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Abstract

Mathematical modeling of inverse problems in imaging, such as inpainting, deblurring and
denoising, results in ill-posed, i.e. underdetermined linear systems. Sparseness constraint is
used often to regularize these problems. That is because many classes of discrete signals (e.g.
natural images), when expressed as a vectors in a high-dimensional space, are sparse in some
predefined basis or a frame (fixed or learned). An efficient approach to basis/frame learning
is formulated using the independent component analysis (ICA) and biologically inspired linear
model of sparse coding. In the learned basis, the inverse problem of data recovery and removal
of impulsive noise is reduced to solving sparseness constrained underdetermined linear system
of equations. The same situation occurs in bioinformatics data analysis when novel type of
linear mixture model with a reference sample is employed for feature extraction. Extracted
features can be used for disease prediction and biomarker identification.
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Sažetak

0.1 Uvod

Rijetkost vektora ili matrice po definiciji znači da je ‘mnogo’ elemenata (vektora, odn. matrice)
jednako nuli. Kompresibilnost ili približna rijetkost podrazumijeva da je mnogo elemenata pri-
bližno jednako nuli. Mnogi signali koji se susreću u praksi su ili rijetki/približno rijetki ili
postoji transformacija koja ih čini rijetkima. To je analitički model rijetkosti. Mnogi stan-
dardi kompresije (JPEG, audio kompresija) koriste neke poznate matematičke transformacije
(diskretna kosinusna transformacija, valići) koje rezultiraju rijetkim prikazom signala. Iz ana-
litičkog modela slijedi sintetički model: često je realno pretpostaviti da postoji baza (ili okvir)
vektorskog prostora takva da se signali iz dane klase mogu prikazati kao linearna kombina-
cija od nekoliko vektora te baze/okvira. Kažemo da signal ima rijetku reprezentaciju u danoj
bazi/okviru. U terminologiji obrade signala, takva baza/okvir se često naziva rječnik, a vektori
te baze/okvira atomi. Rijetkost ili kompresibilnost su vrlo važni za praktične inverzne pro-
bleme u obradi slike, kao što su rekonstrukcija nedostajućih dijelova slike, uklanjanje šuma
ili super-rezolucija. Navedeni problemi su općenito loše postavljeni ili vrlo loše uvjetovani, a
pretpostavka rijetkosti rješenja ih regularizira i omogućava najsuvremenije rezultate. Rijetkost
je vrlo korisna i za rješavanje problema razdvajanja signala [22], posebno u slučaju kad je broj
mjerenja manji od broja izvornih signala. Uobičajeni naziv za razdvajanje signala uz pretpos-
tavku rijetkosti je analiza rijetkih komponenata. Važna primjena analize rijetkih komponenata
je u bioinformatici. Rijetkost omogućava izdvajanje značajki (primjer su geni u genomici) na
osnovu danih uzoraka za koje su poznate labele (odn. uzorci su dobiveni od zdravih ili bolesnih
pacijenata).

Gore navedeni pristupi rješavanju praktičnih problema u obradi slike i bioinformatici bazirani su
na fundamentalnim rezultatima iz područja sažetog uzorkovanja. Naime, u nekoliko začetnih
radova (dobar pregled dan je u [16]) dokazano je da se signali koji su dovoljno rijetki mogu
rekonstruirati iz malog broja mjerenja (manjeg od Nyquist-ove granice, koja je odavno poznata
u području obrade signala) rješavanjem problema konveksne optimizacije. Drugim riječima,
dovoljno rijedak signal je jedinstveno rješenje linearnog sustava (pri čemu matrica sustava ima
više stupaca nego redaka, odn. problem je pododred̄en) s ograničenjem rijetkosti. To rješenje
se može dobiti brzim algoritmima optimizacije. Dovoljno rijetki signali se mogu prikazati i
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0.1. Uvod

kao jedinstveno rješenje nekonveksnih problema, uz još manji broj mjerenja. Mnogi algoritmi
nekonveksne optimizacije u praksi se pokazuju korisnima za rješavanje ovih problema. Takod̄er,
u praksi je neophodno da algoritam bude prilagod̄en formulaciji problema koja uzima u obzir
ne-egzaktnost modela, odn. grešku. Izvor te greške mogu biti i približna rijetkost i greška
modela, odn. aditivni šum. Navedeni rezultati, iako motivirani u području sažetog uzorkovanja,
vrlo su korisni i za rješavanje inverznih problema u obradi signala i slike.

Iako su se mnoge poznate, fiksne, transformacije (diskretna kosinusna transformacija, valići)
pokazale korisnima u gore navedenim problemima, pokazano je da se bolji rezultati mogu dobiti
učenjem transformacije, odn. rječnika, na specijalnoj klasi signala. U mnogim publikacijama
prezentirani su poboljšani rezultati dobiveni korištenjem naučenih rječnika u odnosu na fiksne.
U ovom radu, prezentirat ćemo korištenje metode analize nezavisnih komponenata (ANK) za
učenje rječnika u nekim problemima obrade slike (rekonstrukcija nedostajućih dijelova, ukla-
njanje impulsnog šuma). Korištenje ANK ima biološko opravdanje. Naime, pokazano je da
atomi naučeni pomoću ANK imaju mnogo sličnosti s eksperimentalno opaženim ‘receptivnim
poljima’ (više detalja dano je u Odjeljku 0.3) u mozgu nekih sisavaca.

U nastavku navodimo glavne doprinose ovog rada:

1. ANK, koja je po sebi metoda za rješavanje problema razdvajanja signala, korištena je
kao metoda za učenje rječnika za rijetku reprezentaciju slika prirodnih scena. Naučeni
rječnik primijenjen je na problemu rekonstrukcije nedostajućih dijelova slike i uklanjanja
specijalne vrste impulsnog šuma. Dobiveni rezultati su bolji od ili usporedivi s najsu-
vremenijim metodama u slučaju uniformne raspodjele nedostajućih elemenata u slici ili
nekih strukturiranih raspodjela (linije, tekst).

2. Problem uklanjanja specijalne vrste impulsnog šuma formuliran je kao problem rekons-
trukcije nedostajućih dijelova. Nakon toga, primijenjen je pristup opisan u točki (1).
Dobiveni rezultati su značajno bolji od onih dobivenih najsuvremenijim metodama neli-
nearnog filtriranja (myriad filtri, modificirani medijan filtri). Predložene metode za ukla-
njanje specijalne vrste impulsnog šuma i rekonstrukcije nedostajućih dijelova u slici su
efikasne i za sive i za slike u boji (RGB). Metode su opisane u radovima [34, 35].

3. Predložena je nova metoda za izdvajanje značajki u bioinformatici (proteomici i geno-
mici). Bazirana je na novom tipu linearnog modela miješanja s referentnim uzorkom.
Kroz matričnu faktorizaciju s ograničenjem rijetkosti, omogućeno je automatsko izdvaja-
nje značajki na nivou svakog uzorka. Pri tome, labele uzoraka se ne koriste. Ova činjenica
omogućava korištenje izdvojenih značajki za učenje klasifikatora, dok postojeće metode
koje koriste faktorizaciju matrica koriste cijeli skup uzoraka za izvlačenje značajki i pri
tome koriste labele uzoraka. Zbog toga se izdvojene značajke ne mogu koristiti za učenje
klasifikatora. Predložena metoda je opisana u radu [60].
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0.2. Slijepo razdvajanje signala

Ovdje dajemo i pregled sadržaja rada po poglavljima.

U Odjeljku 0.2 dan je pregled metoda za odred̄eno i pododred̄eno razdvajanje signala. Nagla-
sak je na teoriji i metodama za ANK baziranim na teoriji informacija. Sav materijal u ovom
poglavlju je dobro poznat i preuzet iz literature.

U Odjeljku 0.3 opisana je motivacija za korištenje ANK kao metode za učenje rječnika za rijetku
reprezentaciju.

U Odjeljku 0.4 dan je kratak pregled algoritama za rekonstrukciju signala uz ograničenje ri-
jetkosti. Opisana su tri bitna pristupa, s posebnim naglaskom na algoritam koji koristi glatku
aproksimaciju `0 kvazi-norme, koja je jedna od mjera rijetkosti. Takod̄er, naglasak je na va-
rijantama algoritama prilagod̄enim za formulaciju modela koja uzima o obzir grešku (ili zbog
približne rijetkosti, ili aditivnog šuma). Ovaj odjeljak je bitan jer se navedeni algoritmi koriste
u eksperimentima opisanim u Odjeljku 0.7.

U Odjeljku 0.5 opisana su dva važna predstavnika metoda za učenje rječnika za rijetke repre-
zentacije signala/slika, osim ANK. Opisane metode su korištene u usporedbama opisanim u
Odjeljku 0.7.

Odjeljak 0.6 predstavlja pregled metoda za nelinearno filtriranje (myriad i medijan filtri). Ove
metode se uobičajeno koriste za uklanjanje impulsnog šuma u slici. U Odjeljku 0.7 demonstri-
rana je njihova inferiornost prema predloženom pristupu.

U Odjeljku 0.7 izloženi su rezultati usporedbi predložene i kompetitivnih metoda na proble-
mima rekonstrukcije nedostajućih dijelova u slici (ponovno, korištene su uniformne i neke
strukturirane raspodjele nedostajućih elemenata u slici). Ukratko su opisani i razlozi neuspješ-
nosti metoda nelinearnog filtriranja za uklanjanje specijalne vrste impulsnog šuma. Takod̄er, u
ovom poglavlju opisana je i primjena nove metode za izdvajanje značajki u proteomici i geno-
mici. Metoda je primijenjena na realnim, javno dostupnim uzorcima, i uspješno uspored̄ena s
kompetitivnim metodama.

Zaključak je dan u Odjeljku 0.8.

0.2 Linearno slijepo razdvajanje signala

Općeniti model linearnog bezmemorijskog slijepog razdavanja signala je oblika

X = AS, (0.2.1)

gdje je X ∈ RM×T matrica čiji retci predstavljaju miješane signale, A ∈ RM×N je matrica

miješanja, a retci matrice S ∈RN×T predstavljaju izvorne signale. T označava veličinu uzorka.
Zbog neizbježnih grešaka, bilo zbog grešaka mjerenja, slučajnog šuma ili ne-egzaktnosti mo-
dela, praktičniji je oblik

X = AS+E, (0.2.2)
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0.2. Slijepo razdvajanje signala

gdje je E ∈ RM×T greška.

Model (0.2.1) se često interpretira na sljedeći način. Svaki stupac matrice S je realizacija slu-
čajnog vektora s, pa je prema tome i svaki stupac matrice X realizacija slučajnog vektora

x = As. (0.2.3)

Razlikujemo slučajeve N ≤ M (odred̄eni slučaj) i N > M (pododred̄eni slučaj). Razmotrimo
prvo lakši slučaj, N ≤M. Problem rekonstrukcije nepoznatog (slučajnog) vektora izvornih sig-
nala s, čije su komponente med̄usobno statistički nezavisne, samo iz poznatog vektora miješa-
nih signala x naziva se analiza nezavisnih komponenata (ANK). Formalna definicija je sljedeća
[21].

Definicija 0.1. Analiza nezavisnih komponenata slučajnog vektora x∈RM je ured̄eni par (F, Λ)

matrica takvih da vrijedi:

1. kovarijacijska matrica Cx =E
(
(x−E(x))(x−E(x))T

)
vektora x može se faktorizirati u

obliku Cx = FΛ
2FT , gdje je Λ dijagonalna i pozitivna, a F je M×ρ matrica punog ranga

po stupcima, i ρ ≤M;

2. x se može zapisati kao x = Fz, gdje je z ρ×1 slučajni vektor s kovarijacijskom matricom
Λ

2, i komponente od z su maksimalno statistički nezavisne u smislu maksimizacije dane
kontrastne funkcije.

ANK je odred̄ena do na skaliranje i permutaciju. Uobičajeno se uzima da stupci matrice F iz
gornje definicije imaju jediničnu normu, a dijagonalni elementi od Λ su silazno sortirani.

Analiza glavnih komponenata (AGK) se definira slično kao ANK. Naime, kažemo da je par
(F, Λ) AGK vektora x ako je Cx = FΛ

2FT , gdje je Λ dijagonalna i pozitivna, a stupci od F
su ortogonalni. Ova definicija povlači da vektor y = FT x ima nekorelirane komponente (ko-
varijacijska matrica od y je dijagonalna). AGK se često koristi u svrhu standardizacije. Cilj
standardizacije je tranformacija danog slučajnog vektora x u slučajni vektor z s jediničnom
kovarijacijskom matricom. Standardizacija je čest prvi korak u računanju ANK.

Definicija 0.1 zahtijeva odabir mjere statističke nezavisnosti. Često korištene mjere nezavisnosti
su med̄usobna informacija i negentropija. Med̄usobna informacija slučajnog vektora x, I (x),
definirana je s

I(x) = DKL

(
px,

M

∏
i=1

pxi

)
,

gdje je px(·) funkcija gustoće slučajnog vektora x, a DKL (·) označava Kullback-Leiblerovu
divergenciju, definiranu s DKL

(
px, ∏

M
i=1 pxi

)
=
´

px(x) log px(x)
∏

M
i=1 pxi(xi)

dx. Vrijedi I(x) ≥ 0 i

I(x) = 0 ako i samo ako su komponente od x med̄usobno statistički nezavisne. Med̄usobna
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0.2. Slijepo razdvajanje signala

informacija može se izraziti i pomoću entropije. Naime, iz definicije med̄usobne informacije
slijedi I(x) = ∑i H (xi)−H(x), gdje H(x) označava entropiju slučajnog vektora x, definiranu s
H(x) =−

´
px(x) log px(x)dx. Negentropija slučajnog vektora x, u oznaci J(x), definirana je s

J(x) = H (xGauss)−H(x),

gdje xGauss označava normalni slučajni vektor s istim očekivanjem i kovarijacijskom matricom
kao x. Negentropija ima svojstvo nenegativnosti, kao i poništavanja za normalno distribuirane
slučajne vektore. Veza med̄usobne informacije i negentropije izražena je s

I(x) = J(x)−∑
i

J (xi)+
1
2

log
∏i Σii

detΣ
,

gdje je Σ = Cx. Za standardizirani x, krajnji desni član u gornjem izrazu je jednak nuli.

Nakon uvod̄enja gornjih nekoliko definicija, možemo definirati neke kontrastne funkcije iz Defi-
nicije 0.1. Kontrastna funkcija je, po definiciji, preslikavanje Ψ sa skupa vjerojatnosnih funkcija
gustoće u R koje zadovoljava:

1. Ψ(pPx) = Ψ(px), za svaku permutaciju P;

2. Ψ(pΓx) = Ψ(px), za svaku invertibilnu dijagonalnu matricu Γ;

3. ako x ima nezavisne komponente, onda je Ψ(pAx)≤Ψ(px), za svaku invertibilnu matricu
A.

Kažemo da je kontrastna funkcija (kontrast) Ψ diskriminirajuća ako jednakost u točki (3) vrijedi
samo ako je A oblika A = ΓP, gdje je Γ invertibilna dijagonalna, a P permutacijska matrica.
Diskriminirajuća kontrastna funkcija osigurava jedinstvenost ANK do na skaliranje i permuta-
ciju. Može se pokazati [21] da je funkcija

Ψ(px) =−I (z)

kontrastna funkcija za ICA, gdje je z standardizirani vektor pridružen vektoru x. Ψ je i diskrimi-
nirajuća na skupu slučajnih vektora s najviše jednom normalno distribuiranom komponentom.
Prema tome, med̄usobna informacija (ili preciznije, negativna med̄usobna informacija) je dobar
izbor za kontrast u definiciji ANK.

U praksi, med̄usobnu informaciju je potrebno aproksimirati. U tu svrhu koriste se aproksimacije
entropije. Jedan način za aproksimiranje entropije je korištenjem statistika višeg reda. Glavni
nedostatak ovog pristupa je osjetljivost statistika višeg reda (kao što su kumulanti) na greške
u podacima. Naime, ako su u uzorku iz kojeg se kumulanti aproksimiraju prisutni podaci koji
značajno odskaču od ostalih, oni mogu potpuno odrediti procjene kumulanata, što te procjene
čini neupotrebljivima u praksi.
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0.2. Slijepo razdvajanje signala

Iz navedenih razloga, često se koriste neke druge aproksimacije entropije. U [52] pokazano je
da se entropija slučajne varijable x može aproksimirati kao

H(x)≈ H(ν)−E(G(x)) , (0.2.4)

gdje je ν standardna normalna varijabla, a G neka funkcija. G se može odabrati ovisno o
pretpostavljenoj vjerojatnosnoj razdiobi od x. Često su korištene funkcije

G1(x) =
1
a1

logcosh(a1x) (0.2.5)

i

G2(x) =−
1
a2

exp
(
−a2x2

2

)
, (0.2.6)

koje pretpostavljaju sub-Gaussovske (približno rijetke) razdiobe dane slučajne varijable. Gornja
aproksimacija entropije (0.2.4) povlači aproksimaciju negentropije oblika J(x) ≈ 1

2E(G(x)).
FastICA (‘brza ANK’) [53] algoritam polazi od ove aproksimacije. U deflacijskom načinu
optimizacije procjenjuje se jedan po jedan redak wG,k inverzne matrice miješenja W = A−1.
Dakle, u svakom koraku se rješava problem oblika

wG,k = argmax
E
{
(wT x)2

}
=1

E
(
G
(
wTx

))
uz uvjet wT wG,i = 0, i = 1, . . . ,k−1

. (0.2.7)

Gornji uvjet ortogonalnosti pretpostavlja da je vektor x standardiziran. Očekivanje se procje-
njuje iz danog uzorka, odn. skupa realizacija slučajnog vektora x, a to je po našoj pretpostavci
matrica X. Slična je formulacija i za simultani način optimizacije, gdje se svi retci matrice W
procjenjuju odjednom. FastICA algoritam koristi aproksimativnu Newtonovu metodu za rješa-
vanje problema (0.2.7), što ga općenito čini vrlo brzim. MATLAB kod FastICA algoritma je javno
dostupan, dobro dokumentiran i jednostavan za korištenje. Uz brzinu, ovo su razlozi iz kojih je
FastICA algoritam korišten u eksperimentima opisanim u Odjeljku 0.7.

Teži slučaj razdvajanja signala javlja se kad je N > M. U ovom slučaju, statistička nezavisnost
općenito nije dovoljno jak uvjet da osigura jedinstvenost vektora s, odn. matrice realizacija S,
uz dani x, respektivno matricu X. Ovdje ulazi u igru rijetkost. Naime, ukoliko već sami iz-
vorni signali nisu (približno) rijetki, često postoji transformacija Ψ takva da su transformirani
signali, odn. retci matrice SΨ (približno) rijetki. U tom slučaju, iz modela X = AS slijedi
XΨ = ASΨ, pa se problem svodi na razdvajanje rijetkih signala. Jedna od metoda rješavanja
ovog problema je pristup koji se sastoji od dva koraka: prvo se aproksimira matrica miješanja
A, a zatim izvorni signali uz poznatu aproksimaciju matrice miješanja Â. Uočimo da se iz do-
bivene aproksimacije ŜΨ transformirane matrice izvornih signala SΨ, aproksimacija Ŝ dobiva
invertiranjem transformacije Ψ.

Mnoge metode za aproksimaciju matrice miješanja pretpostavljaju da postoje stupci od S ili SΨ

u kojima je samo jedna komponenta dominantna. U slučaju kompleksnih signala, to povlači
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(približnu) kolinearnost realnog i imaginarnog dijelova danog stupca. Na ovoj činjenici se zas-
niva jedan kriterij nalaženja takvih stupaca (s jednom dominantnom komponentom). Metoda
koja koristi ovaj kriterij korištena je u eksperimentima opisanim u Odjeljku 0.7. Uz poznatu ma-
tricu miješanja, izvorni signali se, ako su dovoljno rijetki, mogu dobiti kao jedinstveno rješenje
optimizacijskih problema s ograničenjem rijetkosti. Pri tome se kao osnovna mjera rijetkosti
koristi `0 funkcija, u oznaci ‖ · ‖0, koja je definirana kao broj komponenata različitih od nule u
danom vektoru. Osnovni rezultat je sljedeći [16].

Propozicija 0.1. Ako linearni sustav x = As, pri čemu je A ∈ RM×N i N > M, ima rješenje

s koje zadovoljava ‖s‖0 = |{i : si 6= 0}| < spark(A)
2 , gdje spark(A) označava broj elemenata

najmanjeg linearno zavisnog podskupa skupa stupaca od A, onda je s jedinstveno najrjed̄e

rješenje sustava.

Optimizacijski algoritmi za nalaženje rijetkih rješenja opisani su u
Odjeljku 0.4.

U literaturi postoje i rezultati vezani uz rješivost problema analize nezavisnih komponenata u
slučaju N > M. Ali, ono što oni garantiraju je samo jedinstvenost distribucije vektora s. Čini se
da u literaturi nije predloženo mnogo algoritama za pod-odred̄enu ANK. Kao aproksimativna
metoda može se koristiti modifikacija FastICA algoritma. Naime, umjesto inzistiranja na orto-
gonalnosti (vidi (0.2.7)), može se zahtijevati samo približna ortogonalnost matrice W (ovdje je
bitno da je vektor x standardiziran). Ovaj pristup korišten je u Odjeljku 0.7 za učenje redun-

dantnog rječnika (s više atoma od dimenzije prostora) za rijetku reprezentaciju slika prirodnih
scena.

