

oxygen is the cause of environmental degradation.

One of the simplest ways to model the decline in organism’s

ability to acquire and utilize energy due to environmental

degradation is to exponentially reduce the parameter character-

izing energy conductance (v):

v’~ve{cEE, ð6Þ

where E is a measure of environmental degradation (see below) and

cE characterizes the strength of the metabolisms’ response to

environmental degradation. The exponential term in (6), e{cEE, is

a measure of environmental quality compared to the initial

quality.

When a metabolite is responsible for the degradation, we

suggest that respiration (which in DEB theory is a weighted sum of

terms proportional to growth and maintenance rates - see

Kooijman, (2010 [16], ch. 4.4)) is a better measure of metabolite

production than the total energy utilization (catabolic flux) because

the latter includes materials invested in growth which - because

they are utilized elsewhere - cannot contribute to the production of

metabolites or oxygen consumption. We therefore introduce a

measure of environmental degradation, E, whose rate of increase is

proportional to a weighted sum of growth and maintenance rates:

dE
dt

~vE rzvmmð ÞV , ð7Þ

where vE and vm are environmental degradation and maintenance

respiration coefficients. Since we do not measure environmental

degradation, we can scale E by cE without a loss of generality.

Hence, cE can be set to unity.

Effect of dissolved cadmium on assimilation
Cadmium ions in the supernatant can reduce substrate uptake

and, therefore, assimilation by affecting cation cross-membrane

transport sites ([29,30]). The magnitude of the influence depends

on the concentration of cadmium ions in the supernatant. We

assume the magnitude can be accounted for using standard non-

competitive inhibition affecting assimilation and, therefore, energy

conductance (v) - see Muller et al. (2010 [19]). Reduction of

conductance v to v’ due to supernatant cadmium ion concentra-

tion COUT is then described by the formula:

v’~v 1z
COUT

KV

� �{1

, ð8Þ

where KV is the inhibition constant. Effects on v described by

equations (6) and (8) are multiplicative (see Table 1). We

considered the possibility of effects on other physiological rates,

Table 2. Parameters, units, and fitted values.

ParameterUnits Std. value

Energy assimilation and utilization parameters

KS C{mol

L

half-saturation constant 10{7l1

v h{1 energy conductance 0:84768

m h{1 maintenance rate 0:30911

g n.d. investment ratio 3:3698:10{3

Parameters affecting increase and effects of aging acceleration

sq L

C{mol

multiplicative stress coeff. 9:6259l{1
2

ha h{2 Weibull aging acceleration 1:4192:10{3

kI
qC

C{mol

mg h

toxicity 0:21352l2

Toxicological parameters

kI
C

L

h C{mol

Cadmium influx coeff. 8:6:10{6l{1
2

kO
C h{1 Cadmium efflux coeff. 0:17251

KV
mg

L
Noncompetitive inhibition coeff. 154:82

aM n.d. Required acclimation energy 1:6703

Other parameters

a1 , a2 n.d. calibration coefficients

vE 1

C{mol

environmental degradation coeff.
0:23566

1

l2

vm n.d. maintenance respiratory coefficient 0:054703

cE n.d. environmental degradation effect coeff. 1

Concentration denotes an amount of per volume of substrate, density denotes
an amount per structural volume of bacteria, and n.d. stands for ‘non-
dimensional’. Coefficient l1 scales initial substrate C-mol concentration to unity,
and l2 structural cell C-mol to calibrated optical density.
doi:10.1371/journal.pone.0026955.t002
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but did not include them in the model. See Information S1 for

additional discussion.

Acclimation to cadmium exposure
When exposed to a new environment, bacteria require some

time to acclimate before starting to grow at a maximal rate; when

retardation in growth is significant, it is referred to as the lag time.

Some authors suggest that the lag time may be due to diversion of

energy from bacterial growth to changes in structure and function.

In case of cadmium exposure, this could entail cadmium efflux

pumps and damage repair machinery; for example, Gibbons et al.

