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Abstract

Background
Bioinformatics data analysis is often using lineaxture model representing samples

as additive mixture of components. Properly comstdhblind matrix factorization
methods extract those components using mixture legnoply. However, automatic
selection of extracted components to be retainedl&ssification analysis remains an
open issue.

Results

The method proposed here is applied to well-studretein and genomic datasets of
ovarian, prostate and colon cancers to extract coets for disease prediction. It
achieves average sensitivities of: 96.2 (sd=2.P%)%5% (sd=2.8%) and 90.8%
(sd=5.5%) and average specificities of: 93.6% (sti4}, 99% (sd=2.2%) and 79.4%
(sd=9.8%) in 100 independent two-fold cross-valmia.

Conclusions

We propose an additive mixture model of a sampldefature extraction using, in
principle, sparseness constrained factorizatioa sample-by-sample basis. As
opposed to that, existing methods factorize corepataset simultaneously. The
sample model is composed of a reference sampleseming control and/or case
(disease) groups and a test sample. Each sangdeaosnposed into two or more
components that are selected automatically (wttheing label information) as
control specific, case specific and not differdhtiaxpressed (neutral). The number
of components is determined by cross-validatiortoAatic assignment of features
(m/zratios or genes) to particular component is baseithi@sholds estimated from
each sample directly. Due to the locality of decosion, the strength of the

expression of each feature across the samplesacgn¥Xet, they will still be allocated
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to the related disease and/or control specific amapt. Since label information is

not used in the selection process, case and capteaific components can be used
for classification. That is not the case with semadfactorization methods. Moreover,
the component selected by proposed method as dispasific can be interpreted as a
sub-modend retained for further analysis to identify poi@rbiomarkers. As

opposed to standard matrix factorization methosdéin be achieved on a sample
(experiment)-by-sample basis. Postulating one aernomponents with indifferent
features enables their removal from disease antlat@pecific components on a
sample-by-sample basis. This yields selected coemerwith reduced complexity

and generally, it increases prediction accuracy.

Background
Bioinformatics data analysis is often based orugeof a linear mixture model

(LMM) of a sample [1-15], whereas mixture is compd®f components generated by
unknown number of interfering sources. As an exam@mponents can be generated
during disease progression that causes cancertsisocproduce proteins and/or

other molecules that can serve as early indicéboosnarkers) representing disease
correlated chemical entities. Their correct idecaifion may be very beneficial for an
early detection and diagnosis of disease [16]. Hawean identification of individual
components within a sample is complicated by tletfeat they can be "buried”

within multiple substances. In addition to thatndgnic range of their concentrations
can vary even several orders of magnitude [16],8irgle components could no
longer be recognizable [1]. Nevertheless, therdlaralgorithms able to extract either
individual components or a group of components sithilar concentrations within a
sample. These algorithms are known under the ndime dource separation (BSS)

[17], and they commonly include independent compbaealysis (ICA) [18], and
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nonnegative matrix factorization (NMF) [19]. HoweyBSS methods perform
unsupervised decomposition of the mixture samfleas, it is not clear which of the
extracted components are to be retained for fughedtiction/classification analysis.
To this end, several contributions toward solutdthis problem have been
published in [1-5, 8]. In [1], a matrix factorizati approach to the decomposition of
infrared spectra of a sample is proposed takingaestount class labels i.e., the
classification phase and the components infereaslestare unified. Thus, the concept
proposed in [1] is a classifier specific. It isfarlated as the multiclass assignment
problem where the number of components equalsuh®ar of classes and must be
less than the number of samples available. As @aptus[1], the method proposed
here selects automatically the case and contraifspeomponents on a sample-by-
sample basis. Afterwards, these components casdxkta train arbitrary classifier.
In [2] gene expression profile is modelled as adinsuperposition of three
components comprised of up-regulated, down-regiilatel differentially not
expressed genes, whereas existence ofited thresholdss assumed to enable a
decision to which of the three components the paldar gene belongs. The thresholds
are defined heuristically and in each specific ¢hseoptimal value must be obtained
by cross-validation. Moreover, the upper threstwldnd the lower ong are

mutually related through,=1/c;. As opposed to that, the method proposed here
decomposes each sample (experiment) into compooemgrised of up-regulated,
down-regulated and not differentially expresseduess using data adaptive
thresholds. They are based on mixing angles ofilaovative linear mixture model of
a sample. The method proposed in [3] uses avaitatele labels (the clinical
diagnosis of the experiments) to select compongresracted by independent

component analysis (ICA) or nonnegative matrixdazation (NMF), for further



analysis. ICA or NMF are used to factorize the wehddtaset simultaneously and one
selected component (gene expression mode for |@Aretagene for NMF) is used
for further analysis related to gene marker exiwactl his component cannot be used
for classification. Alternatively, basis matrix wilabelled column vectors (for ICA)

or row vectors (for NMF) can be used for classtimain which case the test sample
needs to be projected to space spanned by the eblumvectors, respectively.
However, in this case no feature extraction capdyéormed. As opposed to
ICA/NMF method proposed in [3], the method propoketk extracts disease and
control specific component from each sample seelgra®ince no label information is
used in the selection process, extracted comporantbe used for classification and
that is the goal in this paper. The disease spemiimponent can, however, be also
retained for further biomarker related analysisd8]. The important difference is
that by the method proposed here such componeriiecabtained from each sample
separately while the method in [3], as well asding, 8], needs the whole dataset. The
method [4] uses again ICA (the FastICA algorithfd]j2o factorize the microarray
dataset. Extracted components (gene expressionanoeee analyzed to discriminate
between those with biological significance and ghepresenting noise. However,
biologically significant components can be usedftiother gene marker related
analysis but not for classification. The reasotha, as in [3], the whole dataset
composed of case and control samples is reducsel/&ral biologically interesting
components only. In the extreme case it can onlgrigesuch component. In [5] the
JADE ICA algorithm is used to decompose whole d#tago components (gene
expression modes). As in [3, 4] these componemtsatebe used for classification.
They are used for further decomposition into sulzkesato identify a regulating

network in the problem considered there. We waminphasize that the component



selected as disease specific by the method propgwsecdccan also be interpreted as a
sub-mode and used for the similar type of analy$mvever, since it is extracted
from an individual and labelled sample it can bedu®r the classification as well.
That is the main goal in this paper. The metho@jragain uses ICA (the maximum
likelihood with natural gradient [18]) to extraairaponents (gene expression modes).
Similarly, as in [3-5] these components are notldse a classification. Instead, they
are further analyzed by data clustering to detegerbinlogical relevance and extract
gene markers. Similar types of comments as thasmissed in relation to [3-5, 8] can
also be raised to other methods that use eitherdiO®MF to extract components
from the whole dataset, [6, 7, 10-12]. Hence, altiorelated to the component
selection methods [1, 3-5, 8] the method proposed Is dissimilar to all of them by
the fact that it extracts most interesting comptsien a sample (experiment)-by-
sample basis. To achieve this, the linear mixtuoel@h(LMM) used for components
extraction is composed of a test sample and aenredersample representing control
and/or case group. Hence, a test sample is, icipl&) associated with two LMMs.
Each LMM describes a sample as an additive mixafite/o or more components.
Two of them are selected automatically (no thredhokeded to be predefined) as
case (disease) and control specific, while theaestonsidered neutral i.e. not
differentially expressed. Decomposition of each LMiMenabled by enforcing
sparseness constraint on the components to bedrad his implies that each
feature (h/zratio or gene) belongs to the two components &t ifttisease and neutral
or, control and neutral). The model formally pressrthat disease specific features
are present in the prevailing concentration inaisesamples as well as that control
specific features are present in prevailing conedion in control samples. However,

