Radiocarbon dating of artworks

Ines Krajcar Bronić, Nada Horvatinčić, Jadranka Barešić, Andreja Sironić
Ruđer Bošković Institute, Zagreb

krajcar@irb.hr
Dating – determination of the age of an object

Absolute dating of object of cultural heritage and art is one of the most important issues in art history studies and in archaeology.

Accurate dating in art history is essential for valuation of original objects of arts, for differentiation between the original works and later imitations and/or frauds and for recognition of reparation and restauration works.
Relative dating provides relative order of past events, without necessarily determining their absolute age.

Absolute dating methods provide the absolute age of artefacts. In archaeology and art history, mostly used methods are radiocarbon dating and TL dating, and dendrochronology.

Relative methods may complement information obtained by absolute dating.
Radiocarbon (^{14}C) dating

- one of the most well-known radiometric methods of absolute dating
- it can be applied for dating materials of biogenic origin, such as wood, charcoal, bones, grains, paper, parchment, textile, etc.
- the range of ^{14}C age determination spans from 19$^{\text{th}}$ century up to ~60,000 years in the past
- the anthropogenic influence on the natural ^{14}C distribution during 20$^{\text{th}}$ century can be used for recognition of frauds
$^{14}N + n \rightarrow ^{14}C + p$

O$_2$

$^{14}CO_2$

$^{14}C \rightarrow ^{14}N + e + \bar{\nu}$

Carbon on Earth

^{12}C: 98.89%
^{13}C: 1.1%
^{14}C: 1.18 x 10$^{-10}$%
Assuming the 14C level in the atmosphere has been constant, we can calculate how long ago an organism was in equilibrium with the atmosphere (= alive), if we measure the remaining 14C level.
Is the assumption of the constant 14C level in the atmosphere correct?

Variations in 14C production produce consistent differences between obtained radiocarbon ages and calendar ages.

Natural variations caused by geomagnetic and solar modulation of the cosmic-ray flux

Fluctuations in radiocarbon activity of the atmosphere over last 1000 years
Anthropogenic activities

14C in atmospheric CO_2 on the Northern Hemisphere

14C in atmospheric CO_2 (pMC)

- Nuclear test ban treaty, 1963
- Intense atmospheric nuclear tests
- Fossil fuel combustion
Due to very low natural ^{14}C concentration the radiocarbon dating method requires special techniques for chemical preparation of samples and measurement of ^{14}C.

Particular care has to be taken for sample collection and/or storage as well as during sample pretreatment and chemical preparation.
Preparation of samples

- Extract all carbon from a sample (fractionation)
- All carbon only from the sample (contamination)

All sample pretreatment and preparation techniques, as well as measurement techniques of large efficiency

- Low relative abundance of 14C atoms (<10^{-10} %)
- Low electron energy (<156 keV)
- Low activity of 14C in natural materials, < 13 decays/min/g of carbon
Radiometric – number of decays per time (i.e., decay rate) of 14C per mass of carbon
required mass of C: 1 - 5 g
Required mass of samples: 10 - 50 g

\[^{14} \text{C} \rightarrow ^{14} \text{N} + e^- + \nu \] (156 keV)

Gas proportional counters (GPC)
Liquid scintillation counters (LSC)

Accelerator Mass Spectrometry (AMS) – number of 14C atoms is counted, together with the number of 12C and 13C
Required mass: <2 mg C, <1 g sample

The main advantage of the AMS 14C method is the possibility of measurement of very small amount of samples, but also a better accuracy is obtained
Laboratory for Low-level Radioactivity at the Ruđer Bošković Institute is the only radiocarbon laboratory in Croatia and in wider area, and has a long experience in radiocarbon dating (since 1968).

Two measurement techniques for 14C dating are used:

1) sample preparation in form of benzene and measurement of 14C activity by liquid scintillation counter (LSC) (Horvatinčić et al., 2004)

2) sample preparation in form of elemental carbon (graphite) and measurement of 14C atoms by accelerator mass spectrometry (AMS) (Krajcar Bronić et al., 2010).

3) For monitoring purposes – absorption of CO$_2$

4) Determination of biogenic fraction in fuels
Flowchart of chemical preparation techniques for AMS, LSC-A, LSC-B methods
What is the results of the measurement?

