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Abstract - The data-driven parallelization framework 
Hadoop MapReduce allows analysing large data sets in a 
scalable way. Since the development of MapReduce 
programs can be a time-intensive and challenging task, the 
application and usage of Hadoop in Biomedical Research is 
still limited. Here we present Cloudflow, a high-level 
framework to hide the implementation details of Hadoop 
and to provide a set of building blocks to create biomedical 
pipelines in a more intuitive way. We demonstrate the 
benefit of Cloudflow on three different genetic use cases. It 
will be shown how the framework can be combined with the 
Hadoop workflow system Cloudgene and the cloud 
orchestration platform CloudMan to provide Hadoop 
pipelines as a service to everyone.  

The framework is open source and free available at 
https://github.com/genepi/cloudflow. 

I. INTRODUCTION 
Since the advent of high-throughput technologies in 

the field of molecular biology (i.e. Next Generation 
Sequencing (NGS)), even more data is produced and 
needs to be analysed. Thus, molecular biology has 
envolved into a big data science, where the bottleneck is 
no longer the production of raw data in the laboratory, but 
its analysis and interpretation [1]. To scale with the 
increasing data volume and the number of available 
resources, workflows need to be parallelized efficiently. 
MapReduce and Cloud Computing constitute an attractive 
alternative to deal with the large datasets [2]. However, 
writing a MapReduce job can be a challenging task that 
prevents domain experts from using such models in their 
daily work. Additionally, the reusability of the mapper 
and reducer functions is limited, resulting in a use-case 
specific implementation for every problem. 

Existing high-level languages on top of Hadoop 
facilitate the development process and allow writing 
MapReduce jobs in form of queries. For example, Apache 
Pig (http://pig.apache.org/) provides a compiler to 
translate such queries into an execution plan, which is then 
automatically translated into a sequence of MapReduce 
jobs. Apache Pig provides interfaces for filter, group and 
join operations, extendible for application-specific logic 
using user defined functions (UDFs). However, Apache 
Pig has been developed to analyze datasets based on the 
relational model. The execution of complex calculations 
across several rows is limited. This implies the 

consequence that users have to write complex UDFs. 
Again, such functions need to be implemented by the end 
users and can be, similar to native MapReduce jobs, hard 
to implement, test and maintain. Several projects (e.g. 
SeqPig [3] or BioPig [4]) make use of UDFs and provide a 
collection of Pig scripts to researchers in Genetics. The 
goal is to provide ready-to-use workflows to end users, 
which can be then adapted to their use-case. Nevertheless, 
combining different scripts to a pipeline or reusing 
existing blocks does not build a key feature.  

To overcome this issue, FlumeJava [5] proposed a new 
concept to compose pipelines based on immutable parallel 
collections where several operations can be used to 
process them in a parallel way. This concept was 
successfully implemented in Apache Crunch 
(https://crunch.apache.org/), which executes the pipelines 
as Hadoop MapReduce jobs. However, the utilization of 
such pipelines in Bioinformatics is still limited.  

In this paper we present Cloudflow, a MapReduce 
pipeline framework, which is based on a similar concept 
as proposed by [5]. In contrast to existing approaches, 
Cloudflow was developed to simplify the pipeline creation 
in biomedical research, especially in the field of genetics. 
For that purpose Cloudflow supports a variety of NGS 
data formats and contains a rich collection of built-in 
operations for analyzing such kind of datasets (e.g. quality 
checks, mapping reads or variation calling). The main 
concept behind our approach is to break complex data 
analysis steps into three basic operations. All further use-
case specific operations are built by implementing or 
extending one of the basic operations. Pipelines are then 
composed by creating a sequence of these operations. The 
framework itself translates the set of pipeline operations 
into one or more MapReduce jobs and decides which of 
the operations are executed in the map or in the reduce 
phase. Thus, Cloudflow hides the complexity and the 
implementation details of MapReduce jobs allowing 
scientists to build pipelines via an intuitive method. 
Moreover, Cloudflow can be utilised in combination with 
the workflow system Cloudgene [6]. To validate our 
approach, we developed three Genetics data-analysis 
pipelines with Cloudflow. The results demonstrate that 
our contribution (a) helps minimizing the development 
time, (b) increases the reusability of code, and (c) creates 
only a minimal overhead in terms of execution time 
compared to an identical MapReduce implementation. 
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II. MAPREDUCE BACKGROUND 
MapReduce is a parallel programming model 