0.3 Linearan model rijetkog kodiranja

Pretpostavimo sada da su izvorni signali u modelu (0.2.3) i statistički nezavisni, i rijetki u smislu
da su im distribucije rijetke. Rijetke distribucije su neformalno definirane kao distribucije s vi-
sokim vrhom u nuli (višim od normalne razdiobe) i teškim repovima. Dakle, pretpostavljamo
nezavisnost komponenata, ali takod̄er zahtijevamo da distribucije komponenata pripadaju točno
odred̄enoj klasi distribucija (rijetkima). Ova ideja je bitna u kontekstu učenja rječnika za rijetku
reprezentaciju. Naime, ako imamo uzorak signala iz neke klase, smješten u matricu X (po stup-
cima), onda navedenu ideju možemo primijeniti korištenjem ANK na matrici X (koju smatramo
realizacijom slučajnog vektora x), uz zadane distribucije nezavisnih komponenata. Distribucije
komponenata, ili barem njihova svojstva, se u FastICA algoritmu mogu implicitno zadati kroz
funkciju G (vidi (0.2.7) u prethodnom odjeljku). Ukoliko X približno zadovoljava linearan mo-
del X = AS s nezavisnim i rijetkim komponentama, problem je dobro postavljen. Više detalja o
učenju rječnika pomoću ANK dano je u Odjeljku 0.5. Dakle, ANK se može koristiti kao metoda

za učenje rječnika za rijetku reprezentaciju signala.

xiii



0.4. Algoritmi za rijetku rekonstrukciju

Gore opisana ideja je bitna za rješavanje inverznih problema u obradi signala i slike. Općeniti
inverzni problem se može zapisati kao

y = Hx+n, (0.3.1)

gdje je y ∈ Rm vektor opažanja, H ∈ Rm×M, M ≥ m, predstavlja operator degradacije, x ∈ RM

je originalni signal kojeg želimo rekonstruirati, a n ∈ Rm predstavlja grešku. Problem (0.3.1)
je općenito loše postavljen zbog ne-invertibilnosti operatora H i zbog greške n. Pretpostavka
da x ima rijetku reprezentaciju u danom rječniku A ∈ RM×N može regularizirati ovaj problem.
Naime, ako pretpostavimo da vrijedi x = As+ e, gdje je s ∈ RN rijedak, imamo

y = HAs+ ẽ,

gdje je ẽ = He+n greška. Dakle, ako je s dovoljno rijedak (vidi prethodni odjeljak), x se može
dobiti rijetkošću ograničenom optimizacijom iz opažanja y.

Korištenje ANK za učenje rječnika za rijetku reprezentaciju slika prirodnih scena ima i biolo-
ško opravdanje. Naime, u ranim radovima [84, 10] pokazano je da se učenjem rječnika za
rijetku reprezentaciju slika prirodnih scena (preciznije, malih komadića slika prirodnih scena),
respektivno korištenjem ANK uz implicitno zadavanje rijetkih distribucija na izvorne signale,
dobivaju vrlo slični bazni vektori (atomi), bez obzira na različitost metoda kojima su dobiveni.
Navedeni bazni vektori, nakon matricizacije, sliče eksperimentalno opaženim receptivnim po-
ljima u dijelu mozga nekih sisavaca zaduženom za procesiranje vizualnih informacija. To je u
skladu s pretpostavkom efikasnog procesiranja informacija [90], jer bazni vektori predstavljaju
upravo nezavisne komponente čijim se kombiniranjem mogu prikazati signali iz dane klase. U
našem slučaju, to su slike prirodnih scena. U navedenom radu [10] korišten je infomax algori-
tam [9] za ANK, ali može se koristiti i bilo koji drugi algoritam za ANK. U Odjeljku 0.7 ovog
rada korišten je FastICA.

0.4 Algoritmi za rješavanje pododred̄enih linearnih sustava
s ograničenjem rijetkosti

U Odjeljku 0.2 vidjeli smo da se razdvajanje rijetkih signala nakon procjene matrice miješanja
svodi na rješavanje problema oblika

min
s
‖s‖0 uz uvjet x = As, (0.4.1)

ili

min
s
‖s‖0 uz uvjet ‖x−As‖2 ≤ ε, (0.4.2)

gdje je A ∈ RM×N , a ε označava dozvoljenu pogrešku aproksimacije. Nekoliko je glavnih
pristupa rješavanju ovih problema. Direktne metode, kao što su pohlepne metode (Orthogonal
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Matching Pursuit (OMP) [104] i varijante OMP-a) ili IHT [11], su namijenjene gornjim for-
mulacijama problema. Kod indirektnih metoda, diskretna funkcija ‖ · ‖0 se zamjenjuje nepre-
kidnom ili glatkom aproksimacijom, što olakšava optimizaciju. `1 norma je jedan predstavnik
neprekidnih, a ujedno i konveksnih, aproksimacija `0 funkcije. Ipak, u praksi se bolji rezultati
mogu dobiti korištenjem preciznijih aproksimacija `0 funkcije, kao što je

Fσ (x) = ∑
i

(
1− exp

(
− x2

i
2σ2

))
,

gdje je σ > 0 parametar kojim se kontrolira glatkoća aproksimacije. Ovaj pristup predložen je
u [79].

Uvjeti pod kojima navedeni algoritmi uspijevaju naći najrjed̄e rješenje sustava se najčešće izra-
žavaju pomoću koherencije ili tzv. RIP (Restricted Isometry Property) [18] svojstva matrice A.
Koherencija je definirana kao maksimalna (po apsolutnoj vrijednosti) korelacija izmed̄u razli-
čitih stupaca matrice. Za A kažemo da ima RIP svojstvo reda k s konstantom δk ∈ (0,1) ako za
svaki s ∈ RN takav da je ‖s‖0 ≤ k vrijedi

(1−δk)‖s‖2
2 ≤ ‖As‖2

2 ≤ (1+δk)‖s‖2
2.

Koherencija se lako računa, ali uvjeti za rješivost pododred̄enih sustava izraženi pomoću ko-
herencije su previše pesimistični. S druge strane, RIP svojstvo daje oštre uvjete rješivosti i

stabilnosti, ali se (jako) teško računa pa nije praktično. Zato ovdje navodimo samo rezultate
koji koriste koherenciju.

OMP algoritam

OMP algoritam u svakom koraku traži lokalno najbolju aproksimaciju rijetkog rješenja. OMP
uobičajeno kreće od aproksimacije ŝ = 0. Trenutni ostatak (rezidual) r definiran je kao r =

x−Aŝ. U svakoj sljedećoj iteraciji odred̄uje se novi indeks stupca matrice A koji je maksimalno
koreliran s trenutnim ostatkom:

i∗ ∈ argmax
i

∣∣(AT r
)

i

∣∣ .
Indeks i∗ dodajemo u skup indeksa Î, i sljedeća aproksimacija rješenja se dobiva rješavanjem
problema najmanjih kvadrata

ŝÎ = argmin
s

∥∥x−AÎs
∥∥2

2 ,

gdje ŝÎ označava vektor elemenata od ŝ s indeksima u Î, a AÎ označava podmatricu od A koja
se sastoji od stupaca matrice A s indeksima u Î. Postupak staje ili kad norma trenutnog ostatka
padne ispod nekog zadanog praga ili kada broj elemenata u Î dostigne zadanu gornju granicu. U
literaturi su predložene i razne varijante gore opisanog OMP algoritma, koje su ili brže ili imaju
bolje teorijske garancije. Primjeri uključuju [12, 81, 13], a neke od ostalih referenci mogu
se naći u [16, 105]. Ovdje se koncentriramo na klasični OMP algoritam. Osnovni rezultat je
sljedeći.
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Teorem 0.1. Pretpostavimo da je s∗ rješenje problema (0.4.1), i definirajmo I = {i : s∗i 6= 0}.
Tada, dovoljan uvjet da OMP algoritam nad̄e rješenje s∗ je

max
i∈{1,...,N}\I

∥∥∥A†
I ai

∥∥∥
1
< 1,

gdje ai označava i-ti stupac od A, a A†
I je pseudoinverz podmatrice od A sa stupcima indeksi-

ranim u I.

Dokaz ovog rezultata može se naći u [103]. Dovoljan uvjet da OMP nad̄e stvarno rješenje može
se izraziti i pomoću koherencije µ (A) od A kao (dokaz u [16])

‖s∗‖0 <
1
2

(
1+

1
µ (A)

)
.

U slučaju problema (0.4.2) vrijedi sljedeći rezultat.

Teorem 0.2. Pretpostavimo da rješenje s∗ problema (0.4.2) zadovoljava

‖s∗‖0 ≤
1+µ (A)

2µ (A)
− 1

µ (A)

ε∗

mini∈I
∣∣s∗i ∣∣ ,

gdje je I definiran kao u Teoremu 0.1, a ε∗= ‖x−As∗‖2. Označimo s ŝε∗ aproksimaciju rješenja

dobivenu OMP algoritmom, uz zaustavljanje kad je norma ostatka ≤ ε∗. Tada vrijedi:

1. supp(ŝε∗) = supp(s∗);

2. ‖ŝε∗− s∗‖2
2 ≤

(ε∗)2

1−µ(A)(‖s∗‖0−1) .

Računska složenost OMP algoritma je reda O(|I|MN). OMP je jedan od najčešće korištenih
algoritama za rješavanje problema (0.4.1) i (0.4.2).

`1 minimizacija

Drugi, indirektan, pristup rješavanju (0.4.1) i (0.4.2) je zamjena `0 funkcije neprekidnom i
konveksnom aproksimacijom, `1 normom, što rezultira problemima oblika

min
s
‖s‖1 uz uvjet x = As (0.4.3)

i

min
s
‖s‖1 uz uvjet ‖x−As‖2 ≤ ε. (0.4.4)

Oba gornja problema se svode na poznate probleme konveksne optimizacije: linearno, odn.
kvadratno programiranje, što je i glavni razlog za korištenje `1 norme. Glavno je pitanje pod
kojim se uvjetima rješenja problema (0.4.1) i (0.4.3), odn. (0.4.2) i (0.4.4), podudaraju. Vrijedi
sljedeći rezultat [16].
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Teorem 0.3. Ako rješenje s∗ problema (0.4.1) zadovoljava

‖s∗‖0 <
1
2

(
1+

1
µ (A)

)
,

onda je s∗ jedinstveno rješenje oba problema (0.4.1) i (0.4.3).

Vidimo da je uvjet u gornjem teoremu isti kao i za OMP algoritam (Teorem 0.1). U slučaju
problema (0.4.4), vrijedi sljedeći teorem [24].

Teorem 0.4. Ako rješenje s∗ problema (0.4.2) zadovoljava

‖s∗‖0 <
1
4

(
1+

1
µ(A)

)
,

onda rješenje ŝ problema

min
s
‖s‖1 uz uvjet ‖x−As‖2 ≤ δ ,

gdje je δ ≥ ε , zadovoljava

‖ŝ− s∗‖2
2 ≤

(ε +δ )2

1−µ(A)(4‖s∗‖0−1)
.

Ni OMP niti `1 minimizacija (formulacije (0.4.3) i (0.4.4)) nisu uniformno bolji od drugog. U
nekim situacijama OMP može dati ispravan, a `1 minimizacija krivi rezultat, i obratno. Napri-
mjer, pokazuje se da `1 minimizacija općenito češće daje ispravan rezultat kad su sve ne-nul
(različite od nule) komponente rijetkog rješenja iste (ili slične) apsolutne vrijednosti [74].

SL0 metoda

`1 norma je gruba aproksimacija `0 funkcije. Zato se, u praksi, bolji rezultati mogu dobiti
korištenjem preciznijih aproksimacija. U [79] predloženo je korištenje aproksimacije

‖x‖0 ≈ Fσ (x) = ∑
i
(1− fσ (xi)) = (0.4.5)

= ∑
i

(
1− exp

(
− x2

i
2σ2

))
,

gdje je σ > 0 parametar koji kontrolira glatkoću aproksimacije. Fσ (·) može proizvoljno dobro
aproksimirati `0 funkciju. Med̄utim, za veći σ aproksimacija je glad̄a, pa ima i manje lokal-
nih minimuma (na danom skupu definiranom ograničenjima), a za σ vrlo blizu nuli ima mnogo
lokalnih minimuma na danom skupu. Zato je u [79] predložen sljedeći postupak: Fσ (·) se mini-
mizira za opadajući niz vrijednosti parametra σ , nadajući se da dobiveni niz točaka minimuma
konvergira k rješenju s∗ originalnog problema (0.4.1) (odn. (0.4.2)).

Osnovni teorijski rezultati o konvergenciji gore predloženog algoritma su sljedeći. Pretpostav-
ljat ćemo da vrijedi spark(A) = M+1 (odn. svaki skup od M različitih stupaca od A je linearno
nezavisan). Sljedeći teorem [79] vrijedi i za općenitije funkcije od Fσ .
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0.4. Algoritmi za rijetku rekonstrukciju

Teorem 0.5. Označimo S = {s : As = x}. Pretpostavimo da familija funkcija fσ , indeksirana

parametrom σ ∈ R+, zadovoljava:

1. limσ↓0 fσ (s) = 0, za sve s 6= 0;

2. fσ (0) = 1, za sve σ ∈ R+;

3. 0≤ fσ (s)≤ 1, za sve σ ∈ R+ i s ∈ R;

4. za sve ν > 0 i α > 0 postoji σ0 ∈ R+ takav da vrijedi

|s|> α ⇒ fσ (s)< ν , za sve σ < σ0.

Označimo sa sσ točku globalnog minimuma od Fσ na S (pri čemu je Fσ definirana pomoću fσ

kao u (0.4)). Vrijedi:

lim
σ↓0

sσ = s0.

Važna pretpostavka u gornjem teoremu bila je da se za dani σ može naći globalni minimum of
Fσ na S . Pokazuje se da je u praksi to često slučaj (vidi sljedeći odjeljak).

U slučaju prisutnosti greške u modelu, imamo sljedeći rezultat [79].

Teorem 0.6. Označimo Sε = {s : ‖As−x‖2 ≤ ε}, za ε > 0. Pretpostavimo da A i fσ zado-

voljavaju uvjete iz Teorema 0.5. Neka je s0 ∈Sε rijetko rješenje takvo da je k =
∥∥s0∥∥

0 <
M
2 .

Pretpostavimo sljedeće dodatne uvjete na fσ :

1. postoji γ > 0 takav da je
∣∣∣ f ′σ (s)

∣∣∣< γ

σ
, za sve σ > 0 i za sve s;

2. za sve ν > 0 i σ0 > 0 postoji α > 0 takav da vrijedi:

|s|> α ⇒ fσ (s)< ν , za sve σ < σ0.

Definirajmo σ0 =
Nγε‖A†‖2

M−2k . Tada, optimizirajući Fσ0 , rijetko rješenje s0 se može aproksimirati

s greškom manjom od

(MA +1)(Nα + ε) ,

gdje je MA = max
{∥∥A−1

I

∥∥
2 ; |I| ≤M

}
, a α je takav da uvjet (2) vrijedi za σ0 i ν = 1

N .

Navedeni teorijski rezultati ilustrirani su primjerom u sljedećem odjeljku.
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0.5. Algoritmi za učenje rječnika za rijetke reprezentacije

Usporedba metoda

Ovdje navodimo jedan citat iz rada [74]:

Princip empirijske provjere ima veliko značenje za područje rijetkih reprezen-
tacija i sažetog uzorkovanja. U mnogim ključnim radovima u području diskutiraju
se rigorozni teorijski rezultati, dobiveni korištenjem matematičke analize. Potrebna
je prava matematička zrelost da bi se razumjelo što se tvrdi, koja je interpretacija
dokazanih teorema, i kako usporediti rezultate u različitim radovima. Često je slu-
čaj da su dokazane tvrdnje nejasne (koriste neodred̄ene konstante) ili vrlo slabe
(korištene su nerealno jake pretpostavke, koje gotovo nikad nisu ispunjene u stvar-
nim primjenama). Za praktične inženjerske primjene važnije je znati što se stvarno
dogad̄a nego što se može dokazati. Empirijske studije i usporedbe predstavljaju
direktnu metodu koja inženjerima daje korisne informacije o tome što se u praksi
zaista dogad̄a.

Gore navedene tvrdnje, izrečene od strane priznatih stručnjaka u (ili bliskih) području rijetkih
reprezentacija, lijepo sažimaju ideju empirijske provjere algoritama, za razliku od rigoroznih
teorijskih rezultata navedenih u prethodnim odjeljcima.

Graf na Slici 0.4.1 dobiven je na sljedeći način. Neka je M = 400, N = 1000. Matricu A∈RM×N

generiramo slučajno (naredba randn(M,N) u MATLAB-u). Stupce od A normaliziramo. `0 funk-
cija rijetkog rješenja s∗ ∈ RN (k = ‖s∗‖0) varirana je u skupu [80,100,120,140,160,180,200].
k indeksa ne-nul elemenata od s∗ generirano je slučajno iz {1, . . . ,N}. Ne-nul elementi od s∗

generirani su iz N (0,1). Vektor mjerenja x dobiven je kao x = As∗. Na ovaj način generirano
je 100 sustava s rijetkim rješenjem za svaki k i za svaki algoritam. Smatramo da je algoritam
našao rješenje ako aproksimacija ŝ dobivena danim algoritmom zadovoljava ‖ŝ− s∗‖2 < 10−5.
Slika 0.4.1 pokazuje udio slučajeva u kojima je algoritam vratio točno rješenje u ovom smislu,
za svaku vrijednost od k. Pokazuje se da SL0 metoda daje točno rješenje s najvećom vjero-

jatnošću (u najvećem broju slučajeva). Sličan se rezultat dobiva i ako se mjerenjima x doda
šum.

SL0 algoritam korišten je u eksperimentima opisanim u Odjeljku 0.7. OMP algoritam korišten
je kao dio K-SVD algoritma za učenje rječnika za rijetke reprezentacije (vidi sljedeći odjeljak).

0.5 Algoritmi za učenje rječnika za rijetke reprezentacije

U Odjeljku 0.2 diskutirane su metode za rješavanje pododred̄enog problema razdvajanja sig-
nala. Navedene metode su bazirane na pretpostavci da su izvorni signali ili rijetki ili da postoji
transformacija koja ih čini rijetkima. U Odjeljku 0.3 opisano je korištenje rječnika za rijetku re-
prezentaciju signala u rješavanju inverznih problema u obradi signala i slike. Ovdje opisujemo
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0.5. Algoritmi za učenje rječnika za rijetke reprezentacije

Slika 0.4.1: Usporedba opisanih algoritama na sintetički generiranim primjerima (vidi tekst).

nekoliko poznatih i često korištenih metoda za učenje rječnika za rijetke reprezentacije dane

klase signala. Pri tome, naglasak je na korištenju ANK za učenje rječnika za rijetke reprezen-
tacije, iako je ANK sama po sebi metoda za rješavanje problema razdvajanja signala.

Pretpostavimo da je dana matrica podataka X∈Rn×T , pri čemu stupci od X čine reprezentativni
trening skup za danu klasu signala. Trening skup se sastoji od tipičnih signala iz dane klase.
Općenita formulacija problema učenja rječnika za rijetke reprezentacije je sljedeća:

argmin
D,C
‖X−DC‖2

F uz uvjet ‖ci‖0 ≤ K, (0.5.1)

gdje ci označava i-ti stupac matrice koeficijenata C, a K je ograda na rijetkost reprezentacije.
Uobičajeni način rješavanja gornjeg problema je alternirajuća minimizacija: prvo, D fiksiramo
pa minimiziramo po C (ovaj postupak se uobičajeno naziva rijetko kodiranje), a nakon toga
slijedi minimizacija po D za fiksni C. K-SVD algoritam, koji opisujemo u sljedećem odjeljku,
je takvog oblika.

K-SVD algoritam

K-SVD algoritam je generalizacija K-means algoritma [38] za grupiranje podataka u slučaju
kad je broj grupa veći od 1. Izraz koji se minimizira u (0.5.1) može se zapisati kao

‖X−DC‖2
F =

∥∥∥∥∥
(

X−∑
j 6=k

d j
(
c j)T

)
−dk

(
ck
)T
∥∥∥∥∥

2

F

,

pri čemu d j označava j-ti stupac od D, a
(
c j)T j-ti redak od C. Označimo s ωk skup indeksa

stupaca od X koji koriste stupac dk u trenutnoj reprezentaciji, odn. one indekse i∈ {1, . . . ,T} za
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0.5. Algoritmi za učenje rječnika za rijetke reprezentacije

koje je ck
i 6= 0. S Ωk označimo T ×|ωk| matricu s jedinicama na indeksima (ωk (i) , i) i nulama

na preostalim indeksima (ovdje smo s ωk (i) označili i-ti indeks u skupu ωk po veličini, od
najmanjeg prema najvećem). Ako označimo Ek = X−∑ j 6=k d j

(
c j)T , ideja K-SVD algoritma

je minimizacija od
∥∥∥EkΩk−dk

(
ck)T

Ωk

∥∥∥2

F
po dk i ck, što se postiže krnjim SVD rastavom.

Naime, na ovaj način nova vrijednost od ck zadržava (ili smanjuje) skup elemenata različitih od
nule. Ukoliko bi rijetko kodiranje bilo egzaktno (u smislu da je greška X−DC za dane D i C
jednaka nuli), imali bi sigurnu konvergenciju prema lokalnom optimumu (ili, moguće, sedlastoj
točki) problema (0.5.1). Budući da je u praksi dobivena reprezentacija vrlo rijetko egzaktna,
nema garancije za konvergenciju. Ipak, čini se da u praksi algoritam gotovo uvijek konvergira
(k lokalnom optimumu). Uobičajeno korišten algoritam za rijetko kodiranje (optimizacija po C
za fiksni D) je OMP. Naime, OMP po svojo strukturi lako nalazi aproksimaciju rijetkog rješenja
s danim brojem komponenata različitih od nule. Takod̄er, vrlo je brz.

Korištenje ANK za učenje rječnika za rijetke reprezentacije

Kao što je već napomenuto, ANK je metoda za rješavanje problema razdvajanja nezavisnih
signala. Ali, može se indirektno koristiti i za učenje rječnika za rijetke reprezentacije signala.
Naime, implicitno se može zadati distribucija nepoznatih nezavisnih komponenata (izvornih
signala). U FastICA algoritmu, opisanom u Odjeljku 0.2, to se postiže odabirom nelinearne
funkcije korištene u aproksimaciji negentropije (vidi opis u Odjeljku 0.2). Naravno, ograničenja
u formulaciji (0.5.1) općenito ne mogu biti zadovoljena korištenjem ANK. Ali, ANK možemo
koristiti kao aproksimativnu metodu za rješavanje (0.5.1). Biološko opravdanje korištenja ANK
za učenje rijetkih reprezentacija slika prirodnih scena diskutirano je u Odjeljku 0.3.

