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SUPPLEMENTARY FIGURES 

FIGURE S1. Segmentation results of synthetic color image by means of EKM-NMU 

method for various combinations of EKM parameters: D and 2 , and SNR values. 

 

Figure S1. Color coded results of segmentation of synthetic image shown in Figure 1a. First, 
encoding coefficients 0

M P
S   were estimated by means of EKM-NMU algorithm with D=20. 

Afterwards, encoding coefficients are mapped column- (pixel) wise:  
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 . Colors are assigned to folded (2D) equivalents of 

  1

M

m m
s according to color coded ground truth image shown in (a). Results are shown for 

combination of variance of Gaussian kernel 2 and highest SNR value in dB for which 

obtained result differs from color coded ground truth. (b) 2=10-3, SNR=28 dB. (c) 2=10-2, 

SNR=17 dB. (d) 2=10-1, SNR=13 dB. Thus, lowest SNR values for which correct 
segmentation results are still obtained are given respectively as 29 dB, 18 dB and 14 dB. 
Hence, by increasing variance of Gaussian kernel in EKM-based mapping noise robustness 
can be increased significantly. 

 



FIGURE S2. Segmentation results of the images of sections of a specimen of human 
hepatocellular carcinoma 

 

    

 



 

 



 

 



 

Figure S2. Some segmentation results of images of sections of a specimen human 
hepatocellular carcinoma. (a) segmentation result of the image of unstained section, shown in 
figure 2a, obtained by k-means clustering in the CIE L*a*b* color space1. (b) segmentation 
result on grayscale version of figure 2a by means of the geometric active contour (GAC)2 
method with new distribution metric3,4 after 6000 iterations. (c) segmentation result on figure 
2a by means of active contour method for vector images5,6. (d) segmentation result of image 
of unstained section, shown in figure 2a, obtained by ORTSEG algorithm7. The number of 
textures (histological structures) assumed to be present in figure 2a is from left to right 3 and 
4 (top row), and 5 and 6 (bottom row). (e) segmentation results of image of section stained by 
H&E, shown in figure 2e, obtained by ORTSEG algorithm. The number of textures 
(histological structures) assumed to be present in figure 2e is from left to right 3 and 4 (top 
row), and 5 and 6 (bottom row). (f) color coded (digitally stained) image of segmentation 
results of the image of unstained section, shown in figure 2a, obtained by EKM-NMF_L0 
algorithm: blue: region of hepatocellular carcinoma, red: blood vessel, green: tumor fibrotic 

capsule. Variance 2 of Gaussian kernel equals 0.01 in left column and 0.1 in right column. 
Dimensionality D of EKM-induced vector space equals respectively from top to bottom: 150, 
100, 50 and 25.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

FIGURE S3. Segmentation results of the images of sections of a specimen of human liver 
with metastasis from colon cancer 

 

 



 

Figure S3. Some segmentation results of images of sections of a specimen of human liver with 
metastasis from colon cancer. (a) segmentation result of the image of unstained section, 
shown in figure 3a, obtained by k-means clustering in the CIE L*a*b* color space. (b) 
segmentation result of the image of unstained section, shown in figure 3a, obtained by 
NMF_L0 algorithm8: blue: metastatic cells from colon cancer, red: border area between tumor 
and liver tissue, green: hepatocytes. (c) segmentation result of image of unstained section, 
shown in figure 3a, obtained by ORTSEG algorithm. The number of textures (histological 
structures) assumed to be present in figure 3a is from left to right 3 and 4 (top row), and 5 and 
6 (bottom row). (d) segmentation results of image of section stained by H&E, shown in figure 
3d, obtained by ORTSEG algorithm. The number of textures (histological structures) assumed 
to be present in figure 3d is from left to right 3 and 4 (top row), and 5 and 6 (bottom row).   

 

 

 

 

 

 



FIGURE S4. Segmentation results of the images of sections of a specimen of human liver 
with metastasis from gastric cancer 

 

 



 

Figure S4. Some segmentation results of images of sections of a specimen of human with 
metastasis from gastric cancer. (a) segmentation result of the image of unstained section, 
shown in figure 4a, obtained by k-means clustering in the CIE L*a*b* color space. (b) 
segmentation result of the image of unstained section, shown in figure 4a, obtained by 
NMF_L0 algorithm. Blue: metastatic cells of gastric cancer, red: border area of inflammation, 
green: hepatocytes. (c) segmentation result of image of unstained section, shown in figure 4a, 
obtained by ORTSEG algorithm. The number of textures (histological structures) assumed to 
be present in figure 4a is from left to right 3 and 4 (top row), and 5 and 6 (bottom row). (d) 
segmentation results of image of section stained by H&E, shown in figure 4d, obtained by 
ORTSEG algorithm. The number of textures (histological structures) assumed to be present in 
figure 4d is from left to right 3 and 4 (top row), and 5 and 6 (bottom row).  