introduced by Google in 2004 with the aim to develop a 
simple and scalable method to process large datasets on 
several machines in parallel. The main idea behind this 
distributed programming model is that a long-time 
calculation is split into a map and a reduce phase which 
contains all the logic behind the calculation and is 
specified by the user. The underlying framework itself 
takes care of parallelization, task scheduling, load-
balancing and fault-tolerance. Due to its simplicity, 
MapReduce is used to solve many scientific problems 
where large-scale computing is needed. Moreover, 
MapReduce is ideal for parallel batch processing of 
terabytes of input data. The data-flow of a MapReduce 
program consists of several steps, where only the map and 
reduce function are problem-specific and the other steps 
are loosely coupled with the problem and generalized. In 
the first step, the input data set is split into key/value pairs 
and a user defined map function is executed for each pair: 

map(key, value) → list((keyi, valuei)) , where i = 0… n 

The map function reads a pair, performs some problem-
specific calculations and produces zero or n intermediate 
key/value pairs for each input pair. In the next step, the 
intermediate key/value pairs are grouped by similar keys 
and a merged list of all values for this key is created. 
Finally, the user-defined reduce function is applied to the 
intermediate key/list pairs: 

reduce(keyi, list(valuei)) → list(outvalue) 

The values created by the reduce function are the final 
outputs of a MapReduce job. 

A. Apache Hadoop 
Apache Hadoop is an open source project including 
several sub-projects for distributed computing. It includes 
the most widely used open-source implementation of 
Google's MapReduce framework (simply called 
MapReduce), the distributed file system (HDFS), and 
several other sub-projects. In general, all previous 
discussed features of the original MapReduce approach 
are implemented in Apache Hadoop. Writing a 
MapReduce job with Hadoop can either be done directly 
in Java by implementing the relevant methods or by using 
Hadoop's streaming mode. This allows specifying a script 
or any executable as the mapper or reducer. Two different 
versions of MapReduce are available. MRv1 includes a 
namenode (centerpiece of HDFS), a secondary namenode 
(merging logs into a file system snapshot), a job-tracker 
(job assignment) and several task-trackers (workers). 
MRv2 or Hadoop YARN, splits the work of the job-
tracker (resource management, job scheduling) into two 
different daemons, namely a resource manager and an 
application master. Additionally a node manager is 
introduced to manage the user processes per node. The 
application master describes a framework that works 
together with the node manager and the resource manager 
to monitor and to execute tasks. The idea behind this new 
model is that applications using frameworks different 

than MapReduce (e.g. Apache Spark) can be executed via 
YARN as well.  

B. High-Level Languages based on MapReduce 
To simplify the implementation of MapReduce jobs, 

Apache Pig has been introduced. It is based on HDFS and 
MapReduce and allows a fast implementation of data 
flows with already available data operations such as join, 
filter or group by. Data flows are specified in the Pig Latin 
language that describes a directed acyclic graph (DAG) 
and defines how data should be processed. A further 
advantage of Apache Pig is the ability to check the data 
flow on optimizations, e.g. if two grouping statements can 
be combined. The costs to write code in Apache Pig are 
lower than setting up a Java project and implementing the 
functions. But as stated earlier, Apache Pig includes only 
a limited number of operators and writing Apache 
MapReduce jobs directly in Java yields to advantages in 
speed compared to Apache Pig.  

C. MapReduce Pipelining 
The pipeline framework FlumeJava [5] is based on the 

concept of immutable parallel collections. This kind of 
data-structure can be used to process and analyze their 
items in parallel. The end user can either use one of the 
predefined functions or can combine them with its own. 
Each function is implemented as parallel for-each loop, 
which is than translated by the framework into a series of 
MapReduce jobs. During the translation, the framework 
itself decides if such a function should be executed locally 
(i.e. sequentially) or remotely (i.e. parallel). Apache 
Crunch is a freely available open source implementation 
of FlumeJava. 

