
Cloudflow – A Framework for MapReduce
Pipeline Development in Biomedical Research

Lukas Forer1,2, Enis Afgan3,4, Hansi Weißensteiner1,2, Davor Davidović3, Günther Specht2,
Florian Kronenberg1, Sebastian Schönherr1,2,

1Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
2Institute of Computer Science, Research Group Databases and Information Systems, Innsbruck, Austria

3Center for Informatics and Computing, Ruđer Bošković Institute, Zagreb, Croatia
4Department of Biology, Johns Hopkins University, Baltimore MD, USA

sebastian.schoenherr@i-med.ac.at

Abstract - The data-driven parallelization framework
Hadoop MapReduce allows analysing large data sets in a
scalable way. Since the development of MapReduce
programs can be a time-intensive and challenging task, the
application and usage of Hadoop in Biomedical Research is
still limited. Here we present Cloudflow, a high-level
framework to hide the implementation details of Hadoop
and to provide a set of building blocks to create biomedical
pipelines in a more intuitive way. We demonstrate the
benefit of Cloudflow on three different genetic use cases. It
will be shown how the framework can be combined with the
Hadoop workflow system Cloudgene and the cloud
orchestration platform CloudMan to provide Hadoop
pipelines as a service to everyone.

The framework is open source and free available at
https://github.com/genepi/cloudflow.

I. INTRODUCTION
Since the advent of high-throughput technologies in

the field of molecular biology (i.e. Next Generation
Sequencing (NGS)), even more data is produced and
needs to be analysed. Thus, molecular biology has
envolved into a big data science, where the bottleneck is
no longer the production of raw data in the laboratory, but
its analysis and interpretation [1]. To scale with the
increasing data volume and the number of available
resources, workflows need to be parallelized efficiently.
MapReduce and Cloud Computing constitute an attractive
alternative to deal with the large datasets [2]. However,
writing a MapReduce job can be a challenging task that
prevents domain experts from using such models in their
daily work. Additionally, the reusability of the mapper
and reducer functions is limited, resulting in a use-case
specific implementation for every problem.

Existing high-level languages on top of Hadoop
facilitate the development process and allow writing
MapReduce jobs in form of queries. For example, Apache
Pig (http://pig.apache.org/) provides a compiler to
translate such queries into an execution plan, which is then
automatically translated into a sequence of MapReduce
jobs. Apache Pig provides interfaces for filter, group and
join operations, extendible for application-specific logic
using user defined functions (UDFs). However, Apache
Pig has been developed to analyze datasets based on the
relational model. The execution of complex calculations
across several rows is limited. This implies the

consequence that users have to write complex UDFs.
Again, such functions need to be implemented by the end
users and can be, similar to native MapReduce jobs, hard
to implement, test and maintain. Several projects (e.g.
SeqPig [3] or BioPig [4]) make use of UDFs and provide a
collection of Pig scripts to researchers in Genetics. The
goal is to provide ready-to-use workflows to end users,
which can be then adapted to their use-case. Nevertheless,
combining different scripts to a pipeline or reusing
existing blocks does not build a key feature.

To overcome this issue, FlumeJava [5] proposed a new
concept to compose pipelines based on immutable parallel
collections where several operations can be used to
process them in a parallel way. This concept was
successfully implemented in Apache Crunch
(https://crunch.apache.org/), which executes the pipelines
as Hadoop MapReduce jobs. However, the utilization of
such pipelines in Bioinformatics is still limited.