- conventional radiocarbon age of the sample, expressed in years Before Present (BP), where 0 BP = 1950 AD
- conventional 14C years do not directly equate to calendar years because atmospheric 14C concentration varies through time due to changes in the production rate
- a **calibration is required** to convert the conventional radiocarbon age to the calendar age
- accurate and precise **calibration curves** should be based on absolutely dated record that has carbon incorporated directly from the atmosphere at the time of formation
Radiocarbon calibration curves

ARCHIVES:
- Tree-rings
- Speleothems
- Marine sediments
- Lake sediments
- Corals
Presentation of calibrated data

Example of a single calibrated date

Conventional radiocarbon ages (ordinate) in years BP are represented as the Gaussian curve with mean and standard deviation (uncertainty) being 1420 ± 25. Calibrated values, in calendar years, are obtained by transferring the values on ordinate over calibration curve to the abscissa. Results can be presented by 1σ, 2σ or 3σ probabilities and by mean or median values.
Several cases of ^{14}C dating of various objects of arts will be presented here.

How to interprete radiocarbon dates and calibrated ages?

One has to keep in mind that radiocarbon dating gives the **age of material** (e.g., wood) and not the time of the creation of the art work, and that the creation of the art work cannot precede the formation of the material.
Case 1. a wooden object

Expected date: 1214 AD
3 pieces of wood dated (AMS)

<table>
<thead>
<tr>
<th>Z</th>
<th>A</th>
<th>Sample name</th>
<th>δ^{13}C (%)</th>
<th>a^{14}C (pMC)</th>
<th>Conventional 14C age (BP)</th>
<th>Calibrated age (calAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5719</td>
<td>1105</td>
<td>Sample #1, walnut tree</td>
<td>-23.6</td>
<td>90.80±0.25</td>
<td>775 ± 22</td>
<td>1245-1272 60.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1227-1232 7.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>median 1254</td>
</tr>
<tr>
<td>5720</td>
<td>1107</td>
<td>Sample #2, walnut tree</td>
<td>-24.3</td>
<td>89.63±0.24</td>
<td>879 ± 21</td>
<td>1155-1210 68.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>median 1171</td>
</tr>
<tr>
<td>5721</td>
<td>1108</td>
<td>Sample #3, oak tree</td>
<td>-27.1</td>
<td>89.54±0.24</td>
<td>887 ± 21</td>
<td>1054-1078 63.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1198-1205 4.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>median 1159</td>
</tr>
</tbody>
</table>
1214 AD
Case 2. a violine

Assumed: Jacobus Steiner, 1665
A peg was 14C dated (AMS)
Fojnica is a town and municipality in central Bosnia and Herzegovina, located west of the capital Sarajevo. The most important cultural site in Fojnica is the Holy Spirit Franciscan Monastery which houses an important part of the nation's cultural heritage, maintained by the Franciscan Province of Bosna Srebrena.

The Franciscan monastery in Fojnica has a large library of philosophical and theological works printed from the 16th to the 19th centuries, with some dating back to 1481.

The monastery's museum collections hold the Ahd-Namah (the Order) of Sultan Mehmed II the Conqueror (1463 AD) guaranteeing security and freedom to the Franciscans. This document allowed the Franciscans of the day to preach freely among the Catholics in BiH, which in turn enabled the preservation of Bosnian Catholicism through the centuries.

In 2013 celebration of the 550th anniversary
Ahd-Namah and mantel from the museum collection in Fojnica Monastery (Ottoman Empire, Sultan Mehmed II, 1463 AD)
Paper sample taken from upper part of Ahd-Namah (sample #1)

Paper sample taken from lower part of Ahd-Namah (#2)
Sampling of linen of mantel from the same period (Fra Anđelo Zvizdović)
Upper part (#1)

14C conventional age (yr BP): 215 ± 30

Calibrated age (cal AD): 1650 – 1799 (55.9%)

Median cal AD: 1773

Lower part (#2)

14C conventional age (yr BP): 410 ± 25

Calibrated age (cal AD): 1443 – 1484 (68.2%)

Median cal AD: 1466
14C age of linen of mantel

<table>
<thead>
<tr>
<th>14C conventional age (yr BP)</th>
<th>360 ± 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated age (cal AD)</td>
<td>1469 – 1625 (68.2%)</td>
</tr>
<tr>
<td>Median cal AD</td>
<td>1542</td>
</tr>
</tbody>
</table>
Fojnički grbovnik *Fojnica Armorial*
an early modern roll of arms including heraldry of South Slavic history.
The manuscript is an important source of the classical heraldry of the Balkans peninsula.
The manuscript contains a total of 139 coats of arms.