Interpretacija modela X=DC u ovom slučaju je sljedeća. Budući da se u ovom radu bavimo pri-
mjenom ANK u nekim problemima obrade slika, pretpostavljamo da se trening skup (stupci od
X) sastoji od vektoriziranih komadića slika prirodnih scena. Naime, svaki stupac xi ∈Rn pred-
stavlja vektorizirani dio X̃i ∈ R

√
n×
√

n slike. U kontekstu ANK, svaki redak matrice podataka
X predstavlja miješani signal. Retke od C interpretiramo kao nezavisne komponente. Stupci
matrice (rječnika) D su vektori miješanja. Kroz odabir prikladne nelinearne funkcije u FastICA
algoritmu, implicitno pretpostavljamo rijetkost nezavisnih komponenata, odn. redaka matrice
C. Rijetkost redaka od C povlači da su i stupci od C rijetki, s velikom vjerojatnošću. Drugim
riječima, ograničenje u formulaciji (0.5.1) je približno zadovoljeno. Dakle, svaki stupac od X
može se aproksimirati linearnom kombinacijom malog broja vektora miješanja (stupaca matrice
D). Prema tome, matrica miješanja D odgovara rječniku za rijetku reprezentaciju stupaca od X.
Na ovaj način, rječnik za rijetku reprezentaciju dobiva se kao nusprodukt ANK.

U Odjeljku 0.7, u svrhu učenja rječnika pomoću ANK, korišten je FastICA algoritam, uz impli-
citno forsiranje rijetkosti nezavisnh komponenata korištenjem funkcija (0.2.5) i (0.2.6).
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0.6. Metode za uklanjanje impulsnog šuma u slici

Polja eksperata

U ovom odjeljku X će nam označavati sliku, odn. matricu čiji su elementi elementi slike (pik-
seli). U radu [92] predložen je sljedeći pristup modeliranju slike. Sliku X ∈ Rm×n modeliramo
kao graf G = (V,E), gdje elementi matrice (slike) X, Xi j, čine skup vrhova V . Xi j interpretiramo
kao slučajne varijable. Skup bridova E definiran je pomoću zadane strukture na slici. Osnovna
pretpostavka metode predložene u [92] je da Xi j čine Markovljevo slučajno polje (MSP). Ne-
formalno, to znači da je svaki Xi j uvjetno nezavisan s Xi′ j′ , (i′, j′) 6= (i, j), uz dane susjedne

elemente od Xi j. Specijalnu klasu MSP-a čine MSP-i čija se vjerojatnosna funkcija gustoće
može faktorizirati po svim potpunim podgrafovima (potpuni podgraf grafa je podgraf u kojem
su svaka dva vrha povezana, odn. postoji brid koji ih povezuje). U spomenutom radu [92], ko-
rištena je upravo ova klasa MSP-a za modeliranje povezanosti elemenata slike. Za više detalja
vidi [92] ili Poglavlje 5 u punoj verziji ovog rada. Kao spomenuti potpuni podgrafovi korišteni
su svi kvadratni komadići slike. Susjedni elementi iz gornje definicije MSP-a, za dani Xi j, su
preostali elementi potpunog podgrafa koji Xi j definira (a to je komadić slike u kojem je Xi j cen-
tralni element). Parametri modela optimizirani su prema danom trening skupu slika prirodnih
scena.

Ovaj pristup modeliranju slike se značajno razlikuje od pristupa korištenjem rječnika za rijetku
reprezentaciju, ali je tipičan predstavnik vjerojatnosnih pristupa modeliranju slike. Korišten je
u usporedbi metoda u Odjeljku 0.7.

0.6 Metode za uklanjanje impulsnog šuma u slici

Uklanjanje šuma je jedan od fundamentalnih problema u obradi slike. Uobičajeno je pretpos-
taviti da je šum Gaussov ili barem da ima konačnu (malu) varijancu. Napomenimo da ovdje
mislimo na aditivni šum. U praksi je, ipak, nerijetko slučaj da je šum impulsni, odn. da ima
veliku ili čak beskonačnu varijancu. U ovom odjeljku dajemo kratak pregled osnovnih pristupa
uklanjanju impulsnog šuma.

Označimo sa s ∈ Rn vektorizirani oblik slike (slika je matrica čiji su elementi elementi slike
(pikseli); slično, slika u boji je 3D tenzor). s̃ = s+ n označava sliku oštećenu šumom n. U
ovom odjeljku razmatramo samo sive slike. Označimo dmin = mini si, dmax = maxi si. Dva
značajna modela impulsnog šuma u slici su sljedeća:

• ‘salt-and-pepper’ šum:

s̃i =


dmin , s vjerojatnošću p

2

dmax , s vjerojatnošću p
2

si , s vjerojatnošću 1− p

,

gdje p označava udio impulsnog šuma;
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• impulsni šum sa slučajnim vrijednostima:

s̃i =

{
di , s vjerojatnošću p

si , s vjerojatnošću 1− p
,

gdje je di ∼U (dmin,dmax), a p označava udio šuma.

U eksperimentima u Odjeljku 0.7 razmatran je problem uklanjanja ‘salt-and-pepper’ šuma. Pro-
blem uklanjanja ove vrste šuma može se svesti na problem popunjavanja nedostajućih elemenata
slike. Puno je teži slučaj ako impulsni šum ima slučajne vrijednosti. Time se u ovom radu ne
bavimo.

Nelinearno filtriranje

Metode nelinearnog filtriranja uvedene su da bi se uzela u obzir ne-Gaussovska priroda mnogih
signala koji se pojavljuju u praksi. Konkretan primjer je upravo uklanjanje ne-Gaussovskog

šuma (najčešće, tu se misli na impulsni/super-Gaussovski šum). Klasični primjeri nelinearnih
filtara u obradi signala i slike su medijan i myriad filtri. Glavna referenca je knjiga [5].

Medijan filtri

Medijan vektora x ∈ RN je definiran na sljedeći način. Označimo s x[i] i-ti element od x po
veličini (dakle, vrijedi x[1] ≤ x[2] ≤ . . . ≤ x[N]). Za neparni N, medijan od x je definiran kao
x[(N+1)/2]. Za parni N, medijan je definiran kao 1

2

(
x[N/2]+ x[N/2+1]

)
.

Definicija medijan filtra je sljedeća.

Definicija. Neka je s ∈ RN diskretan signal. Izlaz y ∈ RN medijan filtra s prozorom veličine
NL +NR +1, gdje je NL +NR +1≤ N, primijenjenog na s, je definiran s

yn = medijan(sn−NL , . . . ,sn, . . . ,sn+NR) ,

gdje je 1≤ n≤ N. Za n≤ NL ili n≥ N−NR +1, yn je definiran proširivanjem vrijednosti od s
izvan rubova, prema danim rubnim uvjetima.

yn iz gornje definicije se dobiva kao procjenitelj maksimalne vjerodostojnosti (MV procjenitelj)

srednje vrijednosti skupa vrijednosti elemenata od s unutar prozora oko sn, uz pretpostavku da
elementi od s čine slučajni uzorak iz Laplaceove distribucije. Za usporedbu, uzoračka sredina
se dobiva kao MV procjenitelj srednje vrijednosti, uz pretpostavku Gaussovosti uzorka. Prema
tome, medijan filter zamjenjuje vrijednost danog elementa signala (na danom indeksu) robus-
nom procjenom srednje vrijednosti susjedstva danog elementa. Ideja ove procedure je postići
otpornost na šum koji možda nije male varijance.

U slučaju 2D signala, odn. slika, definicija medijan filtra se jednostavno proširuje korištenjem
2D prozora. U tom slučaju, element slike se zamjenjuje MV procjeniteljem srednje vrijednosti
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2D susjedstva elementa slike. Uobičajeni rubni uvjet u slučaju slika je simetrični rubni uvjet
(vrijednosti izvan rubova se dobiju zrcaljenjem vrijednosti elemenata slike).

Težinski medijan filter se dobije množenjem svakog elementa susjedstva od si iz gornje defini-
cije (sn−NL , . . . ,sn, . . . ,sn+NR) pripadnim težinskim faktorom. Statistička interpretacija je slična
kao gore: izlaz težinskog medijana je MV procjenitelj srednje vrijednosti otežanog uzorka. U
obradi slike često se koristi medijan filter s centralnom težinom, pri čemu je otežan samo cen-
tralni element uzorka (sn iz gornje definicije), a težine ostalih uzoraka su jednake jedinici. Takvi
medijan filtri korišteni su u eksperimentima opisanim u Odjeljku 0.7.

Medijan filtri su optimalni (u smislu gornje statističke interpretacije) u slučaju Laplaceove dis-
tribucije uzorka. U obradi slike, odn. uklanjanju šuma u slici, daju dobre rezultate ako dis-
tribucija šuma nije jako impulsna. Laplaceova distribucija je primjer takve distribucije jer je
super-Gaussova, ali ima konačnu varijancu.

Bolji rezultati u uklanjanju impulsnog (konkretno, ‘salt-and-pepper’) šuma mogu se dobiti ne-
kim modifikacijama medijan filtara. Neki primjeri dani su u Odjeljku 0.7. Ipak, u Odjeljku 0.7
pokazat ćemo da je pristup uklanjanju ‘salt-and-pepper’ šuma korištenjem rječnika za rijetke
reprezentacije naučenog pomoću ANK puno uspješniji i od navedenih modifikacija medijan
filtara.

Myriad filtri

Prije formalne definicije myriad filtra, razmotrimo opći oblik robusnog procjenitelja srednje
vrijednosti distribucije (odnosno lokacijskog parametra, u slučaju da očekivanje nije konačno).

Definicija. Neka je x1, . . . ,xN dani slučajni uzorak iz neke distribucije. M-procjenitelj srednje
vrijednosti (lokacijskog parametra) distribucije, β̂ , za danu funkciju ρ (·), definiran je s

β̂ = argmin
β

N

∑
i=1

ρ (xi−β ) . (0.6.1)

Za ρ (x) = x2 dobiva se uobičajena uzoračka sredina, a za ρ (x) = |x|medijan uzorka. Za ρ (x)∼
− log f (x), gdje je f (·) vjerojatnosna funkcija gustoće, β̂ je MV procjenitelj srednje vrijednosti
distribucije f (·). Nas zanimaju impulsne distribucije, odn. preciznije impulsne α-stabilne

distribucije. Karakteristična funkcija α-stabilne distribucije je oblika φ (t) = exp
(
−k |t|α

)
, gdje

je k > 0 parametar raspršenosti i α ∈ (0, 2] karakteristični eksponent. Za α blizu nuli dobivaju
se vrlo impulsne distribucije. Za α = 1 dobiva se Cauchy-jeva distribucija, čija je vjerojatnosna
funkcija gustoće

f (x) =
k
π

1
k2 + x2 .

Cauchy-jeva distribucija nema konačnu varijancu i dobar je model vrlo impulsne distribucije.
Sada navodimo definiciju myriad filtra.
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Definicija. Za dani uzorak x1, . . . ,xN i parametar raspršenosti k > 0, uzorački myriad reda k

definiran je s

β̂k = myriad{k; x1, . . . ,xN}= argmin
β

N

∑
i=1

log
[
k2 +(xi−β )2

]
.

Dakle, uzorački myriad je robustna procjena lokacijskog parametra, uz pretpostavku da je uzo-
rak iz Cauchy-jeve distribucije. Myriad filter definiran je po analogiji s medijan filtrom. Naime,
myriad filer zamjenjuje vrijednost danog elementa signala (slike) uzoračkim myriad-om vrijed-
nosti susjednih elemenata.

Vrijedi sljedeći teorem [43].

Teorem. Označimo s Tα,k (x1, . . . ,N) MV procjenitelj srednje vrijednosti (0.6.1), odnosno lo-

kacijskog parametra, za danu funkciju ρ izvedenu iz α-stabilne distribucije s karakterističnim

eksponentom α i parametrom raspršenosti k. Tada vrijedi

lim
α↓0

Tα,k (x1, . . . ,xN) = myriad{0; x1, . . . ,xN} .

Dakle, uzorački myriad je optimalni procjenitelj lokacijskog parametra za vrlo impulsne (α
blizu nuli) distribucije. Sličan rezultat vrijedi i za težinski uzorački myriad, definiran s

β̂k,w = argmin
β

N

∑
i=1

log
[
k2 +wi (xi−β )2

]
.

Vrlo je važan dobar izbor parametra k. On ovisi o udjelu šuma u podacima. Naime, vrijede
sljedeće dvije tvrdnje [43]. Za k→ ∞, uzorački myriad je jednak uzoračkoj sredini. U tom
slučaju implicitno je pretpostavljeno da su svi elementi u uzorku pouzdani, odn. niti jedan nije
oštećen velikim vrijednostima impulsnog šuma. Za k→ 0, vrijedi sljedeće.

Propozicija. Neka je M skup vrijednosti u uzorku x1, . . . ,xN koje se najčešće ponavljaju. Tada

je

β̂0 = arg min
x j∈M

N

∏
i=1,xi 6=x j

∣∣xi− x j
∣∣ .

U ovom slučaju najpouzdanije su vrijednosti koje se ponavljaju (udio šuma je velik). Dakle,
kad je udio šuma velik, preporuka je da k bude reda ∼mini 6= j

∣∣xi− x j
∣∣.

Myriad filtri se pokazuju korisnima u uklanjanju impulsnog šuma u slici ako je udio šuma mali.
U Odjeljku 0.7 demonstriramo da, kada je udio impulsnog (odn. ‘salt-and-pepper’) šuma velik,
pristup koji koristi rječnik za rijetke reprezentacije naučen pomoću ANK daje značajno bolje
rezultate od myriad filtara.
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Ostale metode nelinearnog filtriranja

Vrlo efikasan pristup nelinarnom filtriranju predložen je u [99]. Krećemo od modela s̃ = s+n.
si možemo označiti i s s(xi), gdje xi označava poziciju elementa od s. U slučaju slika (2D
signala), xi označava koordinate elementa slike. Aproksimacija ŝ od s dobiva se iz s̃ kao

ŝ
(
x j
)
= arg min

s(x j)

N

∑
i=1

[
s̃i− s

(
x j
)]2 K

(
xi,x j, s̃i, s̃ j

)
,

gdje je K jezgra koja mjeri sličnost uzoraka s̃i i s̃ j na pozicijama xi i x j. Gornji oblik aproksima-
cije ŝ obuhvaća mnoge metode, ovisno o korištenoj jezgri K. U Odjeljku 0.7 dajemo usporedbu
metode ovog tipa i predložene metode u ovom radu, koja koristi rječnik za rijetke reprezentacije
naučen pomoću ANK, na primjeru rekonstrukcije nedostajućih dijelova slike. Pokazuje se da
korištenje naučenog rječnika daje usporedive ili bolje rezultate.

Maximum-a-posteriori pristup uklanjanju impulsnog šuma

Prisjetimo se općeg oblika inverznih problema (0.3.1):

y = Hx+n,

gdje je y∈Rm i H ∈Rm×M, pri čemu je M≥m. Ovdje nas zanima problem uklanjanja šuma, pa
je H = I, gdje I označava jediničnu matricu. Pretpostavimo da je distribucija šuma Cauchyjeva.
Želimo aproksimirati čist (neoštećen šumom) signal, odn. sliku, x. Maximum-a-posteriori

pristup procjeni nepoznatog čistog signala zasniva se na maksimizaciji posteriorne vjerojat-

nosti p(x |y). Prema Bayesovoj formuli, posteriorna funkcija gustoće vjerojatnosti je proporci-
onalna produktu funkcije vjerodostojnosti i apriorne funkcije gustoće vjerojatnosti nepoznatog
parametra, odn. p(x |y) ∼ p(y |x) p(x). Maksimizacija p(x |y) je ekvivalentna minimiza-
ciji − log p(x |y). Za p(x) se uobičajeno pretpostavlja da je oblika p(x) ∼ exp(−φ (x)), pri
čemu je član φ (x) obično nekonveksan. Budući da je šum po pretpostavci Cauchy-jev, vrijedi
− log p(y |x)∼ ∑i log

(
1+(x−y)2

i

)
. Prema tome, imamo

− log p(x |y)∼∑
i

log
(

1+(x−y)2
i

)
+φ (x) .

Oba člana u gornjem izrazu su nekonveksna, što čini njegovu minimizaciju vrlo nepraktičnom.
Zato ovaj pristup uklanjanju impulsnog šuma nije uobičajen.

0.7 Primjene

U ovom poglavlju prezentiramo rezultate usporedbi metoda za učenje rječnika za rijetke re-
prezentacije na problemima rekonstrukcije nedostajućih elemenata slike i uklanjanja ‘salt-and-
pepper’ šuma. Nakon toga, opisujemo i jednu primjenu analize rijetkih komponenata za izdva-
janje značajki u bioinformatici.

xxvi



0.7. Primjene

Rekonstrukcija nedostajućih elemenata slike

Kao trening skup korišteno je 6 slika prirodnih scena iz javno dostupne baze1. Iz svake slike
izvučeno je 3000 kvadratnih, 16× 16, komadića slike, koji su zatim spremljeni kao stupci u
256× 18000 matricu podataka X. Svakom stupcu od X, odn. svakom komadiću slike, prije
učenja rječnika nekim od algoritama, oduzeta je njegova srednja vrijednost. Nakon toga, pri-
mijenjeni su K-SVD i FastICA algoritmi za učenje rječnika. Korišteni parametri su sljedeći.
Nelinearna funkcija koja je korištena u FastICA algoritmu je (0.2.5), uz a1 = 5 (ovaj parametar
odabran je empirijskom usporedbom rezultata za nekoliko različitih vrijednosti parametra). Za
rijetko kodiranje u K-SVD-u korišten je OMP algoritam, uz K = 40 (vidi (0.5.1)). Ovaj izbor
je malo usporio K-SVD algoritam (ukupno je 100 iteracija algoritma trajalo oko 5 sati). Učenje
rječnika FastICA-om trajalo je oko 3 sata.

Metode su uspored̄ene na drugih 6 slika (testni skup), različitih od slika u trening skupu. Sve
korištene slike su 8-bitne, odn. raspon vrijednosti elemenata je [0, 255], gdje 0 označava crnu,
a 255 bijelu boju. U svakoj slici je zadržano samo 20% elemenata (slučajnim odabirom), nakon
čega su korišteni rječnici za rijetku reprezentaciju kako bi se dobila aproksimacija originalnih
(neoštećenih) slika. Postupak je ponovljen 10 puta za svaku sliku. Na svakom 16×16 komadiću
problem rekonstrukcije koji je rješavan je sljedeći:

argmin
c
‖c‖0 uz uvjet MDc = x̃−E(x̃) ,

pri čemu D označava 256×N naučeni rječnik (K-SVD-om ili FastICA algoritmom), N ≥ 256,
M označava m×256 matricu projekcije na indekse elemenata u danom komadiću slike koji su
poznati (neoštećeni), pri čemu je m ≈ 0.2 ·256, a x̃ označava m×1 vektor poznatih elemenata
u danom komadiću. E(x̃) označava srednju vrijednost vektora x̃. Rekonstruirani komadić x̂ se
dobiva kao x̂ = Dc+E(x̃). Komadići slike su odabrani tako da se susjedni komadići preklapaju
u 2 stupca, odn. retka. Bolji rezultati se mogu dobiti ako se rekonstrukcija radi na svim kva-
dratnim komadićima slike, ali proces rekonstrukcije u tom je slučaju puno sporiji. Za rješavanje
gornjeg problema, za svaki komadić slike, korišten je SL0 algoritam, opisan u Odjeljku 0.4. Na-
ime, SL0 algoritam se pokazao najefikasnijim (u smislu kvalitete dobivenih rekonstrukcija), a i
najbržim. U svim primjerima parametri SL0 algoritma optimizirani su empirijskom provjerom.
Slika 0.7.1 pokazuje primjer dviju slika iz testnog skupa i njihovih rekonstrukcija korištenjem
rječnika naučenih pomoću K-SVD i FastICA algoritama.

Rekonstrukcije dobivene korištenjem naučenih rječnika uspored̄ene su i s fiksnima. Konkretno,
kao fiksni rječnici korištene su inverzna diskretna kosinusna transformacija i inverzna transfor-
macija valićima. Za usporedbu, prikazujemo i rezultate dobivene metodom analize morfoloških

komponenata (AMK) [29]. AMK koristi dva fiksna rječnika: jedna se koristi za efikasnu (ri-
jetku) reprezentaciju po dijelovima konstantnog dijela slike, a druga za efikasnu reprezentaciju

1A. Olmos, F. A. A. Kingdom, McGill calibrated color image database, 2004.,
http://pirsquared.org/research/mcgilldb/

xxvii

http://pirsquared.org/research/mcgilldb/


0.7. Primjene

Slika 0.7.1: Dvije slike iz testnog skupa sa 80% nepoznatih (oštećenih) elemenata: a) i b).
Rekonstrukcije dobivene korištenjem rječnika naučenog pomoću FastICA algoritma: c) i d).
Rekonstrukcije dobivene korištenjem rječnika naučenog pomoću K-SVD algoritma: e) i f).

ostatka (‘teksture’). Budući da koristi fiksne rječnike, ova metoda očekivano daje slabije rezul-
tate. Za usporedbu dajemo i rezultate dobivene metodom polja eksperata, ukatko opisanom u
Odjeljku 0.5.

