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Low-contrast images, such as color microscopic images of unstained histological 

specimens, are composed of objects with highly correlated spectral profiles. Such images 

are very hard to segment. Here, we present a method that nonlinearly maps low-contrast 

color image into an image with an increased number of non-physical channels and a 

decreased correlation between spectral profiles. The method is a proof-of-concept 

validated on the unsupervised segmentation of color images of unstained specimens, in 

which case the tissue components appear colorless when viewed under the light 

microscope. Specimens of human hepatocellular carcinoma, human liver with metastasis 

from colon and gastric cancer and mouse fatty liver were used for validation. The 

average correlation between the spectral profiles of the tissue components was greater 



than 0.9985, and the worst case correlation was greater than 0.9997. The proposed 

method can potentially be applied to the segmentation of low-contrast multichannel 

images with high spatial resolution that arise in other imaging modalities. 

 Segmentation of nontrivial images is considered one of the most difficult tasks in 

image processing1. Image segmentation refers to the partitioning of an image into sets of 

pixels (segments) corresponding to distinct objects2. Within the scope of this study, distinct 

objects refer to spectrally distinct tissue components present in the images of unstained 

specimens. It is important to distinguish between single (grayscale)- and multi-channel 

images. In the former case, segmentation is performed by detection of changes of intensity or 

texture by thresholding some type of spatial derivative of an image3-7. However, images that 

comprise components with very similar profiles (spectral, density, and/or concentration) have 

very low visual contrast. For an example, if staining is not used, the spectral similarity 

between the tissue components present in the specimen is very high and the visual contrast is 

very poor, i.e., tissue components appear colorless and virtually texture-less when viewed 

under a light microscope. This situation occurs in the case of synthetic images (Figure 1a), as 

well as in case of color microscopic images of unstained specimens of human hepatocellular 

carcinoma (primary liver tumor) (Figure 2a), liver tissue with metastasis from colon cancer 

(Figure 3a), and gastric cancer (Figure 4a). Thus, when spectral vectors are plotted vs. their 

indices (corresponding red, green and blue colors) they are virtually parallel (Figures 1g and 

2g and Figures 2a, 3a, 4a, S5a and S6a). Consequently, the intensity and/or texture-based 

segmentation methods3-7 fail to segment tissue components correctly (Figures S2b and S2c). 

Segmentation of the color image by means of clustering in the CIE L*a*b* color space8 also 

fails for the same reason (Figures 1e, S2a, S3a, S4a, S5e and S6f).  

Multichannel images, such as color microscopic images, can also be segmented by means 

of multivariate data analysis methods, such as independent component analysis9, nonnegative 

matrix factorization (NMF)10 and sparse component analysis11. These methods are known 

under the common name of blind source separation12. They yield analog values rather than 



binary values and can be interpreted as the probability that a pixel belongs to a specific object. 

The segmented image binary outcome is obtained by thresholding the analog values of the 

decomposed encoding coefficients (i.e., sources). Blind source separation methods decompose 

color images into constituent components through factorization. To this end, the unfolded 

color image X is represented by a linear mixture model (equation (1)) (Supplementary 

Material 1): 
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= ∈S  stands for the source matrix with the coefficients smp that encode the 

amount of presence of a tissue component m at pixel p. Constraints such as sparseness and 

non-negativity have to be imposed on S and A to ensure the decomposition (1) is unique with 

scaling and permutation ambiguities only (Supplementary Material 1). Unique decomposition 

is necessary to distinguish between healthy and diseased tissues. For this reason, we impose 

binary and orthogonality constraints on the coefficients of matrix S: ( )
1 2 1 2m p m ps s m mδ= − , 

where δ stands for the Kronecker delta. The binary constraint is the natural choice for image 

segmentation problems. It indicates whether tissue component m is present, 1, or absent, 0, at 

pixel p. The orthogonality constraint implies that at each pixel, only one tissue component is 

present. This constraint is justified when the spatial resolution of the light microscope is high 

enough. The binary constraint has been used in the separation of sources from linear13,14 and 

nonlinear15,16 mixtures. Separation is possible when the spectral profiles that correspond to 

mixing vectors, { } 1

M

m m=
a , are distinctive enough. However, low contrast images contain tissue 

components { }1
0 1

MP
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R ×
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∈s  with highly correlated spectral profiles. Hence, it is virtually 

impossible to decompose (segment) these images by the state-of-the-art methods.  



This study demonstrates that the separation of tissue components with highly correlated 

spectral profiles, such as those present in the color microscopic images of unstained 

specimens, is possible (Figures 2c, 3c and 4c as well as Figures S5d, S6d and S6e). To this 

end, a method that performs sparseness-constrained NMF in a reproducible kernel Hilbert 

space (RKHS) is proposed (Methods and Supplementary Material 1 to 4). 