the features do not have to be expressed equaldlygsaicross the whole dataset in



order to be selected as a part of disease or pasdis components. It is this way due
to the fact that decomposition is performed locédiy a sample-by-sample basis).
This should prevent losing some important featéweslassification. Accordingly,

the level of expression of indifferent features aéso vary between the samples.
Thus, postulating one or more components with facéht features enables their
removal that is sample adaptive. As opposed tq éxadting methods try to optimize
a single threshold for a whole dataset. Geomettarpretation of the LMM based on
a reference sample enables automatic selectioisedsk and control specific
components (Figure 1 in section 1.2), without usaigel information. Hence, the
selected components can be further used for diggadection. By postulating
existence of one or more components with diffeediytnot expressed features the
complexity of the selected components can be cladir¢gsee discussion in section
1.7), whereas the overall number of componentslected by cross-validation.
Although the feature selection is the main goahefproposed method, component
extracted from the sample as disease specificlsarba interpreted as a sub-mode as
in [3, 4]. It can be used for further biomarkerntiécation related analysis. We see
the linearity of the model used to describe a samapla potential limitation of a
proposed method. Although linear models dominataomformatics, it has been
discussed in [8] that nonlinear models might beevamrcurate description of
biological processes. Assumption of an availabuity reference sample might also
be seen as a potential weakness. Yet, we have d¢yaitma that in the absence of
expert information the reference sample can bemddaby a simple average of all the
samples within the same class. The proposed mé&taeimonstrated in sections 1.4

to 1.7 on disease prediction problems using a ctatipnal model as well as on the



experimental datasets related to a prediction afiaw, prostate and colon cancers

from protein and gene expression profiles.

Methods

This section derives sparse component analysis Ja@proach to unsupervised
decomposition of protein (mass spectra) and gepeessgion profiles using a novel
mixture model of a sample. The model enables auiorselection of the two of the
extracted components as case and control spetifey are retained for
classification. In what follows, the problem motiea and definition are presented
first. Then, LMM of a sample is introduced andiiteerpretation is described.
Afterwards, a two-stage implementation of the S@foathm is described and
discussed in details.

1.1 Problem formulation

As mentioned previously, bioinformatics problemtenfdeal with data containing
components that are imprinted in a sample by sewdeafering sources. As an
example, brief description of endocrine signallaygtem, secreting hormones into a
blood stream, is given in [1]. Likewise, referef2&] describes how different organs
imprint their substances (metabolites) into a usample. As pointed out in [1] and
[16] disease samples are combinations of severagaated components (signals)
originating from different sources (organs) ancedse specific component is actually
"buried" within a sample. Hence we are dealing i two problems
simultaneously: a sample decomposition (compomdatence) problem and a
classification (disease prediction) problem thdidased on sample decompaosition.
Thus, automatic selection of one or more extractedponents is of practical
importance. It is also important that componenéa#n is done without a use of

label information in which case it can be usedclassification.
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Matrix factorization is conveniently used in sigpeocessing to solve

decomposition problems [17-19]. It is assumed iz matrixX DRV " is
comprised ol row vectors representing mixture samples, wheraels sample is

further comprised oK featuresifyz ratios or genes). It is also assumed Hhat
samples are Iabellet{ixn OR .,y D{l,—]}} :—1’ where 1 denotes positive (disease)

sample and -1 stands for a negative (control) sanfidta matrixX is modelled as a

product of two factor matrices:
X=AS 1)

where AORM™ and SOR™* | andM represents annknownnumber of components

. KIM .
present in a sample. Each compor{es;ytD]R }m:1 is represented by a row vector of

matrix S. Nonnegative relative concentration profi{es;‘.n DRT}L are represented by
column vectors of matriA and are associated with the particular componétaise,
it will be presented how innovative version of tidM (1) of a sample{xn DRK}::1
enables automatic selection of the case (disease}antrol specific components out
of {sm} ::1 components extracted by unsupervised factorizatiethod: a two stage

SCA. The method will then be demonstrated on a eaatipnal model as well as on a
cancer prediction problem using well known proteoamd genomic datasets.

1.2 Novel additive linear mixture model of a sample

The LMM (1) is widely used in various bioinformatiproblems [1-15]. Unless
constraints are imposed @nand/orS, the matrix factorization implied by (1) is not

unique. Typical constraints involve non-Gaussiaaitg statistical independence
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between components by ICA algorithms [6, 18], aod-negativity and sparseness
constraints by NMF algorithms, [7, 11, 12, 19, 23]. In addition to that, many ICA
algorithms, as well as many NMF algorithms, alsquree theunknowmumber of
componentd to be less than or equal to the number of mixtareges\.

Depending on the context, this constraint can Imsidered as restrictive. There are,
however, ICA methods developed for the solutionmmderdetermined problems that
are known as overcomplete ICA, see Chapter 168h fis well as [24, 25]. However,
as discussed in details in [18], overcomplete IC&hnods also assume that unknown
components are sparse. The two exemplary overcoeni@é methods based on
sparseness assumption are described in [24] ahdifiZR4] it is assumed that
components are sparse and approximately uncomefajeasi-uncorrelated”). This
basically means that each feature belongs to ompaoent only. That is even a fairly
stronger assumption than what is used by the meihaubsed here. Likewise, in
maximum likelihood (ML) approach to the overcomplgtoblem in [25] it is
assumed that marginal distributions of the comptmare Laplacian. In this case the
component estimation problem (assuming the mixiagyimis estimated by
clustering) is reduced to linear program with egyalonstraint. In other words, a
probabilistic ML problem is converted into a deteristic linear programming task.
Hence, the overcomplete ICA effectively becomes SUAs further justifies our
choice of the state-of-the-art SCA method (desdribesection 1.3), to be used in a
component extraction taskere, we propose a novel type of the LMM model \hic

is composed of two samples only:

Xcontrol
|:X = Acontro control (Za)
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Xi
isease | _ A _ . 2b
|:X :| diseas®” diseas ( )

The first sample is a reference sample representingol group,x OR", in

control

(2a) and case (disease) group,....JR“, in (2b). The second sample is actual test

sample:xD{xn DRK} " . Coefficients of matrice#

2xM 2xM
control D R + and Adiseaselz| R+

in (2a) and (2b) refer to the amount of relativaa@tration at which related

components are present in the mixture sanmpbBasdXcontrol IN (2@) 0rX andXgiseasdN

(2b). Source matriceS_ ,OR™* andS, . JR"* contain (as row vectors),

control disease

disease- and control specific components and jlggsdifferentially not expressed
components. Number of componehtss assumed to be greater than or equal to 2.
Evidently, forM=2 existence of differentially not expressed congmis is not
postulated. Importance of postulating componentk imdifferent features is to

obtain less complex disease and control specificpmments used for classification
(see also discussion in section 1.7). These conmpesorb features that do not
vary substantially across the sample populatioes€&Heatures are removed
automatically from each sample. The concentrasarlative due to the fact that BSS
methods enable estimation of the mixing and sooragices up to the scaling
constant only. Therefore, it is customary to caistthe column vectors of the

mixing matrix to unit’; or £ norm. The LMM proposed here is built upon an iripli
assumption that disease specific featun@g Katios or genes) are present in prevailing
concentration in disease specific samples and mondoncentration in control