In this paper we present Cloudflow, a MapReduce
pipeline framework, which is based on a similar concept
as proposed by [5]. In contrast to existing approaches,
Cloudflow was developed to simplify the pipeline creation
in biomedical research, especially in the field of genetics.
For that purpose Cloudflow supports a variety of NGS
data formats and contains a rich collection of built-in
operations for analyzing such kind of datasets (e.g. quality
checks, mapping reads or variation calling). The main
concept behind our approach is to break complex data
analysis steps into three basic operations. All further use-
case specific operations are built by implementing or
extending one of the basic operations. Pipelines are then
composed by creating a sequence of these operations. The
framework itself translates the set of pipeline operations
into one or more MapReduce jobs and decides which of
the operations are executed in the map or in the reduce
phase. Thus, Cloudflow hides the complexity and the
implementation details of MapReduce jobs allowing
scientists to build pipelines via an intuitive method.
Moreover, Cloudflow can be utilised in combination with
the workflow system Cloudgene [6]. To validate our
approach, we developed three Genetics data-analysis
pipelines with Cloudflow. The results demonstrate that
our contribution (a) helps minimizing the development
time, (b) increases the reusability of code, and (c) creates
only a minimal overhead in terms of execution time
compared to an identical MapReduce implementation.

MIPRO 2015/DC VIS 185

II. MAPREDUCE BACKGROUND
MapReduce is a parallel programming model

introduced by Google in 2004 with the aim to develop a
simple and scalable method to process large datasets on
several machines in parallel. The main idea behind this
distributed programming model is that a long-time
calculation is split into a map and a reduce phase which
contains all the logic behind the calculation and is
specified by the user. The underlying framework itself
takes care of parallelization, task scheduling, load-
balancing and fault-tolerance. Due to its simplicity,
MapReduce is used to solve many scientific problems
where large-scale computing is needed. Moreover,
MapReduce is ideal for parallel batch processing of
terabytes of input data. The data-flow of a MapReduce
program consists of several steps, where only the map and
reduce function are problem-specific and the other steps
are loosely coupled with the problem and generalized. In
the first step, the input data set is split into key/value pairs
and a user defined map function is executed for each pair:

map(key, value) → list((keyi, valuei)) , where i = 0… n

The map function reads a pair, performs some problem-
specific calculations and produces zero or n intermediate
key/value pairs for each input pair. In the next step, the
intermediate key/value pairs are grouped by similar keys
and a merged list of all values for this key is created.
Finally, the user-defined reduce function is applied to the
intermediate key/list pairs:

reduce(keyi, list(valuei)) → list(outvalue)

The values created by the reduce function are the final
outputs of a MapReduce job.

A. Apache Hadoop
Apache Hadoop is an open source project including
several sub-projects for distributed computing. It includes
the most widely used open-source implementation of
Google's MapReduce framework (simply called
MapReduce), the distributed file system (HDFS), and
several other sub-projects. In general, all previous
discussed features of the original MapReduce approach
are implemented in Apache Hadoop. Writing a
MapReduce job with Hadoop can either be done directly
in Java by implementing the relevant methods or by using
Hadoop's streaming mode. This allows specifying a script
or any executable as the mapper or reducer. Two different
versions of MapReduce are available. MRv1 includes a
namenode (centerpiece of HDFS), a secondary namenode
(merging logs into a file system snapshot), a job-tracker
(job assignment) and several task-trackers (workers).
MRv2 or Hadoop YARN, splits the work of the job-
tracker (resource management, job scheduling) into two
different daemons, namely a resource manager and an
application master. Additionally a node manager is
introduced to manage the user processes per node. The
application master describes a framework that works
together with the node manager and the resource manager
to monitor and to execute tasks. The idea behind this new
model is that applications using frameworks different

than MapReduce (e.g. Apache Spark) can be executed via
YARN as well.

B. High-Level Languages based on MapReduce
To simplify the implementation of MapReduce jobs,

Apache Pig has been introduced. It is based on HDFS and
MapReduce and allows a fast implementation of data
flows with already available data operations such as join,
filter or group by. Data flows are specified in the Pig Latin
language that describes a directed acyclic graph (DAG)
and defines how data should be processed. A further
advantage of Apache Pig is the ability to check the data
flow on optimizations, e.g. if two grouping statements can
be combined. The costs to write code in Apache Pig are
lower than setting up a Java project and implementing the
functions. But as stated earlier, Apache Pig includes only
a limited number of operators and writing Apache
MapReduce jobs directly in Java yields to advantages in
speed compared to Apache Pig.