III. CLOUDFLOW 
The overall idea behind Cloudflow is to simplify the 

creation of analysis pipelines by encapsulating complex 
data analysis steps in simple operations. This approach 
helps hide the complexity and the implementation details 
of complex data-parallel pipelines. Moreover, the concept 
of using basic operations increases the reusability and 
enables the testing of the operation logic on a local 
workstation by using existing unit testing frameworks. 

Since Cloudflow uses the Hadoop framework for 
pipeline execution, it offers parallel data processing, data 
reliability and fault tolerance out of the box. This fact is 
especially important in the field of Cloud Computing, 
where infrastructure often relies on commodity hardware 
and nodes can fail on a regular basis (e.g. due to miss-
configuration or hardware failures). At the same time, the 
architecture of Cloudflow is independent from 
MapReduce; it provides parallelization constructs and 
abstraction interfaces that can be used to extend the 
system by implementing other parallel programming 
models in the future (e.g. translating the operations into 
Apache Spark jobs).  

Instead of developing a new declarative language for 
the pipeline composition, we developd a clear Java API. 
The proposed framework implements different patterns to 
speed up the pipeline creation, to be extensible and to 
support test-driven pipeline development. The following 
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section gives an overview on the abstraction, explains the 
basic operations in detail, and shows how pipelines are 
created. 

A. Data Types and Basic Operations 
Cloudflow operates on records consisting of a 

key/value pair, whereby different record types are 
available (e.g. TextRecord, IntegerRecord, FastqRecord). 
A loader class is responsible to load the input data and to 
convert it into an appropriate record type. As mentioned 
earlier, Cloudflow supports three different basic 
operations. These are used to analyze and transform 
records; specifically, transform, summarize, and group 
operations exist. 

The transform-operation is used to analyze one input 
record and to create between 0 and n output records. The 
user implements the computational logic for this operation 
by extending an abstract class. This class provides a 
simple function, which is executed by the Cloudflow 
framework for all input records in parallel: 

Class MyTransformer extends Transformer { 
    public void transform(Record) { 
       doSomethingInParallel(); 
       emit(new Record()); 
    } 
} 

The summarizer operates on a list of records, whereby 
records with the similar key are grouped. Thus, the 
signature of the process method has the key and a list of 
records as an input:  

Class MySummarizer extends Summarizer { 
   public void summarize(Key, List<Record>) { 
       doSomethingInParallel(); 
       emit(new Record()); 
    } 
} 

The group-operation is a special operation, which takes a 
list of records as an input and creates a Record group with 
the same key. Our framework inserts automatically a 
group-operation between a transform- and a summarize-
operation. This ensures, that output records of the 
transform operation are compatible with the input records 
of the summarize operation. The group-operation is 
realized by using the shuffle phase of a MapReduce job. 

Based on these three operations, the user defines pipelines 
by building sequences of operations. A pipeline has to 
start with a transform-operation, all further operations are 
optional and can be used in arbitrary order. 

B. Extended Operations 
Complex operations are built by combing one or more 

basic operations. We already implemented several 
standard operations that are helpful for the analysis of text 
or numerical data records: 

- Filter: this operation is a special transform-
operation, which emits the record to the 
subsequent operation iff a user-defined condition 
is fulfilled.  

- Split: the transform-operation calculates for each 
input record a new split level (i.e. a new key). 
This key is used by the group-by operation to 

create chunks, which can then be analyzed by a 
user-defined summarize-operation. 

- Aggregation (sum, mean): This defines a group-
by-operation followed by a summarize-operation 
to aggregate all values with the same key (e.g. 
calculates the mean of all values). One record 
with the aggregated value is then emitted to the 
subsequent operation. 

- Executor: this summarize-operation writes all 
grouped values into a file on the local disk. It is 
then used as the input of an external UNIX 
command line program. Based on the lines of the 
output file, new records are created and emitted to 
the subsequent operation. 

Since Cloudflow’s operations are based on the 
Composite pattern, all these extended operations can also 
be used as a basis for new operations. In addition, this 
enables to split complex operations into several sub-
operations, which improves testing and maintenance. 