(2011 [31]) demonstrate the effects of energetic cost of cadmium

efflux machinery on bacterial yield.

Lag time has been previously modeled as a consequence of work

needed for overcoming a hurdle ([32]), suppression of division

until cells reach an environment-dependent size ([33]), or an

empirically derived function of previous growth and environmen-

tal states ([34]).

DEB models are especially well suited to quantify acclimation

dynamics because they quantify energy flux available to

acclimation as a function of current environmental conditions,

growth status, and energy availability (e.g. [35]). Once the

available energy is known, the deficit of energy committed to

growth and, consequently, retardation in growth can be estimated.

We start by assuming that, initially, the whole available energy

flux (equal to the bacterial production rate, r) is diverted to

acclimation. When partially acclimated cells divide, their daughter

cells are assumed to be acclimated to the same degree. To ensure a

smooth transition between acclimation and exponential growth

phases, the diverted energy flux needs to decrease with the level of

acclimation. We assume that this decrease is linear. Hence, if aM is

the (non-dimensional) energy density required for acclimation, and a
the corresponding cumulative energy density invested in acclimation

at any given time, the rate of change of acclimation energy density is:

da

dt
~r 1{

a

aM

� �
z

, ð9Þ

where the subscript ‘+’ denotes that only positive values should be

considered, and the expression evaluated as zero otherwise (see

Information S1, section Acclimation, for derivation).

Results

Control
A model fit to control treatment (Figure 2) allows an overview of

the model outputs. There are no surprises: the model fits the data

extremely well (upper left plot, solid line). Scaled energy reserve

density increases rapidly from the assumed initial value of 0.5 to 1

(bottom row, left panel), and then decreases because growth and

maintenance utilize reserves as substrate disappears six hours into

the experiment (middle row, left panel). Since exponential growth

is possible only while energy reserves are constant, energy reserve

density dynamics suggests true exponential growth is only

occurring during hours 3–5 of the control treatment. Environ-

mental degradation (top right panel) reduces environmental

quality and, consequently, energy conductance only slightly

during the first five hours, but picks up rapidly thereafter; at

about 7.5 hours, the degradation is strong enough to reduce

energy conductance by 50%. In line with expectations, aging

acceleration increases rapidly after 10 hours when growth slows

down (middle row, right panel), and so does the hazard rate

(lower right panel).

Examination of the standard and expanded model fits (Figure 2,

upper left panel, dotted line) using semi-logarithmic plots (not

presented) shows that the fit of the standard DEB model

underestimates the exponential growth rate, overestimates the

rate at which cells stop growing (growth cessation), and

underestimates the final bacterial cell concentration (bacterial

yield). Including environmental degradation in the model enables

a good fit to data primarily by slowing down the cessation of

growth (Figure 2, upper left panel, solid line).

Toxic response fit
Concurrent fit of all treatments shows a satisfactory fit to the

observations (Figure 3). The model underestimates yield for low

toxicant concentrations (5 and 10 mg/L), but captures the most

important features of higher concentration treatments. Even

though the required acclimation energy density is the same for

all treatments, time until near-exponential growth increases with

exposure because it takes a longer time for bacteria to reach

maximum energy density (Figure 4). The fit for pre-exponential

phase (inset in Figure 3) is reasonable, but growth for lower

exposures is slightly underestimated.

Growth rate and energy density
Predictably, maximum exponential growth rate (Figure 4, upper

left panel, solid line) decreases with exposure, roughly following

the bi-phasic pattern observed by Priester et al. (2009 [20]) (same

panel, dotted line). Exposure increases the time at which growth

rate (upper right panel) and energy reserve density (lower left

panel) reach the maximum. Time to maximum growth rate

increases with exposure slightly slower than lag time (dotted line,

upper right panel). The distribution of growth rates as a function

of exposure (lower right panel) shows slower changes in growth

rate with increased exposure.