C. MapReduce Pipelining
The pipeline framework FlumeJava [5] is based on the

concept of immutable parallel collections. This kind of
data-structure can be used to process and analyze their
items in parallel. The end user can either use one of the
predefined functions or can combine them with its own.
Each function is implemented as parallel for-each loop,
which is than translated by the framework into a series of
MapReduce jobs. During the translation, the framework
itself decides if such a function should be executed locally
(i.e. sequentially) or remotely (i.e. parallel). Apache
Crunch is a freely available open source implementation
of FlumeJava.

III. CLOUDFLOW
The overall idea behind Cloudflow is to simplify the

creation of analysis pipelines by encapsulating complex
data analysis steps in simple operations. This approach
helps hide the complexity and the implementation details
of complex data-parallel pipelines. Moreover, the concept
of using basic operations increases the reusability and
enables the testing of the operation logic on a local
workstation by using existing unit testing frameworks.

Since Cloudflow uses the Hadoop framework for
pipeline execution, it offers parallel data processing, data
reliability and fault tolerance out of the box. This fact is
especially important in the field of Cloud Computing,
where infrastructure often relies on commodity hardware
and nodes can fail on a regular basis (e.g. due to miss-
configuration or hardware failures). At the same time, the
architecture of Cloudflow is independent from
MapReduce; it provides parallelization constructs and
abstraction interfaces that can be used to extend the
system by implementing other parallel programming
models in the future (e.g. translating the operations into
Apache Spark jobs).

Instead of developing a new declarative language for
the pipeline composition, we developd a clear Java API.
The proposed framework implements different patterns to
speed up the pipeline creation, to be extensible and to
support test-driven pipeline development. The following

186 MIPRO 2015/DC VIS

section gives an overview on the abstraction, explains the
basic operations in detail, and shows how pipelines are
created.

A. Data Types and Basic Operations
Cloudflow operates on records consisting of a

key/value pair, whereby different record types are
available (e.g. TextRecord, IntegerRecord, FastqRecord).
A loader class is responsible to load the input data and to
convert it into an appropriate record type. As mentioned
earlier, Cloudflow supports three different basic
operations. These are used to analyze and transform
records; specifically, transform, summarize, and group
operations exist.

The transform-operation is used to analyze one input
record and to create between 0 and n output records. The
user implements the computational logic for this operation
by extending an abstract class. This class provides a
simple function, which is executed by the Cloudflow
framework for all input records in parallel:

Class MyTransformer extends Transformer {
 public void transform(Record) {
 doSomethingInParallel();
 emit(new Record());
 }
}

The summarizer operates on a list of records, whereby
records with the similar key are grouped. Thus, the
signature of the process method has the key and a list of
records as an input:

Class MySummarizer extends Summarizer {
 public void summarize(Key, List<Record>) {
 doSomethingInParallel();
 emit(new Record());
 }
}

The group-operation is a special operation, which takes a
list of records as an input and creates a Record group with
the same key. Our framework inserts automatically a
group-operation between a transform- and a summarize-
operation. This ensures, that output records of the
transform operation are compatible with the input records
of the summarize operation. The group-operation is
realized by using the shuffle phase of a MapReduce job.

Based on these three operations, the user defines pipelines
by building sequences of operations. A pipeline has to
start with a transform-operation, all further operations are
optional and can be used in arbitrary order.

B. Extended Operations
Complex operations are built by combing one or more

basic operations. We already implemented several
standard operations that are helpful for the analysis of text
or numerical data records:

- Filter: this operation is a special transform-
operation, which emits the record to the
subsequent operation iff a user-defined condition
is fulfilled.