Dobiveni rezultati na svih 6 slika u testnom skupu prikazani su u Tablici 0.7.1. Ovdje ne pri-
kazujemo sve slike iz testnog skupa radi prostora (vidi punu verziju rada). Vrijednosti u tablici
su izražene vrijednostima indeksa strukturne sličnosti (ISS) [108, 107] dobivene rekonstrukcije
i originalne slike. ISS postiže vrijednosti izmed̄u −1 i 1, pri čemu veća vrijednost znači ‘bo-
lju’ rekonstrukciju (ISS je jednak 1 ako se slike podudaraju). Vrijednosti u tablici odnose se
na srednju vrijednost i standardnu devijaciju vrijednosti ISS indeksa nakon 10 ponavljanja (za
različite distribucije oštećenih elemenata slike).

Metoda rekonstrukcije nedostajućih elemenata slika koja koristi naučeni rječnik može se koris-
titi i za neke strukturirane raspodjele nedostajućih elemenata. Naprimjer, vidi Sliku 0.7.2. Ipak,
u slučaju kada na slici nedostaju veći dijelovi, kao naprimjer blokovi, ova metoda se ne može
uspored̄ivati sa metodama specijalno dizajniranim za takve slučajeve, kao što su [46, 92].
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Tablica 0.7.1: Rezultati rekonstrukcije u terminima ISS indeksa, pri čemu su naučeni rječnici
kvadratni, 256×256, naučeni na 16×16 komadićima slika u trening skupu.

ICA K-SVD DCT Symmlet 4
wavelet

MCA FoE

Sl. 1 0.907 ±
0.0008

0.905 ±
0.001

0.75 ±
0.0008

0.736 ±
0.0022

0.789 0.92

Sl. 2 0.76 ±
0.0016

0.749 ±
0.0012

0.55 ±
0.0015

0.503 ±
0.0015

0.682 0.77

Sl. 3 0.773 ±
0.0007

0.766 ±
0.0011

0.617 ±
0.0011

0.562±0.003 0.644 0.78

Sl. 4 0.944 ±
0.0005

0.94 ±
0.0004

0.81 ±
0.0007

0.81±0.0017 0.854 0.95

Sl. 5 0.6 ±
0.002

0.577 ±
0.0015

0.434 ±
0.0015

0.35±0.0022 0.491 0.6

Sl. 6 0.919 ±
0.0006

0.917 ±
0.0005

0.84 ±
0.0003

0.812 ±
0.0009

0.852 0.92

Sredina 0.817 ±
0.001

0.809 ±
0.0009

0.666 ±
0.0008

0.63±0.002 0.719 0.824

Opisana metoda se može koristiti i za slike u boji, kao što je opisano u [35]. Dobivaju se rezultati
usporedivi sa specijaliziranim metodama, kao što je [73], ali jednostavnijim pristupom. Budući
da je slika u boji 3D tenzor, u literaturi je predložen i pristup rekonstrukciji nedostajućih dijelova
minimizacijom nuklearne norme tenzora, što je čest pristup rekonstrukciji tenzora. Med̄utim,
taj pristup pretpostavlja da je tenzor niskog ranga, što je u slučaju općenitih slika u boji nerealna
pretpostavka.

Predložena metoda se pokazuje uspješnom i u usporedbi s metodom opisanom u Odjeljku 0.6 i
[99]. Ovdje ne ulazimo u sve detalje odabira parametara te metode. Za detalje vidi punu verziju
rada ili [99]. Na primjerima dvije slike sa Slike 0.7.3, dobiveni rezultati su sljedeći. Ovdje
predložena metoda primijenjena je na rekonstrukciju Slike 0.7.3a iz 30% poznatih elemenata, a
dobiveni rezultat je, u terminima mjere PSNR (koja efektivno mjeri Frobeniusovu normu pogre-
ške dobivene rekonstrukcije; vidi kraticu u Tablici 1.3.2), 31.89 dB (decibela; veća vrijednost
obično znači rekonstrukciju bolje kvalitete, iako se upravo zbog boljeg slaganja s vizualnim
dojmom ponekad koristi i navedeni ISS indeks). Metoda iz [99], uz vrijednosti parametara
predložene od strane autora, na ovoj slici postiže 31.74 dB. Na Slici 0.7.3b ovdje predložena
metoda postiže 29.59 dB, a metoda iz [99] 28.685 dB.

Uklanjanje ‘salt-and-pepper’ šuma

Problem uklanjanja ‘salt-and-pepper’ šuma (vidi Poglavlje 0.6) u slici može se svesti na pro-
blem rekonstrukcije nedostajućih elemenata slike. Naime, ideja je proglasiti sve elemente slike
maksimalnog (255) ili minimalnog (0) intenziteta nepoznatima (oštećenima). Pri tome je mo-
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Slika 0.7.2: Dvije slike iz testnog skupa s linijskom strukturom nedostajućih elemenata: a) i b).
Rekonstrukcije dobivene rječnikom naučenim pomoću FastICA algoritma: c) i d).

Slika 0.7.3: Slike korištene za usporedbu s nekim metodama iz literature. a) Lena. b) Brod.

guće da se oštećenima proglase i elementi koji to možda nisu, ali zbog efikasnosti metode čak i
u slučaju kad je značajan udio elemenata oštećen (u prethodnom odjeljku vidjeli smo primjere
s 80% oštećenih elemenata) to ne utječe značajno na kvalitetu rezultata. U Odjeljku 0.6 vidjeli
smo kratak pregled metoda nelinearnog filtriranja (medijan i myriad filtri), koje su u odred̄enom
smislu teorijski optimalne u danoj klasi metoda. Ovdje dajemo usporedbu s nekim modifika-
cijama osnovnih medijan filtara [32, 70], koje se pokazuju značajno uspješnijima od klasičnih
medijan, ali i myriad filtara. Na primjeru sa Slike 0.7.3a, uz 70% oštećenih elemenata, me-
toda iz [32] postiže 24.3 dB, a metoda iz [70] 29.72 dB. U prethodnom odjeljku vidjeli smo
da metoda predložena u ovom radu, bazirana na korištenju rječnika naučenog pomoću FastICA
algoritma, postiže 31.89 dB, što je značajno bolje. Slična je razlika med̄u metodama i na Slici
0.7.3b. Za više primjera vidi punu verziju rada. Vidimo da se filteri medijan i myriad tipa
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ne mogu uspored̄ivati s ovdje predloženom metodom na problemu uklanjanja ‘salt-and-pepper’
šuma.

Izdvajanje značajki u bioinformatici

Analiza podataka u bioinformatici se često bazira na linearnom modelu miješanja signala, pri
čemu je broj izvornih signala nepoznat. Izvorni signali se mogu aproksimirati metodama raz-
dvajanja signala. Neki od izdvojenih izvornih signala mogu se dalje koristiti za predikciju
bolesti ili identifikaciju biomarkera (kemijskih tvari koje mogu služiti kao indikatori stanja
bolesti). Ovdje razmatramo biološke uzorke proteinskih ili genskih profila. Proteinski profili
predstavljaju spektre masa uzoraka, a genski profili izraženost svakog pojedinog gena u uzorku.
Pojedinačni elementi profila (omjer masa/naboj u slučaju proteinskih, odn. geni u slučaju gen-
skih profila) se uobičajeno nazivaju značajke.

U literaturi su predložene brojne metode izdvajanja značajki ili klasifikacije uzoraka. Osnovne
karakteristike ovdje opisane metode, koja je predložena u [60], su sljedeće. Linearni model
miješanja je formuliran posebno za svaki uzorak. Izdvojene komponente (izvorni signali) se
automatski klasificiraju u komponentu tipičnu za stanje bolesti, u komponentu tipičnu za zdrav
organizam i, moguće, jednu ili više komponenti koje sadrže značajke koje nisu posebno izra-
žene ni u ‘zdravoj’ niti u ‘bolesnoj’ komponenti. Konkretno, za svaki testni uzorak x ∈ Rn

pretpostavljamo dva linearna modela[
xT

z

xT

]
= AzSz (0.7.1)

i [
xT

b

xT

]
= AbSb, (0.7.2)

gdje xz predstavlja referentni zdravi, xb referentni bolesni uzorak, a Az ∈ R2×M i Ab ∈ R2×M,
M ≥ 2, označavaju matrice miješanja, čije elemente interpretiramo kao relativne udjele koncen-
tracije redaka od Sz, odn. Sb (komponenata), u miješanim uzorcima x, xz i xb. Retke od Sz i
Sb interpretiramo kao komponente koje sadrže značajke tipične za zdrav organizam, tipične za
bolesno stanje ili značajke koje nisu posebno izražene ni u jednom niti u drugom slučaju.

Matrice miješanja u gornja dva modela mogu se aproksimirati metodom opisanom u Odjeljku
0.2. Uz pretpostavku da su u zdravim uzorcima dominante komponente koje sadrže značajke
tipične za zdrav organizam, i analogno za bolesne uzorke, možemo pretpostaviti približnu rijet-
kost matrica Sz i Sb. Prema tome, u [60] predložena je aproksimacija matrica Sz i Sb, za dane
aproksimacije matrica miješanja, minimizacijom `1 norme.

Komponente sa značajkama tipičnim za zdrav, odn. bolestan organizam, identificiraju se na
osnovu kuta kojeg pripadni vektor miješanja (stupac matrice miješanja) zatvara s osima koor-
dinatnog sustava. Promatrajmo model (0.7.1). Kao komponentu koja sadrži značajke tipične za
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zdrav organizam proglašavamo onu čiji pripadni vektor miješanja (odn. stupac matrice miješa-
nja čiji je indeks jednak indeksu retka pripadne komponente) zatvara najmanji kut s x-osi. Za
komponentu sa značajkama tipičnim za stanje bolesti proglašavamo onu koja zatvara najveći
kut s x-osi. Analogan je postupak za model (0.7.2). Na ovaj način, za svaki uzorak dobi-
vamo 4 komponente s pripadnim labelama (zdrava/bolesna) dobivenim na gore opisan način.

Dakle, dobivamo 4 skupa izdvojenih komponenata,
{

sz
zdrava ref.;i,yi

}N
i=1,

{
sb

zdrava ref.;i,yi

}N

i=1
,{

sb
bolesna ref.;i,yi

}N

i=1
i
{

sz
bolesna ref.;i,yi

}N
i=1 , gdje je N ukupan broj uzoraka. Na svakom od

ova 4 skupa komponenata možemo trenirati klasifikator, i zadržati onaj s najvećom točnošću
utvrd̄enom pomoću kros-validacije.

Gore opisana metoda uspored̄ena je s kompetitivnim metodama iz literature na 3 javno dos-
tupna skupa uzoraka preuzeta sa2. Treba napomenuti da je u radu [60] korištena dvostruka
kros-validacija, koja daje realnije procjene točnosti klasifikatora. Za razliku od toga, u većini
kompetitivnih radova iz literature korištena je trostruka ili desetorostruka kros-validacija, koje
daju preoptimistične rezultate. Dobiveni rezultati pokazuju da predložena metoda daje uspore-
divu (posebno kada se uzme u obzir spomenuti odnos dvostruke i višestruke kros-validacije) ili
bolju točnost od kompetitivnih metoda, i to na sva 3 spomenuta skupa uzoraka.

0.8 Zaključak

Prvi doprinos ove radnje je korištenje analize nezavisnih komponenata za učenje rječnika za
rijetke reprezentacije slika prirodnih scena, s primjenom u problemima popunjavanja nedos-
tajućih dijelova slike i uklanjanja posebne vrste impulsnog šuma. Drugi doprinos je upravo
formulacija problema uklanjanja posebne vrste impulsnog šuma kao problema popunjavanja
nedostajućih dijelova slike. Korištenje analize nezavisnih komponenata za navedene probleme
ima biološko opravdanje, kao što je opisano u Odjeljku 0.3.

Predložene metode su uspored̄ene s nekoliko reprezentativnih kompetitivnih metoda iz litera-
ture. Rezultati dobiveni predloženim metodama su usporedivi ili bolji od rezultata dobivenih
kompetitivnim metodama. Na problemu uklanjanja posebne vrste impulsnog šuma, predložena
metoda daje značajno bolje rezultate od uobičajeno korištenih metoda za ovaj problem (medijan
i myriad filtri). Na problemu popunjavanja nedostajućih dijelova slike samo je metoda ‘polja
eksperata’, bazirana na vjerojatnosnom modelu slike, opisana u Odjeljku 0.5, dala bolji rezultat,
ali uz značajno veću računsku složenost. Opisane metode su korištene i na sivim i slikama u
boji. Na problemu popunjavanja nedostajućih dijelova slike, najbolji rezultati se postižu za uni-
formnu raspodjelu nedostajućih elemenata slike. Ali, kao što je demonstrirano u Odjeljku 0.7,
dobri rezultati se dobivaju i za neke strukturirane raspodjele, kao što su (tanke) linije ili tekst.

2Program proteomike američkog Nacionalnog instituta za rak,
http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
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0.8. Zaključak

Predložene metode su opisane u radovima [34, 35]. Takod̄er, kod za reprodukciju opisanih
rezultata je dostupan na stranici autora 3.

Treći doprinos ove radnje je nova metoda za izdvajanje značajki u bioinformatici. Bazirana
je na linearnom modelu miješanja s referentnim uzorkom. Metoda omogućava automatsko
izdvajanje značajki na nivou svakog uzorka, pri čemu se labele uzoraka ne koriste. Metoda je
demonstrirana na nekoliko javno dostupnih skupova uzoraka, i dobiveni rezultati su usporedivi
ili bolji od rezultata dobivenih kompetitivnim metodama iz literature. Metoda je opisana u radu
[60].

3http://www.lair.irb.hr/ikopriva/marko-filipovi.html
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Ključne riječi

Analiza nezavisnih komponenata, Razdvajanje signala, Rijetkost, Analiza rijetkih kompone-
nata, Rijetka reprezentacija, Rekonstrukcija rijetkih signala, Pod-odred̄eni linearni sustav, Uče-
nje rječnika za rijetke reprezentacije, K-SVD algoritam, Nepotpuni podaci, Popunjavanje ne-
dostajućih dijelova slike, Impulsni šum, Nelinearno filtriranje, Izdvajanje značajki, Linearan
model miješanja, Bioinformatika
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Chapter 1

Introduction

In recent years, the concept of sparsity has become ubiquitous in signal and image processing.
Sparsity of a vector or a matrix means that many of its coefficients are zero (or close to zero
in the case of approximate sparsity, or compressibility). Sparseness constraint is used to reg-
ularize many ill-posed inverse problems. Examples in imaging include inpainting, deblurring,
denoising and super-resolution. It is known that many classes of signals can be compressed
using transformations which result in many signal’s coefficients being close to zero. This is
known as the analysis model of sparsity. For example, JPEG still image compression standard
uses sparsity of image coefficients in the wavelet domain. Digital audio encoding formats are
based on the modified discrete cosine transform (MDCT). Another view on sparsity follows
from the analysis model. Namely, if the transformation coefficients of a signal are mostly zero,
this means that a signal can be represented as an inverse transformation of a sparse vector of
coefficients. Therefore, it is often realistic to suppose that a signal can be represented as a linear
combination of a small number of vectors from a pre-specified basis or a frame of the vector
space (i.e., a signal has a sparse representation with respect to the basis or the frame). In signal
processing, such a basis or a frame is usually referred to as the dictionary, and its elements, i.e.
columns, are referred to as the dictionary vectors or atoms. This is known as the synthesis model

of sparsity. It is the more often used model. Since many inverse problems, like image inpaint-
ing or impulse noise removal, are extremely ill-posed (because of the small number of available
measurements), sparsity is a powerful tool for regularization. It has enabled state-of-the-art
results in many image and signal processing problems.

Another area where sparsity proved to be fundamental is blind or semi-blind source separation
(Chapter 2). Many algorithms proved to perform well in overdetermined (the number of mix-
tures greater than the number of sources; see Chapter 2) or determined case (the number of mix-
tures equal to the number of sources), but sparsity-based regularization enabled efficient solving
of underdetermined (the number of mixtures less than the number of sources) source sepa-
ration problems. Sparsity-constrained underdetermined source separation is known as sparse
component analysis. In bioinformatics applications, like protein or gene expression analysis,
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sparsity enables selection of disease-specific features in proteomics (m/z ratios) and genomics
(genes) that are used for disease prediction and biomarker identification. Many of these appli-
cations are based on several fundamental results in compressed sensing area. Basically, sev-
eral seminal papers (some references are given in Chapter 4) have shown that sparse enough
solutions of underdetermined linear systems of equations can be reconstructed by convex opti-
mization methods under some regularity assumptions on the system matrix (in the terminology
of compressed sensing, sparse signals can be reconstructed from fewer non-adaptive measure-
ments than was previously known). Also, sparse solutions can in theory be reconstructed from
even fewer measurements, but the resulting problems are non-convex. Nevertheless, there are
many approximate algorithms available that perform well in practice. These results are theoret-
ically well founded in approximation theory [37, 7]. Although fixed transforms, like wavelets,
wavelet-like transforms or discrete cosine transform (DCT), have proven useful in the above
mentioned applications, it was shown that better results can be obtained by learning transfor-
mations directly from the data of interest. Since fixed transforms are not adapted to a specific
signal subclass of interest, for example natural images, it is logical that improved results can be
obtained by exploiting specific signal structure. Many papers presented improved results using
learned dictionaries compared to fixed ones.

One motivation for the use of independent component analysis (ICA, Section 2.2) in image
restoration problems (like inpainting, removal of impulse noise and super-resolution) is the
fact that it has been shown that the dictionary vectors learned by ICA have similarities with
experimentally observed receptive fields of neurons in the brain of mammals (Section 3.1).
Therefore, the use of ICA in this context has a biological justification. Although this is a
known result, there haven’t been, at least to the author’s knowledge, results in the literature
that used ICA in some realistic image restoration problems and compared results obtained with
the ICA to the state-of-the-art methods. In this thesis, ICA was used for dictionary learning,
and was extensively compared to state-of-the-art methods in image inpainting and impulse noise

removal problems. This is the main contribution of this thesis (see Section 1.1). Independent
component analysis is by itself a method for solving source separation problems. However, it
can also be used for learning the dictionaries for sparse representations of signals. Namely, ICA
decomposes mixed signals into mutually independent sources, with some assumptions on their
probability distribution. In the context of dictionary learning for sparse representations, these a-
priori unknown distributions can be chosen in such a way to enforce desired properties of source
signals, such as sparsity. Sparsity of source signals implies sparsity of signal representations
with respect to the inverse of the transformation learned by ICA.

Of course, signals that are encountered in applications are often not exactly sparse. Instead,
their coefficients in the chosen dictionary decay slowly. This introduces error in the sparsity-
constrained linear model. Namely, the contribution of small coefficients can be interpreted as
an error in the linear model. Also, there is often a random noise with small variance that is
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1.1. Contributions of the thesis

present in the model. Therefore, to be useful in applications, algorithms for reconstruction of
sparse signals from incomplete data need to be robust to model-caused additive errors. Robust
algorithms for sparse reconstruction are reviewed in Chapter 4.

Before describing the main contributions of this thesis, we cite one paragraph from the intro-
duction of the paper [74]:

The empirical tuning approach has a larger significance for the field of sparse
representations and compressed sensing. Many of the better known papers in this
field discuss what can be proved rigorously, using mathematical analysis. It re-
quires real mathematical maturity to understand what is being claimed and what
the interpretation must be, and to compare claims in competing papers. Often,
what can be proved is vague (with unspecified constants) or very weak (unrealis-
tically strong conditions are assumed, far from what can be met in applications).
For practical engineering applications it is important to know what really happens
rather than what can be proved. Empirical studies provide a direct method to give
engineers useful guidelines about what really does happen.

These few sentences, made by distinguished experts in or closely related to the field of sparse
representations, are relevant for this thesis since the thesis deals with practical performance of
proposed methods, and not their formal theoretical guarantees of performance. These words
provide nice justification and explanation of the approach used in this thesis.

1.1 Contributions of the thesis

In the following we list the main contributions of this thesis:

1. Independent component analysis (ICA), which is a method for solving source separation
problems, is used as a dictionary learning method for (approximately) sparse representa-
tion of signals. More concretely, approximately sparse representation of natural images’
patches can be learned by applying ICA to a given training set of image patches. The
learned dictionary is used for inpainting images, and also for removal of salt-and-pepper
noise in natural images. The method compares favourably with state-of-the-art methods
for unstructured (uniform distribution of missing pixels) inpainting. Also, the method
performs well for some structured patterns of missing pixels (lines, text).

2. The problem of removal of salt-and-pepper noise in images is posed as an image inpaint-
ing problem, and solved by using the learned dictionary method. This concept compares
favorably against state-of-the-art nonlinear filtering methods such as myriad and modified
median filters.
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1.2. Chapter-by-chapter overview

The proposed methods for image inpainting and removal of salt-and-pepper noise work
well both for grayscale and color images. They have been described in publications [34,
35].

3. A novel method for feature extraction in bioinformatics (more precisely, proteomics and
genomics) is presented. It is based on a novel type of linear mixture model with a ref-
erence sample that, through sparsity constrained factorization, enables automatic feature
extraction on a sample-by-sample basis. Therein, sample label information is not used.
This allows the use of extracted features for training of the classifier. As opposed to that,
existing matrix factorization methods use the whole dataset to extract disease specific fea-
tures by using label information. This prevents the use of extracted features for training
of the classifier.

The method was described in the paper [60].

This thesis author’s personal contributions in the above cited works are as follows. In [34], the
author extracted relevant methods for comparison with the proposed method from the literature
on dictionary learning and sparse recovery algorithms, and performed all numerical experi-
ments. The idea to test the ICA for dictionary learning with aplication in image inpainting was
suggested by the supervisor (I. Kopriva), as well as the interpretation of salt-and-pepper noise
removal problem as the inpainting problem (by declaring all noise-corrupted pixels as missing).
In [35], the author performed all experiments. The idea to compare the proposed method for
color image inpainting with tensor completion methods was suggested by the supervisor (I. Ko-
priva). In [60], the author implemented the sparse recovery method and performed numerical
experiments (cross-validation based component extraction and classification).