 

 

 

 

 

 



FIGURE S5. Segmentation result of the images of sections of a specimen of mouse fatty 
liver  

 



Figure S5. Segmentation result of images of a specimen of mouse fatty liver. (a) RGB color 
microscopic image of unstained section. (b) "ground truth - different section" RGB color 
microscopic image of the section stained by H&E. (c) "ground truth - different section" RGB 
color microscopic image of the section stained by SUDAN 3. (d) color coded (digitally 
stained) image of the segmentation result obtained by EKM-NMF_L0 algorithm (Gaussian 
kernel variance=0.1 and D=50): yellow: vacuoles, green: liver parenchyma. (e) color coded 
(digitally stained) image of the segmentation result obtained by k-means clustering in the CIE 
L*a*b* color space: yellow: vacuoles, green: liver parenchyma. (f) color coded (digitally 
stained) image of the segmentation result obtained by NMF_L0 algorithm: yellow: vacuoles, 
green: liver parenchyma. (g) color coded (digitally stained) image of the segmentation result 
of the image of unstained section (a) and obtained by ORTSEG algorithm. The number of 
textures (histological structures) assumed to be present in (a) is 3. (h) color coded (digitally 
stained) image of the segmentation result of the image of section stained by H&E (b) and 
obtained by ORTSEG algorithm. The number of textures (histological structures) assumed to 
be present in (b) is 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FIGURE S6. Segmentation results of the images of sections of a specimen of mouse fatty 
liver composed of hepatocytes, blood vessel, reticular fibers and sinusoids 

 



 

Figure S6. Some segmentation results of images of sections of a specimen of mouse fatty liver. 
(a) RGB color microscopic image of unstained section. (b) "ground truth – different section" 
RGB color microscopic image of the section stained by H&E. (c) "ground truth - different 
section" RGB color microscopic image of the section stained by SUDAN 3. (d) color coded 
(digitally stained) image of the segmentation result obtained by EKM-NMF_L0 algorithm 
(Gaussian kernel variance=0.1 and D=50): red: blood vessel, sky blue: sinusoids, green: 
hepatocytes, magenta: reticular fiber. (e) zoomed version of (d). (f) color coded (digitally 
stained) image of the segmentation result of image of unstained section (a) obtained by k-
means clustering in the CIE L*a*b* color space: red: blood vessel, sky blue: sinusoids, green: 
hepatocytes, magenta: reticular fiber. (g) color coded (digitally stained) image of the 
segmentation result of image of unstained section (a) obtained by NMF_L0 algorithm: red: 
blood vessel, sky blue: sinusoids, green: hepatocytes, magenta: reticular fiber. (h) color coded 
(digitally stained) image of the segmentation result of the image of unstained section (a) and 
obtained by ORTSEG algorithm. Convincing interpretation of results is difficult. The number 
of textures (histological structures) assumed to be present in (a) is 3. (i) color coded (digitally 
stained) image of the segmentation result of the image of section stained by H&E (b) and 
obtained by ORTSEG algorithm. Convincing interpretation of results is difficult. The number 
of textures (histological structures) assumed to be present in (b) is 3. 

 

 



FIGURE S7. Amount of sparseness as a function of mutual coherence imposed by 
uniqueness condition without noise (5), stability condition (8) and uniqueness condition 
(9) for basis pursuit denoising algorithm. 

 

 

Figure S7. Amount of sparseness as a function of mutual coherence imposed by various 
uniqueness/stability conditions. Circles: uniqueness condition without noise (5). Squares: 
stability condition (8). Diamonds: uniqueness condition for basis pursuit denoising algorithm 

(9). For non-overlapping (orthogonal) histological structures sparseness equals 
0

1p s . 

Thus, while condition (5) is satisfied even when (A)≈1 it is seen that approximately 

(A)<0.33 is required to satisfy (8) and (9). 

 

 

 

 

 

 

 

 

 



SUPPLEMENTARY MATERIAL 1: LINEAR MIXTURE MODEL-BASED 
REPRESENTATION OF  MULTICHANNEL IMAGE 

In multi-channel imaging, such as multispectral/hyperspectral imaging9,10,11, magnetic 
resonance imaging12 and/or multi-phase computed tomography imaging13, it is customary to 
represent an image as a weighted linear combination of intensity distributions of objects 
present in the image: 

 

   X=AS        (1) 

where  1
00 1

:
NN P P

n n

 

 
  X x   represents multi-channel image comprised of P pixels and 

symbol :  means by definition. Thereby, each row of X is a 1D image representation obtained 
from corresponding channel image by 2D1D mapping called vectorization. When X 
represents red-green-blue (RGB) microscopic color image number of channels equals N=3 
and they correspond with images acquired at wavelengths corresponding with red, green and 

blue colors.  100 1
:

MN M N
m m


 

 
  A a   represents basis or mixing matrix comprised column-

wise of basis or mixing vectors. In case of multispectral/hyperspectral image mixing vectors 
represent spectral profiles of the objects present in the image. 
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:

M PM P
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s


 
  S   represents matrix with the coefficients smp that encode amount of 

presence of a component m at a pixel p. Thus, rows of S,  1
0

MP
m m


s  , stand for vectorized 

partitions that correspond with distinct objects present in the image X. In the BSS vocabulary 

 M

m m
s  are also called sources. Since we are concerned with image 

decomposition/segmentation problem X, A and S are assumed to be nonnegative. 
Unsupervised (a.k.a. blind) decomposition assumes that only multichannel image matrix X is 
available to decomposition algorithm. Such problem is also known as blind source separation 
(BSS)14. The BSS problem (1) is ill-posed since matrix factorization implied by (1) suffers 
from indeterminacies: X=AS=AB-1BS for some MM square invertible matrix B. Thus, the 
unsupervised image decomposition/segmentation problem has an infinite number of solutions. 
Meaningful solutions are characterized by the permutation and scaling indeterminacies in 
which case B=P, where P represents permutation and   represents diagonal scaling matrix. 
Such decomposition is said to be essentially unique15. However, constraints are necessary to 
be imposed on A and/or S in (1) to obtain solution of BSS problem that is unique up to 
permutation and scaling indeterminacies only15. In addition to nonnegativity constraint of A 
and S sparseness constraint imposed on S ensures, in principle*, decomposition (1) that is 
essentially unique. That leads to sparseness constrained nonnegative matrix factorization 
(sNMF)8,16,17,18. Sparseness constraint implies that only "small" amount of entries of matrix S 
is nonzero. In particular, when X in (1) represents RGB color microscopic image of the 
pathological specimen it is experimentally justified to assume that at each pixel only one 
source (histological structure) is present. Thus, rows of matrix S are orthogonal, i.e. 

                                                            
*
 In fact, as it is seen in supplementary note 2, mutual coherence of A  determines amount of sparseness of S 

necessary to obtain essentially unique decomposition (1). 



 
1 2 1 2 ( )m p m ps s m m c p   where (m1-m2) stands for Kronecker delta and c(p) is constant 

that depends on pixel location. Since we are interested to solve image segmentation problem 
we further assume c(p) =1, p=1,...,P. Thus, it is assumed that sources are orthogonal and 
binary:  

   
1 2 1 2m p m ps s m m   p=1,...,P  and m1, m2 =1,...,M  (2).  

 

 

SUPPLEMENTARY MATERIAL 2: MUTUAL COHERENCE OF BASIS (MIXING) 
MATRIX, SPECTRAL DIVERSITY AND UNIQUENESS OF MULTICHANNEL 
IMAGE DECOMPOSITION  

To understand difficulties associated with decomposition of RGB color microscopic image of 
unstained specimen it is necessary to study conditions that guarantee solution of the linear 
system (1) that is unique as well as stable and/or robust to the presence of noise. To this end, 
we write (1) at some arbitrary pixel position: 

   1,...,p p p P x As      (3) 

where 1
0
N

p

x   and 1

0
M

p

s  . At the moment we shall assume that basis matrix A is 

known. Important implication of (2) is that (3) can be written as: 

   ( )p m px a        (4) 

where  ( ) 1,...,m p M  denotes index of the source that is present at pixel p. In case of RGB 

image, N stands for number of color channels and equals N=3. M stands for number of 
spectrally distinct histological structures present in the specimen and for most scenarios it 

satisfies M  4, 5, 6. Thus, we have M>N. Hence, to obtain unique solution of (3) sp has to 
be sparse. That is 19,20,21:  
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where ,i ja a  stands for inner product between ai  and aj  and ia  stands for 2 -norm of ai. 

Mutual coherence (A) measures worst case similarity between basis vectors   1

M

m m
a . It 

determines, through (5), the amount of sparseness of sp necessary to obtain unique solution of 

(3). Within the context of the present paper the intention is to emphasize that values of (A) 
"very close" to 1 drastically reduce possibility to obtain solution that is meaningful. Such 
situation indeed occurs when in (1) X represents RGB color microscopic image of unstained 

specimen. In this case basis vectors   1

M

m m
a  stand for spectral profiles of the histological 

structures present in the specimen. When specimen is not stained these spectral profiles 
become highly correlated, i.e. corresponding histological structures are very hard to 
distinguish. That is, the visual cues inferred from segmented and digitally stained image of the 
unstained specimen cannot distinguish healthy and disease tissue. As an example we consider 
RGB image of unstained section of a specimen of human  hepatocellular carcinoma and that is 
shown in figure 2a. By virtue of (4) and by knowing spatial locations of particular histological 
structures (they can be inferred from H&E stained image shown in figure 2e) we have 
estimated their spectral profiles, i.e. the basis matrix A in (1)/(3). Afterwards, we have 