- Split: the transform-operation calculates for each
input record a new split level (i.e. a new key).
This key is used by the group-by operation to

create chunks, which can then be analyzed by a
user-defined summarize-operation.

- Aggregation (sum, mean): This defines a group-
by-operation followed by a summarize-operation
to aggregate all values with the same key (e.g.
calculates the mean of all values). One record
with the aggregated value is then emitted to the
subsequent operation.

- Executor: this summarize-operation writes all
grouped values into a file on the local disk. It is
then used as the input of an external UNIX
command line program. Based on the lines of the
output file, new records are created and emitted to
the subsequent operation.

Since Cloudflow’s operations are based on the
Composite pattern, all these extended operations can also
be used as a basis for new operations. In addition, this
enables to split complex operations into several sub-
operations, which improves testing and maintenance.

C. Pipeline Composition
The user builds pipelines by connecting several

operations with compatible interfaces. For this purpose
our framework implements the Builder pattern, which
enables (a) building complex pipelines, (b) providing type
safety and (c) the implementation of domains specific
builders (see Section III.D). In addition, the Builder
pattern ensures that only a valid sequence of operations
can be created (i.e. after the group-by operation a
summarize operation has to be added).
Class LineToWords extends Transformer {
 public void transform(TextRecord rec) {
 String[] words = rec.getValue().split()
 for (String word: words){
 emit(new IntegerRecord(word, 1));
 }
 }
}

pipeline.loadText(input)
 .transform(LineToWords.class)
 .sum()
 .save(output);

Listing 1. WordCount Example using Cloudflow

To help the user and accelerate the pipeline
composition process, Cloudflow provides already a set of
useful operations. This has the advantage that even a
default WordCount example can be broken down into a
few simple operations and is defined in a single line of
code (see Listing 1). In a first step, the text file is loaded
from HDFS (loadText). Then, for each record (i.e. line of
input) the application-specific LineToWords operation is
executed, which splits the line into words and creates a
new record efor ach word. In the last step a predefined
sum operation is executed. It extends the pipeline by a
group-by operation and a summarize-operation in order to
sum up all the values for a certain key.

For frequently used operations (e.g. sum, mean or
count), we created special builder functions, which extend
the pipeline and improve the code readability by keeping
the code simple.

MIPRO 2015/DC VIS 187

D. Pipeline Execution
Before the execution, Cloudflow checks the

compatibility of input and output records of consecutive
operations. This ensures that only valid and executable
pipelines are submitted to a Hadoop cluster.

If the pipeline is executable and valid, then the
operation sequence is translated into an execution plan,
that decides if an operation is executed in the map or in
the reduce phase. Based on this plan, Cloudflow creates
one or more MapReduce jobs and configures them to
execute the user-defined operations in the correct order. In
this translation step, Cloudflow tries to minimize the
number of MapReduce jobs by combining consecutive
transform-operations and by executing all transform-
operations after a summarize-operation in the same
reducer instance (see Figure 1).

For additive summarize-operations (e.g. sum),
Cloudflow takes advantage of Hadoop’s combiner
functionality. The idea of this improvement is to combine
the key/value pairs that are generated by all map tasks on
the same machine, into fewer pairs. Thus, the number of
pairs that are transferred between mapper and reducer are
minimized, which results in a positive effect on the
network bandwidth since useless communication is
avoided.

IV. CLOUDFLOW FOR BIOINFORMATICS
Cloudflow provides a variety of already implemented

utilities, which facilitate the creation of pipelines in the
field of Bioinformatics (especially for NGS data in
Genetics). For that purpose, we implemented, based on
HadoopBAM [7], several record types and loader classes
in order to process FASTQ, BAM and VCF files.
Moreover, we created several operations and filters for the
analysis of biological datasets (see Table I for an overview
of all currently implemented operations and filters).