Aging acceleration dynamics
ROS levels in cultures can increase or decrease from the initial

level (e.g. Figure 6 in [36]), depending on whether the ROS

production rate is higher or lower than the dilution by growth. In

some cases (e.g. Figure 6 in the control in [36]), the cells may be

able to balance the ROS levels so that there is no net increase

throughout the experiment. When the cells are not able to balance

ROS levels due to environmental conditions (e.g. additional ROS

production due to toxicants), the levels start to rapidly increase as

the population growth rate decreases (e.g. phenazine-1-carboxylic

acid treatments in Figure 6 in [36]). Additional growth cycles

could again dilute ROS levels, but in a batch culture ROS are

expected to follow patterns similar to those observed by Denning

et al. (2003 [36]). Since the dynamics of aging acceleration in our

model highly reflects ROS dynamics, it is also to be expected that

the aging acceleration follows the same qualitative patterns as

ROS.

Aging acceleration indeed follows the expected general pattern

(Figure 5, top left panel). The control treatment retains a very low

aging acceleration throughout the experiment, while those of

cadmium treatments increase during the initial acclimation phase,

decrease (due to dilution by growth) when the population starts

growing, and increase again as dissolved cadmium bioaccumulates

(and ROS production rapidly increases). Cells exposed to lower

concentrations are able to commit more energy per unit time to

acclimation and, therefore, acclimate faster (upper right panel,

Figure 5). In general, aging acceleration increases with exposure

concentration (lower left panel, Figure 5). The lower right panel

(Figure 5) compares simulated aging acceleration and ROS

Modeling Bacterial Growth Under Cadmium Exposure
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measured at 15 hours by Priester et al. (2009 [20]). To facilitate

comparison, in both cases we have assumed that the value for

40 mg Cd/L represents the detection limit, and scaled both sets of

data by the maximum value.

Predictive ability
One of the more important reasons for developing mechanistic

models is to extrapolate to behaviors in conditions beyond the

range used for parameter estimation. In this section, we test the

ability of our model to predict the growth of bacteria exposed to

levels of cadmium not used in parameter estimation.

We start by fitting the model using just the control and two low-

concentration treatments, then assess how well the model predicts

other treatments. One caveat is that the fitting procedure requires

initial guesses of parameter values; if the guesses are too far off the

mark, the fitting procedure cannot converge. Using the converged

parameter values as initial guesses, however, defeats the purpose of

the exercise. To ameliorate this problem, we changed free toxicology

parameters (kI
qC , kI

C , kO
C and KV ) by a random percentage as large as

50% from the values used in Figure 6. Next, we fitted the parameters

to a subset of treatments using the changed values as initial guesses.

We chose to keep the required acclimation energy constant because

having to estimate five toxicological parameters would require a

larger number of curves (but see Information S1).

Figure 6 contains an example where we fitted the parameters to

10 mg/L and 20 mg/L treatments. The prediction is satisfactory

given that the highest predicted treatment is more than seven

times higher than the highest treatment used to estimate

parameters. Additional predictions are available in Figure S3

and Information S1.

Discussion

The work reported in this paper extends the DEB modeling

framework to include a mechanistic description of lag time, and

account for toxic effects through the effects of toxicants on aging

acceleration (scaled damage-inducing compound density). It also

includes a novel connection between the aging acceleration and

physiological rates that feature in DEB models. Our primary aim

was to find a minimal mechanistic representation consistent with

the results of one set of experiments ([20]), and to determine some

of the model’s predictive capabilities. We now discuss the key

Figure 2. Simulating the control. Cell concentration and all state variables of the model except acclimation and bioaccumulation (not applicable
for control). Upper left corner: data (circles), best fit of the standard model (dotted line) and best fit of the model extended by including
environmental degradation (solid line). See text for discussion.
doi:10.1371/journal.pone.0026955.g002
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Figure 4. Overview of population dynamics. Top panels show dependence of maximum growth rate (left) and time to maximum growth rate
(right) calculated from the model (solid line) and measured by Priester et al. (2009 [20]) (dotted line). Bottom left panel shows time to maximum
energy density as a function of exposure concentration. Bottom right panel shows growth rates for all treatments during the first 30 hours of the
experiment.
doi:10.1371/journal.pone.0026955.g004