specific samples. As opposed to that, control $jodeiatures are present in prevailing
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concentration in control specific samples and inoniconcentration in disease
specific samples. Features that are not differiyeapressed are present in similar
concentrations in both control and disease spesdfioples. These groups of features
constitute components, whereas similarity of tkemcentration profiles enables
automatic selection of the components extractednsypervised factorization. The
assumption on the prevailing concentrations ofamu down-regulated features needs
to be understood in the relative sense. It isfjastion the basis of locality of
proposed method since the components are extrantadsample-by-sample basis.
Thus, to be allocated in the same component (aaraseontrol specific one) feature
does not need to be expressed in each sampleegqtratg. Since the LMMs
(2a)/(2b) considered here are comprised of two ssrgmly the non-negative mixing
vectors are confined in the first quadrant of tteap spanned by control reference
sample and test sample, see Figure 1a, or by diseBsence sample and test sample,
see Figure 1b. Thus, upon decomposition of the L{2k) intoM components, the
one associated with the mixing vector that confthesmaximal angle with respect to
the axis defined by control reference sample isctet as a disease specific
component, Figure 1a. As opposed to that, the ssecated with the mixing vector
that confines the minimal angle with respect toakes defined by control reference
sample is selected as a control specific compoiéhen decomposition is performed
with respect to a disease reference sample, LMNI (Bb logic for an angle-based
automatic selection of disease and control spectfioponents is the opposite, see
Figure 1b. The components not selected as diseasmtol specific are considered
neutral i.e. not differentially expressed. Thus, Mk (2a)/(2b) enable automatic
selection of the components extracted by unsupeahfectorization of mixture

samples. Unlike selection method presented in&{ is based on fixed thresholds
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which need to be determined by cross-validatioa tinesholds (mixing angles) used
in the method presented here are sample adaptivasgumption that each feature is
contained in disease specific and one of the neziraponents, or control specific
and one of the neutral components, representsraesss constraint. It enables
solution of the related BSS problems through, ingple, two-stage SCA method
described in section 1.3. However, sparsenessreamtsts not justified by
mathematical reasons only but also, as emphasiZ&] 6, 11, 12], by the biological
reasons. As noted in [6] this is necessary if ulydey component (source signal) is
going to be indicative of ongoing biological proses in a sample (cell, tissue, serum,
etc.). The same conjecture has actually also beed in a three components based
gene discovery method in [2]. In this respect,gparseness constrained NMF
methods for microarray data analysis proposed,id1712] also assume the same
working hypothesis. As discussed in [11, 12], thie sparseness constraint that
enabled biological relevance of obtained resuttsnicroarray data analysis
enforcement of sparseness constraint is biologigadiified due to the fact that more
sparses gives rise to metagenes (if factorization is perfed by NMF), or to the
expression modes (if factorization is performed®4), that comprise few
dominantly co-expressed genes which may indicabel ¢mcal features for specific
disease [11]. A subtle interpretation of the refierzbased mixture model (2a)/(2b)
reveals its several profound characteristics. Sph@eement of the features to each of
the two or more postulated components is basedmple adaptive thresholds
(decomposition is localized), one geneifdz ratio) may be highly up-regulated in a
case of one sample and significantly less expressadase of an another sample.
Yet, if it is contained in prevailing concentrationboth samples it will be contained

in both cases in the component automatically seteas disease or control specific.
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Moreover, sample adaptive component (feature) seteenables that features
selected as up- (or down)-regulated in one sanpleds (or more) expressed than
differentially not expressed features in anothen®a. Thus, extracted components
selected as disease or control specific are cordpafs@ultiple features with different
expression levels and joint discriminative powehea than of several (or even single)
features only.

For disease prediction, disease and control Speomponents can be used
to train a classifier. The reason is that in dadM (2a)/(2b) they are extracted with
respect to different reference samples and, tlausy on different but specific

information. Hence, proposed method yields four gonents to be retained for

isease
ontrol ref.n »

classifier training. In accordance with Figure &yttare denoted eﬁ

disease

control control S
disease refiy !

S S

control ref.n ! “disease refiy

and wheren denotes index of a test sampleused in

current decomposition. Components extracted flkomixture samples, form four sets

. N N
of labelled feature vectors as foIIovx{ﬁ'Sease }n_l, {sggg;;g: e yn}

ontrol ref.n? yn n=1’

disease

N N ‘g .
{sj}g;‘;'e refi yn} . and{sGlisease e yn} __,- One or more classifiers can be trained on

them and the one with the highest accuracy achigwedgh cross-validation is
selected for a disease diagnosis.

Selection of theinknownnumber of componentd is generally non-trivial
problem in a matrix factorization and is the pdraonodel validation procedur®! is
selected through cross-validation and postulatdztd, 3, 4 or 5 because it directly
determines the number of features used for classidin. This follows from
previously described interpretation of the LMM (2&d (2b). Since disease
prediction is based on four components selectatisease and control specific it is

important that they are composed of features viighhtigh discriminative power. It
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means that they should contain features whichrahg disease or control specific.
The component considered here as disease or cepgoific (as well as neutral) can
actually be composed of features/Zratios or genes) belonging to multiple
substances (metabolites, analytes) that shareasimlative concentrations. This is
practically important since it makes decompositiuch less sensitive to an
underestimation of the true total number of sub=stampresent in a sample. By setting
the number of substances to predefined viluproposed method is enforcing
substances with similar concentrations to be liyegombined into one more

complex components composed of disease, neutcalndrol specific features.
Provided that concentration variability of thesattees across the samples is small, it
would suffice to select overall number of composaagM=3 or everM=2. (In the
latter case, the existence of differentially ngprexssed features is not postulated at
all). However, since we are dealing with biologisamples it is more realistic to
expect that relative concentrations could vary setbe sample population. This is
illustrated in Figures 1a and 1b by ellipsoids abuectors that represemterage
concentration profiles of each group of featuresr(gonents). As seen from Figure 1,
some features considered neutral can be presérg prevailing concentration in a
certain number of samples than the features careglde a majority of the samples as
disease (or control) specific. To partially remeueh features from disease and/or
control specific components, an unknown numbemafigonentsvl should be
increased t&1=4 or perhaps even td=5. Thus, existence of two or three neutral
components should be postulated. This is expeotgiktld less complex disease and
control specific components and that is in agree¢mh the principle of parsimony
(see also discussion in section 1.7). Model vabagpresented in section 1.4 suggests

that this, indeed, is the case when concentratmiability across the samples is
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significant. When it comes to the real world datssthe information about number of
components will not be known in advance. The sfiate comply with this
uncertainty is to use the cross-validation andetafy whether increased number of
component$/ indeed contributed to increased accuracy in dispaes#ction.
1.3 Sparse component analysis algorithm
Proposed feature extraction/component selectiohadas based on a decomposition
of LMMs (2a)/(2b) comprised of two samples (refereisample and test sample) into
M=>2 components. From the BSS point of view this @aldtermined BSS problem
whenM=2 and underdetermined BSS problem, w3 [26, 27, Chapter 10 in 17].
The enabling constraint for solving underdetermiB&$S problems is a sparseness of
the components and the methods are known undeothenon name as sparse
component analysis (SCA) [26-29, Chapter 10 in Ag]Jcommented at the beginning
of section 1.2 the overcomplete ICA, [Chapter 1&8n24, 25], is basically reduced
to SCA and also demands sparse sources. SCA laslalbeen applied to microarray
data analysis in [3, 6, 7, 11, 12]. It has alsanbesed in [22, 23] to extract more than
two components from the two mixture samples of @achmagnetic resonance and
mass spectra. A sparseness constraint implieg#chtparticular feature point
k=1,...K (m/zratio or gene) belongs to the several componenys ©a this end, for
the two-samples based LMMs (2a)/(2b) used herg gissumed that each feature
point belongs to at most two components: eithexalie specific and neutral or
control specific and neutral. From the viewpoinbaiflogy, a plausibility of this
assumption has been elaborated before.