1.2 Chapter-by-chapter overview

We review methods for both (over)determined and underdetermined source separation in
Chapter 2. The emphasis is on the information-theoretic approaches to independent compo-
nent analysis: both the theory and algorithms. All the material presented in this chapter is well
known and is taken from the literature.

In Chapter 3 a motivation for using the ICA for dictionary learning is described. This chapter is
short but important, since it presents a background for the use of ICA in inpainting and removal
of impulse noise problems.

We review some of the approximate algorithms for solving sparsity-constrained, generally non-
convex, inverse problems in Chapter 4. There, we also present and discuss several algorithms
for sparse reconstruction that are robust to the presence of small errors. These algorithms are
compared on simple synthetic data sets. Again, all the theoretical part of this chapter consists
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1.3. Notation and abbreviations

of known results from the literature. This chapter is important since robust sparse recovery
algorithms are used in experiments presented in Chapter 7.

Dictionary learning methods are briefly described in Chapter 5. Since there are many dictio-
nary learning methods presented in the literature, only two representatives of state-of-the-art
methods, which are used in experimental comparison in Chapter 7, are reviewed here.

Chapter 6 reviewes state-of-the-art non-linear filtering methods for removal of impulse noise
in images. Also, this chapter includes a section about maximum-a-posteriori (MAP) approach
to removal of impulse noise. There, the reasons for the inefficiency of MAP approach for
removal of impulse noise are discussed. Nonlinear filtering methods are used in experimental
comparison presented in Chapter 7.

In Chapter 7 we present a comparison of dictionary-based approaches to image inpainting and
removal of impulse noise (more precisely, a special kind of impulse noise - salt-and-pepper
noise), with a special emphasis on the dictionaries learned by independent component analysis
(ICA) (described in Section 2.2). The reasons for inefficiency of non-linear filtering methods
for removal of salt-and-pepper noise are also discussed there. In Section 7.3, we describe an ap-
plication of sparsity constrained matrix factorization (also known as sparse component analysis)
for feature extraction on protein/gene expression data.

Summary is presented in Chapter 8.

1.3 Notation and abbreviations

The notation and abbreviations used throughout the thesis are listed in the following tables.
Several basic remarks are the following. Scalars are denoted by regular lowercase or uppercase
letters. Sets are also denoted by uppercase letters, but it will be emphasized or clear from
context whether a symbol (uppercase letter) refers to a scalar or a set. Vectors are denoted by
bold lowercase letters. Matrices are denoted by bold uppercase letters.
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1.3. Notation and abbreviations

Table 1.3.1: Notation

a, b, c, . . . , M, N, . . . scalars
f (·) , p(·) ,F (·) , . . . functions

a,b,c, . . . column vectors
A,B,C, . . . matrices

Θ, . . . sets
px (·) probability density function of a random

vector x
E(·) mathematical expectation
R the set of real numbers
C the set of complex numbers
× Cartesian product of sets
Rn n-dimensional Euclidean space R × . . .×

(n−1)times×
R

N
(
µ,σ2) normal (Gaussian) distribution with mean µ

and variance σ2

U (a,b) uniform distribution in [a,b]
IC the complement of the set I

(in the set which should be clear from context)
(a,b) open interval of real numbers,

(a,b) = {x ∈ R : a < x < b}
[a,b] closed interval of real numbers,

[a,b] = {x ∈ R : a≤ x≤ b}
[a,b) half-open interval of real numbers,

[a,b) = {x ∈ R : a≤ x < b}
xi, (x)i i-th element of vector x
|·| cardinality of a set, or the absolute value

of a number
‖x‖0 `0 quasi-norm (not really a norm) of vector x,

‖x‖0 = |{i : xi 6= 0}|
‖x‖1 `1 norm of x, ‖x‖1 = ∑i |xi|

‖x‖2 `2 norm (2-norm) of x, ‖x‖2 =
√

∑i x2
i

aT , AT transpose of vector a (therefore, aT is a
row vector), respectively matrix A

0 the null-vector, i.e. the vector whose all
elements are equal to zero

null(A) the nullspace (kernel) of matrix A,
null(A) = {x : Ax = 0}
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1.3. Notation and abbreviations

Table 1.3.2: Abbreviations

ICA Independent Component Analysis
PCA Principal Component Analysis
SVD Singular Value Decomposition
SCA Sparse Component Analysis
SSP Single Source Point
NMF Nonnegative Matrix Factorization
OMP Orthogonal Matching Pursuit
SL0 Smoothed `0

DCT Discrete Cosine Transform
MOD Method of Optimal Directions
FoE Fields of Experts
MCA Morphological Component Analysis
SSIM Structural Similarity
PSNR Peak Signal-to-Noise Ratio
dB deciBel
MSE Mean Squared Error
IST Iterative Soft Thresholding
SVM Support Vector Machine
RBF Radial Basis Function
ML Maximum Likelihood
MAP Maximum A Posteriori
CV Cross-Validation
p.d.f. probability density function
i.i.d. independent and identically distributed
i.e. that is (id est)
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Chapter 2

Linear instantaneous blind source
separation

2.1 Problem formulation

The general model for the linear instantaneous blind source separation is presented as follows:
a set of T observations of M sensors

X = [x1 |· · · |xT ] =


x11 x12 · · · x1T

x21 x22 · · · x2T
...

... . . . ...
xM1 xM2 · · · xMT


is modeled as a linear mixture of N source signals

S = [s1 |· · · |sT ] =


s11 s12 · · · s1T

s21 s22 · · · s2T
...

... . . . ...
sN1 sN2 · · · sNT

 ,
where the linear mixing is represented by the unknown M×N mixing matrix

A =


a11 a12 · · · a1N

a21 a22 · · · a2N
...

... . . . ...
aM1 aM2 · · · aMN

 ,
i.e. the mixing model is written as

X = AS. (2.1.1)

In practice, the model (2.1.1) is not exact since there are always some errors due to imperfect
measurements, noise, or even errors due to model imperfection. Therefore, practically more
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2.1. Problem formulation

relevant model formulation is

X = AS+E, (2.1.2)

where E is the error matrix of small norm. Here, every row of the matrix S represents a source
signal, and hence every row of the matrix X is a mixed signal. Formally, a signal is a dis-
cretization of the continuous function on some interval. For signals defined on a subset of R,
like audio/speech, independent variable usually refers to time, and an observation is a value of
the signal at the given time instant. For discrete signals defined on a subset of R2, like digital
images, the independent variables refer to the spatial location. By sensors we will mean dis-
tinct mixtures of the unknown source signals. The problem of blind source separation consists
in recovering (approximating) the source signals (which also requires the mixing matrix to be
recovered/approximated) given the mixed signals only.

Now, first of all, linear mixture models can be divided into two main classes. If M ≥ N, i.e.
the number of mixed signals (sensors) is greater than or equal to the number of source signals,
the mixing model is said to be (over)determined. If M < N, the model is said to be underde-

termined. Since in most blind source separation methods the mixing matrix is approximated
first, the main distinction between the overdetermined and underdetermined cases is that in the
(over)determined case, once the mixing matrix is known (approximated), the matrix of source
signals is obtained by inversion. On the contrary, approximating the mixing matrix is only
half of the problem in the underdetermined case. Since both the mixing matrix A and the ma-
trix of source signals S are unknown, the problem (2.1.1) as described above, is, of course,
ill-posed in both the (over)determined and especially underdetermined case, i.e. there are in-
finitely many solutions. Namely, if Ŝ is one solution/approximation of the source matrix (where
Â is the corresponding approximation of the mixing matrix), any S̃ of the form S̃ = BŜ, where
B ∈ RN×N is an invertible matrix, is also a solution/approximation (corresponding approxima-
tion of the mixing matrix is ÂB−1). That is because representations X = ÂŜ and X = ÂB−1BŜ
are equivalent from the data point of view. Therefore, some constraints (regularizations) need
to be introduced to make the problem well-defined. Therefore, it should be mentioned that the
name blind source separation should only indicate that very little is known a-priori about the
sources, i.e. the source matrix S. Without some assumptions/knowledge about the structure of
the source signals, the problem is ill-posed, as explained above. Therefore, the problem of blind
source separation is often referred to as semi-blind source separation or source separation. We
will often use the name source separation. Two of the most often used assumptions/constraints
on the source signals are statistical independence (measured through some contrast function,
explained in Section 2.2.3) in the (over)determined case, and sparsity in the underdetermined
case. These are explained in the following sections of this chapter.

Before we go into more detailed description of the (over)determined and underdetermined cases,
we briefly mention the statistical interpretation of the linear model in (2.1.1) (this is presented
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2.2. Over-determined case and the independent component analysis

in more detail in the following section). It is supposed that the linear model

x = As (2.1.3)

is valid, where x is a random vector in RM, A ∈ RM×N is a deterministic mixing matrix, as
before, and s is a random vector in RN . The linear model in (2.1.1) is then viewed as follows:
every column of the source matrix S is a realization of the random vector s, and likewise every
column of X is a realization of the random vector x.

The rest of the chapter is organized as follows. In Section 2.2 we review basic methods for
the solution of the (over)determined blind source separation problem, with an emphasis on
the independent component analysis (ICA). Section 2.3 reviews methods for under-determined
blind source separation, with special emphasis on the methods that assume sparsity of the source
signals. In that section, we concentrate on sparse component analysis methods. We review
some basic results on over-complete ICA in Section 2.3.3. For other approaches to both the
(over)determined and underdetermined problems the main reference is the handbook [22].

2.2 Over-determined case and the independent component
analysis

The simpler cases of the source separation problems (2.1.1) and (2.1.2) are the over-determined
case, when M > N, and determined case, when M = N. Since these cases are conceptually very
similar, we will use the term over-determined case both when M > N and M = N. The technical
assumption that will be used is the invertibility of the mixing matrix A. This is equivalent to the
full rank assumption on A. The often used assumption on the sources in the over-determined
case is the statistical independence of the sources. The method for source separation using the
assumption of statistical independence of the sources is called independent component analysis
(ICA) [55]. We start with the model (2.1.3). The covariance matrix of a random vector x∈RM is
defined as Cx = E

(
(x−E(x))(x−E(x))T

)
. The covariance matrix is finite if all correlations

E
(
xix j
)
, i, j = 1, . . . ,M (second moments if i = j), are finite. The following definitions and

results are taken from the seminal paper on ICA [21]. First of all, we present a formal definition
of the ICA.

Definition 2.1. ICA of a random vector x∈RM with finite covariance matrix Cx is a pair (F, Λ)

of matrices such that

1. the covariance matrix Cx can be factorized as Cx = FΛ
2FT , where Λ is diagonal matrix

with positive elements, and F is M×ρ full column rank matrix, where ρ ≤M;

2. x can be written as x = Fz, where z is a ρ×1 random vector with the covariance matrix
Λ

2 and the components of z are maximally independent in the sense of maximization of a
given contrast function.
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2.2. Over-determined case and the independent component analysis

Before discussing relevant contrast functions from the definition, we discuss the ambiguities of
the above definition and therefore introduce some constraints which make the definition of ICA
good.

Remark 2.1. If a pair (F, Λ) is an ICA of a random vector y, then the pair (F′, Λ
′) is also an

ICA of y, where

F′ = FΛ̄P, Λ
′ = PT

Λ̄
−1

ΛP (2.2.1)

and Λ̄ is a ρ×ρ invertible diagonal matrix, while P is a ρ×ρ permutation matrix.

Remark 2.1 highlights the scaling and permutation ambiguities of the ICA. We consider the
two ICA-s in the above remark equivalent, and therefore all ICA-s of a random vector form one
equivalence class. Usually, the following two constraints are introduced to define the unique
representative of ICA equivalence class:

1. the columns of F have unit norm;

2. the entries of Λ are sorted in decreasing order.

It should be noted that the definition of a contrast function from (2) in Definition 2.1 should
take into account the scaling and permutation ambiguities. Some contrast functions for ICA are
introduced in Section 2.2.3.

2.2.1 Standardization and the principal component analysis (PCA)

The goal of standardization is to transform a random vector x ∈ RM into another, z, that has a
unit covariance matrix (i.e., identity). Therefore, the elements of z are uncorrelated. It is possi-
ble that the covariance matrix Cx of x is not invertible, which requires, apart from decorrelation,
also a projection of x onto the range space of Cx. Both of these tasks are accomplished by PCA.

Definition 2.2. The principal component analysis (PCA) of a random vector y ∈RM with finite
covariance matrix is a pair (F, Λ) of matrices such that the covariance matrix Cy of y can be
factorized as Cy = FΛ

2FT , where Λ is diagonal matrix with positive elements and F ∈RM×ρ is
full column rank matrix, with orthogonal columns.

PCA shares the same ambiguities as ICA, and therefore PCA-s of a random vector also form an
equivalence class. Therefore, the constraints introduced at the end of the previous section are
also used for PCA.

We briefly describe the computation of the PCA. Let us denote the (truncated) eigenvalue de-
composition of the covariance Cx of x as Cx = UΓ

2UT , where Γ is full rank and U possibly
rectangular. From the definition of the PCA, the pair (U, Γ) is the PCA of x. Then, the stan-
dardized vector associated to x is defined as z = Γ

−1UT x. It is also possible to use the singular
value decomposition (SVD) in the calculation of the PCA to avoid explicit calculation of the
covariance matrix (Cx).
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2.2. Over-determined case and the independent component analysis

2.2.2 Measures of statistical independence

In the Definition 2.1, it is required that the components of z are ‘maximally statistically inde-
pendent’. This definition requires a valid measure of statistical (in)dependence. In this section,
we review the most important ones.

2.2.2.1 Mutual information

We denote by px (·) the probability density function (p.d.f.) of vector x. x has (mutually)
independent components if (by definition)

px (u) =
M

∏
i=1

pxi (ui) , (2.2.2)

where x = [x1, . . . , xM]T and u = [u1, . . . , uM]T . A natural way to measure independence is to
measure a distance between sides in (2.2.2), δ

(
px, ∏

M
i=1 pxi

)
, where δ (·) is some measure of

distance. One class of measures of distance of two probability density functions px and py on
RM are f -divergences, denoted and defined as

D f (px, py) =

ˆ
RM

f
(

px (u)
py (u)

)
px (u)du,

where f is a convex function such that f (1) = 0. f -divergences are non-negative and pos-
itive definite in the sense D f (px, py) = 0⇔ px = py a.e. (almost everywhere). Therefore,
D f
(

px, ∏
M
i=1 pxi

)
are ‘good’ measures of independence of vector x. Kullback-Leibler (KL)

divergence is obtained for f (t) = − ln t. KL divergence of random variables is defined as
the KL divergence of their p.d.f.-s. Mutual information of a vector x, denoted as I (px) or
I (x), is defined as the Kullback-Leibler divergence between the sides in (2.2.2): I (px) =

DKL
(

px, ∏
M
i=1 pxi

)
. This is a good candidate for the contrast function for ICA. Two important

properties of mutual information that follow from the properties of Kullback-Leibler divergence
are stated in the following proposition.

Proposition 2.1. Mutual information has the following properties:

1. I(x)≥ 0, for every random vector x;

2. I (x) = 0 ⇔ the components x1, . . . ,xM of x are mutually statistically independent.

Mutual information can also be defined/expressed using entropy. (Differential) entropy of a
random vector x, denoted as H (x), Hx or Hpx , where px (·) is the p.d.f. of x, is defined as

H (x) =−
ˆ

px (u) log px (u)du. (2.2.3)

It follows from the definition of mutual information that

I (x) =
M

∑
i=1

H (xi)−H (x) .

.
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2.2. Over-determined case and the independent component analysis

2.2.2.2 Negentropy

The well known result of information theory (see [23], for example) states that, under some reg-
ularity conditions, Gaussian density has maximum entropy among densities with equal variance.
A simple proof can be presented as follows: it is known that the Kullback-Leibler divergence
is nonnegative, DKL (p, q)≥ 0, for every probability density functions p and q (this is a conse-
quence of Jensen’s inequality). Let g(x) be the Gaussian p.d.f. with mean µ and variance σ2,
and let f (x) be an arbitrary p.d.f. with the same mean and variance. It follows that

0≤ DKL ( f , g) =−H f (x)−
ˆ
R

f (x) logg(x)dx

where H f (x) denotes the entropy of f (x), which is defined in the same way as the entropy of a
random variable. The second term above can be written as

´
R f (x) logg(x)dx =

´
R f (x) log

(
1√

2πσ2 exp
(
− (x−µ)2

2σ2

))
dx

=
´
R f (x) log

(
1√

2πσ2

)
dx+

+
´
R f (x)

(
− (x−µ)2

2σ2

)
dx

= −1
2 log

(
2πσ2)− σ2

2σ2

= −1
2

(
log
(
2πσ2)+1

)
= −Hg(x)

which is the entropy of the Gaussian p.d.f. Therefore, Hg(x) ≥ H f (x), for an arbitrary p.d.f.
f (x). It follows from the property of the Kullback-Leibler divergence (i.e. from the property of
Jensen’s inequality) that an equality is true if and only if f (x) = g(x) a.e. The above proof of
maximality of entropy of a Gaussian p.d.f. also extends to random vectors.

Negentropy of a random vector x is defined as J (x) = H (xGauss)−H (x), where xGauss is a
random vector with the same mean and covariance matrix as x. It follows from the above
results that negentropy of a random vector is non-negative, and equal to zero if and only if the
vector is Gaussian. Therefore, negentropy is a measure of distance of a random vector from
the Gaussian random vector with the same mean and covariance matrix, i.e. it is a measure of
‘non-Gaussianity’.

Here, we are interested in measures of statistical independence. Therefore, we provide an in-
tuition for using non-Gaussianity as a measure of statistical independence (see chapter 8 in
[55]). From the linear model of ICA x = As it follows s = A−1x, i.e. independent components
si are obtained by linearly combining mixed components xi. Let us denote by y = bT x one
such linear combination. It follows y = bT As = qT s, for q = AT b. Roughly, by central limit
theorem it follows that y, as a linear combination of independent components, is ‘more Gaus-
sian’ than individual components si. Since y = bT x = qT s, the intuition is that by maximizing

non-Gaussianity of y (one of the) independent components si can be obtained.

The following connection provides a rigorous justification for the use of negentropy as a mea-
sure of statistical independence. Namely, mutual information can be expressed using negen-

13



2.2. Over-determined case and the independent component analysis

tropy. Using the expressions for the entropy of a Gaussian random vector xGauss and the en-
tropies of its components (xGauss)i it follows that

I (x) = J (x)−∑
i

J (xi)+
1
2

log
∏i Σii

detΣ
, (2.2.4)

where Σ = Cx. Note that, for standardized random vector x, the term 1
2 log ∏i Σii

detΣ
is equal to zero.

Here we also mention one useful property of negentropy. Namely, negentropy is invariant to
invertible linear transformations, i.e. for invertible matrix M, J (Mx) = J (x). See [55] for a
proof of this invariance property.

2.2.3 Contrast functions for ICA

To be a valid contrast function for ICA, we will require of a measure of statistical independence
the properties listed in the following definition.

Definition 2.3. A contrast function for ICA is a mapping Ψ from the set of probability densities{
px, x ∈ RM} to R that satisfies the following:

1. Ψ(pPx) = Ψ(px), for every permutation matrix P (Ψ is invariant to permutations);

2. Ψ(pΓx) = Ψ(px), for every invertible diagonal matrix Γ (Ψ is invariant to scaling);

3. if x has independent components, then Ψ(pAx)≤Ψ(px), for every invertible matrix A.

The following definition introduces one important property that will be required of the contrast
function in the definition of ICA.

Definition 2.4. A contrast is discriminating if the equality in (3) holds only when A is of the
form A = ΓP, where Γ is invertible diagonal and P is a permutation matrix.

Now, the following theorem from [21] states the conditions under which ICA, if it exists, is
unique up to permutation and scaling ambiguities.

Theorem 2.1. Assume that x is a random vector with independent components of which at most

one is Gaussian, and whose densities are not point-like masses. Let C be an orthogonal matrix,

and vector z defined as z = Cx. Then the following statements are equivalent:

1. the components zi of z are pairwise independent;

2. the components zi are mutually independent;

3. C = ΓP, where Γ is invertible diagonal and P a permutation matrix.

This theorem is a consequence of the following one.
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2.2. Over-determined case and the independent component analysis

Theorem 2.2. Let x and z be two random vectors such that z = Bx, where B is a rectangu-

lar matrix. Suppose that x has independent components and that z has pairwise independent

components. If B has two non-zero entries in the same column j, then x j is either Gaussian or

deterministic.

This theorem can be proven using several known results in probability theory, see [21] for
details. Using these results, it follows that the negative mutual information is a valid contrast
for ICA.

Theorem 2.3. The mapping

Ψ(px) =−I (pz)

is a contrast for ICA, where z is a standardized random vector associated to x. Ψ is also

discriminating over the set of random vectors having at most one Gaussian component.

Proof. That Ψ is a contrast follows from the properties of mutual information (see
Proposition 2.1). To prove that Ψ is discriminating, we suppose Ψ(pAx) = Ψ(px), where x
has independent components of which at most one is Gaussian. It follows that Ψ(px) = 0, and
therefore also Ψ(pAx) = 0. Again, from the Proposition 2.1 it follows that Ax has independent
components. Since x has at most one Gaussian component, from the Theorem 2.1 it follows
that A = ΓP.

From the connection between mutual information and negentropy (see Section 2.2.2.2) it fol-
lows that negentropy can also be used as a contrast for ICA.

Mutual information and negentropy are computationally very complicated to use because their
definitions involve generally unknown probability density functions of the sources. Therefore,
in practice some approximations are used. Since both mutual information and negentropy are
expressed using entropy, in the following subsections we introduce some approximations of
entropy.

2.2.3.1 Approximations of entropy by cumulants

We briefly recall the definitions of the first and second characteristic functions.

