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ABSTRACT

Sparse representation of natural images over redn
dictionary enables solution of the inpainting peshl A
major challenge, in this regard, is learning ofieidnary
that is well adapted to the image. Efficient methede
developed for grayscale images represented in spi@te

by using, for example, K-SVD or independent compdne

demonstrates that the rank of an unfolded imagsotein

d €ach of the three modes mostly equals tensor dioeis

corresponding mode. Thus, for RGB color images,- low
rank assumption is rarely satisfied. Moreover,as feen
demonstrated in [7] that the minimization of theclear
norm can lead to multiple solutions of the relatealtrix
completion problem. As shown in [7], the inpainting

analysis algorithms. Here, we address the problém dased on the minimization of the nuclear norm féals

patch space-based dictionary learning for colog@esaTo
this end, an image in RGB color space is repredesea
collection of vectorized 3D patch tensors. Thiglketo the
state-of-the-art results in inpainting random aindcsured
patterns of missing values as it is demonstratatienpa-
per.

recover a color image damaged by a thick line patié
missing pixels.

As opposed to the trace norm minimization, an
approach that uses sparse representation of areiimag
learned dictionary enables inpainting of random stindc-
tured pattern of missing pixels, as it is demonsttan [1]
for denoising color images and in [8] for inpaimtigray-

Index Terms — learned dictionary, independent com-scale images. The method in [1] extends the patelces

ponent analysis, color image, inpainting.

1. INTRODUCTION

Information recovery from incomplete or partiallp-o
served data is ubiquitous in biomedical signal pssing,

K-SVD algorithm-based dictionary learning, develdpe
and demonstrated in [9] for denoising of grayscalag-
es, to denoising and inpainting of color images. dis
cussed in [1], denoising of color images requiréapsa-
tion of the orthogonal matching pursuit algorithused in
the dictionary learning process, to overcome actsfthat

computer vision, chemometrics, communication neksor OCCUr in color image processing. That is due to fetw

etc. We consider the problem of inpainting coloadgeas
that can be damaged or corrupted by noise, [i} #iso
possible that certain number of pixels is saturatesbme

that 3D patches collected for dictionary learning ribt
represent well diversity of colors in natural imagkn this
paper, we propose to use the independent component

of the color channels, [2, 3]. An image in RGB colo analysis (ICA) for dictionary learning on a matdkvec-

space, which is a representation used in this pé&par3D
tensor. Hence, color image inpainting is a 3D tewcson-

torized 3D patches collected randomly from a tragnset
of color image tensors. Provided that the traingeq is

pletion problem. One approach to solve this problem Tch enough, this approach is expected to repredieat-

based on the minimization of trace norm (also datia-
clear norm) of the matricized tensor [4, 5, 6]. Tomcept
of nuclear norm for tensors appeared for the firse in
[4]. Nuclear norm (defined as the sum of the siagwuhl-
ues of a matrix) is the tightest convex lower boofdhe
rank of the matrix on the set of matricgs ||Y]|, < 1}

sity of colors in natural images. Moreover, thetiditary
learning (sparse coding) and image reconstruction
(inpainting) stages developed for grayscale imaf# 9],
are directly extendable to color images. The colmge
tensor in patch space representation has to benzad
before "grayscale-like" processing and the imagmme

(matrix rank minimization is a non-convex promem)_structlon result has to be tensorized. Hence, doed is

Hence, the nuclear norm minimization assumes thana

not on finding decomposition of a given image tenduat

sor unfolded in selected mode has low-rank reptasen 'S _the case in [10] where a tensor is decomposed in

tion. However, fulfilment of the low-rank assumptids
data dependent and may fail in some applicatiortge Wit

CP/PARAFAC model, but to recover color image tensor
from incomplete data by assuming that it is spansthe

comes to RGB color images, experimental checkiné’redeﬁ”ed (learned) dictionary. Thus, within tin@aint-

ing context, saturated pixels in color images cande-



clared as missing and recovered without imposimages (or more precisely, image patches) in amogpp
ing/assuming [2]:i} correlation between the color chan- ate dictionary has already been justified emplisicaee
nels, (i) that most of the pixels are not saturated, aig ( for example [1]. Random collection of 3D patcheexs
that not all color channels are saturated simutiasly at pected to represent color diversity of natural iegg
some pixel location. Since a learned dictionaryldge which has been noticed as a problem in [1]. Foymall
more efficient (sparser)_ representation t_ha_n_ adfigéec- assuming an image path]Rﬁxﬁ“, the ensemble of
tionary, see [8] for details related to the inpiaigtexper- : - nxT

. - vectorized patches forms a training matrikOR™ ,
iments, the learned dictionary approach proposed iz _ :

wheren=3|. Each column vector represents a vectorized

expected to yield a better reconstruction of theirséed . - xm .
pixel values than the fixed dictionary method pregebin ~ Patch, assumed to be sparse in the dictioDdnR™ :
[3]. y,=Dc, ¢, OR"™, |||, <m, m=nand t O {1, .., T}

The rest of the paper is organized as follows.ise@  Here, [c |, stands for thel-quasi norm that counts the

presents basics of tensor notation. Dictionaryriegr in - number of nonzero elements ¢n Hence, learning a dic-
the patch space representation of matricized dolages tionary D is a sparse coding problem. It is implemented

as well as sparseness constrained image recomsirace
presented in section 3. Section 4 presents expstane
results related to inpainting of color images widmdom
and thick lines patterns of missing values. Concluss
presented in section 5.