Algorithmic approaches used to solve underdetexthBSS problem
associated with (2a)/(2b) belong to the two mategaries: () estimating

concentration/mixing matrix and component matrmugianeously by minimizing
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data fidelity termgX = A oS contoll- OF [X ~A teeaS aealls. » WhereX follows from

the left side of (2a) or (2b). A minimization isuadly done through the alternating
least square (ALS) methodology with sparsenessti@nsimposed on source
matriceSScontrolaNd Syiseases [19, 22, 23, 30-32];i() estimating concentration/mixing
matrices first by clustering and source/componedttiges afterwards by solving

underdetermined system of linear equations thronigimization of thef, norm,

O<psl, of the column vectors, OR" of Scontrol@NdSyisease [25-29, 33-35]. As

discussed in [6], a sparseness constrained mintimizaf the data fidelity term is
sensitive to the choice of a sparseness constfmthe other side, it has been
recognized in [33-35] that accurate estimatiorhef¢oncentration matrix enables
accurate solution of even determined BSS probl@mshis end, selection of feature
points where only single component is present & gfpecial importance. At these
points, feature vector and appropriate mixing veate collinear. For example, if

featurek belongs to component then: x, =a,_s,,. Thus, clustering of a set of single

component points (SCPs) ought to yield an accuwstienate of the mixing matrix. Its
columns are represented by cluster centroids slbleen demonstrated in [33] that
such estimation of the mixing matrix, where hiehgéecal clustering was used, yields
more accurate solution of determined BSS problespiny(A)X, than the one
obtained by ICA algorithms. Thus, selection of S@&Rsf an essential importance for
accurate estimation of the mixing matrix. Suchdeapoints are identified from the
overall number oK points using geometric criterion based on the matat at them
real and imaginary parts of the mixture samplestpeaither in the same or in the
opposite direction [33, 34]. Since protein (massc@) and gene expression levels

are real sequences an analytic continuation [2&}igfure samples:
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X, X, =X, +v-1H (x,) is used to obtain complex representation, whe)

denotes Hilbert transform af. The feature poirk will be selected to the set of

SCPs provided that the following criterion is Satid:

% X %>cos(m9 k¥ 1,...K}

where R(%,)and | (%,) denote real and imaginary partxf respectively, ‘T’
denotes transpose operatigR(%, )| and i (%, )| denotet,-norms ofR(%, ) andi(

X, ) while A@ stands for the angular displacement from directibeither O omt

radians. EvidentlyAB determines quality of the selected SCPs and, #ugsiracy of
the estimation of the mixing matricsontroilaNdAdisease S€tiNgAB to a small value
(e.g., to an equivalent of Lenforces, with an overwhelming probability, the
selection of feature points that contain one comepoonly. If, however, all the
components are not present in at least one feptun¢ alone it may occur that
corresponding columns of the mixing matrices wdldstimated inaccurately. This
problem can be alleviated by increasing the vafuan which case the selected
feature points may not contain one component dnlymay rather be composed of
one dominant component and one or more componeggemnt in a small amount.
Thus, in practice)d needs to be selected through a cross-validatoitnel
experiments described in sections 1.4 to AB/has been selected from the set of
radians equivalent to £13°, 5% together with a postulated number of componéfts
and with a regularization parameter related tosgass constraint imposed ntrol

andSyisease(Se€ €eq. (3) belowMierarchical clustering implemented by MATLAB
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cl ust er dat a command (with acosiné distance metric anccompletélinkage
option) has been used to cluster the set of selettéeature points with a single
component belonging. Number of clusters has bekin selvance to equal the
postulated number of componeMs Cluster centres represent estimated
concentrations vecton{sam DRE} ::l. It is also possible to use other clustering
methods, such dsmeans, as an alternative to hierarchical cluggefiine problem
with k-means, however, is that it is non-convex andetégomance strongly depends
on the initial value selected for cluster centroida the other side, hierarchical
clustering produces repeatable result i.e. fovargset of SCPs it yields the same
result for the mixing matrix in each run. Since thember of selected SCPs is modest,
the computational complexity of hierarchical clustg approach is not too high. That
is why hierarchical clustering is used to estintagemixing matrices in (2a) and (2b).
After mixing matrices are estimated, estimatiothaf component matrices proceeds

by minimizing sparseness constrained cost functions

écontrol = minS 1 Acontrols_|:xcomrd + A ” SHl (3a)
2 O
112

édisease: mins % A disea§_ |:idisease + A || EHl (3b)
dilF

where the hat sign denotes estimates of the madtiblesA andS;ontrof Suisease
Problems (3) relate to the sparseness constragtetion of the underdetermined
systems of linear equations. For a decompositigyene expression profiles, a non-
negativity constraint is additionally imposed 8nS=0. Problem (3) can be solved by

the LASSO algorithm [36] or, by some other solvaridnderdetermined system of
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linear equations [37]. Here, for problem (3) we éaged the iterative shrinkage
thresholding (IST) type of method [38], with a MAAB code available at [39]. This
approach has been shown to be fast and it candilg maplemented in batch mode
such as (3a)/(3b) i.e.as a solving ofkaystems of equations simultaneously. In
relation to standard IST methods, the method [38]duaranteed better global rate of
convergence. In addition to that, through the efédaterations, it shrinks to zero
small nonzero elements 8fthat are influenced by noise. This prevents them t
determine level of sparsenessSofAs discussed in [6] this shrinking operation is
important in preventing selection of less sp@swer the sparse version 8fWith
non-negativity constrair=0 problem (3) becomes a quadratic program. Thus, we
have used a gradient descent with projection oatenegative orthant: mag). A
sparsity of the solution is controlled by the paeéenA. There is a maximal value of
A (denoted by here) above which the solution of the problemsg3haximally
sparse, i.e. it is equal to zero. Thus, in the erpnts reported in sections 1.5to 1.7
the value\ has been selected by cross-validation (togethigr A% andM) with
respect to\ maxaS:AL{10 A max , 10°Emax, 10°Emad. We conclude this section by an
observation that the situation suggested inX6JAS=AP**'S***" 'where AP**S*Y
represents alternative factorizationosuch thag”*“would be less sparse th&n
during minimization of (3) cannot occur. That isedo IST algorithm [38] as well as
due to accurate estimation of the mixing matrites is enabled by clustering set of
the SCPs . First, this is a consequence of thetacti shrinking operation used by
IST algorithm [38] imposes sparseness constraithetype given by eq.(7) in [6]:

number of elements af <7 [§™
number of elements f

0<o0,(8)= <1,t0]0, 1], i.e. small nonzero

elements of are set to zero. This prevents selection of IpasssS***"over sparser

-20 -



S. Second, SCA method used here is a two-stage oh@thereA is estimated
accurately by clustering on a set of SCPs. Thiaddition to a sparseness measure
discussed above, prevents estimat8 tf deviate from the true value significantly. It
is this way because whé&his being estimated by means of IST algorithm tie/v
estimate ofA is fixed. As opposed to the case wheandsS are estimated
simultaneously, as in [6], an estimatefo€an't now be adjusted by the algorithm to
some valué\P**"that will counteract changes $ Hence, selecting§”**“would
increase a data fidelity term in the cost functibhnus, situation as suggested in [6]:
X=AS=AP*'S**can't occur. A proposed two-stage SCA approadbature
extraction /component selection is in a concisenfpresented in Table 1. A
MATLAB code is posted in the Additional Materiall€$ section accompanied with

the paper as Additional File 1.