Definition 2.5. The first characteristic function of a random vector x in RM with p.d.f. px,
denoted as φpx or φx, is defined as a function φx : RM→ C,

φx (t) =
ˆ
RM

exp
(

jtT u
)

px (u)du.
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2.2. Over-determined case and the independent component analysis

Here, j denotes imaginary unit. k-th moment of a random variable x is defined as E
(
xk). We

denote it by m(k)
x . In the case of random vectors, definition of moments is more complicated.

First moment of a random vector is the mean of a vector, while the second moment of a vector
is its correlation matrix (covariance matrix in the case of a zero-mean vector). Higher-order
moments are defined as follows.

Definition 2.6. The k-th order moment of a random vector x in RM is a k-th order tensor

M
(k)
x ∈ RM×M×···×M (k-dimensional array) with elements(

M
(k)
x

)
i1i2...ik

= E(xi1xi2 · · ·xik) .

In the case of a random variable x, if k-th absolute moment of x is finite, k-th moment can be
obtained as the k-th coefficient in the Taylor expansion of the first characteristic function about
0, up to constant. Similarly, k-th order moment of a random vector x can be obtained from the
coefficients in the Taylor expansion of its first characteristic function about the origin, again up
to constant.

Now we define cumulants. Before that, we need to define the second characteristic function of
a random vector.

Definition 2.7. The second characteristic function of a random vector x in RM, Ωx : RM → C,
is defined as the (complex) logarithm of φx:

Ωx (t) = lnφx (t) .

Cumulants of a random vector x are now defined as the coefficients (up to constants) in the Tay-
lor expansion of the second characteristic function Ωx about the origin, similarly to moments.
Namely, we have the following definition.

Definition 2.8. k-th order cumulants of a random vector x in RM,
cum(xi1, . . . ,xik) , 1≤ i1, . . . , ik ≤M, are defined as

cum(xi1, . . . ,xik) = (− j)k ∂ kΩx (t)
∂ ti1∂ ti2 · · ·∂ tik

∣∣∣∣
t=0

.

k-th order cumulant tensor C
(k)
x ∈ RM×M×···×M of x is a tensor of order k with elements

cum(xi1, . . . ,xik). C
(k)
x is symmetric (see properties of cumulants in Appendix A). k-th order

cumulant of a random variable x is denoted as c(k)x .

Cumulants of a random vector that involve different components of a vector are often called
cross-cumulants. Cumulants can be expressed as functions of moments from the definition
of Ψ. First-order cumulant is equal to the first moment (expectation), while the second-order
cumulants are the components of the covariance matrix. Cumulants have some very important
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2.2. Over-determined case and the independent component analysis

properties which make them more useful than moments in applications. Some of the properties
of cumulants are listed in Appendix A.

Cumulants are important regarding an approximations of entropy because they appear as coef-
ficients in the Gram-Charlier expansion of the p.d.f. of a random variable about the Gaussian
variable. The Gram-Charlier expansion of the p.d.f. px of a random variable x with mean µ = 0
and variance σ2 = 1 about the standard normal (Gaussian) p.d.f. φ is given by

px (ζ ) = φ (ζ )

(
1+ c(3)x

H3 (ζ )

3!
+ c(4)x

H4 (ζ )

4!
+ . . .

)
, (2.2.5)

where Hi represents i-th Hermite polynomial (defined by the i-th derivative of the standard
normal p.d.f.). An approximation of px can be obtained by keeping only several terms in the
above expansion. By using this truncated expansion as an approximation of px and plugging it
into the expression for entropy (2.2.3), simple approximations of entropy can be obtained (for
more details, see [55]). See Appendix A for the formal derivation of the expression (2.2.5) and
some references.

An important and often used higher-order cumulant is kurtosis. Kurtosis of a random vari-
able x is denoted as κ(x) and defined as κ(x) = c(4)x(

c(2)x

)2 . For a standardized random variable

z, κ(z) = E
(
z4)− 3, therefore it is a normalized fourth-order moment. Kurtosis of a Gaus-

sian random variable is zero. For many non-Gaussian random variables, kurtosis is nonzero.
Random variables with negative kurtosis are called sub-Gaussian (or platykurtic), while those
with positive kurtosis are called super-Gaussian (or leptokurtic). Super-Gaussian random vari-
ables have typically ‘spiky’ p.d.f., with heavy tails and relatively large at zero (compared to the
Gaussian random variable), a representative example being the Laplacian distribution (with unit
variance), with p.d.f. p(x) = 1√

2
exp
(
−
√

2 |x|
)

. Sub-Gaussian random variables typically have
a flat p.d.f., rather constant near zero and very small for larger values of the variable, typical
example being the uniform distribution. Since the kurtosis is zero for the Gaussian random
variable and nonzero for most of the interesting non-Gaussian distributions, it can be used as a
measure of non-Gaussianity.

However, there are several drawbacks of using cumulants in practice. Namely, finite-sample
estimators of moments, and therefore also cumulants, are very sensitive to outliers (possibly er-
roneous observations with large values). This means that large erroneous values can completely
determine the estimates of cumulants, which makes these estimates useless. Therefore, in the
following subsections we review other methods for approximating entropy.

2.2.3.2 Approximation of entropy by non-polynomial functions

Assume that the information about the density f is available through the expectations

ci = E(Gi (x)) =
ˆ

Gi(u) f (u)du, i = 1, . . . ,n. (2.2.6)
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2.2. Over-determined case and the independent component analysis

The estimation of f based on these measurements only is ill-posed without additional assump-
tions on f . The idea of maximum entropy method is to find the p.d.f. with maximal entropy
satisfying the measurements (2.2.6). A result from information theory ([23]) states that, un-
der some regularity assumptions (more precisely, it is assumed that the constraints (2.2.6) can
be satisfied), the density f0(x) that satisfies the constraints (2.2.6) and has maximum entropy
among all such densities, has the form

f0(x) = Aexp

(
∑

i
aiGi(x)

)
(2.2.7)

where A and ai are constants that can be determined from (2.2.6) and the constraint
´

f0(x)dx =

1. However, determining these constants requires solving a system of non-linear equations.
Therefore, in [52] the following approximate approach was suggested. We assume that f0 is
not very far from standardized Gaussian density φ(x) = exp

(
−x2/2

)
/
√

2π . The standardiza-
tion assumption introduces additional two constraints in (2.2.6) defined by Gn+1 = x, cn+1 =

0, Gn+2 = x2, cn+2 = 1. We also assume that the functions Gi form an orthonormal system with
respect to φ and are orthogonal to all polynomials of degree ≤ 2. Then, we can express f0 as

f0(x) = Aexp

(
−x2

2
+an+1x+

(
an+2 +

1
2

)
x2 +

n

∑
i=1

aiGi(x)

)
where in the exponential all other terms are small compared to the first one. Now, first-order
approximation of exponential, expε ≈ 1+ ε , can be used to get

f0(x)≈ Ãφ(x)

(
1+an+1x+

(
an+2 +

1
2

)
x2 +

n

∑
i=1

aiGi(x)

)

where Ã =
√

2πA. Using the orthogonality constraints for Gi we get
´

f0(x)dx ≈ Ã
(
1+
(
an+2 +

1
2

))
= 1´

f0(x)xdx ≈ Ãan+1 = 0´
f0(x)x2dx ≈ Ã

(
1+3

(
an+2 +

1
2

))
= 1´

f0(x)Gi(x) ≈ Ãai = ci, i = 1, . . . ,n

which yields Ã = 1, an+1 = 0, an+2 =−1
2 and ai = ci, i = 1, . . . ,n. Finaly, we obtain an approx-

imative density f̂ ,

f̂ (x) = φ(x)

(
1+

n

∑
i=1

ciGi(x)

)
. (2.2.8)

This approximation can be used in the definition of entropy to obtain an approximation of
entropy. Namely, we have (see [52] for a derivation)

H f̂ =−
ˆ

f̂ (x) log f̂ (x)dx≈ H(ν)− 1
2

n

∑
i=1

c2
i , (2.2.9)
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2.2. Over-determined case and the independent component analysis

where H(ν) = 1
2 (1+ log(2π)) is the entropy of a standardized Gaussian variable, and ci =

E(Gi(X)), as above. Notice that the functions Gi can be chosen to obtain ’good’ approximations
of entropy. Namely, some properties that Gi should have are the following. First, estimation of
expectation(s) E(Gi) should be robust to outliers, contrary to cumulants. Second, the function
f0 in (2.2.7) should be integrable. Third, notice that if the true p.d.f. f were known, optimal
choice would be G = − log f (the approximation H f̂ is exact in this case). This fact motivates
the choice of Gi-s as log-densities of some important distributions. A simple special case of an
approximation of the form (2.2.8) is obtained when n = 1. The FastICA algorithm, which we
review in Section 2.2.4.3, and which is used in the experiments presented in Chapter 7, is based
on the approximation of this form.

2.2.3.3 Other approximations of entropy

Entropy can be estimated directly from the definition, using kernel estimates of unknown p.d.f.
First reference using this approach was [87] (or chapter 2 in [22]). See also [14]. The main
problem with these methods is their high computational complexity, which makes them imprac-
tical when the number of sources N is large (when N ' 100 the problem is usually classified
as large). Some other methods estimate the unknown p.d.f.- s indirectly, for example through
sample estimates of quantiles [88, 62]. Again, their problem is high computational complexity,
which is impractical when N is large. Therefore, we don’t discuss these methods in more detail
here.

2.2.4 Information-theoretic approaches to ICA

2.2.4.1 Maximum likelihood

In this subsection we make connection between the mutual information minimization and the
maximum likelihood principle as the methods to perform ICA. We start from the ICA model
(2.1.3). We briefly recall the definition of the likelihood and the maximum likelihood principle.

Definition 2.9. Let X be a random variable with p.d.f. pX ,θ that depends on a parameter θ ∈Θ.
The likelihood function of X , Lθ (·), is defined as

Lθ (x) = pX ,θ (x).

The likelihood is defined in the same way for a random vector x. The likelihood of a sample

x1,x2, . . . ,xT of independent observations of a random vector x with p.d.f. px,θ is defined as

Lθ (x1,x2, . . . ,xT ) =
T

∏
i=1

px,θ (xi).

It is often more convenient to work with the logarithm of the likelihood (log-likelihood), lnLθ ,
or its scaled version, the average log-likelihood, l̂θ = 1

T lnLθ . Now, recall the definition of the
maximum likelihood estimator.
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2.2. Over-determined case and the independent component analysis

Definition 2.10. Suppose that x1,x2, . . . ,xT is a sample of a random variable X with p.d.f. pX ,θ

that depends on a parameter θ ∈ Θ and that θ 0 is the true value of θ (i.e., x1,x2, . . . ,xT are
generated from pX ,θ 0). The maximum likelihood estimator (MLE) θ̂ MLE of θ is defined as

θ̂ MLE = argmax
θ∈Θ

Lθ (x1,x2, . . . ,xT ) .

In the context of the ICA models (2.1.3) and (2.1.1), the parameter that we want to estimate is
the vector s of the independent components, i.e. a matrix of its realizations S (see (2.1.1)), or
(which is the same in the over-determined case) the mixing matrix A or its inverse W = A−1.
The matrix X in (2.1.1) represents exactly a random sample of observations of x. Therefore, the
likelihood function is (using the notation from Section 2.1)

LW(X) = LW (x1, . . . ,xT ) =
T

∏
i=1

px (xi) .

P.d.f. px of a mixed vector x is obtained from the linear model x = As, using the independence
of the components of s, as

px(x) =
∣∣detA−1∣∣ ps(s) =

∣∣detA−1∣∣ N

∏
i=1

psi (si) .

Therefore, by denoting the rows of W = A−1 as wT
i , we have the expression for the likelihood

of a sample X = [x1, . . . ,xT ]

LW (X) =
T

∏
i=1

N

∏
j=1

ps j

(
wT

j xi
)
|detW| .

The average log-likelihood is

l̂W(X) =
1
T

T

∑
i=1

N

∑
j=1

log ps j

(
wT

j xi
)
+ log |detW| . (2.2.10)

The first term on the right in the expresion above is an estimate of E
(

∑
N
j=1 log ps j

(
wT

j x
))

(a

sample mean). Further, this expectation is exactly equal to −∑
N
j=1 Hps j

(
wT

j x
)

. On the other

hand, from the definition of mutual information I (Wx) we have I (Wx) = ∑
N
j=1 Hs j

(
wT

j x
)
−

H (x)− log |detW|. Therefore, up to an additive constant (given by the entropy of the obser-
vation vector x), the average log-likelihood is equal to the negative of the mutual information.
This means that, in theory, ICA by the maximum likelihood principle (i.e. maximization of the
likelihood) is equivalent to the minimization of mutual information.

2.2.4.2 Infomax

An estimation method for the ICA very similar to the maximum likelihood is the information
maximization (‘infomax’) [9]. In the context of source separation and ICA, it consists in max-
imizing the entropy of the transformed variables z = g(y) = g(Wx), where g : RM → RM is
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2.2. Over-determined case and the independent component analysis

a componentwise ((g(y))i = gi (yi)) non-linear continuous function and W is an estimate of
A−1. The functions gi are chosen as the probability distribution functions of some p.d.f.-s,
gi(s) =

´ s
−∞

qi(ζ )dζ (hence, gi are invertible). Therefore, the contrast function for the infomax
is ΨI (W) = H (g(Wx)), wherein the entropy is meant with respect to the unknown density of
g(Wx). This contrast can be written in another way, by using the following result.

Fact 2.1. If a random vector x in RM has distribution px with support [0, 1]M, then the entropy

of x can be expressed as

H (x) =−
ˆ
RM

px(ζ ) log
px(ζ )

∏
M
i=1 1[0,1] (ζi)

dζ =−DKL (x, u) (2.2.11)

where u∼U
(
[0, 1]M

)
(u is distributed uniformly on [0, 1]M).

Let us denote by s̃ a random vector with probability distribution function g. The random vector
g(s̃) is distributed uniformly on [0, 1]M. It follows that

ΨI (W) = H (g(Wx))

= −DKL (g(Wx) ,u)

= −DKL (g(Wx) ,g(s̃)) .

Using the invariance of the Kullback-Leibler divergence to invertible transformations of its ar-
guments (which follows by using the expressions for the p.d.f. of a transformation of a random
variable), it follows that ΨI (W) = −DKL (Wx, s̃) [19]. Therefore, the information maximiza-
tion approach consists in estimating the transformation Wx of x whose probability distribution
function is as close as possible to the pre-defined probability distribution function g. In the
expression for ΨI above, the p.d.f. of Wx is unknown. On the contrary, in the maximum like-
lihood approach, the p.d.f. of Wx is considered known, equal to the true p.d.f. of the sources.
It follows that, if g is chosen as the true probability distribution function of the sources, and
if the sample mean in the definition of the average log-likelihood is replaced with the theoret-
ical expectation, the maximum likelihood (in the sense of the maximization of this modified
likelihood) and infomax contrast functions coincide.

2.2.4.3 FastICA algorithm

The special case of the entropy approximation of the type (2.2.9) is obtained for n = 1: H f ≈
H (ν)− 1

2E(G(X)). This yields an approximation of the negentropy of the form

JX ≈ E(G(X)) . (2.2.12)

Here, we have supposed that X has been standardized (however, the following derivations can
also be adapted to the case when no standardization is performed). As already noted in the
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2.2. Over-determined case and the independent component analysis

Section 2.2.3.2, the optimal choice for G would be − log pX if pX were known. In practice,
however, pX is unknown. Note also that G must be orthogonal to all polynomials of degree
2 or less (see Section 2.2.3.2). For an odd or even G, after orthogonalizing it with respect to
all polynomials of degree ≤ 2 and normalizing, the negentropy approximation (2.2.12) can be
written as [53]

Jx ≈ c [E(G(X))−E(G(ν))]2 , (2.2.13)

where c is an irrelevant constant and ν , as before, a gaussian variable with the same mean and
variance as X . Using (2.2.4), it follows that the sum ∑

N
i=1 J (yi)=∑

N
i=1 J ((Wx)i)=∑

N
i=1 J

(
wT

i x
)

is a contrast function for the ICA (recall, the ICA mixing model is x = As). The two main
approaches to estimating the ICA demixing matrix W = A−1 are the deflationary and sym-
metric approaches. Firstly we focuss on the deflationary approach, which is based on es-
timating one independent component, i.e. one row of W, at a time. We denote JG (w) =[
E
(
G
(
wT x

))
−E(G(ν))

]2. The one-unit FastICA functional wG,1 is defined as

wG,1 = arg max
E
{
(wT x)2

}
=1

JG (w) . (2.2.14)

Note that in the case of standardized x, the condition E
{(

wT x
)2
}
= 1 is equivalent to ‖w‖2 = 1.

The k-th FastICA functional wG,k is defined as

wG,k = argmax
E
{
(wT x)2

}
=1

JG (w)

subject to wT wG,i = 0, i = 1, . . . ,k−1
. (2.2.15)

Namely, after estimating k− 1 rows of the demixing matrix W, the next row is constrained to
be orthogonal to all previously estimated rows. Such a constraint is natural since independence
implies uncorrelatedness (it is needed to avoid estimating the same row of W multiple times).
Since the estimator of W is based on an approximation of negentropy, it is unclear whether it is
a consistent estimator. The following theorem holds [53, 56].

Theorem 2.4. Assume that the data follows the ICA model (2.1.3) and that G is a sufficiently

smooth even function. Let us denote A−1 = W and

JG (w) =
[
E
(
G
(
wT x

))
−E(G(ν))

]2 (where wT denotes a row of W). Then, the set of local

maxima of JG(w) under the constraint E
((

wT x
)2
)
= 1 includes the i-th row of the inverse of

the mixing matrix A such that the corresponding independent component si satisfies

E
{

sig(si)−g′(si)
}
[E(G(si))−E(G(ν))]> 0, (2.2.16)

where g denotes the derivative of G and ν is a standardized Gaussian variable.

This theorem states the conditions under which the estimate of W based on (2.2.14) and (2.2.15)
is consistent. For a sketch of the proof see (appendix A in [56]). The inequality (2.2.16)
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2.2. Over-determined case and the independent component analysis

divides the space of probability distributions into two half-spaces, depending on whether the
non-polynomial moments on the left side are (both) positive or negative. For example, if G(x) =

x4, the first term on the left is proportional to the kurtosis κ(si) of si,

E
{

sig(si)−g′i(si)
}
= 4

(
E
(
s4

i
)
−3E

(
s2

i
))

= 4
(
E
(
s4

i
)
−3
)
,

the last equality following since we have supposed E
(
s2

i
)
= 1. In this case, the inequality

(2.2.16) holds for all random variables of non-vanishing kurtosis. Therefore, in this case the
FastICA estimator is consistent for most interesting distributions of the sources. We describe
some other (good) choices for G later in this section.

Regarding the symmetric approach, analogous procedure can be used. Namely, we define a
functional J̃G̃ as

J̃G̃(W) = E
(
G̃(Wx)

)
,

wherein G̃ operates elementwise by applying G to every element of a vector. The negentropy
maximization problem is now formulated as

WG = argmax
W

J̃G̃ (W) subject to WTW = I.

The same consistency theorem (2.2.16) holds also in this case. See Paragraph 2.2.4.3.2 for
details regarding the optimization method for this problem used in FastICA algorithm.

Some other properties of the estimator that we would like are the efficiency and robustness. The
efficiency is related to the asymptotic variance of the estimator. Robustness means that a single,
highly erroneous observation doesn’t have large influence on the estimator. We review basic
results related to the efficiency and (non)robustness of the FastICA estimator based on (2.2.14)
and (2.2.15) in the following subsections. The theorems are listed in Appendix B. Paragraph
2.2.4.3.2 and Paragraph 2.2.4.3.3 are related to practical algorithms for computing the FastICA
estimator.

2.2.4.3.1 Statistical properties of the FastICA estimator As already mentioned above,
robustness of the estimator implies that a single erroneous observation (outlier) doesn’t have a
large influence on the estimator. A useful measure of robustness of an estimator is the influence
function of the estimator, defined as follows (for the special case of the FastICA estimator).

Definition 2.11. The influence function of the FastICA estimator wG,k in (2.2.15) at the distri-
bution F , IFwG,k,F , is defined as

IFwG,k,F (z) = lim
ε↓0

wG,k (Fε)−wG,k (F)

ε
=

∂

∂ε
wG,k (Fε) |ε=0 , (2.2.17)

where Fε = (1− ε)F + ε∆z denotes the ε-contaminated distribution F , and ∆z denotes the
degenerate distribution at z.
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2.2. Over-determined case and the independent component analysis

A robustness of the FastICA estimator can now be more formally defined as follows: an estima-
tor is robust if it has a bounded and continuous influence function. Boundedness implies that a
small amount of contamination of the distribution does not have an arbitrarily large influence on
the estimator. Continuity implies that the small change in the data set results in the small change
of the estimator. The expression for the influence function of the FastICA estimator is given in
Theorem B.1 in Appendix B (this result is taken from [82]). It follows from this expression that
the FastICA estimator is not robust, regardless of the choice of nonlinear function G. However,
robustness can be controlled to some level through the choice of G, see Paragraph 2.2.4.3.3 for
details.

Regarding the variance of the FastICA estimator and its theoretical lower bound, the theorems
are given in Appendix B.2 (these results are taken from [83, 82]). The conclusions are the
following. The accuracy of the k-th demixing vector ŵG,k depends on the distribution of the
sources extracted previously. Also, the existence of kurtosis is required for all sources to ensure
the existence of the asymptotic covariance matrix. Depending on the chosen non-linearity, the
existence of even higher order moments might be required. Also, the case cg, j ≈ ρg, j, where
cg, j = cov

(
g(s j),s j

)
= E

(
g(s j)s j

)
and ρg, j = E

(
g′(s j)

)
, for any j ∈ {1, . . . ,k}, leads to very

high asymptotic variances of the estimator.

A modification of the algorithm for practical computation of the FastICA estimator (FastICA al-
gorithm), reviewed in the following subsection, was presented in [59, 100]. It is asymptotically
efficient in some cases. However, FastICA method, as presented in the following subsection and
implemented in publicly available software (see Chapter 7), is good enough for the purposes of
numerical experiments presented in Chapter 7. Therefore, we don’t review this modification in
more detail here.