estimated mutual coherence as (A)=0.9999 and the average correlation between all the basis 

vectors as 0.9998.† For (A)=0.9999 uniqueness condition (5) is formally satisfied for 
orthogonal sources stated by condition (2). In such case only one histological structure is 

present at each particular pixel, that is 
0

1p s . The problems, however, arise when model 

(3), i.e. (1), holds only approximately. That occurs due to presence of additive noise or 
modeling errors. In such scenario sp can be estimated by means of algorithms such as basis 
pursuit denoising (BPDN)21,22. Under assumption that model (3) holds up to the error 

tolerance >0: 
2p p  x As  the BPDN algorithm tries to solve optimization problem: 
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for some regularization constant  . In such scenario good algorithm should yield estimate of 

sp , we denote it by p
s , that contains at most non-zero entries as estimate of the sp by the same 

algorithm from the exact model (3)23. In case of BPDN algorithm solution will be stable 
within the tolerance: 
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provided that sparseness of sp satisfies24,21: 

                                                            
†
 By using the same procedure for image of unstained specimen of human liver with metastsis of colon cancer 

shown in figure 3a we have estimated (A)=0.9997 and the average correlation between spectral profiles as 
0.9993. Likewise, for image of unstained specimen of human liver with metastasis of gastric cancer shown in 

figure 4a we have estimated (A)=0.9999 and the average correlation between spectral profiles as 0.9988. 
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Thus, different amounts of mutual coherence (A) are required to satisfy uniqueness 
condition (5) and stability condition (8). In particular, for the pre-specified amount of 

sparseness 
0ps  smaller value of (A) is required to satisfy (8) than to satisfy (5). We can 

further introduce the measurement noise in (3) and that yields: xp=Asp + wp. Assuming that wp 

is zero-mean white Gaussian with covariance   2T
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when sparseness of sp satisfies25: 
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Comparatively to (8) and (5) even smaller value of (A) is required to satisfy (9) for a given 

0ps . To this end, supplementary figure 7 shows amount of sparseness 
0ps as a function of 

mutual coherence (A) for conditions (5), (8) and (9). Since within the context of the present 
paper we have assumed that histological structures present in the image do not overlap, see 

(2), it follows 
0

1p s . Thus, while condition (5) is satisfied even when (A)≈1 it is seen that 

approximately (A)<0.33 is required to satisfy (8) and (9). Even though these performance 
guarantees can be qualified as too pessimistic it is clear that possibly essentially unique 
decomposition of RGB image of unstained specimen into non-overlapping histological 
structures requires representation such as (1) but with basis matrix that is less coherent than 
A. We can further support this statement by the following argument. Under constraint 

0
1p s  and assuming that A is estimated, the nonnegative orthogonal matching pursuit 

(NOMP) algorithm26,8 can be used to solve (2): 
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where 0
M

m e   stands for unit vector that is part of standard basis in Euclidean space. 

Evidently, when   1

M

m m
a are highly correlated, that is (A)1, coefficients   1

M

i i
d


will be very 

close to each other. Let us suppose that xp corresponds with histological structure m 
represented by basis vector am. Then, very small amount of noise will cause that xp be 



correlated more with some basis vector an instead with the basis vector am. That will imply 
dn>dm. Thus, xp will be assigned to wrong histological structure by the NOMP algorithm. 
Therefore, we propose mathematical transform of the RGB microscopic image X that under 
linear mixture model representation (1) and constraints (2) yields:  

     X BS        (11) 

whereat   0
D P 
X   , 0

D M
B   and DM such that:  

       B A        (12). 

 

SUPPLEMENTARY MATERIAL 3: EMPTIRICAL KERNEL MAP-BASED 
NONLINEAR MAPPING OF MULTICHANNEL IMAGE 

Nonlinear mapping (X) to be derived herein has in many aspects already been presented 
within the framework on blind separation of analytes from linear and nonlinear 
underdetermined mixtures of mass spectra27,28. The essential difference, from the current 
paper point of view,  is that orthogonality and binary constraint (2) imposed on histological 

structures (sources)   1

M

m m
s  is stronger than sparseness constraints imposed on mass spectra of 

analytes27,28. Because of that and in order to make the present paper self-contained we shall 

present herein full derivation of the mapping (X) as well as its linear mixture model 

representation (11). It is clear that mapping (X) in (11) has to be nonlinear. Otherwise, 

channels of image (X) would be redundant combinations of channels of image X. We 
propose pixel (column)-wise nonlinear mapping of X:  
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In order to simplify notation pixel index p will be dropped in the subsequent derivations.  The 

mapping (x) has the following structure: 