Figure 3. Simulations of all treatments with a single parameter set. Best fit set of parameter values used (listed in Table 2). The inset is
showing the first 5 hours of the experiment.
doi:10.1371/journal.pone.0026955.g003
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Figure 6. Predicting high exposures. Exposures of 37.5, 75, 115, and 150 mg/L predicted using fits only of data on control and low exposures (10
and 20 mg/L). Data points marked with ‘x’: data used in fitting; ‘o’: data used for comparison only. Dashed line: fitted treatments (kI

qC~0:47647,
kI

C~3:22:10{6 , kO
C~0:11767, and KV ~151:8942). Solid line: predicted treatments.

doi:10.1371/journal.pone.0026955.g006

Figure 5. Dynamics of aging acceleration. Top: aging acceleration (left), and acclimation (right) for select (see legend) treatments. Bottom: aging
acceleration for all treatments at 12, 15, and 24 hours (left), and comparison between scaled measured ROS and predicted aging acceleration (right).
doi:10.1371/journal.pone.0026955.g005
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features and limitations of our model, note some practical points

concerning the design of future experiments, and consider the

wider implications of our work. While reading the discussion, the

reader should keep in mind that damage-inducing compounds as

defined in the DEB theory are the basic concept, while aging

acceleration is an interpretation which connects the DEB

formalism to population-level processes; the two concepts only

differ in scaling and are, therefore, mathematically equivalent.

Development of the model reported here was preceeded by

work on a much more complex model that, inter alia,

distinguished ‘‘active’’ and ‘‘inactive’’ cells, and implemented

toxic effects on additional physiological processes such as

maintenance, costs of growth, and cell lysis. We first created and

fitted a model based on one set of assumptions, then repeated the

process with a slightly different set of assumptions until we reached

a balance of model complexity and ability to capture main features

of the data. The final model reached in this iterative process has a

fair number of parameters, with which, if the model were wholly

empirical, it might have been possible to fit practically any set of

curves. However, the mechanistic nature of the model, and the

need to satisfy eight curves at the same time with a single

parameter set, severely limits the shape of the growth curves that

can be obtained (see discussion in section Methods, and possible

extensions of the model and alternative model assumptions in

sections ‘‘Differentiating between active and inactive cells’’, and

‘‘Effects of damage-inducing compounds’’ of Information S1).

This limitation enables exploration of alternative hypotheses: if a

particular growth curve cannot be obtained by the model, at least

one of the assumptions must be wrong.

Modeling environmental degradation emerged as a key

component of the model as this assumption was required to

describe the control treatment. A DEB model (Figure 2, upper left

panel, dotted line) that lacked this component could not explain

the slow cessation of growth observed in the control treatment,

while a model with environmental degradation could. Our

treatment of environmental degradation was of necessity phenom-

enological, but we note that the pattern of inhibition by

environmental degradation (Figure 2, top right panel) closely

matches dioxygen concentration in microplate wells measured by

Kocincova et al. (2008 [28], Figure 8). Alternatives do, however,

exist; for example, we were also able to capture the slower

cessation of growth using an assumption that substrate is of

heterogeneous quality, and that the half-saturation constant

(handling time) increases for substrates of lower quality. Final

substrate levels resulting from these assumptions were, however,

implausibly high (more than 95% of the substrate could not be

utilized). Given the realistic environmental degradation profile,

and our reluctance to assert that bacteria cannot utilize more than

95% of the substrate, we adopted environmental degradation as

the key mechanism of slower-than-expected growth cessation.

Direct information regarding changes in the environment would

likely enhance the diagnostic and predictive power of future

models.