 

RESULTS 

Sparse nonnegative matrix factorization in RKHS 

Empirical kernel map. Here, we propose nonlinear mapping of (1) to obtain 

(Supplementary Material 3): 

 ( )Ψ =X BS  (2) 

where ( ) ( ){ }1
0

1
:

P
D

p
p

R ×
+ =

Ψ = Ψ ∈X x , { }1
0 1

:
MD

m m
R ×

+ =
= ∈B b  and 3<D≤P. D stands for the 

dimension of a subspace in the infinite dimensional RKHS onto which the original image X is 

mapped. The mapping Ψ(X) is known as an empirical kernel map (EKM), see definition 2.15 

in ref.17 (Supplementary Material 3). The EKM-based mapping Ψ(X), in combination with 

nonnegativity and sparseness constraints, has been used to separate analytes from nonlinear 

mixtures in mass spectra18. However, binary {0, 1} and orthogonality constraints are imposed 

on { } 1

M

m m=
s  herein for the first time. It is a necessary condition for Ψ(X) to be invariant with 

respect to the sources { } 1

M

m m=
s  (Supplementary Material 3). The parameters of the EKM 

(subspace dimension D and variance σ2 of the Gaussian kernel) are optimized to decrease the 

correlation between basis vectors { } 1

M

m m=
b  in (2) in comparison with the correlation between 

basis vectors { } 1

M

m m=
a  in (1) (Figures 1f, 1h, 2f and 2h) (Supplementary Material 3). This 

enables segmentation of the tissue components in the color microscopic images of unstained 

specimens. However, the characteristics of the linear mixture model (2) are also important for 

segmentation of low-contrast multichannel images with high spatial resolution that arise in 

other imaging modalities. 



 Sparseness-constrained NMF. After EKM-based mapping of Ψ(X), the basis vectors 

{ } 1

M

m m=
b  in (2) are less correlated than the basis vectors { } 1

M

m m=
a  in (1), decomposition of the 

image Ψ(X) in (2) under binary and orthogonality constraints on { } 1

M

m m=
s  will more probably 

yield meaningful, i.e., interpretable, results than the decomposition of X in (1). In particular, 

stated constraints are built into the NMF method19. They were implemented through 

minimization of the number of nonzero coefficients of the column vectors of matrix S in 

(1)/(2) (the NMF_L0 method, where L0 stands for quasi norm that counts the number of 

nonzero coefficients). We named the method that combines the EKM mapping of Ψ(X) and 

the NMF_L0 factorization of Ψ(X) the EKM-NMF_L0 method. Alternatively, it is possible to 

use the nonnegative matrix underapproximation (NMU) algorithm20 to indirectly ensure 

sparse decomposition of (1)/(2). We named the method that combines the EKM mapping of 

Ψ(X) and the NMU factorization of Ψ(X) as the EKM-NMU method.  

 Intrinsic dimension or model order selection. The number of tissue components M 

present in linear mixture models (1) and (2) is known as the model order or intrinsic 

dimension. Its determination is a challenging problem in multivariate data analysis21. Several 

methods for model order selection have been developed with various applications within 

signal processing and data analysis22. However, no model order selection method works 

satisfactorily when used alone23. We therefore rely on the a priori knowledge (experience) 

that the number of tissue components M present in histopathological specimens is 

approximately 4 to 6. Thus, when the factorization of the linear mixture models (1) and/or (2) 

was performed, M was set to the specified predefined value.  

 

Segmentation of synthetic low-contrast color images  

  To validate and quantify the performance of the proposed EKM-based approach to the 

segmentation of low-contrast multichannel images, an RGB color image was synthesized by 

computer (Figure 1a). The image is composed of five spectrally highly similar objects. The 

color-coded ground truth image is given in Figure 1b, which is also known as region coloring, 



i.e., assigning colors to the pixels such that different colors correspond to different objects, 

and is commonly used to display segmentation results. Region coloring yields a compact 

representation of an image in terms of its constituent parts. The image in Figure 1a is 

generated according to a linear mixture model (1), with orthogonal and {0, 1} binary sources 

and a mixing matrix with the maximal normalized correlation between two basis vectors equal 

to μ(A)=0.9995, which is also known as mutual coherence, and an average correlation 

between basis vectors equal to μ_average(A)=0.9956 (Figures 1f and 1g) (Methods and 

Supplementary Material 2). The mixing matrix in (1) is given in Table 2. The correlation 

properties between the basis vectors in A resemble the correlation properties between the 

spectral profiles of tissue components present in the images of the unstained specimens in 

Figures 2a, 3a and 4a. In addition to the original model (1), additive white Gaussian noise has 

been added to each spectral channel with a signal-to-noise (SNR) ratio equal to SNR=70 dB, 

i.e., the noise power was 10 million times less than the signal power. Due to the high spectral 

similarity of the objects present in the image, this addition was enough to influence the result 

of the k-means clustering algorithm (Figure 1e) and cause the NMU algorithm to fail to 

accurately decompose the synthetic image (Figure 1d).  