2.2.4.3.2 FastICA optimization method After reviewing the theoretical properties of the
estimators (2.2.14) and (2.2.15), we now consider the optimization method for finding these
estimators in practice [53]. The deflationary mode of the FastICA algorithm uses the following
approach. First we consider (2.2.14). KKT conditions imply

E
{

xg
(
wT x

)}
−βw = 0, (2.2.18)

where β is a Lagrangian multiplier. The optimal multiplier is given by β ∗=E
{

w∗T xg
(
w∗T x

)}
,

where w∗ is the value of w at the optimum. FastICA uses the Newton method for solving
(2.2.18). The Jacobian matrix of the left-hand side in (2.2.18) is E

{
xxT g′

(
wT x

)}
−β I. Now,

the idea is to approximate this Jacobian by E
{

xxT}E{g′
(
wT x

)}
−β I=

(
E
{

g′
(
wT x

)}
−β

)
I

(here, x is standardized by assumption), which makes it diagonal. The approximate Newton
iteration is

w← w−
E
{

xg
(
wT x

)}
−βw

E{g′ (wT x)}−β
, (2.2.19)
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2.2. Over-determined case and the independent component analysis

which can be rewritten as

w̃← E
{

xg
(
wT x

)}
−E

{
g′
(
wT x

)}
w (2.2.20)

followed by the normalization w← w̃/‖w̃‖2. To enable line search, which stabilizes the Newton
iteration, the form (2.2.19) can be used, wherein β can be calculated from the current approxi-
mation w as β =E

{
wT xg

(
wT x

)}
, again followed by the normalization w←w/‖w‖2. Newton

method can be used in the similar way for non-standardized data x, see [53]. After estimating
the first row of W, i.e. the first independent component, the subsequent rows (solutions of
(2.2.15)) can be estimated in a similar way. Namely, FastICA uses the same iteration (2.2.20)
for all independent components, followed by the orthogonalization with respect to previously
estimated rows of W, and normalization. Namely, if we denote the current approximation of
wG,k, for k > 1, by ŵG,k, after every iteration

w̃G,k← E
{

xg
(
ŵT

G,kx
)}
−E

{
g′
(
ŵT

G,kx
)}

ŵG,k,

new approximation ŵG,k is obtained by

w̃G,k ← w̃G,k−∑
k−1
i=1 w̃T

G,kwG,iwG,i,

ŵG,k ←
w̃G,k
‖w̃G,k‖2

.
(2.2.21)

In the symmetric mode, the analogue of the iteration (2.2.20) for the whole matrix W can be
used, followed by the symmetric orthogonalization. Namely, for a given approximation Ŵ of
the mixing matrix, Ŵ can be orthogonalized by

Ŵ←
(
ŴŴT)− 1

2 Ŵ.

2.2.4.3.3 Choice of the nonlinear function in FastICA The non-linear function G used
in the approximation of negentropy (2.2.12) should be chosen such that it approximates the
negative logarithm of the true pdf(s) of the sources and/or it yields a robust estimate of the
entropy. Namely, if robustness is important, G should not grow too fast, so that possible (large)
outliers don’t influence the negentropy approximation too much. Two good general choices for
G are

G1(x) =
1
a1

logcosh(a1x) (2.2.22)

and

G2 (x) =−
1
a2

exp
(
−a2x2

2

)
(2.2.23)

which correspond to

g1(x) = tanh(a1x) (2.2.24)
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2.3. Under-determined case and the sparse component analysis (SCA)

Figure 2.2.1: Comparison of the p.d.f. induced by using the nonlinearity (2.2.22) with the scale
parameter a1 = 5 in the FastICA algorithm, and generalized Gaussian p.d.f. with parameter
β = 1 (see [34]), which models Laplacian p.d.f. p(x) ∼ exp(−λ |x|). Also shown is Gaussian
p.d.f. The zoomed part illustrates heavy tails of Laplacian and tanh-induced p.d.f.-s.

and

g2 (x) = xexp
(
−a2x2

2

)
(2.2.25)

respectively.

Choice of G1, i.e., g1, implies that the sources are approximately distributed according to
the Laplacian distribution, see Figure 2.2.1. Therefore, this choice implicitly assumes super-
gaussian distributions for the sources. G2, i.e. g2, is also a good choice for super-gaussian
distributed sources, and is faster to compute than g1. Regarding the robustness, g2 is also more
robust than g1 in the sense that the empirical influence function grows more slowly for g2,
see [82] for an example. In the numerical experiments in Chapter 7, we have used g1 because
empirically better results were obtained.

2.3 Under-determined case and the sparse component
analysis (SCA)

When the number of source signals N exceeds the number of sensors M in the source separation
mixture model (2.1.1), the assumption of independence alone is not enough to uniquely separate
the signals (however, see Section 2.3.3 for some results on over-complete, i.e. under-determined
ICA). As already discussed in the introduction of this chapter, the stronger assumption that we
will consider here is sparsity. We will assume that the matrix S of source signals is sparse.
Sparsity of a vector or a matrix is usually measured by the number of its nonzero elements,
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2.3. Under-determined case and the sparse component analysis (SCA)

often referred to as the `0-quasi-norm. More precisely, the `0-quasi-norm of a vector x, ‖x‖0, is
defined as

‖x‖0 = |{i : xi 6= 0}| .

In practice, the assumption of sparsity of S is often satisfied directly or indirectly; i.e., if S is not
already sparse, often one of the following two assumptions is realistic. Either there is a frame
Φ ∈ RK×T (often called the dictionary), where K ≥ T , such that every row sT ∈ R1×T of S can
be written as sT = cs

T Φ, where cs ∈ R1×K is sparse (this is the synthesis view of sparsity of S),
i.e. S can be written as

S = CSΦ, (2.3.1)

where the matrix CS of coefficients is sparse; or, there is a linear transform Ψ ∈ RT×K , K ≥ T ,
such that the matrix of analysis coefficients

CS,Ψ = SΨ (2.3.2)

is sparse (this is the analysis view of sparsity of S). The problem with the synthesis formulation
(2.3.1) is that, if the dictionary Φ is redundant, i.e. K > T , there is no analysis operator Ψ̃

such that ΦΨ̃ = I, i.e. the source signals generally can not be transformed so that the resulting
coefficients coincide with the synthesis coefficients CS. Therefore, the model CXΦ = X =

ACSΦ is generally not equivalent to CX = ACS, i.e. the original source separation problem is
not easily transformed to a problem with sparse sources. On the contrary, if there is an analysis
operator Ψ such that the analysis model (2.3.2) is valid, we have

CX,Ψ = XΨ = ASΨ = ACS,Ψ. (2.3.3)

Therefore, by transforming the mixtures using the analysis operator Ψ, we obtain a mixture
model with sparse sources. The same is true in the case when the dictionary Φ is a basis or a
full rank matrix in the case K < T , since we can use Φ

† as the analysis operator (Φ† denotes the
pseudoinverse of Φ). Here we suppose that the analysis model is valid. Note that the sources S
can be recovered from their analysis coefficients CS,Ψ as S = CS,ΨΨ

†.

Among various methods for under-determined source separation, we concentrate on sparse
component analysis methods. Namely, the approach for solving/approximating the solution
of the problem (2.3.3) is two-stage: firstly, mixing matrix is estimated using the geometric
methods based on clustering; secondly, the sources (or their analysis coefficients) are estimated
using sparse recovery methods with known mixing matrix. See chapter 10 in [22] for some
references to other (non-geometric) methods for SCA.

The rest of this section is organized as follows. In Section 2.3.1 and Section 2.3.2, we review
mixing matrix estimation and basics of sparse recovery, respectively. Methods for sparse recov-
ery are reviewed in Chapter 4. In Section 2.3.3, methods for under-determined ICA are briefly
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2.3. Under-determined case and the sparse component analysis (SCA)

discussed, with an emphasis on the extension of FastICA algorithm to under-determined case.
We will use the basic notation X = AS and, without loss of generality (based on the discussion
above), assume that the sources S are sparse.

2.3.1 Mixing matrix estimation

We assume that the data satisfy the model (2.1.1), wherein the matrix of source signals S is
sparse. More precisely, we assume that every column of S has at most k < M non-zero ele-
ments. Therefore, every column of X can be expressed as a linear combination of k mixing
vectors (columns of A), which means that every column of X belongs to a linear subspace
spanned by some k mixing vectors. In the case k = 1, every column of X is proportional to one
of the mixing vectors. This is the much simpler case, since mixing vectors can be estimated
using clustering methods [38], like k-means or hierarchical clustering. Namely, if the distance
between points (vectors) is defined as the angle between them, the problem reduces to classi-
cal clustering problem. Although many clustering methods are very sensitive to initialization
because of the non-convex nature of the clustering problem, this is the simpler case for mixing
matrix estimation. More realistic and harder case is when k > 1. In this case, subspace clus-
tering methods [38, 106] can be used. Namely, linear subspaces play the role of cluster centers
(points/vectors in the k = 1 case). Here, we will only briefly review one practical method, which
was used in the experiments presented in the Chapter 7, Section 7.3.

Many methods [67, 91] for mixing matrix estimation in
under-determined source separation are based on the assumption that there are points (columns
of X) such that the corresponding column of S has only one nonzero element. If such points
were known, mixing vectors corresponding to those nonzero elements can easily be identified
(they are proportional to these single-source points (SSP-s)). If there is at least one such point
for every mixing vector, the whole mixing matrix (as before, up to scaling and permutation of its
columns) can be estimated. Therefore, the whole problem is to find these single-source points.
The method in [91] is based on the following idea. Suppose that the sources are complex. Let
xt be a single-source point (column of X), i.e. suppose that xt = Si,tai, where Si,t ∈C and ai is a
(real) mixing vector. Then, the real and imaginary part of xt point in the same direction, ai. On
the other hand, if a point xt ′ can be expressed as a linear combination of two or more mixing
vectors, say xt ′ = Si1t ′ai1 + Si2t ′ai2 , then the real and imaginary parts of xt ′ would point in the
same direction if and only if

real
(
Si1t ′
)

imag
(
Si1t ′
) = real

(
Si2t ′
)

imag
(
Si2t ′
) , (2.3.4)

where real(·) and imag(·) denote the real and imaginary part of a complex number. Generally,
we can consider the probability that (2.3.4) holds for a randomly chosen column of S (i.e., X)
negligible (even more when xt ′ is a linear combination of more mixing vectors). Therefore, in
the noiseless case (X = AS), we can, with high probability, detect single-source points as those
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2.3. Under-determined case and the sparse component analysis (SCA)

for which the angle between the real and imaginary part is equal to zero. After selecting the
single-source points, mixing vectors can be found by clustering the set of these points. This
set is expected to contain much less points than the whole matrix X, which makes classical
clustering methods applicable. If the data are not complex, as we have supposed, they can be
transformed to the complex domain (for example, using the Fourier transformation). Namely,
for a linear transformation F (a regular matrix), X = AS is equivalent to XF = ASF (F operates
from the right since it transforms the rows of S and X). Now, A can be estimated using the above
idea if enough SSP-s can be found. Of course, the transformed signals might not be sparse,
especially if the original signals are. Nevertheless, due to the simplicity of the condition (2.3.4),
this method can always be tried and used if, as said already, enough SSP-s in the transformed
domain can be found. In the case when some noise is present and/or S is only approximately
sparse, there are no exact single-source points. However, approximate single-source points, i.e.
those at which some coefficient is significant while others are close to zero, can be selected by
constraining the angle between real and imaginary part of the point to be smaller than some pre-
specified tolerance. The tolerance depends on the assumed level of sparsity of S and the level
of noise. Due to its simplicity, this method was used in the experiments presented in Chapter 7.

Regarding the theoretical conditions under which the mixing matrix can be uniquely determined
from the mixtures, we mention the paper [42]. However, condition presented there requires that
the number T of observations grows exponentially with k and also doesn’t present a practical
algorithm for estimating the mixing matrix. Therefore, it remains mainly theoretical. Some
more useful results are presented in more recent papers [44, 41].

2.3.2 Sparse recovery

After estimating the mixing matrix, the source separation problem reduces to the problem of
finding sparse Ŝ such that X = ÂŜ, where Â denotes the estimated mixing matrix. If the matrix
of true source signals S is sparse enough, it can be uniquely identified from the mixtures if
the true mixing matrix A has been correctly estimated. More precisely, the equation X = ÂŜ
consists of T linear systems xt = Âŝt . The basic assumption on A will be that every M×M

sub-matrix of A is regular. This is a realistic assumption that is satisfied with probability one
for random A. This condition can be expressed in terms of the spark of the matrix, defined as
follows (most of the following results can be found for example in [16]).

Definition 2.12. The spark of a M×N matrix A, spark(A), where N ≥ M, is the smallest
number k such that there are k columns of A that are linearly dependent.

Therefore, we assume that the spark of A is equal to M + 1. The following proposition holds
regarding the uniqueness of the sparse solution of the under-determined linear system.
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2.3. Under-determined case and the sparse component analysis (SCA)

Proposition 2.2. If a system of linear equations As = x, where A ∈ RM×N and N ≥ M, has

a solution s that satisfies ‖s‖0 <
spark(A)

2 , where ‖s‖0 = |{i : si 6= 0}|, then this solution is the

sparsest among all solutions of the system.

Therefore, based on this proposition, S can be uniquely identified from the mixtures X = AS if
‖st‖0 <

spark(A)
2 , for every t, 1 ≤ t ≤ T . If spark(A) = M +1, as assumed, then every column

st of S should be
⌊M

2

⌋
-sparse, i.e. ‖st‖0 <

M+1
2 , to guarantee the uniqueness of the solution. In

other words, to ensure the uniqueness, the number of mixtures M should generally be at least
twice the maximal sparsity (measured by the `0-quasi-norm) of any column of S.

Uniqueness condition can also be expressed in terms of the coherence of a matrix, defined as
follows.

Definition 2.13. The mutual coherence, or coherence, of a matrix A ∈RM×N , N ≥M, denoted
as µ(A), is defined as the maximal absolute correlation between its columns, i.e.

µ(A) = max
i6= j

∣∣∣∣ aT
i a j

‖ai‖2‖a j‖2

∣∣∣∣ ,
where ai denotes i-th column of A.

The conection between coherence and spark is detailed in the following theorem [16].

Theorem 2.5. For A ∈ RM×N , N ≥M, the following holds:

spark(A)≥ 1+
1

µ(A)
. (2.3.5)

The proof can be found in [16].

The connection between the spark and coherence can be used to obtain new condition on spar-
sity of s in the Proposition 2.2, ‖s‖0 < 1

2

(
1+ 1

µ

)
. However, since (2.3.5) only gives a (not

very sharp) lower bound on the spark, the condition using coherence is much more restrictive,
which makes it not very useful in practice. Nevertheless, coherence is easily computed, while
the spark is very hard to compute. Coherence can give a rough prediction of degree of sparsity
sufficient to guarantee the uniqueness of sparse solution.

The problem with `0-quasi-norm, ‖ ·‖0, is that it results in discrete optimization problems since
it is not a continuous function. Namely, we can formally formulate the problem of source
separation with estimated mixing matrix Â as an optimization problem

min
S
‖S‖0 subject to X = ÂS, (2.3.6)

where `0-quasi-norm of a matrix is defined analogously to vectors. (2.3.6) can also be written
as simultaneous T linear systems with the same matrix

min
st
‖st‖0 subject to xt = Âst , t = 1, . . . ,T. (2.3.7)
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Every sub-problem in (2.3.7), for fixed t, is a combinatorial optimization problem, which makes
it impractical to solve. There are basically two approaches to solve (2.3.7) (or its noisy version):
direct and indirect. Direct methods include greedy algorithms and iterative hard thresholding,
see Chapter 4 for more details. Indirect methods consider continuous and/or smooth approxi-
mations of ‖ ·‖0. We discuss them in Chapter 4. There, we also discuss conditions under which
the solution of (2.3.7) can be found using these algorithms.

2.3.3 Overcomplete ICA

The overcomplete ICA model in the noiseless case is formulated as follows: we assume that the
observation vector x ∈ RM can be expressed as

x = As, (2.3.8)

where A is a M×N mixing matrix with N >M, and s∈RN is a random vector with independent
components. In the noisy case, the model is the following:

x = As+b, (2.3.9)

where b is an M× 1 random vector that has either Gaussian components, independent com-
ponents or is of small variance. We assume that spark(A) ≥ 3, i.e. no two columns of A are
colinear. A is obviously not an invertible matrix, so in this case s can not be obtained by linear
transformation of observations x. We introduce the following definition (chapter 9 in [22]).

Definition 2.14. The (noiseless) representation of x is a pair (A,s) such that the model (2.3.8)
is valid. Assume that x admits two noiseless representations

x = As and
x = Bz,

where s and z have independent components. The above two representations of x are equivalent
if every column of A is proportional to some column of B, and vice versa.

If all representations of x are equivalent, they are said to be essentially unique, i.e. equal up to
permutation and scaling.

We are interested in conditions under which all representations of x are essentially unique. The
following theorem holds [22].

Theorem 2.6. Let x be of the form x = As, where s has independent components and A has no

colinear columns. Then s can be represented as

x = A1s1 +A2s2,

where s1 is non-Gaussian, s2 is Gaussian and independent of s1, and A1 is essentially unique.
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This theorem is quite general, and doesn’t say anything about the uniqueness of s1 and s2.
Namely, the distribution of s1 is generally not unique. Now we introduce the following impor-
tant definitions [31].

Definition 2.15. The ICA model (2.3.8) is

1. identifiable, if all representations of x are essentially unique,

2. unique, if it is identifiable and the distributions of source vectors s and r in two different
representations of x are the same for some permutation, up to changes in location and
scale, and

3. separable, if for every full row rank matrix W such that Wx has independent components,
ΛPs = Wx, for some diagonal matrix Λ and permutation matrix P.

Of course, an overcomplete model can not be separable. Namely, the following theorem holds
[31].

Theorem 2.7. The linear ICA model x = As is separable if and only if the mixing matrix A is

of full column rank and at most one source variable is Gaussian.

The proof is presented in [31]. However, identifiability and uniqueness hold under some (mild)
conditions. Namely, the following theorem, which follows from the above Theorem 2.6, holds.

Theorem 2.8. The model (2.3.8) is identifiable if all source variables are non-Gaussian.

This theorem shows that if the number of sources is greater than the number of mixtures (N >

M), it can still be possible to identify the mixing matrix from mixtures alone. However, nothing
is said about the recovery of the sources, i.e. about the uniqueness of the model. The conditions
for uniqueness are stated in the following theorem [31].

Theorem 2.9. The over-complete ICA model (2.3.8), with the assumption that no two columns

of A are colinear, is unique if any of the following properties hold:

1. All characteristic functions (c.f.-s) of source variables are analytic (or all c.f.-s are non-

vanishing), and none of the c.f.-s has an exponential factor with a polynomial of degree

at least 2.

2. All source variables are non-Gaussian with non-vanishing c.f.-s, and rank(A�A) = N,

where � is defined as A�B = [a1⊗b1 . . . aN⊗bN ], where ai and bi are i-th columns of

A and B, respectively, and ⊗ denotes Kronecker product.

3. All source variables have non-vanishing c.f.-s without exponential factors with a poly-

nomial of degree n, 1 < n ≤ q, and rank((A�)q A) = N > rank
(
(A�)q−1 A

)
, where

(A�)q A = A�·· ·�A (includes q times �).
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The sketch of the proof and references can be found in [31]. Analytic characteristic functions
are exactly those for which moment-generating function exists. The second condition in (1) is
equivalent to the assumption that none of the source variables has a Gaussian component. Note
that the number of sources in (1) is unlimited. The number of sources is limited by the maximal
number of linearly independent rows of the matrix A�A in (2). However, (2) has weaker
assumptions on source distributions, as well as (3). (3) has more stringent assumptions on
source distributions compared to (2), however maximal number of sources for which uniqueness
can still hold is larger.

The above theorem shows that even the overcomplete ICA is a well posed problem under some
assumptions on source distributions (and mixing matrix). However, algorithms for source sep-
aration in over-complete (i.e. under-determined) case seem rare in the literature. There are
algorithms for mixing matrix identification (see chapter 9 in [22]). Some algorithms for over-
complete ICA have been presented, for example a Bayesian approach in [65]. In the experiments
in Chapter 7 we have used a simple modification of the FastICA algorithm presented in [54] that
can be viewed as an approximative method for solving the overcomplete ICA problem. Namely,
the only difference compared to the FastICA algorithm as presented in Section 2.2.4.3 is in the
step (2.2.21). There, instead of orthogonalization with respect to the previously estimated rows
of the separating matrix W, quasi-orthogonalization is performed. Namely, since in the over-
complete case the separating matrix W has more rows than columns, its rows can be made only
approximately orthogonal. Consequently, the step (2.2.21) is replaced with

w̃G,k← w̃G,k−α ∑
k−1
i=1 w̃T

G,kwG,iwG,i,

ŵG,k←
w̃G,k
‖w̃G,k‖2

,
(2.3.10)

where 0 < α < 1. α should generally depend on the dimension of w̃G,k, since for very large
dimensions it is possible to have large number of vectors (more than the dimension of vec-
tor space) with angles between them arbitrarily close to 90 degrees. On the contrary, in low-
dimensional vector spaces one can not have many mutually approximately orthogonal vectors.
It was shown (see references in [16]) that, for m vectors in Rn, m > n, maximal angle γ between
them satisfies

cosγ ≥
√

m−n
n(m−1)

.