We discovered that the toxic effects on bacterial assimilation

and hazard rates were alone sufficient to explain effects of

exposure on population dynamics of P. aeruginosa observed by

Priester et al. (2009 [20]) (Figure 3). The sole direct effect of

dissolved cadmium was to affect aging acceleration (i.e. damage-

inducing compounds) through production of ROS, which

mediated all intracellular toxic effects (equations (1) and (3)). Of

course, damage-inducing compounds resulting from exposure

could also affect other energetic processes in the cell such as

increasing maintenance and decreasing growth efficiency (see [2]

and the Introduction), but it was not essential to consider these

mechanisms to fit the available data. We recognize that the

energetic implications of damage-inducing compounds are

ultimately related to biomolecular processes such as protein

turnover, efflux protein assembly, and cross-membrane gradient

maintenance. Information on these molecular processes could -

and should - influence the choice of processes to be included in

future models.

There are some practical messages from the modeling that are

relevant to future experimental studies that will be interpreted

using DEB models. One obvious example is the importance of

obtaining some measurements that allow calibration of data on

proxies (such as optical density) for the DEB variables. Less

obvious is the need for careful experimental design in studies

intended for comparison of intracellular quantities such as ROS

levels, for example the data shown in Figure 5. It is a common

practice to take samples for ROS measurements at the same time

in the experiment (e.g. 15 hours in Priester et al. (2009 [20])), and

then draw conclusions on effects of exposure on ROS production.

Simulations suggest that such a procedure may carry a number of

pitfalls. Specifically, because of dilution by growth effects, ROS

density depends on growth phase as well as the exposure and the

bioaccumulated toxicant (Figure 5). If the population grows faster

than cells accumulate ROS, ROS (and, possibly, damage-inducing

compound) density decreases. Consequently, comparing a lower

concentration treatment which entered a stationary phase with a

higher concentration treatment, which had a longer lag phase and

is growing exponentially, may give a false impression that the

higher concentration treatment suffers less impact of exposure.

Comparing ROS measurements in stationary phase carries similar

pitfalls: accumulated ROS depends on the duration of the

stationary phase and the rate of ROS creation. Similar

considerations should be taken into account when considering

bioaccumulation (Figure S2 and Information S1), where dilution

by growth effects reduce total cadmium in cells. The observed

bioaccumulation there suggests that most of the differences during

mid-exponential growth phase (hours 4–13) come from bioaccu-

mulation during the acclimation phase.

Investigating ROS dynamics during the acclimation phase

could provide insights into reasons behind the observed lag phase.

Our assumption that all treatments require the same acclimation

energy because they need to produce the same molecular

machinery may be wrong if cells can adjust the magnitude of

the response. For example, the lowest two concentration

treatments give maximum cell densities significantly lower than

the observed, partly because energy spent on acclimation reduced

total energy available for growth. If lower exposure concentrations

required less acclimation, the maximum cell density would have

been higher. This would also reduce the underestimates of pre-

exponential growth for low exposures.

Our framework can be expanded to link actual molecular

mechanisms of ROS creation and neutralization to the production

of damage-inducing compounds (and increases in aging acceler-

ation). Currently, we followed DEB theory in assuming a fairly

simplistic dynamics of ROS: each ROS produced gives a fixed

contribution to aging acceleration. We could instead differentiate

between reactive species and their effect on aging acceleration to

consider how different environmental conditions affect bacterial

growth: certain reactive species could produce more damage-

inducing compounds than others, while some reactive species

could cascade through multiple forms before being neutralized,

increasing aging acceleration with each transformation. Different

toxicants could produce different numbers and species of ROS.

The physical location of the ROS could also be taken into the

account: damage to the membrane affects different processes than
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damage to the DNA. Available data and knowledge, however,

simply do not allow such elaborations.

Clearly, additional data are necessary to tune the current model

into a reliable theoretical framework which would enable accurate

predictions. Ideally, we would want data sets that allow for

independent testing of model assumptions and reduce ambiguity

in parameter estimation. Data that would have greatly helped in

the present work include: media characterization throughout the

experiment to determine possible mechanisms of environmental

degradation, including a time series of dioxygen availability,

supernatant ROS, and pH; time-series of cellular ROS and/or

other reactive species for all or most treatments to help determine

initial delay mechanisms, validate assumptions on accumulation of

damage-inducing compounds, and help estimate parameters;

time-series of cellular and supernatant dissolved cadmium

concentrations to fine-tune the dynamics of bioaccumulation;

alternative methods of characterizing population size; any and all

physiological processes, such as respiration, that can be measured.