 Gain in spectral diversity due to the empirical kernel map. By optimizing the 

parameters of the EKM, it was possible to decrease the correlation among the basis vectors 

{ } 1

M

m m=
b  in (2) as opposed to the basis vectors { } 1

M

m m=
a  in (1) (Figure 1f). This decrease 

correlation is clear when their values are plotted against the color channel indices (Figure 1g) 

and against the indices of the non-physical channels in the mapped space (Figure 1h), which 

explains the correct segmentation result obtained by means of the EKM-NMU algorithm 

(Figure 1c). The reason for using the NMU algorithm instead of the NMF_L0 algorithm, 

which was used to decompose the images of the unstained specimens of human and mouse 

liver, is to demonstrate that the ability to separate spectrally highly similar objects is primarily 

a consequence of EKM-based mapping and secondarily of the sparseness-constrained NMF 

algorithm. After the EKM-based mapping of Ψ(X) parameterized with σ2=0.1 and D=20, the 

μ(A)=0.9995 and μ_average(A)=0.9956 were, respectively, decreased to μ(B)=0.9807 and 



μ_average(B)=0.3777. In particular, the EKM-NMU method with σ2=0.1 and D=20 yields 

correct segmentation of the synthetic image, with a per-channel SNR as low as 14 dB. Values 

of σ2=0.01 and σ2=0.001 decrease the mutual coherence even further, but it requires SNR 

values of at least 18 dB and 29 dB, respectively (Figure S1). SNR-based analysis 

(Supplementary Material 1 and Figure S1) enables parameterization of the EKM-NMU 

(NMF_L0) method as a function of the SNR value as follows. To separate histological 

structures with μ(A)≤0.9998, set the dimensions of the EKM to D≥20 and the variance of the 

Gaussian kernel σ2 according to Table 1. 

 

Segmentation of color microscopic images of unstained specimens of liver 

 Construction of the ground truth image set. We applied the EKM-NMF_L0 

algorithm to the segmentation of color light microscopic images of deparafinized unstained 

tissue sections of human hepatocellular carcinoma (Figure 2a), human liver with metastasis 

from colon (Figure 3a) and gastric (Figure 4a) cancers, as well as to segmentation of the 

images of unstained cryosections of mouse fatty liver (Figures S5a and S6a). Evaluation of 

the performance of the segmentation algorithms is a nontrivial problem when experimental 

(clinical) images are to be segmented. In such a case, it is required that humans manually 

segment the set of training images to be used to quantify the algorithm performance2, which is 

a challenging task in images of the specimens used in histopathology. Quantitative 

performance analysis using a similarity metric, such as Dice's coefficient, between segmented 

components and the ground truth-based gold standard requires manual segmentation of the 

images of unstained specimens by a pathologist, which is virtually impossible to perform with 

a decent accuracy. Thus, the gold standard is inaccurate, which is the reason that a qualitative 

type of performance analysis is performed herein. To this end, what is referred to as human 

segmentation is actually a set of color microscopic images of stained subsequent sections of 

the same specimen. Subsequent slides are stained to mark the targeted tissue components 

known by pathologists to be present in a specimen with a particular diagnosis. The slide is 



stained by hematoxylin and eosin (H&E), which is one of the principal stains used in 

histology, after the image of the unstained specimen has been acquired. Subsequent sections 

are then stained with other dyes suggested by the pathologist. The results obtained by the 

segmentation algorithms are then compared visually with this "ground truth" image set. 

 Segmentation of color microscopic image of unstained specimen of human 

hepatocellular carcinoma. The ground truth image set related to the image of the unstained 

specimen of human hepatocellular carcinoma (Figure 2a) is obtained by 

immunohistochemical staining for hepatocyte antigen: Hepatocyte Clone OCH1E5 (Hep Par) 

(Figure 2b) and H&E stain (Figure 2e). Due to the absence of staining, the image of the 

unstained specimen appears colorless and almost texture-less. The segmentation result 

obtained by the EKM-NMF_L0 algorithm is shown in the color-coded image in Figure 2c, 

where the hepatocellular carcinoma tissue is colored blue, blood vessel is colored red and the 

tumor fibrotic capsule is colored green. In the image of the Hep Par stained section (Figure 

2b), hepatocytes are colored brown, the endothelium of blood vessel is colored blue, and 

tumor fibrotic capsule is colored white. In the image of the H&E stained section (Figure 2e), 

which is obtained by staining the specimen after the image shown in Figure 2a is acquired, the 

hepatocytes, blood vessel and tumor fibrotic capsule are colored in blue and dark pink, pink-

white and light pink, respectively. The visual correspondence between the EKM-NMF_L0 

result (Figure 2c) and the ground truth (Figures 2b and 2e) is evident. In contrast, the 

NMF_L0 algorithm (Figure 2d), k-means clustering in the CIE L*a*b* color space (Figure 

S2a), geometric active contour method for gray scale images (Figure S2b) and vector (color) 

images (Figure S2c) yields results that correspond poorly or do not correspond at all to the 

ground truth. Very recently, the ORTSEG algorithm was derived for unsupervised 

segmentation of histopathology images, in particular, images stained by H&E24. Using the 