2. BASICSOF TENSOR NOTATION

Tensor, also called multi-way array, is a geneadilin of
vectors (1D array) and matrices (2D array). Theyama
presented in this paper is related to color imabas are

3D arrays: X OR'>">, wherel, and I, represent the
number of pixels in horizontal and vertical direcis re-

through the sparseness constrained factorization of
Y=DC, whereas sparseness constraint is imposed on the
codeC.

Many algorithms can be used to implement sparse
coding whereas the most often used are the K-S\¢gb-al
rithm [9], sparseness constrained nonnegative xnEc-
torization (NMF) algorithm, [13], and recently IC#lgo-
rithm, [8]. Here, as in [8], we shall use the Fastlalgo-
rithm, [14], with tanh nonlinearity to learn dictionari.
Thetanh nonlinearity induces the code distributed accord-
ing to the Laplacian-like probability density furmt, and
that ensures the cod2to be sparse. Moreover, the Fastl-
CA algorithm enables, in sequential mode, to learer-
complete dictionar. Thus, for the purpose of dictionary

spectively, ands=3 represents number of spectral (R, Glearning, sparse coding is interpreted as the Hdimarce

and B) channels. Each tensor index is called wapaxte,
and the number of levels on a certain mode is dalie
mension in that mode. This is the standard notataopt-
ed in multi-way analysis [11]. Since the focus af paper
is tensor reconstruction from incomplete data, aodl
tensor decomposition, we shall not discuss hereetigor
models. Details about this topic can be found R].[Dic-
tionary learning approach proposed here is baseth®n
representation of the image tensérin the patch space:

separation (BSS) with predefined distribution of tode
(sources in BSS vocabulary). Detailed comparatige p
formance analysis related to the inpainting of gcaje
images in [8] has demonstrated that FastICA leadied
tionary yields comparable or better results thaS\K>
algorithm. Before dictionary learning, the traininatrix

Y was preprocessed by making every column zero-mean
and by multiplying the resulting matrix by the niatof

the forml + %K, wherel denotes3! x 3! identity matrix,

X, DROJLM“, wherep represents a patch index and thex is a matrix of the form

size of (color) patches i¢l x v/ x 3. Each patch is vec-
torized, yielding a column vectox, OR3,. Thus, the

] 00
K:(O]O)
00 J

vectorization maps an image tensor into a matrixiwhere/ is thel x [ matrix of ones, and is an appropriate
X X DR%‘:P, where P represents overall number of constant. In this way, learned basis vectors wereefl to

patches collected fronX. Hence, a mapped color image

X can be processed by dictionary learning and inmage
construction algorithms already developed for graies

images, [8, 9], whereas the reconstructed imagddhas

tensorized.

3. DICTIONARY LEARNING AND IMAGE
RECONSTRUCTION IN PATCH SPACE

We cast the inpainting problem in the following et
matical framework. It is assumed that an imagepase

take into account the average colors. This idea teken
from the paper [1], where it was used in a somewlifat
ferent way, by modifying the OMP algorithm. The eon
stanta was set tm = .,/y + 1 — 1, wherey = 5.25, see
[1] for details.

Once the dictionar is learned, the actual inpainting
is performed according to the following proceduret us
assume that color image tens¥r contains damaged pix-
els on known locations. After transformation to gbat
space a vectorized patch with the vector of knowelp
vOR¥, ken, is related to the patch with true but unknown

in a dictionaryD, that is learned from an ensemble ofpixelsxOR"through: v=Mx=MDc. Here, M is an

patches collected randomly from color images bealung
to the training set. The assumption of sparsitycalbr

indicator matrix that is determined by the layotihoss-
ing pixels. Hence, recovery of the patch with tpireels x