Despite the shortcomings, our model represents a step towards

understanding the connections between cellular-level processes

and population-level consequences, addressing many of the

limitations of traditional approaches to ecotoxicology identified

by Baas et al. (2010 [37]). We were able to make testable

predictions on bioaccumulation and time-dependent density of

damage-inducing compounds, thereby enabling validation and

hypothesis testing. This is important because toxic effects on

bacteria are investigated almost exclusively utilizing population-

level data. Furthermore, the model provided reasonably accurate

predictions for exposures to almost an order of magnitude higher

than those used in parameter estimation, demonstrating the

potential of this approach.

Materials and Methods

Details of the experimental setup are in Priester et al. (2009 [20])

and are only briefly summarized in Information S1. Here we

describe the theory and experimental setup we used to relate

observables to state variables, and methods used to simulate and fit

the model.

Relating observables to state variables
Relating state variables to data is a crucial step in any modeling

effort. State variables of substrate, energy reserves, and structural

volume are in C-mol concentration or density; data are not.

Substrate concentration is unknown, but we can assume all

treatments have the same initial substrate concentration. There-

fore, we can use a scaling factor, l1, to scale C-mol of substrate per

unit of volume of supernatant to l1C-mol per unit of structural

volume. Since l1 is unknown, we can without a loss of generality

pick such l1 that S~1 at the start of the experiment.

Relating data to structural cell volume is a two-step process. We

need to relate the optical density (OD) measurements non-linearly

related to cell concentration to a measure of cell concentration,

and then convert that measure into C-moles.

OD is often assumed to be proportional to cell density of active

bacterial cells (also assumed by Priester et al. (2009 [20])), but this

assumption only holds for a limited range of ODs. When OD is

higher than approximately 0.8–1, cell density increases much

faster than linearly with OD (see [38] for more details). Since data

from Priester et al. (2009 [20]) included optical densities well into

the nonlinear range (higher than 1.6), we calibrated the data. We

used data from a dilution experiment (see below) to fit the

parameters a1 and a2 of empirical relationship between calibrated

optical density, O’D, and measured optical density, OD:

OD
0~a1ODea2OD : ð10Þ

The calibrated optical density (OD
0) should be proportional to cell

concentration and any other measure thereof (C-mol concentra-

tion, DNA concentration etc.). We do not have data on the

relationship between calibrated OD and C-mol concentration, so

we account for it with an unknown scaling factor, l2 (structural

volume in C-mol/L = l2OD
0).

We conducted a dilution experiment to calibrate optical density.

Triplicate 7.5 mL cultures of P. aeruginosa in Luria-Bertani broth

were inoculated from frozen stock (see Information S1 for more

detail) and incubated at 30oC/200 rpm in the dark for 24 h. The

OD600 of each culture, as well as for diluted (1.676, 3.336, 46,

86, 106, 806, 1006, 8006, 10006, 80006, 100006, and

800006) samples, was measured. Sub-samples (10 mL) of the

triplicate, undiluted cultures were stained with SYBR gold

(Invitrogen, Carlsbad, CA) and cell counts were determined by

epifluorescence microscopy. The total cell concentrations in

undiluted 24 h cultures, along with the measured OD600 values

for diluted samples, were combined to create a calibration for

optical density (Figure S1 and Information S1). We ignored

potential dependence of cell size on growth phase and any bias it

may introduce.