For example, a typical quality control pipeline for
VCF files can be implemented by simple combining of
several built-in operations. First, we apply predefined
filters to discard variations that are monomorphic, marked
as duplicates, or are Insertions or Deletions (InDels). For
all records passing the filters, Cloudflow applies a

summarize-operation that calculates the call rate for each
variation (see Listing 2).
Class CallRateCalc extends Transformer {
 public void transform(VcfRecord record) {
 VariantContext snp = record.getValue();
 float call = callRate(snp);
 emit(new FloatRecord(snp.getID(), call);
 }
}

pipeline.loadVCF(input)
 .filter(MonomorphicFilter.class)
 .filter(DuplicateFilter.class)
 .filter(InDelFilter.class)
 .transform(CallRateCalc.class)
 .save(output);

Listing 2. VCF Quality Control Pipeline using Cloudflow

V. DEPLOYING PIPELINES AS A SERVICE
Cloudgene [6] is a web-based platform to create and

execute workflows consisting of Hadoop MapReduce,
Apache Pig and command line-based programs. It can be
seen as an additional layer between Hadoop MapReduce
and the end user that hides the complexity of the
MapReduce framework. Therefore, Cloudgene is the
perfect candidate to provide Cloudflow pipelines as a
service. Such pipeline can be integrated into the workflow
platform by utilizing Cloudgene’s plugin interface. No
adaptation to the source code is needed, while only a
simple plain text file including a header, input parameters,
output parameters and the definition of the workflow itself
need to be created. When launching Cloudgene, the
manifest file is loaded and the client interface is
automatically rendered using information from the file. As
Cloudgene supports different technologies, it is possible to
parallelize the calculations using Cloudflow and to
visualize the results using R.

Cloudflow requires a compatible MapReduce cluster
for executing pipelines. CloudMan [8] makes it possible to
easily procure and configure a functional data analysis
platform on a cloud infrastructure. The procured platform
delivers a scalable cluster-in-the-cloud and a data analysis
environment preconfigured with a number of applications.
With its ability to be launched and managed via a web
browser on a number of clouds, customized as necessary,
and easily shared with collaborators, CloudMan makes it

Figure 1. Cloudflow translates the operation sequence automatically into an executable MapReduce job

188 MIPRO 2015/DC VIS

possible to readily utilize cloud resources in a research
environment. The approach on how Cloudgene and
CloudMan can be combined efficiently have already been
demonstrated [9].

VI. EVALUATION
To evaluate our approach, we implemented three

different Bioinformatics data-analysis pipelines using
Cloudflow and integrated them into Cloudgene. The
results of our experiments demonstrate that Cloudflow has
only a minimal overhead in the execution time compared
to an identical pure MapReduce implementation.
However, the performance of Cloudflow is better than
Apache Crunch’s (see Figure 2).

Figure 2. Execution Time of a Cloudflow pipeline, an Apache Crunch

pipeline and a pure MapReduce implementation of WordCount

A. Preprocessing and Mapping
When working with NGS data, the quality of raw data

needs to be checked before a successful subsequent
downstream analysis (e.g. read mapping/alignment) can
be achieved. The overall goal of alignment is to dock the

vast amount of short reads, mostly in the FASTQ file
format, to a reference genome. Factors such as read errors,
insertions or deletions of bases must be considered that
finally results in the most accurate genome position for
each read.

The goal of the following pipeline is the alignment of
paired-end data to a reference genome. Therefore, the
FASTQ data is loaded using the FastqLoader, which
creates records for each sequence. The records are then
filtered by an average base quality of 30. Numerous other
quality metrics (such as sequence length or C/G content)
can be filtered as well. Since paired-end reads are used,
read pairs are detected using a predefined transform-
operation. The aligner step is implemented as a
summarize-operation that calls a parallelized version of
BWA-MEM [10]. This has been achieved by using JNIs
(https://github.com/lindenb/jbwa). Similar to BWA-MEM
99,100 reads are aligned to the user-specified reference
genome in one batch. Aligned reads are saved in HDFS in
the BAM file format (see Listing 3.A).