C. Pipeline Composition 
The user builds pipelines by connecting several 

operations with compatible interfaces. For this purpose 
our framework implements the Builder pattern, which 
enables (a) building complex pipelines, (b) providing type 
safety and (c) the implementation of domains specific 
builders (see Section III.D). In addition, the Builder 
pattern ensures that only a valid sequence of operations 
can be created (i.e. after the group-by operation a 
summarize operation has to be added).  
Class LineToWords extends Transformer { 
   public void transform(TextRecord rec) { 
    String[] words = rec.getValue().split() 
    for (String word: words){ 
      emit(new IntegerRecord(word, 1)); 
    } 
   } 
} 

pipeline.loadText(input) 
        .transform(LineToWords.class) 
        .sum() 
        .save(output); 

Listing 1. WordCount Example using Cloudflow 
 

To help the user and accelerate the pipeline 
composition process, Cloudflow provides already a set of 
useful operations. This has the advantage that even a 
default WordCount example can be broken down into a 
few simple operations and is defined in a single line of 
code (see Listing 1). In a first step, the text file is loaded 
from HDFS (loadText). Then, for each record (i.e. line of 
input) the application-specific LineToWords operation is 
executed, which splits the line into words and creates a 
new record efor ach word. In the last step a predefined 
sum operation is executed. It extends the pipeline by a 
group-by operation and a summarize-operation in order to 
sum up all the values for a certain key. 

For frequently used operations (e.g. sum, mean or 
count), we created special builder functions, which extend 
the pipeline and improve the code readability by keeping 
the code simple. 
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D. Pipeline Execution 
Before the execution, Cloudflow checks the 

compatibility of input and output records of consecutive 
operations. This ensures that only valid and executable 
pipelines are submitted to a Hadoop cluster. 

If the pipeline is executable and valid, then the 
operation sequence is translated into an execution plan, 
that decides if an operation is executed in the map or in 
the reduce phase. Based on this plan, Cloudflow creates 
one or more MapReduce jobs and configures them to 
execute the user-defined operations in the correct order. In 
this translation step, Cloudflow tries to minimize the 
number of MapReduce jobs by combining consecutive 
transform-operations and by executing all transform-
operations after a summarize-operation in the same 
reducer instance (see Figure 1). 

For additive summarize-operations (e.g. sum), 
Cloudflow takes advantage of Hadoop’s combiner 
functionality. The idea of this improvement is to combine 
the key/value pairs that are generated by all map tasks on 
the same machine, into fewer pairs. Thus, the number of 
pairs that are transferred between mapper and reducer are 
minimized, which results in a positive effect on the 
network bandwidth since useless communication is 
avoided.  

IV. CLOUDFLOW FOR BIOINFORMATICS 
Cloudflow provides a variety of already implemented 

utilities, which facilitate the creation of pipelines in the 
field of Bioinformatics (especially for NGS data in 
Genetics). For that purpose, we implemented, based on 
HadoopBAM [7], several record types and loader classes 
in order to process FASTQ, BAM and VCF files. 
Moreover, we created several operations and filters for the 
analysis of biological datasets (see Table I for an overview 
of all currently implemented operations and filters). 

For example, a typical quality control pipeline for 
VCF files can be implemented by simple combining of 
several built-in operations. First, we apply predefined 
filters to discard variations that are monomorphic, marked 
as duplicates, or are Insertions or Deletions (InDels). For 
all records passing the filters, Cloudflow applies a 

summarize-operation that calculates the call rate for each 
variation (see Listing 2). 
Class CallRateCalc extends Transformer { 
  public void transform(VcfRecord record) { 
    VariantContext snp = record.getValue(); 
    float call = callRate(snp); 
    emit(new FloatRecord(snp.getID(), call); 
  } 
} 
 
pipeline.loadVCF(input) 
        .filter(MonomorphicFilter.class) 
        .filter(DuplicateFilter.class) 
        .filter(InDelFilter.class) 
        .transform(CallRateCalc.class) 
        .save(output); 