     1

1
1

... 1 ,..., 0
1

... such that .N

N
N

T NNqq
q q N nq q

n

c x x q N




     x     (14) 

In (13)  
1... Nq qc  stand for mapping dependent coefficients. By taking into account that 
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where HOT stands for higher order (nonlinear) terms induced by mapping   x , e1 is  a unit 

vector in standard Euclidean basis in N , 0M1 is column vector with zero entries and HOTs  is 

1N M   column vector comprised of  1
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in (15) are matrices of appropriated dimensions and are functions of the basis matrix A in (1) 

and mapping coefficients  
1... Nq qc in (14). Due to constraint (2) sHOT in (15) simplifies to: 

   HOT s s .        (16) 

 Thus, pixel-wise nonlinear mapping   x  yields: 
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c and 0
N M
G   combines matrices G and GHOT from (15) under constraint 

(16). We can generalize (17) to matrix level: 
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where   0
N P 
X  . Hence, underdetermined blind source separation problem implied by (1) 

is substituted by new problem (18). Important difference is that number of (non-physical) 

channels N  in (18) is greater than number of (physical) channels N in (1). Thus, by selection 

of mapping order N  and type of mapping   x , which determines mapping coefficients 

 
1... Nq qc , it should be possible to obtain basis matrix in (18) with mutual coherence that is 

smaller than (A) in (1). However, the difficulty with factorization of problem implied by 

(18) is that N  can be very large or even infinite, in which case factorization becomes 
computationally intractable. To alleviate this difficulty a special type of nonlinear mapping 

(x) is sought for. To this end we reproduce some definitions and theorems29.    

 

 



Theorem 1. (Mercer's theorem)30,29. Consider the compact self-adjoint  integral operator on 

L2() 

         ,KL f K f x x y y dy , 

satisfying conditions: 

C1:   2
,K   x y dxdy ,    

C2: K(x,y)=K(y,x), 

C3:    , ... ,
N times

a b a b    ,  

C4:      K(x,y) is continuous in x and y. 

If the eigenvalues  n n


 corresponding to the eigenfunctions   n n



x


of operator LK 

satisfy condition: 

C5:  n>0    n  

then the kernel expansion 

      , n n n
n

K   


 x y x y


       (19) 

is uniformly convergent. �   

Without loss of generality we further assume that in C3: a=0 and b=1. 

 

Theorem 2. (Reproducing kernel Hilbert space, The Moore-Aronszajn theorem)31,29. 

There exists a uniquely determined Hilbert space HK of functions on  satisfying the 

following conditions: 

C1:  , , ;KK H  x x   

C2:    , , , .
K

KH
f f K f H  x x  

where ,   denotes the inner product associated with KH . � 

 



Definition 1. Replacing  f x  in C2 in Theorem 2 by  ,K x , it follows 

     , , , ,
KH

K K Ky x y x  . By selecting the nonlinear map as    ,K x x  it follows: 

        , ,
KH

K  y x y x       (20).  

Eq. (20) is known as kernel trick. The nonlinear mapping   x  is called explicit feature map 

(EFM).  � 

 

Kernel expansion (19) implied by Mercer's theorem can be interpreted on the following 
way29: 

  

     

     
   

2

2

,

,

,

n n n n
n

n n n n
n n

K    

   

 



 







x y x y

x y

x y



  



    (21) 

where 2  denotes feature space. Thus, when K(x,y) is Mercer's kernel EFM (x) is composed 

of eigenvalues  n n


  and eigenfunctions   n n



x


 of  K(x,y), i.e.      n n

n
  


x x


.  

The central observation is that inner product of two feature vectors in the infinite-dimensional 
space is given by the evaluation of the kernel as a function and that is known as kernel trick32. 

Normally, one does not need to design particular eigenvalues  n n


  and eigenfunctions 

  n n



x


 but chooses simple kernel function K(x,y) that satisfies conditions of Mercer's 

theorem. One such example is the Gaussian kernel: 

      2 2

2
, exp /K   x y x y      (22) 

where 2 denotes kernel bandwidth or variance. Within the context of the present paper 
importance of the kernel trick is to transform factorization problem implied by (18) to the new 
one that is computationally tractable even when N  . To this end, it is necessary to project 

EFM (x) on a subspace in RKHS HK that is spanned by a basis   
1

D
N

d d



v  : 

         
 

 

1

1

,

... ....

,

T

D

D

K

K

   
 
      
  

x v

x v v x

x v

   (23) 



The mapping (23) : N D    is known as empirical kernel map (EKM) with respect to 

basis  
1

DN
d d
v  :        

1
1, , ,..., ,D

d d

T

DK K K


   v
x x v x v x  , see also definition 2.15 

in ref. 32.  When (18) is substituted in (23) we obtain: 

  
           1 1... ...