B. Variation Calling
After data has been aligned and cleaned (e.g. removing

duplicates, quality recalibration), the next step of NGS
pipelines is the detection of reliable variants that can be
used e.g. in association studies. A widely used pipeline for
variant detection is GotCloud, developed at the Center of
Statistical Genetics (University of Michigan) and utilized
in the 1000 Genomes (1000G) project.

In this example pipeline, the aim is to find variations
without a statistical model by implementing a simple
counting approach of the four bases. This is only possible
when using high coverage data. Therefore, in the first step
the BAM file (created in the previous pipeline) is loaded
and chunked in user-specified splits (e.g. 5 MBases).
Variations are then detected for each chunk by counting

TABLE I. CURRENTLY SUPPORTED DATA FORMATS AND OPERATIONS

Data Format Pipeline Operation Description

Fastq

Split split() Find pairs (for paired-end reads)

Filter
filter(LowQualityReads.class) Filters reads by quality
filter(SequenceLength.class) Filters reads by sequence length

Other
findPairedReads() Detects read pairs
align(referenceSequence) Aligns sequences against a reference (using jBWA for alignment)

BAM

Split
split() Creates fixed size chunks (e.g. 64 MB)
split(5, BamChunk.MBASES) Creates logical chunks (e.g. 5MBases)

Filter
filter(UnmappedReads.class) Filters unmapped reads
filter(LowQualityReads.class) Filters reads by map.quality

Other findVariations() Finds variations in aligned reads (using samtools)

VCF

Split
split() Creates fixed size chunks (e.g. 64 MB)
split(5, VcfChunk.MBASES) Creates logical chunks (e.g. 5MBases)

Filter

filter(MonomorphicFilter.class) Filters monomorphic site
filter(DuplicateFilter.class) Filters duplicates
filter(InDelFilter.class) Filters inDels
filter(CallRateFilter.class) Filters by call rate
filter(MafFilter.class) Filters by MAF

Other checkAlleleFreq(reference) Allele frequency check with external reference (e.g. 1000 genomes)

MIPRO 2015/DC VIS 189

the occurrences of A, C, G, T on each position. Finally,
the detected variations are stored in VCF files (see Listing
3.B).

C. Genome-Wide Association Studies
Many genome-wide association studies (GWAS) have

identified associations between various phenotypes and
common sequence polymorphisms, which might play a
role for disease development. Technologies like
microarrays have made it possible to measure millions of
single nucleotide polymorphisms (SNPs) of one individual
simultaneously and for low cost. Since the costs of
microarrays is much lower than next-generation
sequencing (NGS), it is today the cheapest method to
genotype large-scale population studies. Such datasets are
combined with collected phenotypes (e.g. diseases and
measured data) in order to detect if one of these variations
has a high impact on the value of a phenotype. Since the
size of such datasets grows rapidly, a parallelization at the
data-level is necessary to analyze the data in appropriate
time.

//A. Preprocessing and Mapping
pipeline.loadFastq(input)
 .filter(LowQualityReads.class, 30)
 .findPairedReads()
 .align(refSeq)
 .save(output);

//B. Variation Calling
pipeline.loadBam(input)
 .split(5, ChunkSize.MBASES)
 .groupByKey()
 .findVariations(refSeq)
 .save(output);

//C. Genome-Wide Association Study
pipeline.loadText(input)
 .split(1000, ChunkSize.LINES)
 .execute(SnpTestExecutor.class).
 .filter(FilterHeader.class)
 .filter(FilterInvalidSnps.class)
 .save(output);

Listing 3. Complete NGS pipeline using Cloudflow

The parallelization of the association analysis was
realized by splitting the list of markers into chunks. In
detail, the mapper splits all input SNPs into chunks with a
fixed number of SNPs (e.g. 1000). Then, the reducer
executes the linear regression model for each chunk by
using SNPTest. Finally, the reducer collects the results
and merges them into a single file. The corresponding
Cloudflow pipeline loads the text input file and
automatically creates records for each line. On these
records we apply the split operation, which creates chunks
containing a fixed number of lines. For the execution of
the SNPTest program, we can implement a special
operation called BinaryExecutor, which enables us to
write the chunks automatically to the POSIX file system.
In the next step, we can use this file as the input file for
SNPTest. After the execution the operation creates text
records for each line of results (see Listing 3.C).