Listing 2. VCF Quality Control Pipeline using Cloudflow 
 

V. DEPLOYING PIPELINES AS A SERVICE 
Cloudgene [6] is a web-based platform to create and 

execute workflows consisting of Hadoop MapReduce, 
Apache Pig and command line-based programs. It can be 
seen as an additional layer between Hadoop MapReduce 
and the end user that hides the complexity of the 
MapReduce framework. Therefore, Cloudgene is the 
perfect candidate to provide Cloudflow pipelines as a 
service. Such pipeline can be integrated into the workflow 
platform by utilizing Cloudgene’s plugin interface. No 
adaptation to the source code is needed, while only a 
simple plain text file including a header, input parameters, 
output parameters and the definition of the workflow itself 
need to be created. When launching Cloudgene, the 
manifest file is loaded and the client interface is 
automatically rendered using information from the file. As 
Cloudgene supports different technologies, it is possible to 
parallelize the calculations using Cloudflow and to 
visualize the results using R. 

Cloudflow requires a compatible MapReduce cluster 
for executing pipelines. CloudMan [8] makes it possible to 
easily procure and configure a functional data analysis 
platform on a cloud infrastructure. The procured platform 
delivers a scalable cluster-in-the-cloud and a data analysis 
environment preconfigured with a number of applications. 
With its ability to be launched and managed via a web 
browser on a number of clouds, customized as necessary, 
and easily shared with collaborators, CloudMan makes it 

 
Figure 1.  Cloudflow translates the operation sequence automatically into an executable MapReduce job 
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possible to readily utilize cloud resources in a research 
environment. The approach on how Cloudgene and 
CloudMan can be combined efficiently have already been 
demonstrated [9]. 

VI. EVALUATION 
To evaluate our approach, we implemented three 

different Bioinformatics data-analysis pipelines using 
Cloudflow and integrated them into Cloudgene. The 
results of our experiments demonstrate that Cloudflow has 
only a minimal overhead in the execution time compared 
to an identical pure MapReduce implementation. 
However, the performance of Cloudflow is better than 
Apache Crunch’s (see Figure 2). 

 

 
Figure 2.  Execution Time of a Cloudflow pipeline, an Apache Crunch 

pipeline and a pure MapReduce implementation of WordCount 

A. Preprocessing and Mapping 
When working with NGS data, the quality of raw data 

needs to be checked before a successful subsequent 
downstream analysis (e.g. read mapping/alignment) can 
be achieved. The overall goal of alignment is to dock the 

vast amount of short reads, mostly in the FASTQ file 
format, to a reference genome. Factors such as read errors, 
insertions or deletions of bases must be considered that 
finally results in the most accurate genome position for 
each read. 

The goal of the following pipeline is the alignment of 
paired-end data to a reference genome. Therefore, the 
FASTQ data is loaded using the FastqLoader, which 
creates records for each sequence. The records are then 
filtered by an average base quality of 30. Numerous other 
quality metrics (such as sequence length or C/G content) 
can be filtered as well. Since paired-end reads are used, 
read pairs are detected using a predefined transform-
operation. The aligner step is implemented as a 
summarize-operation that calls a parallelized version of 
BWA-MEM [10]. This has been achieved by using JNIs 
(https://github.com/lindenb/jbwa). Similar to BWA-MEM 
99,100 reads are aligned to the user-specified reference 
genome in one batch. Aligned reads are saved in HDFS in 
the BAM file format (see Listing 3.A).  

B. Variation Calling 
After data has been aligned and cleaned (e.g. removing 

duplicates, quality recalibration), the next step of NGS 
pipelines is the detection of reliable variants that can be 
used e.g. in association studies. A widely used pipeline for 
variant detection is GotCloud, developed at the Center of 
Statistical Genetics (University of Michigan) and utilized 
in the 1000 Genomes (1000G) project. 

In this example pipeline, the aim is to find variations 
without a statistical model by implementing a simple 
counting approach of the four bases. This is only possible 
when using high coverage data. Therefore, in the first step 
the BAM file (created in the previous pipeline) is loaded 
and chunked in user-specified splits (e.g. 5 MBases). 
Variations are then detected for each chunk by counting 

TABLE I.  CURRENTLY SUPPORTED DATA FORMATS AND OPERATIONS 

Data Format  Pipeline Operation Description 

Fastq 

Split split() Find pairs (for paired-end reads) 

Filter 
filter(LowQualityReads.class) Filters reads by quality 
filter(SequenceLength.class) Filters reads by sequence length 