T T

D D     
 

         
 



c
x v v x v v s

G

Bs

 (24)  

We can write (24) in the matrix version as: 

    X BS         (25) 

where   0
D P 
X  , 0

D M
B   and 0

M P
S  . Linear mixture model based representation of  

  X  in (25) matches the one postulated in (11).  

 Projection implied by (23) demands a basis  0 1

DN
d d 

 V v  in the vector space 

spanned by the empirical data set  
1

P

p p
x  such that 

     1 1

PD

d pd p
span span

 
v x       (26) 

where span denotes a vector space spanned by particular set of vectors. Thus, it is expected 
that basis vectors span the same vector space as the one spanned by empirical set of patterns. 
When (26) holds it is expected that the following will also hold: 

       1 1

PD

d pd p
span span 

 
v x      (27) 

The basis V can be constructed on several ways. One way is by using data clustering whereas 
cluster centers represent basis vectors. In this regard, results shown in figures 1 to 4 as well as 
supplementary figures 2a, 5e and 6f are obtained by using basis selected by k-means 
clustering algorithm34 implemented by a MATLAB function kmeans. 

 When it comes to the kernel function necessary to compute   x in (23) we have used 

the Gaussian kernel (22) that, arguably, is most often used kernel in machine learning33. Thus, 

EKM   x  in (23)-(25) is parameterized by subspace dimension D and kernel variance 2, 

whereat kernel variance 2  has dominant importance. That is, it is shown in figures 1f and 2f  

that the value of (B) virtually depends on the value of variance 2 of the Gaussian kernel 

(22). However, only naive interpretation of these results suggests that by decreasing 2 

towards zero we could obtain (B)=0, i.e. B to be orthogonal. In practice, however, we map X 



through (23). Thereby,   
1

,
D

d d
K


x v measures similarity between pixel vector x and basis 

vectors   1

D

d d
v . The basis vectors stand for cluster centers and represent in average pixels 

within the clusters, i.e. histological structures. They are in case of RGB image of unstained 
specimen highly correlated.  Due to the presence of noise and variability with the specimen 
itself actual pixel x could be closer to some cluster center vm than to cluster center vn with 

which it actually corresponds. Thus, if 2 is too small  , mK x v  will be close to 1 and 

 , nK x v  close to 0 and that is wrong. Essentially, value of the kernel bandwidth 2 has to  

tradeoff between being large enough to provide robustness to noise and specimen variability 

and being small enough to decrease (B). That, indeed, is confirmed in supplementary figure 
1. It shows color coded results of segmentation of synthetic image shown in figure 1a and 
obtained by means of EKM-NMU algorithm with D=20. Results are shown for combination 

of variance of Gaussian kernel 2 and highest SNR value in dB for which obtained result still 

differs from ground truth shown in supplementary figure 1a. The values of 2 and SNR that 
respectively correspond with supplementary figures 1b to 1c are (10-3, 28 dB), (10-2, 17 dB) 
and (10-1, 13 dB). Thus, SNR values for which correct segmentation results are obtained are 
given respectively as 29 dB, 18 dB and 14 dB. Hence, by increasing variance of Gaussian 
kernel in EKM-based mapping noise robustness has to be increased significantly. Thereby, 

(B) was still small enough to enable accurate segmentation. Furthermore, we show in 
supplementary figure 2f images of color coded segmentation results obtained by EKM-

NMF_L0 algorithm for 2=0.01 (left column) and 2=0.1 (right column). Thereby, dimension 

D of   X  induced vector space is respectively from top to bottom: 150, 100, 50 and 25. 

While decomposition results in right column correspond qualitatively to ground truth image 
shown in figures 2b and 2e, decomposition results in left column are too noisy and 
qualitatively incorrect. To this end, results related to decompositions of images of unstained 
specimens shown in figures 2, 3 and 4 as well as supplementary figures 5 and 6  were 

obtained with D=50 and 2=0.1.  

  

SUPPLEMENTARY MATERIAL 4: SPARSENESS AND NON-NEGATIVITY 
CONSTRAINED FACTORIZATION 

After EKM-based nonlinear mapping of the RGB color microscopic image X (1), 
decomposition problem is reduced to non-negativity and sparseness constrained factorization 
of (X) in (25). That is, we have to estimate B0 and of S0 such that: smpsnp=(m-n), 
m,n=1,...,M and  p=1,...,P.  To this end, solution of (25) can be approached on two 
principal ways known as sparse component analysis (SCA) and NMF. Even though results 
related to segmentation of image of unstained specimen, presented in figures 2 to 4 and 
supplementary figures 2 to 6, were obtained by means of sparseness constrained NMF of 
(X), we shall (to make this material self-contained) present brief overview of both 
approaches.  
 