Matlab implementation of the ORTSEG algorithm provided by the authors, we have applied it 

to the segmentation of the image of unstained specimen (Figure 2a) and to the segmentation 

of image of H&E stained specimen, as shown in Figure 2e. The digitally stained image 

obtained by ORTSEG-based segmentation of the image of the H&E stained specimen (upper 



left corner in Figure S2e) for 3 tissue components that were assumed to be present in the 

specimen partially resembles the visual appearance of the EKM-NMF_L0 digitally stained 

image shown in Figure 2c. The red colored component in Figure S2e corresponds to the blue 

colored tumor component in Figure 2c and the brown colored hepatocytes component in 

Figure 2b. The blue colored component in Figure S2e corresponds imprecisely to the red 

colored blood vessel component in Figure 2c and the pink-white colored blood vessel 

component in Figure 2e. The green colored component in Figure S2e corresponds imprecisely 

to the green colored tumor fibrotic capsule component in Figure 2c, the red/light pink colored 

tumor fibrotic capsule component in Figure 2e and the white colored tumor fibrotic capsule in 

Figure 2b. The visual correspondence between the ground truth images shown in Figures 2b 

and 2e and the digitally stained images obtained by the ORTSEG-based segmentation of the 

image of the unstained specimen (upper left corner in Figure S2d) is lost. In addition to the 

lost visual correspondence, the segmented texture regions in the ORTSEG-segmented image 

are spatially disjoint, whereas in the ground truth images (Figures 2b and 2e) and the 

segmented result obtained by the EKM-NMF_L0 algorithm (Figure 2c), they are entangled. 

The EKM-NMF_L0-based segmentation of the image of the unstained specimen of human 

hepatocellular carcinoma also demonstrated decreased similarity between the spectral profiles 

of the tissue components. For the image of the unstained specimen shown in Figure 2a, the 

following applies: μ(A)>0.9999 and μ_average(A)=0.9985. The EKM-based mapping Ψ(X) 

in (2), parameterized with σ2=0.1 and D=50, yields μ(B)=0.9760 and μ(B)_average=0.8937 

(Methods and Supplementary Material 2). The reported correlation values for synthetic and 

experimental images were obtained with σ2=0.1, but Figures 1f and 2f suggest that it is 

possible to further decrease the correlation between basis vectors { } 1

M

m m=
b by decreasing σ2. 

However, the decrease depends on the signal-to-noise ratio because mapping Ψ(X) with too 

small σ2 makes it more sensitive to noise (Supplementary Material 3 and Table 1).  

 Segmentation of the color microscopic image of the unstained specimen of human 

liver with metastasis from colon cancer. The EKM-NMF_L0 algorithm was also applied to 

segment an image of the unstained specimen of human liver with metastasis from colon 



cancer (Figure 3a). Due to the absence of staining, the image is colorless and almost texture-

less. The ground truth images were obtained by staining the same section with H&E (Figure 

3d) and staining subsequent sections with Hep Par (Figure 3b), CDX2 (Figure 3e), and CK20 

(Figure 3f). In Hep Par, the ground truth image hepatocytes are colored brown, whereas the 

metastatic cells of colon cancer and the inflammatory cells are blue. In CDX2 and CK20, the 

ground truth images metastasis of colon cancer is colored completely or partially brown, 

whereas the hepatocytes and inflammatory cells are colored blue. The segmentation result of 

the EKM-NMF_L0 algorithm is shown in the color-coded image in Figure 3c, where the 

metastasis of colon cancer is shown in blue, the border area between the tumor and liver tissue 

(fibrosis, inflammatory cells and a few hepatocytes) is in red and the hepatocytes are in green. 

The visual correspondence between the EKM-NMF_L0 result in Figure 3c and the ground 

truth images in Figures 3b, 3e and 3f is evident. In contrast, the segmentation results obtained 

by the NMF_L0 algorithm, shown in Figure S3b, the k-means clustering in the CIE L*a*b* 

color space (Figure S3a), and the ORTSEG algorithm (Figures S3c and S3d), do not 

correspond visually to the ground truth images. EKM-NMF_L0-based segmentation of the 

image of the unstained specimen of human liver with metastasis from colon cancer also 

demonstrated decreased similarity between the spectral profiles of the tissue components. For 

the image of the unstained specimen shown in Figure 3a, the following applies: μ(A)=0.9997 

and μ_average(A)=0.9993. The EKM-based mapping of Ψ(X) in (2), parameterized with 

σ2=0.1 and D=50, yields μ(B)=0.9998 and μ(B)_average=0.9984 (Methods and 

Supplementary Material 2). Although the average correlation decreased, the worst case 

correlation increased negligibly, which is a consequence of the coarse quantization of the 

intensity levels of the spectral images acquired with 8-bits per pixel. The image shown in 

Figure 3a is demanding for segmentation.  