Results and Discussion
This section presents model validation proceduiie.demonstrated how increased

number of postulated components retains, or siightproves, prediction accuracy
when concentration variability of the features asrthe sample population is
significant. Moreover, an increased number of pastd components yields the
disease and control specific components used &ssification with a smaller number
of features. This is in an agreement with the ppilecof parsimony which states that
less complex solution ought to be preferred ovemtiore complex one. Proposed
method for feature extraction/component selectoaiso applied to a prediction of
ovarian, prostate and colon cancers from the twedkestudied datasets. Prediction
accuracy (sensitivity and specificity with standdeViations) is estimated by 100
independent two-fold cross-validations. Proposed $@mponent selection method

is compared (favourably) against state-of-the-gtlgtors tested on the same
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datasets including our implementation of methodggpsed in [1, 2]. Regarding our
implementation of a predictive matrix factorizatiorethod [1], we have used the
MATLAB f m nsear ch function to minimize the negative value of the &irg
function suggested in [1] while selecting the thidd vector. We have set the

Tol Fun to 10" theTol X to 10'°and thevaxFunEval s to 10,000. An initial
value of the two-dimensional threshold vector hesrbset to [0 0] Regarding a gene
discovery method proposed in [2] we have crossdasdid three values of the
thresholdc, [{2, 2.5, 3.0} @ is set automaticallg=1/c,). The best result is presented
in section 1.7. Regarding a comparison of a progpgsenponent selection method
against many methods in sections 1.5 to dur,intention has been to provide a brief
description of the methods and to provide fair cangmn given the fact that code for
compared methods has not been available to us.athally was the main reason for
choosing a well known datasets such as in 1.5acsince a rich list of published
results exists for them. We are aware of the faat tesults by many other methods
were obtained by different cross-validation setintherefore, our reasoning is that
fair comparison is possible as long as the resolbe compared were obtained on the
same datasets under conditions that favor lessidteod proposed her€hat is the
reason why we have chosen to perform two-fold ewadislation, since it is known to
yield the least optimistic resulthus, if such results are compared favorably agains
those obtained under milder (ten- and three-fold¥&-validation settings, conclusion
can be made that proposed feature extraction/coema@election method represents
contribution to the fieldAs opposed to the two-fold cross-validation apphede,
cross-validation details for many cited resultseveot specified. Sometimes ten-fold,
or three-fold, cross-validations have been perfatnitence, it is believed that

performance assessment of proposed componentigelawthod is more realistic
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than performance of the majority of methods citedomparative analysis. For each

of the three types of cancers three classifiergwained on four sets of extracted
t disease N control N control N d
components Scontrol ref.n? yn n=1’ Scontrol ref.n? yn n=1’ Sdiseas.e refiy? yn n=1 an

: N
{sg;::ggg refi yn} - The three classifiers used were linear SVM mowlinear SVM

with radial basis function (RBF) and polynomial tels [40], withC=1. Parameters
of the nonlinear SVM classifiers were selected togs-validation. Prior to the
classification, the sets of extracted componente wandardized to zero mean and
unit variance. Although the standardization actbssfeatures is used more often, a
standardization across the components (they caneith the samples from which
they were extracted) has been performed hereelllgdl much better accuracy and
such a fact has also been observed in Chapter [#8Jywhere in microarray data
analysis standardization across the samples habeaésn preferred over
standardization across the features. In comparatvformance analysis presented in
Tables 2 to 4 the best result (obtained by a ndastedold cross-validation with
respect to parameters of the classifiers, singhepament selection threshoid,
regularization constamt and postulated number of compondvit$ on all four sets of
selected components has been used to represenbrentselection method
proposed here. Since many components extractethby combinations of the
parameters yielded also good prediction accurackhave posted complete results in
the Additional Material Files section (Additionalés 2, 3, 4 and 5) accompanied

with the paper. Reference samples used to reprdssase and control groups were

obtained by averaging all the samples in diseat:rr,ep;;lxdiseasezNiziN:lxi where
1
x O{x, 1y, =3} , and control group X, :Niz:flxi wherex, O{x, 1y, =-1 2,
2
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andN;+N,=N. We thought this is the most fair approach inghesence of angrior
information that could suggest which labelled sarqauld serve as a gold standard.
We conclude this section by providing assessmetiteo€omputational complexity of
proposed method. It has been implemented in MATLZABenvironment on a
desktop computer based on 3GHz dual core procassb2GB of RAM. Processing
of proteomic and genomic datasets used in sectidn® 1.7 took 10, 7 and 3
minutes respectively.

1.4 Model validation

This section presents model validation resultsiobthon simulated data using LMM
(2a)/(2b). To this end, each mixture sample has lbeenposed of ten orthogonal
components comprised BE15000 features. The orthogonality implies thatheac
feature belongs to one component only. By a conwenthe first component has
been selected to contain disease specific featimesenth component to contain
control specific features and the components tware contain features that are not
differentially expressed and share similar con@iuns in control and disease
labelled samples. A concentration variability asrtfee sample population is

simulated using the following model for diseaseugrof samples:

X, =D _sin? (@,,),,

and for control group of samples:

X, = > o _cog @, B, 4)
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Thus, by controlling the mixing angl¢g, } "

n=1,n=

, the amount of a concentration of
each component in disease and control samplesitsotled. Also amount of

concentration variability is controlled by selegi{‘ﬁnm} :':'rmto be confined within
(non-) overlapping angular sectors. Note thatf@)lies that componerst,is

contained in a related disease and control sanpl@gerall concentration of 100%.
To simulate biological variability between the sdasp the relative concentration has
been varied across the sample population, wheeasksand control groups contained
100 samples each. The concentration vectors werdapping in the mixing angle
domain i.e. a concentration vector for diseaseipdeatures was confined in the
sector of [58, 89.99], for the neutral features it was in the sectof2f,65°] and for
control specific features it was confined in theteeof [0.02,40°]. Thus, amount of
overlap between concentration profiles was sigaiftcimplying that in many cases
neutral features were contained in greater conagaoirs in disease labelled samples
than disease specific features, as well as thdtaldaatures were contained in greater
concentrations in control labelled samples thanrobspecific features. Figures 2a
and 2b show disease prediction results using feuaeted disease and control
specific components with the postulated overall benof components equal td=2
(red bars)M=3 (green barsM=4 (blue bars) ani¥=5 (magenta bars). Reference
samples used in LMM (2a)/(2b) were obtained by agierg all the samples in control
i.e. disease group. Results reported in termsrodigeity (Figure 2a) and specificity
(Figure 2b) were obtained by the linear supportaeimachine (SVM) classifier

using 100 independent two-fold cross-validatiorGPS selection parameter has been
set toAB=3" and sparseness regularization parameter in (Ba3A=10°0A max

These parameters were not selected through crdisistvan since the purpose of the

computational experiment has been to evaluateantia of the assumed number of
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component$/ to the prediction accuracy when concentration gaaieross the sample
population. The presented results demonstrategtieater number of postulated
components does not decrease prediction accumatlygiaverage it is even slightly
increased). However, increased number of postuladethonentd/ reduces the
number of features contained in disease and cospeific components selected for
classification. As discussed previously, a gre®tsgtields less complex disease and
control specific components. Following the prineiplf parsimony such solution
should be preferred over the more complex onesatteabbtained for smallda.

Thus, selected disease and control specific comysrage expected to be more
discriminative and less sensitive to over-fittingem the number of postulated
components is increased. In practical implemematicthe proposed approach to
component selection the optimal number of ovem@thpgonents needs to be evaluated
by a cross-validation. In the three real world expents reported below the number
of components has been selected by cross-validabanM O {2, 3, 4, 5}. Ifa
prediction accuracy achieved for the two valueMo$ approximately equal, it is
better to prefer components extracted from the $ssnpith a greater value M.