 



 
SUPPLEMENTARY MATERIAL 4.1: Sparse component analysis 
 
SCA methods estimate basis matrix B first and then solve for encoding coefficients S by 
solving optimization problems such as NOMP in (10). However, as it is evident from 
(23)/(24), B as well as (X), demand estimate of the basis 0

N D
V   that, according to (26), 

spans approximately the same vector space as the empirical set of patterns X. When D=M, V 
may coincide with the true basis matrix A in (1).  Within the context of the present paper V is 

estimated by clustering empirical set of patterns  
1

P

p p
x into D clusters with cluster centers 

  1

D

d d
v . For this purpose k-means clustering algorithm34 implemented by a MATLAB 

function kmeans has been used. Since   1

D

d d
v  spans basis in the input patterns space 0

N
  

  
1

D

d d



v  will span the basis in possibly infinitely dimensional image pattern space, i.e. (27) 

is expected to hold. Thus, (17) can be also written as: 
   
       x V s       (28) 

 

where     
1

:
D

d d
 


V v . It follows from (24)/(25) that: 

 

        T   B V V V      (29) 

 
i.e. that B is the EKM-based mapping of V. Hence, to estimate encoding coefficients S in (24) 
it suffices to solve the sparse coding problem in mapping induced RKHS. By taking into 

account that  0 1
1

P

p
p

s the sparse coding problem can be solved for each pixel p=1,...,P by 

NOMP algorithm such as (10):  
 

   

 
 

1,..,

arg max

T
p

d

d D

p m

m c











c B x

s e

       (30) 

 
where 0

D
m e   stands for unit vector that  is part of standard basis in Euclidean space. Since 

(B)< (A) it is expected that in the presence of noise the NOMP-based solution (30) will 
coincide better with the true solution than the NOMP-based solution (10) will do.  
  
 
 
 
 
 
 



SUPPLEMENTARY MATERIAL 4.2: Sparseness constrained NMF 
 
NMF optimization problem (1)/(25) can be formalized as35:  
 
  

,

min
F


W S

Y WS         (31) 

  subject to 
  W0, S0     
 
where F stands for Froebenius norm and  denotes element-wise greater than or equal to 
operator. If (31) refers to (1) Y=X and W=A.  If (31) refers to (25) Y=(X) and W=B.    

F
Y WS  is nondecreasing under update rules35:  

 

  
T

T
 

W Y
S S

W WS
         

  
T

T
 

YS
W W

WSS
       (32) 

where  denotes element-wise multiplication and / denotes element-wise division. Obviously, 
for nonnegative initial values of W and S multiplicative update rules (32) ensure 
nonnegativity of W and S automatically. Since NMF allows additive combinations only its 
solution often yields parts based representation, that is rows of S and/or columns of W 
correspond with different parts present in X. Also, quite often parts-based representation is 
sparse but that is obtained as a by-product of (31). To decompose color microscopic image of 
unstained specimen into non-overlapping histological structures that coincide with the rows of 

S it is necessary to strictly enforce sparseness of  M

m m
s during optimization procedure.  

 
 
SUPPLEMENTARY MATERIAL 4.2.1: Sparse NMF with 0 -constraints 

 
Natural measure of sparseness is 0 -norm that counts number of non-zero entries of some 

vector/matrix. To this end optimization problem (31) can be extended to8: 
 
 

,

min
F


W S

Y WS  

 subject to: 
 W0, S0 

 
0

1,...,p L p P  s        (33) 

 
where L stands for maximal number of non-zero entries. Within the context of the present 
paper it applies L=1. Optimization problem (33) can be described with the following 
procedure8: 
  
 
 
 



 Algorithm NMF_L0. 
 Step 1. Initialize W randomly 
 Step 2. for i=1: numIter do 
 Step 3. Nonnegative sparse coding: Encode sparsely data Y using fixed matrix W. 
  This yields sparse matrix S. 
 Step 4. Update of basis matrix W. Use update rule for W in (32). 
 
 end for 
  
Nonnegative sparse coding step can be accomplished by NOMP algorithm with L=1 such as 
in (10) and/or (30). That is also called sparse nonnegative least square (sNNLS)8. 
Alternatively, reverse sNNLS8 can be used to solve nonnegative sparse coding step in 
Algorithm NMF_L0. The rsNNLS is summarized in Algorithm rsNNLS. Initial non-sparse 
estimate of sp is obtained by means of NNLS such as active-set NNLS algorithm36. Since sp is 

non-sparse 
0

1p s  the smallest coefficient is set to 0. Its index is moved from in-active set   

to active set .  Data vector yp is approximated in NNLS sense by the remaining basis vectors 

in  .  All results generated by means of the NMF_L0 algorithm were obtained by using 

reverse sNNLS in the nonnegative sparse coding step.  
 
 
 Algorithm rsNNLS. 
 Step 1.  sp=NNLS(yp, W) 

 Step 2. ={i|sip=0}, ={ i|sip>0} 

 Step 3. while 
0

1p s  do 

 Step 4. arg min ip

i I

j s


  

 Step 5. sjp=0. 