      Segmentation of the color microscopic image of the unstained specimen of human liver 

with metastasis of gastric cancer. The EKM-NMF_L0 algorithm was applied to the 

segmentation of an image of an unstained specimen of human liver with metastasis of gastric 

cancer (Figure 4a). As before, due to the absence of staining, the image appears colorless and 



almost texture-less. The ground truth images were obtained by staining the same section with 

H&E (Figure 4d) and by staining subsequent sections with Hep Par (Figure 4b), CDX2 

(Figure 4e), and LCA (Figure 4f). In Hep Par, the ground truth image hepatocytes are colored 

brown, and the metastatic cells from gastric cancer and the inflammatory cells are colored 

blue. In CDX2, the ground truth image metastasis of gastric cancer is colored brown, and the 

hepatocytes and inflammatory cells are colored blue. In LCA, the ground truth image 

inflammatory cells are colored brown and the hepatocytes and metastasis of gastric cancer are 

colored blue. The segmentation result of the EKM-NMF_L0 algorithm is shown in the color-

coded image in Figure 4c, where the metastasis of gastric cancer is shown in blue, the border 

area of the inflammation is shown in red and hepatocytes are shown in green. The visual 

correspondence between the EKM-NMF_L0 segmented image (Figure 4c) and the ground 

truth images (Figures 4b, 4e and 4f) is evident. In contrast, the segmentation results obtained 

by the NMF_L0 algorithm (Figure S4b), the k-means clustering in the CIE L*a*b* color space 

(Figure S4a), and the ORTSEG algorithm (Figures S4c and S4d) do not correspond visually 

to the ground truth images. The EKM-NMF_L0-based segmentation of the image of the 

unstained specimen of human liver with metastasis of gastric cancer also demonstrated 

decreased similarity between the spectral profiles of the tissue components. For the image of 

the unstained specimen shown in Figure 4a, the following applies: μ(A)=0.9999 and 

μ_average(A)=0.9988. The EKM-based mapping of Ψ(X) in (2), parameterized with σ2=0.1 

and D=50, yields μ(B)=0.9994 and μ(B)_average=0.9917 (Methods and Supplementary 

Material 2).  

         Segmentation of the color microscopic image of unstained cryosections of mouse fatty 

liver. The EKM-NMF_L0 algorithm was tested on the segmentation of images of unstained 

cryosections of mouse fatty liver (Figures S5a and S6a). Subsequent cryosections were further 

colored by H&E (Figures S5b and S6b) and by specific Sudan 3 dye (Figures S5c and S6c). 

Sudan 3 was used to identify the fat storage granules (colored in orange) in the liver cells. 

Compared to the Sudan 3-stained section (Figure S5c), the EKM-NMF_L0 algorithm 

successfully discriminated the fatty vacuoles, which are shown in yellow (Figure S5d). 



Moreover, the EKM-NMF_L0 algorithm was able to discriminate blood vessels (red), 

sinusoids (sky blue), reticular fibers (magenta) and hepatocytes (green) (Figures S6d and S6e) 

from the image of the unstained specimen shown in Figure S6a, as confirmed by the visual 

correspondence with the ground truth images obtained by staining the cryosections with H&E 

(Figure S6b) and Sudan 3 (Figure S6c).   

 

DISCUSSION 

We derived a blind-source separation method that performs factorization of the multichannel 

image in RKHS with binary {0, 1} and orthogonality constraints imposed on the sources. 

When applied to the color microscopic images of unstained specimens, the method decreases 

the correlation between spectral profiles of tissue components present in the specimen, which 

is expected to enable separation and then digital staining of the tissue components that 

otherwise appear colorless and almost texture-less when viewed under a light microscope. 

The ultimate (long term) aim for the development of the proposed method is the substitution 

of time consuming staining procedure by digital staining. This goal is motivated by the 

following reasons. Although the staining of specimens in the slide preparation process has 

been in place for many years to highlight tissue components,25, 26 it also has limitations and 

negative effects. Thus, substitution by a method that segments an image of unstained 

specimens and digitally colors the segmented tissue components would result in the following 

benefits: (i) shortening of the slide preparation process; (ii) reduction of the variation in 

diagnosis between histologists; (iii) total elimination of the chemical effects on a specimen; 

(iv) elimination of the morphological changes of a specimen; (v) simplification of the 

histological and intra-surgical tissue analysis; (vi) significant cost savings; (vii) prevention of 

harm to the user because chemical stains are not used; (viii) discrimination of several tissue 

components present in the same section of the specimen; and (ix) the ability to use the same 

section of a specimen for more than one analysis.  