VII. CONCLUSION
Cloudflow’s overall aim is to simplify the

development of complex MapReduce pipelines by
abstracting the map and the reduce function from end
users. Therefore, operations need only be written once and
can be re-used for future MapReduce usage. The major
advantage of Cloudflow lies in the provision of validated
operations, especially in the area of genetics, and its
extensibility. Combining Cloudflow with CloudMan
(cluster orchestration) and Cloudgene (Hadoop workflow
system) allows users to use Hadoop without a deeper
knowledge of the internal MapReduce concepts and could
yield to a boost of Hadoop in genetics.

ACKNOWLEDGMENT
This work was, in part, supported by the “Scalable Big

Data Bioinformatics Analysis in the Cloud” grant from the
Croatian Ministry of Science, Education, and Sport and
the Austrian Federal Ministry of Science and Research
(BMWF) and by the FP7-PEOPLE programme grant
277144 (AIS-DC).

REFERENCES
[1] V. Marx, “Biology: The big challenges of big data,”

Nature, vol. 498, pp. 255–260, 2013.
[2] S. Yazar, G. E. C. Gooden, D. A. Mackey, and A. W.

Hewitt, “Benchmarking undedicated cloud computing
providers for analysis of genomic datasets.,” PLoS
One, vol. 9, no. 9, p. e108490, Jan. 2014.

[3] A. Schumacher, L. Pireddu, M. Niemenmaa, A. Kallio,
E. Korpelainen, G. Zanetti, and K. Heljanko, “SeqPig:
simple and scalable scripting for large sequencing data
sets in Hadoop.,” Bioinformatics, vol. 30, no. 1, pp.
119–20, Jan. 2014.

[4] H. Nordberg, K. Bhatia, K. Wang, and Z. Wang,
“BioPig: a Hadoop-based analytic toolkit for large-
scale sequence data.,” Bioinformatics, p. btt528–, Oct.
2013.

[5] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.
Henry, R. Bradshaw, and N. Weizenbaum,
“FlumeJava,” ACM SIGPLAN Not., vol. 45, no. 6, p.
363, May 2010.

[6] S. Schönherr, L. Forer, H. Weißensteiner, F.
Kronenberg, G. Specht, and A. Kloss-Brandstätter,
“Cloudgene: A graphical execution platform for
MapReduce programs on private and public clouds,”
BMC Bioinformatics, vol. 13, no. 1, p. 200, 2012.

[7] M. Niemenmaa, A. Kallio, A. Schumacher, P. Klemelä,
E. Korpelainen, and K. Heljanko, “Hadoop-BAM:
Directly manipulating next generation sequencing data
in the cloud.,” Bioinformatics, p. bts054–, Feb. 2012.

[8] E. Afgan, B. Chapman, and J. Taylor, “CloudMan as a
platform for tool, data, and analysis distribution.,”
BMC Bioinformatics, vol. 13, no. 1, p. 315, Jan. 2012.

[9] L. Forer, T. Lipic, S. Schonherr, H. Weisensteiner, D.
Davidovic, F. Kronenberg, and E. Afgan, “Delivering
bioinformatics MapReduce applications in the cloud,”
in Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2014 37th
International Convention on, 2014, pp. 373–377.

[10] H. Li, “Aligning sequence reads , clone sequences and
assembly contigs with BWA-MEM,” vol. 00, no. 00,
pp. 1–3, 2013.

190 MIPRO 2015/DC VIS