Various estimates of its ages (from 1340 AD to 18th cent.)
Most probably dated to in between 1675 and 1688, i.e. in the context of the revolts against Ottoman rule during the Great Turkish War.
14C dating – 2 samples, paper, AMS

<table>
<thead>
<tr>
<th>ID</th>
<th>Sample name</th>
<th>Conventional 14C age (BP)</th>
<th>δ^{13}C (‰)</th>
<th>Calibrated age (cal AD)</th>
<th>median cal AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-5700 A1079</td>
<td>Papir (thick), #1</td>
<td>270 ± 20</td>
<td>-25,6</td>
<td>1635 – 1662 (60,5%)</td>
<td>1645</td>
</tr>
<tr>
<td>Z-5701 A1080</td>
<td>Papir (thin), #2</td>
<td>105 ± 20</td>
<td>-24,9</td>
<td>1695 – 1917 (68,2%)</td>
<td>1840</td>
</tr>
</tbody>
</table>

Confirmed hypothesis for the time of origin (17th century)
MILAN STEINER (1984 – 1918)
Was he the author of the painting?
The result support the hypothesis, or at least does not contradict it
1. Constant production of \(^{14}\text{C}\) during last 60 000 years (calibration!)

2. Uniform distribution of \(^{14}\text{C}\) in the biosphere (stationary, well-mixed reservoirs) – \(\delta^{13}\text{C}\) normalization

3. Origin of carbon in a sample known („closed system”) (initial activity, contamination...)

Radiocarbon dating – Summary
Results of radiocarbon measurements expressed as

- **Conventional radiocarbon age**
 - BP
 - Years BP, 0 BP = 1950 AD
 - $\delta^{13}C$ normalization, Libby half-life 5568 yr

- **Calibrated age**
 - cal BC/AD
 - Cal BC, Cal AD, probabilities and ranges
 - Calibration by common software

- **Relative specific activity**
 - pMC, permille, Fraction....
 - (more often in other applications)
CONCLUSIONS

❖ Radiocarbon dating gives the age of material (e.g., wood, canvas... - the material of biogenic origin) and not the time of the creation of the art work - the creation of the art work cannot precede the formation of the material

❖ Radiocarbon dating cannot give a single year – a range of years is obtained with a certain probability, the width of the range depends on the measurement uncertainty and on the shape of the calibration curve

❖ Interpretation of results should be performed in close collaboration of art historian and radiocarbon specialists
Carbon isotopes

\[^{12}\text{C} \quad 98.89\% \quad p = n = 6 \]

\[^{13}\text{C} \quad 1.11\% \quad n = 7 \]

\[^{14}\text{C} \quad 10^{-10}\% \quad n = 8 \quad T_{1/2} = 5730 \text{ y} \]
Comparison of 14C AMS and LSC techniques at the Ruđer Bošković Institute

<table>
<thead>
<tr>
<th>Comparison Parameter</th>
<th>14C AMS</th>
<th>14C LSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass of C in sample / g</td>
<td>$3.5 \cdot 10^{-3}$</td>
<td>4-5 (2.5)</td>
</tr>
<tr>
<td>Form of prepared sample</td>
<td>graphite (+Fe)</td>
<td>benzene</td>
</tr>
<tr>
<td>Mass of prepared sample / g</td>
<td>$1.5 \cdot 10^{-3}$</td>
<td>4</td>
</tr>
<tr>
<td>Measurement accuracy / pMC</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Detection limit / year BP</td>
<td>56 200</td>
<td>55 000</td>
</tr>
<tr>
<td>Time of measurement</td>
<td><30 minutes</td>
<td>24 hours</td>
</tr>
<tr>
<td>No. of prepared samples per week</td>
<td>16</td>
<td>5</td>
</tr>
</tbody>
</table>