 However, because segmentation of the images of unstained specimens is a very 

difficult image processing problem, the goal of the present study was to validate, on the proof-

of-concept level, the capability of the developed method to separate tissue components 

present in unstained specimens related to clinically relevant problems. Thus, segmentation has 

been performed on images of unstained specimens of human hepatocellular carcinoma, 

human liver with metastasis from colon and gastric cancer, and segmentation of tissue 

components from the image of unstained specimens of mouse fatty liver. This has been 

performed approximately correct using an RGB image acquisition system with 8-bits per 

pixel encoding of each monochromatic image. The Matlab implementation of the proposed 

method executed segmentation in approximately 250 seconds, whereas implementation on 

graphical processing units can bring a 10- to 100-fold increase in speed27-29, which could 

make the proposed method suitable for applications such as intraoperative (frozen section) 

tissue analysis. In that scenario, it is necessary for segmentation and digital staining to be 

executed quickly. The proposed method could be combined with the images of H&E stained 

specimens, which have deteriorated quality due to different types of tissue preparation 

(cryopreservation). Because the proposed method performs segmentation, it can be used for 

demarcation as well30. Arguably, tissue components segmented by the proposed method can 

be used for texture-based feature extraction31 and training of predictive models for computer 

assisted diagnoses. However, conjectured applications of the proposed method were out of the 

scope of the current study. It is clear that the performance of the proposed method is limited 

by the initial contrast (spectral similarity) between the histological structures present in the 

unstained specimen. This limitation can be improved if, instead of the currently used RGB 

image acquisition system with 8-bits per pixel encoding of each monochromatic image, a 

multispectral image acquisition system is used. In this regard, we mention the multispectral 

imaging systems32, 33 that were used to digitally stain H&E stained images32 or unstained 

images33. In particular, a multispectral imaging system with 5-nm spectral resolution 

comprising 63 monochromatic images encoded with 16-bits per pixel has been used in ref. 32. 

Such multispectral imaging of unstained specimens will have significantly increased initial 

contrast (measured by mutual coherence) in comparison with the RGB image of the same 



specimen. Thus, a combination of the proposed segmentation method and the described 

multispectral imaging system can substitute for staining in many relevant scenarios in 

pathology and/or cytology. Furthermore, provided that the SNR is high enough, a decrease of 

the variance of the Gaussian kernel in EKM can also decrease the correlation between the 

spectral profiles of low-contrast components (Table 1 and Figures S1 and S2), i.e., denoising 

of the image of the unstained specimen with an advanced algorithm34 could further improve 

the capability of the proposed method to separate low-contrast histological structures.  

 

METHODS 

Derivations and proofs. We describe the representation of the multichannel RGB color 

microscopic image by a linear mixture model (1) (Supplementary Materials 1). We discuss 

how the high correlation between the spectral profiles of histological structures present in the 

image of the unstained specimen disables the sparseness-constrained factorization algorithms 

to yield results that are useful for visual interpretation, i.e., to separate healthy and disease 

tissues (Supplementary Materials 2). We prove that the EKM-based mapping of color images 

represented by the linear mixture model (1) remains invariant with respect to binary {0, 1} 

and orthogonal source components (Supplementary Materials 3). We also show that EKM-

based mapping of the color images of unstained specimens yields multichannel images with 

an increased number of non-physical color bands and with significantly less correlated 

spectral profiles of the same histological structures (Supplementary Materials 3). 

Furthermore, we describe the sparseness-constrained nonnegative matrix factorization 

methods used to extract the histological structures from the EKM-mapped color image of the 

unstained specimen (Supplementary Materials 4). Finally, we perform extensive benchmarks 

on the synthetic image (Figures 1 and S1) and the experimental images of unstained 

specimens (Figures 2 to 4 and S2 to S6).  

 
 



Estimation of the correlations between the spectral profiles of tissue components. We 

write (1) at some arbitrary pixel position: 

   1,...,p p p P= =x As      (3) 

where 1
0
N

p R ×
+∈x  and 1

0
M

p R ×
+∈s . Within this study, it is assumed that sources (tissue 

components) are orthogonal and binary:  

  ( )
1 2 1 2m p m ps s m mδ= −  ∀p=1,...,P and ∀m1, m2 =1,...,M  (4)  

An important implication of (4) is that (3) can be written as: 

   ( )p m p=x a        (5) 

where { }( ) 1,...,m p M∈  denotes the index of the source that is present at pixel p. Thus, by 

virtue of (5), and by knowing the spatial locations of particular histological structures (they 

can be inferred from the H&E stained image shown in Figures 2e, 3d and/or 4d), spectral 

profiles { } 1

M

m m=
a  of the tissue components can be estimated from the original image X. 

Afterward, the worst case correlation, i.e., mutual coherence μ(A), and the average correlation 

between { } 1

M

m m=
a , μ_average(A), are calculated as: 
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where ,i ja a  stands for the inner product between ai and aj, and ia  stands for the 2 -norm 

of ai. 

Values of μ(A) and/or μ_average(A) "very close" to 1 drastically reduce the possibility of 

separating corresponding tissue components.  

 

Immunohistochemistry of human and animal specimens.  