Fitting
The model presented in this paper has 13 free parameters and

eight state variables, with only one state variable (or a combination

of two if active and inactive cells are distinguished, see Information

S1) directly corresponding to the measured data. We obtained the

fitted parameter values in a two-step process. First, we fitted the

DEB parameters that do not depend on toxicant levels (KS , m, v,
g, sq, ha, vm and vE) using the control data alone (cE has been scaled

to 1 and is not a free parameter). Then we fitted toxicant-related

parameters (aM , kI
qC , kI

C , kO
C and KV ) using data from all

cadmium treatments. The fitting itself was done using MATLAB’s

nlinfit.m fitting routine (least-squares data fitting by the Gauss-

Newton method). We simulated the model using proprietary code

written in MATLAB, and calculated the square of the difference

between observed and simulated cell concentration for a given set

of parameters. We then adjusted the parameter values using

Levenberg-Marquard step adjustments, and repeated the process

until reaching convergence. When investigating predictive ability,

we only used a subset of non-zero exposure treatments for fitting.

In principle, parameters may have been estimated independently;

for example, constants kI
C and kO

C could have been estimated using

methods such as those outlined by Hajdu et al. (2010 [39]). Such

approaches could increase the usefulness of the theoretical

framework outlined in this manuscript, but - due to their

complexity - require separate efforts.

The mechanistic nature of the model and the need to satisfy

eight curves at the same time with a single parameter set greatly

constrained viable parameter values. We tried removing assump-

tions one at a time, and kept only those that had a significant

impact on the goodness of fit (estimated subjectively); we were

unable to obtain a reasonable fit after removing any one of the

remaining assumptions. This, combined with a maintenance rate

coefficient realistic for bacteria, gave us some confidence in the

model; the fact that our predictions of aging acceleration reflected

those expected from the observed ROS dynamics, and the ROS

density measured by Priester et al. (2009 [20]) (see Figure 5 in

Results, and section Relating observables to state variables) further

improved our confidence.
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Even though the least-squares method converged, there were a

number of colinearities among parameter estimates. Furthermore,

we cannot be certain that our routines did not locate a local

minimum of the residual sum of squares. We investigated this by

exploring the parameter space manually, but there remains the

possibility that a better data fit than presented here exists. Finding

it is, in our opinion, beyond the scope of the manuscript which

showed that the model can explain the observations; obtaining data

types identified as important by our research (see Discussion)

should have much higher priority than further statistical

refinement of the current analysis.

To minimize the possible influence that Cd salts had on optical

density for low cell concentrations, we used the initial value of the

structural volume of the control for all treatments. This decision

recognized that all inocula came from the same stock. We

arbitrarily assumed that cells had 50% of the maximum energy

density when transferred from the inoculum by setting the initial

energy density to 0.5. The precise value chosen did not affect our

ability to fit the data. The initial substrate concentration was set to

unity (without loss of generality - see above), and all other initial

values (environmental degradation, bioaccumulated toxicant,

aging acceleration, acclimation, and hazard) were set to zero.

Supporting Information

Figure S1 Comparison of raw (left panel) and calibrated
data (right panel).
(TIF)

Figure S2 Bioaccumulation for 5 (lowest solid line), 10,
20, 37.5, 75, 115, and 150 (highest solid line) mg/L total
cadmium.
(TIF)

Figure S3 Predictions using alternative data sets for
fitting. Data points marked with ‘x’: used in fitting; data marked

‘o’: not used in fitting. Solid line: simulations of data not used in

fitting; dotted line: simulations of data used in fitting. Top left

panel: predicting 5, 10, 20, 37.5 and 75 mg/L using 0, 115, and

150 mg/L. Top right panel: predicting 5, 10, 37.5, 115 and

150 mg/L using 0, 20 and 75 mg/L. Lower left panel: predicting

10, 20, 75, 115 and 150 mg/L using 0, 5, and 37.5 mg/L. Lower

right panel: predicting 5, 20, 75, 115 and 150 mg/L using 0, 10

and 37.5 mg/L.

(TIF)

Information S1 Supporting Information. Additional re-

sults, overview of the basic DEB model and scaling, dicussion on

how mortality affects the model equations, derivation of

acclimation dynamics, and possible extensions of the model.

(PDF)
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