Other 
findPairedReads() Detects read pairs 
align(referenceSequence) Aligns sequences against a reference (using jBWA for alignment) 

BAM 

Split 
split() Creates fixed size chunks (e.g. 64 MB) 
split(5, BamChunk.MBASES) Creates logical chunks (e.g. 5MBases) 

Filter 
filter(UnmappedReads.class) Filters unmapped reads 
filter(LowQualityReads.class) Filters reads by map.quality 

Other findVariations() Finds variations in aligned reads (using samtools) 

VCF 

Split 
split() Creates fixed size chunks (e.g. 64 MB) 
split(5, VcfChunk.MBASES) Creates logical chunks (e.g. 5MBases) 

Filter 

filter(MonomorphicFilter.class) Filters monomorphic site 
filter(DuplicateFilter.class) Filters duplicates 
filter(InDelFilter.class) Filters inDels 
filter(CallRateFilter.class) Filters by call rate 
filter(MafFilter.class) Filters by MAF 

Other checkAlleleFreq(reference) Allele frequency check with external reference (e.g. 1000 genomes) 
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the occurrences of A, C, G, T on each position. Finally, 
the detected variations are stored in VCF files (see Listing 
3.B). 

C. Genome-Wide Association Studies 
Many genome-wide association studies (GWAS) have 

identified associations between various phenotypes and 
common sequence polymorphisms, which might play a 
role for disease development. Technologies like 
microarrays have made it possible to measure millions of 
single nucleotide polymorphisms (SNPs) of one individual 
simultaneously and for low cost. Since the costs of 
microarrays is much lower than next-generation 
sequencing (NGS), it is today the cheapest method to 
genotype large-scale population studies. Such datasets are 
combined with collected phenotypes (e.g. diseases and 
measured data) in order to detect if one of these variations 
has a high impact on the value of a phenotype. Since the 
size of such datasets grows rapidly, a parallelization at the 
data-level is necessary to analyze the data in appropriate 
time. 

 
//A. Preprocessing and Mapping 
pipeline.loadFastq(input)  
        .filter(LowQualityReads.class, 30) 
        .findPairedReads() 
        .align(refSeq) 
        .save(output); 
 
//B. Variation Calling 
pipeline.loadBam(input) 
        .split(5, ChunkSize.MBASES) 
        .groupByKey() 
        .findVariations(refSeq) 
        .save(output); 
 
//C. Genome-Wide Association Study 
pipeline.loadText(input) 
        .split(1000, ChunkSize.LINES) 
        .execute(SnpTestExecutor.class). 
        .filter(FilterHeader.class) 
        .filter(FilterInvalidSnps.class) 
        .save(output); 

Listing 3. Complete NGS pipeline using Cloudflow 
 

The parallelization of the association analysis was 
realized by splitting the list of markers into chunks. In 
detail, the mapper splits all input SNPs into chunks with a 
fixed number of SNPs (e.g. 1000). Then, the reducer 
executes the linear regression model for each chunk by 
using SNPTest. Finally, the reducer collects the results 
and merges them into a single file. The corresponding 
Cloudflow pipeline loads the text input file and 
automatically creates records for each line. On these 
records we apply the split operation, which creates chunks 
containing a fixed number of lines. For the execution of 
the SNPTest program, we can implement a special 
operation called BinaryExecutor, which enables us to 
write the chunks automatically to the POSIX file system. 
In the next step, we can use this file as the input file for 
SNPTest. After the execution the operation creates text 
records for each line of results (see Listing 3.C). 

 

VII. CONCLUSION 
Cloudflow’s overall aim is to simplify the 

development of complex MapReduce pipelines by 
abstracting the map and the reduce function from end 
users. Therefore, operations need only be written once and 
can be re-used for future MapReduce usage. The major 
advantage of Cloudflow lies in the provision of validated 
operations, especially in the area of genetics, and its 
extensibility. Combining Cloudflow with CloudMan 
(cluster orchestration) and Cloudgene (Hadoop workflow 
system) allows users to use Hadoop without a deeper 
knowledge of the internal MapReduce concepts and could 
yield to a boost of Hadoop in genetics.  
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