Paraffin-embedded samples of human liver tissue were sectioned (at 5 µm) using a microtome 

(Leica RM2125RTS). After deparaffinization and rehydration (by xylene and a series of ethyl 

alcohol concentrations), antigen retrieval was performed by citrate buffer pH 6.0 at sub-

boiling temperature. The section was then photographed with a microscope camera followed 

by staining with H&E. Subsequent sections of the same tissue sample were further stained 

using immunohistochemistry (IHC). IHC is a method for localizing specific antigens in 

tissues or cells based on antigen-antibody recognition. It seeks to exploit the specificity 

provided at the light microscopic level. An antibody is a molecule that has the property of 

combining specifically with a second molecule, termed the antigen. Antigen-antibody 

recognition is based on the three-dimensional structure of the protein or antigen, which is a 

critical issue in this type of staining. In this study, we used several specific primary antibodies 

(Hepatocyte clone OCH1E5, CDX2 clone DAK-CDX2, LCA clone 2B11+PD7/26, and CK20 

clone Ks20.8, all from Dako, Denmark)35 and stained using the Dako Envision System 

(Denmark). CDX-2 is a homebox gene that encodes the CDX-2 protein, which is a 

transcription factor expressed in the nuclei of intestinal epithelial cells. CDX2 is also used in 

diagnostic surgical pathology as a marker for gastrointestinal differentiation, especially 

colorectal differentiation. Hepatocyte Paraffin 1 (Hep Par 1) recognizes the mitochondrial 

antigen of hepatocytes and determines the hepatocellular origin of cells. It is also positive in 

hepatocellular carcinoma and can differentiate HCC from cholangiocarcinoma or metastases 

to the liver. Keratin 20, often abbreviated CK20, is a protein that is encoded by the KRT20 



gene in humans. It is a major cellular protein of mature enterocytes and goblet cells and is 

specifically found in the gastric and intestinal mucosa. In IHC, antibodies to CK20 can be used 

to identify a range of adenocarcinomata arising from epithelia that normally contain the CK20 

protein. For example, the protein is commonly found in colorectal cancer. LCA (CD45) is a 

family of single chain transmembrane glycoproteins. CD45 is exclusively expressed in 

haematolymphoid cells: precursor cells and mature B- and T-lymphocytes, granulocytes, 

monocytes/histiocytes and interdigitating reticulum cells and follicular dendritic cells.  

CBA mice of both sexes (3-4 weeks of age) were obtained from the Animal Facility of Rudjer 

Boskovic Institute. The mice were fed a high-fat diet containing 58% energy from fats, 24% 

from carbohydrates and 18% from proteins (Mucedola, Italy) during a 15-week period. Food 

and water was provided ad libitum. The animals were housed in standard conditions: 3 mice 

per cage, at 22°C and 50-70% humidity, with a 12 h light and 12 h darkness cycle. Body 

weight and food intake were monitored once a week. At the end of the study period, the mice 

were killed by CO2 gas. The livers were fixed in 4% p-formaldehyde (Fluka) in PBS 

containing 0.1% picric acid for at least 4 h, washed in PBS and preserved by immersion in 

20% sucrose in PBS overnight. The liver tissue was then frozen in OCT compound (Sakura 

Finetek, USA) and cryosectioned at 7 µm. One liver section was stained by H&E (after 

acquisition of an image under a light microscope), and a subsequent section was stained by 

Sudan 3 (1% Sudan 3 solution in 70% ethyl alcohol, Kemika, Croatia).  

 

Implementation details. Studies on the numerical and experimental data reported above were 

executed on a personal computer running the Windows 64-bit operating system with 64 GB of 

RAM using an Intel Core i7-3930K processor and operating with a clock speed of 3.2 GHz. 

The Matlab (Matlab 2012b, MathWorks) environment was used for programming. 

Implementation of the NMF_L0 algorithm in the MATLAB® script language (The 

MathWorks, Inc., Natick, MA) is freely available at "Peharz, R., NMF with l0-sparseness 

constraints: https://www.spsc.tugraz.at/tools/nmf-l0-sparseness-constraints (Date of access: 



5/3/2015)". Implementation of the NMU algorithm in the MATLAB® script language is freely 

available at "Gillis, N., Nonnegative matrix underapproximation (NMU): 

https://sites.google.com/site/nicolasgillis/code - Global NMU (Date of access: 5/3/2015). 

Images were acquired under an Olympus BX51 fluorescence light microscope with a DP50 

camera, UPPLANFL objective with 40× magnification and numerical aperture 0.75, an 

objective lens with magnification of 10× (that yields an overall magnification of 400×), 

0.45μm spatial resolution, and illumination between 480 nm and 620 nm. The size of the 

sample was 459.26 μm × 344.2 μm. Viewfinder Lite 1.0 image acquisition software 

(analySIS®) with 8-bit resolution per monochromatic (spectral) image was used to capture the 

RGB image with a size of 2074×2776 pixels. Before segmentation, the acquired images were 

downsampled to the size of 1037×1388 pixels. Thus, the area covered by one pixel amounts to 

0.1098 μm2. Because the spatial resolution of the microscope is 0.45 μm, the assumption that 

each pixel is occupied by only one tissue component is justified. The segmentation of each 

image by the EKM-NMF_L0 algorithm took approximately 250 seconds.  