1.5 Ovarian cancer prediction from a protein mass s  pectra

Low resolution surface-enhanced laser desorptioizadion time-of-flight (SELDI-
TOF) mass spectra of 100 controls and 100 cases leen used for ovarian cancer
prediction study [42]. See also the website ofdlwical proteomics program of the
National Cancer Institute (NCI), [43] , where theed dataset is labelled as "Ovarian
4-3-02". All spectra were baseline corrected. Tha@mne intensities have negative
values. Table 2 presents the best result obtainedhb proposed SCA-based
component selection method together with resultsined for the same dataset by

competing methods reported in cited referencesedlsas by predictive factorization
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method proposed in [1]. Described SCA method has lesed to extract four sets of
components with the overall number of compondntassumed to be 2, 3, 4 and 5.
Figure 3 shows sensitivities and specificitiesmeated by 100 independent two-fold
cross-validations using linear SVM classifier whighlded the best results compared
against nonlinear SVM classifiers based on polymbmand RBF kernels.
Performance improvement is visible when assumed beanof components is
increased from 2 to 3, 4 or 5. The error bars a&kd by the sample size and would
decrease with a larger sample. Thus, the mean vah®uld be looked at to observe
the trend in performance as a functionMdf The best result (shown in Table 2) has
been obtained with the linear SVM classifier =3 with sensitivity of 96.2% and
specificity of 93.6%, but results with the very dan quality have been obtained for
several combinations of the parametersAB andA, see Figure 3, most notal§=4
(see second column in Table 2 and the Additionial Zi As seen in Table 2, only [13]
reported better result for a two-fold cross-valioiat with the same number of
partitions. There, a combination of genetic aldont and k-nearest neighbours
method, originally developed for mining of high-ddnsional microarray gene
expression data, has been used for analysis cégrots data. However, the method
[13] is tested on proteomic ovarian cancer datasét, while the method proposed
here exhibited excellent performance in predicobmprostate cancer from proteomic
data (reported in section 1.6), as well as on catancer from genomic data
(presented in section 1.7). The method shown ir] [#&&d 50 samples from the
control group and 50 samples from the ovarian cage®ip to discover a pattern that
discriminated cancer from non-cancer group. Thidepa has then been used to
classify an independent set of 50 samples with iamacancer and 66 samples

unaffected by ovarian cancer. In [44], a fuzzy rodesed classifier fusion is proposed
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for feature selection and classification (diagnp%é protein mass spectra based
ovarian cancer. Demonstrated accuracy of 98-99%éas estimated through 10 ten-
fold cross-validations (as opposed to 100 two-foldss-validations used here).
Moreover, as demonstrated in sections 1.6 and th&, method proposed here
exhibited good performance on diagnosis of prostatel colon cancers from
proteomic and gene expression levels, respectileli5], a clustering based method
for feature selection from mass spectrometry datderived by combining-means
clustering and genetic algorithm. The method exéiian accuracy of 95.8% (error
rate 4.1%), but this has been assessed througiibicecross-validations (as opposed
to two-fold cross-validations used here).

1.6 Prostate cancer prediction from a protein mass spectra

Low resolution SELDI-TOF mass spectra of 63 comstrolo evidence of cancer with
prostate-specific antigen (PSA)<1l, and 69 case®s{gie cancers): 26 with
4<PSA<10 and 43 with PSA>10, have been used fatai® cancer prediction study
[46]. There are additional 190 control samples witnign cancer (4<PSA<10)
available as well (see the website of the clinigadteomics program of the NCI,
[43]), in dataset labelled as "JNCI_Data 7-3-02"owdver, in the two-class
comparative performance analysis problem reportec lihese samples were not
used. Proposed SCA-based method has been usettdotdaur sets of components
with the overall number of componenisassumed to be 2, 3, 4 and 5. The best result
has been achieved fdn=5 with sensitivity of 97.6% and specificity of 99%but
results with the very similar quality have beenami¢d for several combinations of
the parameter®l, AB andA, (see Figure 4 and the Additional File 3. Tabler&sents
two best results achieved by the proposed SCA-baggmoach to component

selection together with the results obtained by peting methods reported in cited
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references. Linear SVM classifier yielded the bestults when compared against
nonlinear SVM classifiers based on polynomial af8FRKernels. According to Table
3, comparable result (although slightly worse) nsthe reference [47] only. The
method [47] is proposed for analysis of mass spdotr screening of prostate cancer.
The system is composed of three stages: a featelectivn using statistical
significance test, a classification by radial bafiaction and probabilistic neural
networks and an optimization of the results throutjle receiver-operating-
characteristic analysis. The method achieved seitgit(97.1%) and specificity
(96.8%) but the cross-validation setting has nenbeescribed in details. In [46], the
training group has been used to discover a patitatndiscriminated cancer from non-
cancer group. This pattern has then been usedassifyt an independent set of 38
patients with the prostate cancer and 228 patiefits the benign conditions. The
obtained specificity is low. The predictive matifixctorization method [1] yielded
significantly worse result than the method propoketk. In [45] a clustering based
method for feature selection from mass spectrome#ata is derived combinink-
means clustering and genetic algorithm. Despitéraetfold cross-validation, the
reported error was 28.97%. Figure 4 shows sens#tsvand specificities estimated by
100 independent two-fold cross-validations usingedr SVM classifier on
components selected by the method proposed hereadebM the optimal values of
the parameterd and A8 (obtained by cross-validation) have been usedhiaio
results shown in Figure 4. Increasing a postulat@dber of components from 2 to 5
increased accuracy from 97.4% to 98.3%. Thus, bateuracy is achieved with the

smaller number of features\z ratios) contained in selected components.
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1.7 Colon cancer prediction from gene expression pr  ofiles
Gene expression profiles of 40 colon cancer anch@2nal colon tissue samples

obtained by an Affymetrix oligonucleotide array [4&have been also used for
validation and comparative performance analysispadposed feature extraction
method. Gene expression profiles have been doweatbdm [49]. Original data
produced by oligonucleotide array contained mo@ntB500 genes but only 2000
high-intensity genes have been used for clustelysisan [48] and are provided for
download on the cited website. The proposed SCAdaaspproach to feature
extraction/component selection has been used taa@Xbur sets of components with
up- and down-regulated genes and with the oveuatiber of componentsl assumed
to be 2, 3, 4 and 5. The linear SVM classifier hasn applied to groups of the four
sets of selected components extracted from geneessipn levels for specific
combinations of parametef®, A andM. The best result in terms of sensitivity and
specificity for eachM has been selected and shown in Figure 5. The ctoenle of
results obtained by linear SVM classifier is praednin the Additional File 4. An
increased number of postulated componévitddid not decrease accuracy but it

yielded components selected for classification watiuced number of genes. This is

verified in Figure 6 which shows component withregulated genes?*®* extracted

control
from a cancer labelled sample w.r.t. the contréérence for assumed number of
componentd=2 andM=4. Thus, it is confirmed again that an increaskygields less
complex components that (following the principlepafrsimony), should be preferred
over the more complex ones obtained by smallein order to (possibly) increase the
prediction accuracy, we have applied nonlinearypamial and RBF SVM classifiers
to the two groups of the four sets of componenas yielded the best results with the

linear SVM classifier: M=2 (A6=1% and M=4 (\=10%Anax and A6=5%. The
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polynomial SVM classifier has been cross-validated degree of the polynomial

equal to d=2, 3 and 4. The RBF SVM classifi€ix,y) =exp(—||x—y||§/ 272) has been

cross-validated for the variane@ in the range 8107 to 1.5<10° in steps of 18 The
best result has been obtained witk1.2x10° for M=2 and withc®=1.0x10° for M=4.