 Step 6.     {j} 

 Step 7.      \ {j} 

 Step 8. sp()=NNLS(yp, W()) 

 end while 
 
When NMF_L0 algorithm outlined above has been applied to problem (25) we have named it 
the EKM-NMF_L0. The importance of applying the NMF_L0 algorithm in the RKHS space 
(25) instead in input space (1) is explained by the NOMP (10)/(30) that is recognized as 
sNNLS with L=1. It is also part of the reverse sNNLS algorithm because it is a part of the 
NNLS algorithm. In both cases index of nonzero coefficient in the solution vector sp 
corresponds with the index of the maximal element of WTyp. Error in this crucial step is less 
probable when (W) is lower. Thus, since (B)< (A) NMF_L0 based solution of (25) is 
expected to be more accurate than NMF_L0 based solution of (1). In the extreme case when 
(A)1 NMF_L0, or any other method that factorizes (1) directly, will yield solution S that 
corresponds with ground truth very poorly. The Matlab implementation of the NMF_L0 
algorithm is available for free download37.  
 



 
 
 
SUPPLEMENTARY MATERIAL 4.2.2: Sparse NMF with underapproximation 
constraints 
 
The nonnegative matrix underapproximation (NMU) algorithm18 has been applied to (1), 
respectively (25), in decomposition of synthetic image shown in figure 1a with results shown 
in figure 1d, respectively figures 1c. Furthermore, robustness of the EKM-NMU with respect 
to the presence of noise has been tested in supplementary figure 1. The reason for using the 
NMU algorithm instead of the NMF_L0 algorithm, that was used to decompose images of 
unstained specimens of human and mouse liver, was to demonstrate that separation of 
spectrally highly similar objects is primarily consequence of EKM-based mapping and not of 
sparseness constrained NMF algorithm. Unlike other sparseness constrained NMF 
algorithms17,38, the NMU algorithm does not require explicit sparseness related regularization 
term. Thus, tuning of regularization constant, that is seen as limitation of many NMF 
algorithms39, is not required. In relation to the NMF problem (31) the NMU algorithm 
imposes an additional underapproximation constraint on W and S: WSY. That this, the 
NMU optimization problem is: 
 
 
  

,

min
F


W S

Y WS  

  subject to: 
  W0, S0,  WS0          (34) 
 
 
The NMU method performs factorization of (31) in a recursive manner extracting one 
component at a time. After identifying optimal rank-one solution  1 1,w s , the rank-one 

factorization is performed on the residue matrix 1 1 Y Y w s . Herein, w1 denotes column 

vector and s1 denotes row vector. Underapproximation constraint preserves non-negativity of 
Y. This constraint yields localized parts-based decomposition, where different basis vectors 
describe disjoint parts of the input data Y. It has been proven in theorem 1 in ref. 18 that, due 
to underapproximation constraint, sparseness (number of non-zero entries) of  W and S is less 
than sparseness of Y. That enables sparseness constrained factorization without regularization 
constant. The Matlab implementation of the NMU algorithm is available for free download40. 
For the sake of comprehensiveness we reproduce the main steps of the NMU algorithm 
herein. It finds approximate solution of the optimization problem (34) by minimizing 
Lagrangian: 
 

     2

1 1

1
, ,

2

N P

np npF
n p

L
 

    W S Λ Y WS WS Y  

 
where  stands for matrix of Lagrange multipliers. W is iteratively updated column-wise 
through: 
 



  1,max ,

M

k m mkm m k
k

kk

d

d
 

 
 
 
 

c w
w 0      (35) 

 
where C=(Y-)ST and D=SST. S is iteratively updated row-wise through: 
 
 

  1,max ,

M

k km mm m k
k

kk

g

g
 

 
 
 
 

f s
s 0      (36) 

 
where F=WT(Y-) and G=WTW. Matrix of Lagrange multipliers  is updated iteratively 
through: 
 

   1
max ,

l
    
 

Λ 0 Λ Y WS      (37) 

 
where l denotes iteration index. The algorithm starts with the initial values =0, and W and S 
such that WSY. The number of sources M has also to be supported to the algorithm as an 
input information. 
 
 
SUPPLEMENTARY MATERIAL 4.2.3: Binarization of EKM-NMF separated 
components 
 
NMF based decomposition of (25), the EKM-NMF_L0 or EKM-NMU, yields analog values 
of coefficients in code matrix S. Even though these values are quite close to binary ones,  
imposed by constraint (2), that has to be ensured by thresholding analog values. To this end, 
to comply with orthogonality and binary constraint (2) column- (pixel) wise mapping is 

performed:  
1

P

p p p
s s , such that: 

  

  
 

1
1 arg max

0 .

M

ip i
imp

for m s
s

otherwise


  


      (38). 
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