 

Studies involving human subjects and animals. The methods in the study were carried out 

in accordance with approved guidelines by Clinical Hospital Dubrava Ethics Committee 

(October 10, 2013) and the Bioethics Committee of the Ruđer Bošković Institute (BP-2290/2-

2012). Because of its retrospective nature, informed consent was not required from human 

subjects. 
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Table 1. Variance σ2 of the Gaussian kernel based EKM as a function of the per-spectral-

channel SNR.  

 

SNR [dB] SNR≥ 29 18≤SNR≤28 17≤SNR≤14 

σ2 0.001 0.01 0.1 

 

 

Table 2. The mixing matrix A in (1).  

 

  

 1.0000    1.0000    0.7854    1.0000   1.0000

 2.5574    2.0000    2.0000    1.7854   2.7183

 2.7183    1.7854    2.0000    2.0000   2.5574

 
 =  
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A  
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Figure Legends 

Figure 1. (a) Synthetic image in red-green-blue color space composed of five spectrally highly 

similar objects. There is additive white Gaussian noise in each spectral channel with SNR=70 

dB. (b) color-coded ground truth image. (c) color-coded image of the segmentation result 

obtained by the EKM-NMU algorithm (Gaussian kernel with σ2=0.01 and D=20). (d) color-

coded image of the segmentation result obtained by the NMU algorithm. (e) color-coded 

image of the segmentation result obtained by the k_means algorithm in the CIE L*a*b* color 

space. (f) μ_average(A) for basis matrix A in (1) and μ_average(B) for basis matrix B in the 

EKM-induced space (2). (g) spectral responses of five objects in red (1)-green(2)-blue(3) 

color space, μ(A)=0.9995, μ_average(A)=0.9956. (h) spectral responses of five objects in 

non-physical color space induced by EKM (D=20, Gaussian kernel with σ2=0.01), 

μ(B)=0.9807, μ_average(B)=0.3777.  

 

Figure 2. Human liver with hepatocellular carcinoma. (a) red-green-blue (RGB) color 

microscopic image of unstained specimen. (b) "ground truth – different slides" RGB color 

microscopic image of the specimen stained by Hep Par. (c) color-coded (digitally stained) 

image of the segmentation result obtained by the EKM-NMF_L0 algorithm (Gaussian kernel 

with variance=0.1 and D=50): blue: hepatocellular carcinoma, red: blood vessel, green: tumor 

fibrotic capsule. (d) color-coded (digitally stained) image of the segmentation result obtained 

by the NMF_L0 algorithm. (e) RGB color microscopic image of the specimen (a) stained 



subsequently by H&E. (f) average mutual coherence for the original matrix of the spectral 

profiles and matrices in the EKM-induced space. (g) spectral responses of the tumor fibrotic 

capsule, blood vessel and hepatocellular carcinoma in RGB (1-2-3) color space, μ(A)>0.9999, 

μ_average(A)=0.9985. (h) spectral responses of the tumor fibrotic capsule, blood vessel and 

hepatocellular carcinoma in non-physical color space induced by EKM (D=50, Gaussian 

kernel variance=0.1), μ=0.9760(B), μ_average(B)=0.8937.  

 

Figure 3. Human liver with metastasis of colon cancer. (a) red-green-blue (RGB) color 

microscopic image of unstained specimen. μ(A)=0.9997, μ_average(A)=0.9993. (b) "ground 

truth – subsequent slides" RGB color microscopic image of the specimen stained by Hep Par. 

(c) color-coded (digitally stained) image of the segmentation result obtained by the EKM-

NMF_L0 algorithm (Gaussian kernel variance=0.1 and D=50): blue: metastasis of colon 

cancer, red: border area between tumor and liver tissue, green: hepatocytes. μ(B)=0.9998, 

μ_average(B)=0.9984. (d) RGB color microscopic image of the specimen (a) stained 

subsequently by H&E. (e) "ground truth – subsequent slides" RGB color microscopic image 

of the specimen stained by CDX2. (f) "ground truth - subsequent slides " RGB color 

microscopic image of the specimen stained by CK20. 

 

Figure 4. Human liver with metastasis of gastric cancer. (a) red-green-blue (RGB) color 

microscopic image of unstained specimen. μ(A)=0.9999, μ_average(A)=0.9988. (b) "ground 

truth – subsequent slides" RGB color microscopic image of the specimen stained by Hep Par. 

(c) color-coded (digitally stained) image of the segmentation result obtained by EKM-

NMF_L0 algorithm (Gaussian kernel variance=0.1 and D=50): blue: metastasis of gastric 

cancer, red: border area of inflammation, green: hepatocytes. μ(B)=0.9994, 

μ_average(A)=0.9917. (d) RGB color microscopic image of specimen (a) stained 

subsequently by H&E. (e) "ground truth – subsequent slides" RGB color microscopic image 



of the specimen stained by CDX2. (f) "ground truth - subsequent slides" RGB color 

microscopic image of the specimen stained by LCA. 
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