An achieved accuracy is comparable with the acquoaitained by other state-of-the-
art results reported. That is shown in Table 4 a8 as in the Additional File 5. A
predictive matrix factorization method [1] yieldstightly better results here, but it
has shown significantly worse result in the cadasvarian (see Table 2) and prostate
(see Table 3) cancers. Gene discovery method bban applied for three values of
the thresholdc, O {2, 2.5, 3} used to select up-regulated genes. iMam a
posteriori probability has been used for an assignment of gémesach of the three
components containing up-, down regulated and rdiffegally not expressed genes.
Thus for each threshold value the two componentee vebtained for training a
classifier. The logarithm with the base 10 has bapplied to gene folding values
prior gene discovery/selection took place. The besilt reported in Table 4 has been
obtained for a component containing up-regulatedegewithc,=2.0 and an RBF
SVM classifier, whereas® has been cross-validated in the rangetdd @ in steps of
10%. The best result has been obtaineddfei5x10°. The gene discovery method [2]
outperformed slightly the method proposed here. él@wr as opposed to the proposed
method, the gene discovery method [2] is not apple to the analysis of mass
spectra. The gene selection method in [15] is aahddiven trying to take into
account the genes' group behaviours and interactign developing an ensemble
dependence model (EDM). The microarray datasetlustered first. The EDM is
based on modelling dependencies that represent-dluster relationships. Inter-
cluster dependence matrix is the basis for diso@tmon between cancerous and non-
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cancerous samples. Classification accuracy of 8&8érted in [15] is very close to
the one obtained by the SCA-based method proposezl klowever, while SCA-
based performance has been assessed through tverfids-validation, no cross-
validation details were reported in [15]. Similarigensitivity had to be estimated
indirectly from Figure 5 in [48]. The method in [56ombines a recursive feature
extraction and the linear SVM to yield accuracy8@t5%. This is also less accurate
than what has been achieved by the method propbdsectover, the very accuracy
reported in [50] has been assessed by a ten-falgsaralidation only and that is
known to yield a too optimistic performance asses#min this regard accuracy
reported in [51] can be taken closer to the raalshe since it has been assessed by
two-fold cross-validation. This method, as [50],aeg combines recursive feature
elimination with the SVM, but it is taking additialty into account the paramet€r

A reported accuracy of 88.84% is slightly bettaartlihe one obtained by the method
proposed here. However, the proposed method iassifier independent one and, as
demonstrated in sections 1.5 and 1.6, it yielddg@sults on cancer diagnosis from

proteomic datasets as well.

Conclusions
This work presents a feature extraction/componeleicsion method based on

innovative additive linear mixture model of a samfjrotein or gene expression
levels represented respectively by mass spectraaroarray data) and sparseness
constrained factorization that operates on a sgexperiment)-by-sample basis. That
is different in respect to the existing methodsahifactorize complete dataset
simultaneously. The sample model is comprisedtesasample and a reference
sample representing disease and/or control groagh Eample is decomposed into

several components selected automatically (the eumsldetermined by cross-
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validation), without using label information, aseéase-, control specific and
differentially not expressed. An automatic selati®based on mixing angles which
are estimated from each sample directly. Hencetaltige locality of decomposition,
the strength of the expression of each featurevagnfrom sample to sample.
However, the feature can still be allocated todhmme (disease or control specific)
component in different samples. As opposed to feature allocation/selection
algorithms that operate on a whole dataset simedtasly try to optimize a single
threshold for the whole dataset. Selected compgsreant be used for classification
due to the fact that labelled information is na@disn the selection. Moreover, disease
specific component(s) can also be used for futtih@narker related analysis. As
opposed to the existing matrix factorization methaich disease specific component
can be obtained from one sample (experiment) @yypostulating one or more
components with differentially not expressed feasuthe method yields less complex
disease and control specific components that argosed of smaller number of
features with higher discriminative power. This bagn demonstrated to improve
prediction accuracy. Moreover, decomposing samjile @he or more components
with indifferent features performs (indirectly) spi® adaptive preprocessing related
to removal of features that do not significantlyyacross the sample population. The
proposed feature extraction/component selectiomoaeis demonstrated on the real
world proteomic datasets used for prediction ofdharian and prostate cancers as
well as on the genomic dataset used for the cadoicer prediction. Results obtained
by 100 two-fold cross-validations are compared taably against most of the state-
of-the-art methods cited in the literature and usedancer prediction on the same

datasets.
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Figures

Figure 1 - Geometrical interpretation of the linea  r mixture model.
Concentration vectors of the linear mixture modehprised of control reference

sample and test sample, (2a) and Figure la,isease reference sample and test
sample, (2b) and Figure 1b, are confined in a §itetdrant of the plane spanned by
two mixture samples. Featurew/t ratios or genes) with prevailing concentration in
disease sample are linearly combined into compaassuciated with the red colour
relative concentration vector. Likewise, featurethvyprevailing concentration in
control sample are combined linearly into comporassiociated with the blue colour
relative concentration vector. Features that atalifferentially expressed are
combined linearly into one or more neutral compds@ssociated with the green
colour relative concentration vectors.

Figure 2 - model validation.

Sensitivities, Figure 2a, and specificities, Figlbe (with standard deviations as error
bars) estimated by linear SVM classifier and 1aependent two-fold cross-
validations using two disease specific and two @drgpecific components.
Components were extracted from the linear mixtuoel@s based on control
reference (c.r.) sample, model (2a), and disezfseence (d.r.) sample, model (2b),

where each sample was comprised of ten orthogamaponents containing
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K=15000 features. One component contained in pregafloncentration disease
specific features, one control specific features @ight components contained
features equally expressed in control and disedssléd samples. Relative
concentration (expressed through a mixing angle)sascthe sample population has
been: for disease specific features in the randefofo 89.99; for differentially not
expressed features in the range of 8%65”; and for control specific features in the
range of 0.04to 4. Assumed overall number of components has e (red
bars),M=3 (green barsYI=4 (blue bars) an=5 (magenta bars).

Figure 3 - ovarian cancer prediction.

Sensitivities (a) and specificities (b) (with stand deviations as error bars) estimated
in ovarian cancer prediction from protein expressevels using 100 independent
two-fold cross-validations and linear SVM clasgifieour sets of selected
components were extracted by SCA-based factorizatsing LMMs (2a) and (2b)
with control reference (c.r.) and disease refegdidcar.) samples respectively, where
the overall number of componems has been set to 2 (red bars), 3 (green bars), 4
(blue bars) and 5 (magenta bars). Optimal valueéseoparameters andA8 were

used for eacM. Performance improvement is visible when humberashponents is
increased from 2 to 3, 4 or 5.

Figure 4 - prostate cancer prediction.

Sensitivities (a) and specificities (b) (with stand deviations as error bars) estimated
in prostate cancer prediction from protein exp@s$evels using 100 independent
two-fold cross-validations and linear SVM clasgifiEour sets of selected
components were extracted by SCA-based factorizaising LMMs (2a) and (2b)
with control reference (c.r.) and disease refezdida.) samples respectively, where

the overall number of componems has been set to 2 (red bars), 3 (green bars), 4
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(blue bars) and 5 (magenta bars). Optimal valueéseoparameters andA8 were

used for eacM. Performance improvement is visible when humberashponents is
increased from 2 to 5.

Figure 5 - colon cancer prediction.