can be achieved through the sparseness-constraimed size &7x3 pixels. There, the K-SVD algorithm was used
mization: for dictionary learning and a modified version bétor-
: _ul? thogonal matching pursuit algorithm, [19], for ineage-
argcmln{||c||0 1|M Dc V”z = ‘9} construction. The method proposed herein achie@¢=P
where the parameterdepends on the noise variance. Pro0f 29.36 dB (average of 5 runs) with patches of dlze
vided thak = 2||C||0 ande is small, the above problem has §3><8><3_p|xels, see Figure 3 b_ottom left. Hence,_ d|ff_e£en
) : ~_ in achieved performance in image reconstructiosmsll
the unique solution. However, the above optimizatio and is, arguably, consequence of different trainiedg
problem is NP-hard, i.e. its computational comglexi ysed for dictionary learning. When each color cleis
grows eXponential Wltlfn, which makes it COmpUtational' treated as a graysca|e image, the obtained perfmena
ly intractable for practical purposes. Computatiynfa-  was inferior, with PSNR of 25.05 dB, see FigureoBtdm
sible solutions are obtained by replacing theuasi norm  right, relative to the case when the color image been
b treated as a 3D tensor. The same result has beeonde
of ¢ by C,-norm ||c||p :(Z|q|pj . For 0<p<1 this strated in [1] when OMP method has been used tirihp
i each color channel separately in the dictionarynkea by
yields a non-convex optimization problem. Yet, algo the K-SVD algorithm. We have further tested the-pro
rithms that minimize(,-norm for p<1, [15] , outperform posed method on four test images shown in Figuiiéhd-
C;-norm minimization in practice. In this paper, ag8], se images were damaged by randomly removing 80% of
we have used the method proposed in [16], witlpixels as well as by using a thick line patternnagsing
MATLAB code available in [17]. The method minimizes values, see Figure 5. For images with random patiér
smooth approximation of thelg-quasi norm of ¢:  missing values, the inpainting method proposed hase
"C"o =n-F, (C) where F, (C)zz f_ (Q) and achieved the PSNR performance of 28, 35.1, 31.9 and
i 35.9 dB, respectively, with respect to top lefp taght,
bottom left and bottom right images on Figure 4g&td-
ing the thick line pattern of missing values, itshaeen
indicator function of set {0}. The parameterregulates shown in [7] that trace norm minimization failsrecover
how close the approximation is tg-quasi norm. Minimi-  color image with such pattern of missing values. tBa
; ; ; RS contrary, as shown in Figure 6, the learned dietign
zation of ||, is equivalent to t_he maximization &(c) - Cod method proposed here yielded images of\satsf
for a sequence,>c,>...>0k. This approach outperforms yisyal quality from the images with the thick lipattern
methods based on the minimizationteform in terms of  of missing values. Achieved PSNR values in the orde

accuracy and computational efficiency. This is e&lly  defined previously were 34.3, 37.2, 39.8 and 3B3 d
the case when the codecontains several dominant coef-

ficients and many coefficients with the magnitutiese to
zero. Such situation occurs in practice for reatlavgig-
nals such as images of natural scenes.

f (cl)=exp(—c,2/%2) is an approximation of the

g

4. EXPERIMENTAL RESULTS

In the examples in this section the dictionary Ve@sned
from a matrix composed of vectorized 3D patchekectl
ed from 23 color images shown in Figure 1. The iesag
were downloaded from [18]. Tensorized basis vecfors ==
atoms) learned by FastICA algorithm are shown in Figuref
2. Most of the atoms is gray (color-less) since the
dictionary was learned on a generic image datafdmssse
atoms represent spatial structure in images. Therab
atoms should represent differences in structureach of
the three (R, G and B) color channels. As showfl]n
dictionary learning on a single image would resultnore
colored atoms since the dictionary is adapted single
image. This was the approach taken in [1], wher th
dictionary was learned on the damaged image itself.
However, here we show that comparable result can be
obtained with generic dictionary.

The proposed method is first tested on a castlgémna
Figure 3 top left, with 80% of pixels removed randy,
Figure 3 top right. The same example has been imsed
Figure 12 in [1], whereas achieved performanceariage
reconstruction was PSNR=29.65 dB with patches ef th



Figure 2. Tensorized basis vectors learned by FastICA
algorithm from the training images shown in Figlire

Figure 3. Top left: original image. Top right: 80% of pix-

els removed randomly. Bottom left: the result gfamt-

ing matricized color image tensor: PSNR=29.36dBt-Bo

tom right: the result of inpainting each spectrahge sep-
arately as a grayscale image: PSNR=25.05dB.

Figu

Figu

i

re4. Four test images.

re 5. Test images, shown in Figure
line pattern of missing values.
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Tensor completion for structured pattern of missiatyes

is a challenge for state-of-the-art methods thatimmze

nuclear norm. Here we have demonstrated that itipgin
of color image (3D tensor completion problem) can

accomplished successfully for random and thick pag&

terns of missing values. That is achieved by spase

constrained reconstruction formulated in space cu®g

of vectorized 3D patches of the image. The pattize®

sparse representation in dictionary learned insffece of
vectorized 3D patch tensors collected randomly ftom
images in the training set.