Sensitivities (a) and specificities (b) (with standl deviations as error bars) estimated
in colon cancer prediction from gene expressioeleusing 100 independent two-
fold cross-validations and linear SVM classifieouF sets of selected components
were extracted by using LMMs (2a) and (2b) withtcolreference (c.r.) and disease
reference (d.r.) samples respectively, where tlegadvnumber of componentd has
been set to 2 (red bars), 3 (green bars), 4 (ldu) land 5 (magenta bars). Optimal
values of the parametexsandAB8 were used for eadil. Increasing number of
component$/ did not decrease prediction accuracy but didecedbe number of
features (genes) in components used for classditésee Figure 6).

Figure 6 - colon cancer feature vectors.

Component containing up-regulated genes extracted & cancerous sample w.r.t. to
a control reference sample using LMM (2a): a) assdimumber of component4=2;

b) assumed number of componelits4.
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Tables

Table 1 A mixture model with a reference-based alg  orithm for feature
extraction/component selection

Inputs. {xn OR,y. D{l,—]}} ::1 samples and sample labels, whénepresents

number of feature pointsn(z ratios or genes).

OR" and x....JR" representing control and disease (case) groups of

Xcomrol
samples.

Nested two-fold cross-validationParameters: single component points (SCPSs)
selection threshold in radian equivalent&6fl {1°, &, 5%; regularization
constantA 0 {10 Amax, 10"Amax, 10%Ama ; number of components! O {2,
3, 4, 5}; parameters of selected classifier.

Components selection from mixture samples.

N

1. DxD{xn DRK} 1form a linear mixture models (LMMs) (2a) and

(2Db).

2.For LMMs (2a)/(2b) select a set of single compormmnts for a

givenA®.

3.0n sets of SCPs use hierarchical clustering (athustering

methods can be used also) to estimate mixingiceat qoniroiand

AdgiseasdOr a givenM.

4. Estimate source matric&gontroiand Syiseasddy SOIving (3a) and (3b)
respectively for a given regularization paesenA.

5. Use minimal and maximal mixing angles estimatedifraixing
matrice control@NdA gisease tO Select, following the logic illustrated
in Fig. 2a and Fig. 2b, disease and conpetsic components:

disease

disease control Scontrol S
disease refiy *

Scontrol ref.n » Scontrol ref.n 1 “disease refq

and

End of component selection.

End of nested two-fold cross-validation.
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Table 2 Comparative performance results in ovarian cancer prediction
Sensitivities and specificities were estimated 8§ fwo-fold cross-validations

(standard deviations are in brackets).

Method

Sensitivity/Specificity/Accuracy

Proposed method
M=3, AB=5°

A=10"\ max

Linear SVM

Sensitivity: 96.2 (2.7)% ; specificity: 93.6 (4.1)%
accuracy: 94.9%
Control specific component extracted with respeda t

cancer reference sample.

Proposed method

Sensitivity: 95.4 (3)% ; specificity: 94 (3.7)%;cracy:

M=4, A8=3" 94.7%

A=10°A . Control specific component extracted with respeda t
cancer reference sample.

Linear SVM

[1] Sensitivity: 81.4 (7.1)% ; specificity: 71.7 (6.6)%

142] Sensitivity: 100%; specificity: 95%
(one partition only50/50 training; 66/50 test).

[44] Accuracy averaged over 10 ten-fold partitions: 9869
(sd: 0.3-0.8)

[13] Sensitivity: 98%, specificity: 95% , two-fold CV thi
100 partitions.

[45] Average error rate of 4.1 % with three-fold CV.
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Table 3 Comparative performance results in prostate

cancer prediction

Sensitivities and specificities were estimated 8§ fwo-fold cross-validations

(standard deviations are in brackets).

Methods Sensitivity/Specificity/Accuracy

Proposed method  Sensitivity: 97.6 (2.8)% ; specificity: 99 (2.2)%;

M=5, A8=1° accuracy: 98.3%

A=10A Control specific component extracted with resped t
cancer reference sample.

Linear SVM

Proposed method

Sensitivity: 97.7 (2.3)% ; specificity: 98 (2.4)%;

M=4, A8=1° accuracy: 97.9%

A=10%\ Control specific component extracted with resped t
cancer reference sample.

Linear SVM

[1] Sensitivity: 86 (6.6)%; specificity: 67.8(12%)
accuracy: 76.9%.

[46] Sensitivity: 94.7%; specificity: 75.9%; accaya 85.3%.
253 benign and 69 cancers. Results were obtained on
independent test set comprised of 38 cancers add 22
benign samples.

[47] Sensitivity: 97.1%; specificity: 96.8%; accaya 97%.
253 benign and 69 cancers. Cross-validation detatls
reported.

[45] Average error rate of 28.97 on four class pgobwith

three-fold cross-validation.
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Table 4 - Comparative performance results in colon cancer prediction
Sensitivities and specificities were estimated 8§ fwo-fold cross-validations

(standard deviations are in brackets).

Methods

Sensitivity/Specificity/Accuracy

Proposed method
M=2, AB=1°
RBF SVM (©*=1200,

c=1)

Sensitivity: 90.8 (5.5)%, specificity: 79.4 (9.8)%;
accuracy: 85.1%
Control specific component extracted with resped t

cancer reference sample.

Proposed method
M=4, AB=5" A=10°A pax
RBF SVM (*=1000,

c=1)

Sensitivity: 89.8 (6.2)%, specificity: 78.6 (12.8)%
accuracy: 84.2%.
Control specific component extracted with resped t

control reference sample.

[1]

Sensitivity: 89.7 (6.4)%, specificity: 84.3 8% ;

accuracy=87%. 100 two-fold cross-validations.

2]

Sensitivity: 92.1 (4.7)%, specificity: 85 (10%;
accuracy: 88.55%. 100 two-fold cross-validations.

c,=2.0.

[48]

Sensitivity: 92-95% calculated from Figure 5.

Specificity not reported.

[15]

Accuracy 85%. Cross-validation details notaepd.

[50]

Accuracy 82.5%, ten-fold cross-validation (Rwith

linear SVM).

[51]

Accuracy 88.84%, two-fold cross-validation (RF

with linear SVM and optimized penalty parameter C).
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Additional files
Additional file 1

file format: MATLAB

description of data: code with implementation adgwsed feature
extraction/component selection method.

Additional file 2

file format: XLS (Excel spreadsheet)

description of data: classification results obtdibg the linear SVM applied to
disease and control specific components extracted the ovarian cancer dataset for
various combination of parametdvis A andA®.

Additional file 3

file format: XLS (Excel spreadsheet)

description of data: classification results obtdibg the linear SVM applied to
disease and control specific components extracted the prostate cancer dataset for
various combination of parametdvis A andA®.

Additional file 4

file format: XLS (Excel spreadsheet)

description of data: classification results obtdibg the linear SVM applied to
disease and control specific components extracted the colon cancer dataset for
various combination of parametdvis A andA®.

Additional file 5

file format: XLS (Excel spreadsheet)

description of data: best classification resultaoied by the RBF SVM applied to
disease and control specific components extracted the colon cancer dataset for

M=4, A=102\,ax andAB=5° andM=2 andAB8=1°.
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Additional files provided with this submission:

Additional file 1: Additional_File_1.zip, 10K
http://www.biomedcentral.com/imedia/1583939029656220/supp1.zip
Additional file 2: Additional_File_2.xlsx, 15K
http://www.biomedcentral.com/imedia/5402766976562215/supp2.xlsx
Additional file 3: Additional_File_3.xlsx, 16K
http://www.biomedcentral.com/imedia/2493515426562216/supp3.xlsx
Additional file 4: Additional_File_4.xlsx, 13K
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Additional file 5: Additional_File_5.xlIsx, 11K
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