Therefore, α could be selected from n and m, such that it takes into account maximal possible
angle between vectors. However, we have chosen α heuristically, which can already give satis-
factory practical results, see Chapter 7 for details. It should be noted that this method is only a
very rough approximation of quasi-orthogonalization.
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2.4 Summary

In this chapter we have presented basic theoretical results on independent component analysis as
a method for solving the source separation problem. We have reviewed the FastICA algorithm
as a practical algorithm for the independent component analysis. Both the theoretical properties
and the numerical implementation of FastICA have been presented. All these are well known
results from the literature. FastICA was used in the experiments in image inpainting and de-
noising presented in Chapter 7. The connection between the independent component analysis
and dictionary learning concept that is important for the experiments in Chapter 7 is discussed
in the next chapter.
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Chapter 3

Linear model of sparse coding

Most of the previous chapter was concentrated around the concept of statistical independence
of source signals in the linear mixture models (2.1.1) and (2.1.3). However, as discussed in
Section 2.3, the assumption of independence alone is not enough to recover the sources in the
underdetermined case. Stronger assumption on the sources is their sparsity. We have introduced
the notion of sparsity, as well as a measure of sparsity, the `0 function, in Section 2.3. Both the
independence and sparsity were used in the context of source separation, as the assumptions on
the unknown sources from which the mixtures were obtained. Here, we consider the somehow
different problem. Namely, we suppose that we are given a sample of some data of interest. We
call this sample the training set. As discussed in the introduction of the Chapter 2, we suppose
we are given the data matrix X ∈ RM×T , T � M, in which every column xt is viewed as a
realization of a random vector x in RM. Again we will suppose that the linear model (2.1.2)
holds, but we will assume that the unknown sources (viewed as random vectors) are both mu-
tually independent and have ’sparse distributions’ (we will define sparse distributions shortly).
Therefore, we prescribe desired distributions (and also mutual independence) on the sources

and search for the mixing matrix A ∈ RM×M, and matrix of source realizations S ∈ RM×T such
that the mixing model (2.1.2) holds, where the error matrix E is of as small norm as possible.
Note that we have supposed that M = N, i.e. A is a square matrix. Sparse distributions are infor-
mally defined as distributions that have high peaks at zero (higher than Gaussian distribution)
and heavy tails (heavier than Gaussian). Therefore, a vector of realizations of a random vari-
able with sparse distribution will have many elements close to zero and few large elements. This
means that sparse distributions can be used to model approximately sparse vectors in the sense
of `0. If the original data in X approximately satisfy the linear model X = AS with mutually in-
dependent and sparsely-distributed sources, the resulting ICA problem with sparse distributions
imposed on the sources is well posed.

The idea of expressing the data in the matrix X as linear mixtures of sparsely-distributed sources
is motivated by inverse problems in signal and image processing. The general inverse problem
in signal or image processing can be presented as follows: an observation vector y ∈ Rm is
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3.1. Biological foundation of sparse coding of images

obtained as

y = Hx+n, (3.0.1)

where H ∈ Rm×M, M ≥ m, is a non-invertible or ill-conditioned operator (‘degradation opera-
tor’), x ∈ RM is the original signal or image that we want to recover, and n ∈ Rm represents an
error. We restrict ourselves to the case M > m. Since H is not invertible, the problem (3.0.1) is
ill-posed, and some regularization is needed to make it well-posed. An effective regularization
is introduced by assuming that x can be written as a linear mixture x=As+e, where A∈RM×N ,
N ≥M, and s ∈ RN is sparse [16]. The problem (3.0.1) can then be written as

y = HAs+(He+n) . (3.0.2)

We can assume that the term He+n, where e represents an error in the representation x=As+e
of x, and n represents some noise in the formulation (3.0.1), is small, which is true if He is small.
Therefore, the measurement y can be represented as a linear mixture of sparse ‘sources’ s. The
resulting model (3.0.2) reduces to a sparsity-constrained recovery problem. Many inverse prob-
lems in signal and image processing, like denoising, deconvolution (deblurring) or inpainting,
have been successfully approached using the sparsity-based regularization. Since the main ap-
plication interest of this thesis is in some image processing problems (more precisely, inpainting
and removal of salt-and-pepper noise), in Section 3.1 we describe additional motivation for the
use of sparsity-based regularization for image processing.

From the above discussion it is seen that ICA can be used as a tool for designing the matrix A
that induces a sparse representation of a given clas of signals, whose representative set (training
set) is stored in matrix X. The obtained matrix A can then be used in inverse problems of the
form (3.0.1) for signals in the given class in the way described in the previous paragraph. The
use of independent component analysis in this context is discussed in more detail in Section 3.2.

3.1 Biological foundation of sparse coding of images

In this section we briefly review main results on computational models presented in the literature
that tried to explain the experimentally observed behaviour of the part of the brain of mammals
that is responsible for processing of visual information (primary visual cortex).

It has been shown in the early studies [51] that the neurons in the primary visual cortex respond
to localised oriented edges in visual scenes. Several computational models of visual cortex have
been presented that try to explain the observed behaviour. The basic underlying principle for
these models is the principle of efficient coding (see introduction of the paper [90]). Namely, it
is natural to assume that the organism is adapted in order to maximize the efficiency of infor-
mation processing. It was suggested in the literature that efficient visual neuronal coding means
that neurons are sensitive to independent elements that constitute an image (again, see introduc-
tion of the paper [90] for some references). If the number of independent elements in an image
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3.1. Biological foundation of sparse coding of images

or its part is small, this would be reflected in the small number of active neurons, which means
that the information processing is efficient. The first computational model in the literature that
(at least partially) explained the experimentally observed data was presented in [84]. This
model constrains the representations of images to be sparse, and is able to learn the so called
receptive fields that resemble the ones observed experimentally. The term receptive field refers
to a part of the visual scene that activates the given neuron. The model presented in that paper
is referred to as Sparsenet. The second approach suggested in the literature to reproduce the
experimentally observed receptive fields uses ICA [10] (more precisely, the infomax algorithm,
see Section 2.2.4.2 in Chapter 2). This result agrees with the intuition that the individual neu-
rons are sensitive to independent elements (components) in an image. It was implicitly assumed
in [10], through the choice of the non-linear function used in the infomax algorithm, that the
distributions of underlying independent components are super-Gaussian (highly peaked at zero
with heavy tails, i.e. sparse). Our approach to dictionary learning for inpainting and removal of
impulsive noise, presented in Chapter 5 and Chapter 7, is based on this result. The approach in
[10] yields receptive fields with very similar shapes to those obtained with Sparsenet, despite
the different notion of sparseness used. Namely, the sparseness was assumed implicitly in [10]
through the choice of super-Gaussian distributions, while in [84] explicit measures of sparsity
were used. More precisely, they used functions of the form F(x) = −∑i f

(xi
σ

)
, where f (u) is

defined as −exp
(
−u2), log

(
1+u2) or |u|, all of which are measures of sparsity.

It should be noted that the above computational models produce receptive fields that have some

similarities with the experimentally observed ones. Other models have been presented in the
literature since the publication of the above mentioned seminal papers, that produce recep-
tive fields that better predict diverse shapes of receptive fields that occur in nature (see [90]).
However, the model that uses ICA already enables very good results in image inpainting and
(impulse-noise-) denoising applications, see Chapter 7. It should also be mentioned that several
other sparseness-based methods yielded receptive fields similar to those obtained by ICA and
Sparsenet. For example, non-negative matrix factorization (NMF) with sparseness constraints
was used in [49]. The results on image inpainting experiments reported in Chapter 7 using this
method were inferior to those obtained with ICA. Therefore, we don’t review this method in
more detail here.

The training sets used in both seminal papers [84] and [10] consisted of many small patches

extracted from images of natural scenes. See Figure 3.1.1.

Obtained dictionary elements (‘receptive fields’) look similar to those shown in Figure 7.1.2 in
Chapter 7. It is important to note that the obtained receptive fields using any of the two methods
are qualitatively similar regardless of the specific training set of natural images and the specific
patches extracted. We review details regarding the use of ICA for sparse coding in the following
section.

37



3.2. The use of ICA in the context of sparse coding

Figure 3.1.1: Extraction of small, quadratic parts of images (image patches)

3.2 The use of ICA in the context of sparse coding

The principle that underlies computational models of vision is the principle of efficient cod-
ing. Namely, it is assumed that individual neurons are sensitive to independent elements that
constitute an image, and that the number of independent elements in a scene is usually small.
This should therefore be reflected in a small number of active neurons. These assumptions sug-
gest that ICA can be used to extract individual independent components from a large database
of natural images. This was the approach used in the seminal paper [10]. Specifically, in
that paper the infomax algorithm was used with the sigmoid function (or logistic function), i.e.
g(x) = (1+ exp(−x))−1 (see Section 2.2.4.2 in Chapter 2). The logistic function is a distribu-
tion function that has heavier tails (higher kurtosis) than the normal distribution, therefore it is
a good model of sparse distribution. By using this function in the infomax algorithm, the inde-
pendent components (sources) are implicitly assumed to be sparse (again, see the discussion on
infomax algorithm in Section 2.2.4.2 in Chapter 2). In the context of the linear model X = AS,
the matrix X represents a training set with individual image patches (after column-wise vector-
ization) as columns, and S represents the independent components of the mixtures X, wherein
rows of X are viewed as linear mixtures. The columns of the mixing matrix A represent vec-
torized receptive fields. See Figure 7.1.2 in Chapter 7. In the context of sparse coding, the
mixing matrix A is referred to as the dictionary. The assumption of sparsity of the independent
components in S, introduced implicitly through the choice of the non-linear function in the ICA
algorithm, means that there are only few significant receptive fields (columns of A) for a given
image patch (column of X), i.e. only few coefficients in the corresponding column of S are
significant. Although in the mentioned seminal paper [10] the infomax algorithm was used, any
ICA algorithm can be used, for example FastICA. In Paragraph 2.2.4.3.3 two choices for the
nonlinear function in the FastICA algorithm were presented that induce super-gaussian sources
and therefore can be used for sparse coding.

3.3 Summary

In this chapter we have discussed the motivation for using ICA as a method for learning dictio-
naries for sparse representations of (patches of) natural images. More details related to dictio-
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nary learning procedure using ICA are presented in Section 5.1.2 and Section 7.1.
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Chapter 4

Algorithms for under-determined systems
of linear equations with sparsity
constraints

In Section 2.3.2 basic results were presented concerning the uniqueness of the solution of the
problem

min
s
‖s‖0 subject to x = As, (4.0.1)

where A∈RM×N and N > M. Practically more relevant formulation of the problem, that allows
error (coming from noise or model error), is

min
s
‖s‖0 subject to ‖x−As‖2 ≤ ε, (4.0.2)

where ε denotes error tolerance. Problems (4.0.1) and (4.0.2) are referred to as sparse recovery

problems. Methods for solving (4.0.1) and (4.0.2) can be classified as either direct or indi-
rect (relaxation) methods. Main representatives of direct methods are greedy algorithms, like
matching pursuit (MP), orthogonal matching pursuit (OMP) and its variants, and iterative hard
thresholding methods [11], which we don’t review here. We formulate greedy approaches in
Section 4.1, with an emphasis to OMP algorithm. Indirect, or relaxation, methods replace the
discrete ‖·‖0 function by the continuous or smooth approximation, hoping that, under appropri-
ate conditions, the solution of the original problem (4.0.1) or (4.0.2) can be obtained by solving
the relaxed problem (the one obtained by replacing ‖ · ‖0 with its approximation). `1 norm,
defined for vector x ∈RN as ‖x‖1 = ∑

N
i=1 |xi|, and generally `p functions for 0 < p≤ 1, defined

as ‖x‖p
p = ∑

N
i=1 |xi|p, are the main representatives of this approach. `1 norm can be seen as a

convex function ‘closest’ to `0. Namely, we have ‖x‖0 = limp↓0 ‖x‖p
p. Also, `1 norm is the

convex envelope of `0 on the set ‖x‖∞ ≤ 1. In Section 4.1 we briefly present conditions un-
der which the solution of (4.0.1) or (4.0.2) can be obtained by solving the relaxed problem, in
which ‖ ·‖0 is replaced by ‖ ·‖1. The relaxed problem is a convex optimization problem, which
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can be solved by one of many (fast) specialized algorithms. In the case where `p function, for
0 < p < 1, is used as an approximation of `0, we obtain a non-convex optimization problem.
Empirically, improved results can be obtained compared to the `1 case, although in theory the
best we can expect is finding the local minimum of the relaxed problem.

We review some basic results on the connection between the original and `1-relaxed problem
from the literature in Section 4.1. There are also other approaches for solving (4.0.1) and (4.0.2),
like Bayesian methods, which have shown excellent performance in practice [94]. See [105]
for a review of various approaches to sparse recovery. In Section 4.2, one effective method for
sparse recovery (‘Smoothed `0 method’), belonging to the class of indirect (relaxation) methods,
is presented. Although there exist many more methods, which also sometimes perform better
than the methods we have reviewed here, we have concentrated on three simple approaches
that are good enough for the experiments we will present in Chapter 7. The results presented
there were obtained using the Smoothed `0 method presented in Section 4.2.1, since it yielded
the best results when compared to OMP and `1-minimization. In combination with ICA-based
dictionary learning method reviewed in Section 3.2, Chapter 3, it yielded very good results in
image inpainting and removal of impulse noise experiments.

In Section 4.3 we present some numerical simulations comparing the OMP, `1-minimization
and Smoothed `0 method on synthetic data. Before reviewing the theoretical results and em-
pirical performance in Section 4.1, Section 4.2 and Section 4.3, in the following paragraph we
briefly discuss another property of the matrix A that is often used to state theoretical conditions
for the success of algorithms.

Restricted isometry property In Section 2.3.2, two properties of the general matrix A ∈
RM×N were reviewed: mutual coherence and spark. Both of these properties can be used to
theoretically determine the degree of sparsity of the solution which guarantees unique recon-
struction. However, coherence and spark are very different regarding the trade-off between
computational complexity and sharpness of the resulting theoretical conditions. Coherence is
easy to compute, but results in very pessimistic conditions. On the contrary, spark is very
hard to compute, but gives sharp conditions for uniqueness. For example, the condition in the
proposition Proposition 2.2 is even too sharp in the sense that it can not guarantee stable re-
construction. The following definition introduces another property of the matrix, the restricted

isometry property (RIP), that is useful at least from the theoretical point of view.

Definition 4.1. The matrix A ∈ RM×N , where N ≥ M, is said to satisfy the (symmetric) re-
stricted isometry property (RIP) of order k with constant δk ∈ (0,1), where k ≤M, if

(1−δk)‖s‖2
2 ≤ ‖As‖2

2 ≤ (1+δk)‖s‖2
2 , (4.0.3)

for every s∈RN such that ‖s‖0 ≤ k. δk in (4.0.3) is called the restricted isometry constant (RIC)
of order k of the matrix A.
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4.1. Direct vs. relaxation methods

This definition was introduced in [18]. It follows from the above definition that the condition
δ2k < 1 guarantees the uniqueness of the solution s for which ‖s‖0 < k. However, small values
of RIC-s would guarantee, apart from uniqueness, the stability of the reconstruction, i.e. robust-
ness to noise. Many results were presented in the literature regarding the values of RIC-s that
guarantee stable reconstruction, with many papers presenting sharper and sharper results com-
pared to previous ones (see, for example, [36] for RIP-based guarantees for `1 minimization).
These theoretical results are important since they state (sharp) conditions under which stable

sparse recovery is guaranteed. It is important to note that these results are uniform, i.e. valid
for all A and s that satisfy the conditions. This has to be contrasted with empirical evaluation
of algorithms (see Section 4.3.1) which often indicates better performance. This is so because
empirical evaluation mostly relies on random realizations of under-determined linear systems
with sparse solutions, which avoid the worst-case instances (since those appear very rarely).
See also Section 4.3.1 for related discussion.

However, these results are mainly theoretical, since it is very hard to calculate the precise RIC-s
for a given matrix. Therefore, in the following sections, in which theoretical conditions for
sparse recovery with OMP, `1 minimization and SL0 method are reviewed, we don’t mention
results that use the RIP, but only coherence.

4.1 Direct vs. relaxation methods

4.1.1 Greedy methods

The main representative of direct methods for solving (4.0.1) and (4.0.2) is orthogonal matching
pursuit (OMP) algorithm [104]. It is a classic greedy algorithm, based on iteratively updating
the current approximation of the solution by locally optimal steps. More precisely, the structure
of the OMP algorithm for the noiseless problem (4.0.1) is as follows. It starts with the initial
approximation ŝ of the true solution s∗, ŝ = 0. An index set of selected dictionary vectors Î

is initialized as Î = /0. The current residual is defined as r = x−Aŝ. Since the solution is a
linear combination of a small number (compared to the dimension of s∗) of dictionary vectors,
it makes sense to select the dictionary vector that is maximally correlated with the current
residual. Namely, in every iteration an index i∗ ∈ {1, . . . ,N} is selected such that

i∗ ∈ argmax
i

∣∣(AT r
)

i

∣∣ . (4.1.1)

Now, i∗ is added to the index set Î, and the next approximation of the solution is found using
the solution of the least squares problem

ŝÎ ← argmin
s

∥∥x−AÎs
∥∥2

2 , (4.1.2)

where AÎ denotes the submatrix of A consisting of columns of A indexed by Î, and ŝÎ denotes
the subvector of ŝ indexed by Î. The other elements of ŝ are kept at value 0. This procedure is
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iterated until the norm of the residual drops below some tolerance or until the maximal number
of dictionary vectors has been selected. OMP is based on matching pursuit (MP) algorithm,
which differs from OMP in the step (4.1.2). Namely, after selecting the new index i∗, MP
simply sets the corresponding element of ŝ to the correlation of the current residual with ai∗ . It
is much faster than OMP but has weaker convergence properties. There are also many variants
of the basic OMP algorithm, like orthogonal least squares (OLS) [12], compressive sampling
matching pursuit (CoSaMP) [81], gradient pursuits [13] and others (see [105, 16] for other
references). Here we review some basic properties of the OMP algorithm. The following
theorem holds.

Theorem 4.1. Suppose that s∗ is the solution of the problem (4.0.1) and I is the support of s∗,
i.e. I = {i : s∗i 6= 0}. Then, a sufficient condition for orthogonal matching pursuit algorithm to

recover s∗is

max
i∈{1,...,N}\I

‖A†
I ai‖1 < 1. (4.1.3)

The proof of this theorem can be found in [103]. The condition (4.1.3) guarantees that OMP
selects an index i∗ ∈ I in every iteration, so that it recovers the (exact) solution s∗ after |I|
iterations. The following result states the condition for exact recovery using the OMP in terms
of coherence of A.

Theorem 4.2. OMP recovers s∗ if

‖s∗‖0 <
1
2

(
1+

1
µ(A)

)
.

The proof of this result can be found in [16]. We compare these results with exact recovery
results for `1-relaxed problem in Section 4.1.2.

Regarding the formulation (4.0.2), that takes into account additive noise or error, the following
result holds [24].

Theorem 4.3. Suppose that the optimal solution s∗ of the problem (4.0.2) satisfies

‖s∗‖0 ≤
1+µ(A)

2µ(A)
− 1

µ(A)

ε∗

mini∈I
∣∣s∗i ∣∣ , (4.1.4)

where I = supp(s∗) = {i : s∗i 6= 0} is the support of s∗ and ε∗ = ‖x−As∗‖2 is the noise level.

Let us denote by ŝε∗ the result of the OMP algorithm which stops when the representation error

≤ ε∗. Then,

1. ŝε has the correct support,

supp(ŝε∗) = supp(s∗) ;
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2. ŝε approximates s∗,

‖ŝε∗− s∗‖2
2 ≤

(ε∗)2

1−µ(A)(‖s∗‖0−1)
.

Note that this result assumes that the noise level ε∗ is known and provided to OMP algorithm.
Also note (from (4.1.4)) that the smallest nonzero element of s∗ should be sufficiently large
compared to the noise level.

Computationally, the most demanding step in OMP is solving the least squares sub-problem
(4.1.2). Since in every iteration only one index is added to a current index set Î, this step can be
done by updating the Cholesky or QR factorization of the current sub-matrix AÎ , which can be
done by solving one

∣∣Î∣∣× ∣∣Î∣∣ linear system. The least squares step can then be solved efficiently
by solving two triangular systems. Overall, computational complexity of OMP is O(|I|MN).
OMP was used in the experiments presented in Chapter 7 as a part of the K-SVD algorithm for
dictionary learning (see Chapter 5).

One problem with OMP algorithm is that, if it selects a wrong index i∗ in one step, it stays in
the index set Î and the error introduced through adding this wrong index propagates through
subsequent iterations. Therefore, it was shown both theoretically and empirically that better
performance can be obtained by allowing that some indices can be removed from the current
approximation of the true support of the solution. Of course, this degrades the computational
efficiency of the algorithm. We don’t review these methods in detail here. See, for example,
[81, 98].

4.1.2 Relaxation methods - `1 minimization

Instead of directly trying to solve hard problem (4.0.1), relaxation methods are based on the
idea of replacing the ‖ · ‖0 quasi-norm with continuous approximations. As already discussed
above, a natural idea is to use the ‖ · ‖1 norm (therefore, a convex function) instead of ‖ · ‖0.
This results in a convex optimization problem. Namely, we have the following problem:

min
s
‖s‖1 subject to x = As, (4.1.5)

and the formulation that allows additive noise or error,

min
s
‖s‖1 subject to ‖x−As‖2 ≤ ε. (4.1.6)

The main question is, under what conditions do the global solutions of the original and relaxed
problems coincide. Note that the global solution of the relaxed problem can be obtained by
practical polynomial-time algorithms, since we are dealing with the convex optimization prob-
lem. In terms of coherence of A, the sufficient condition can be stated as follows (Theorem 7 in
[16] and references therein).
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Theorem 4.4. If the solution s∗ of (4.0.1) satisfies

‖s∗‖0 <
1
2

(
1+

1
µ(A)

)
, (4.1.7)

then s∗ is both the unique solution of (4.0.1) and (4.1.5).

Therefore, we have the complete analogue of the recovery Theorem 4.2 for OMP. In fact, the
condition (4.1.3) also holds for `1 minimization. The proof can be found in [103]. The condition
in the theorem is pretty restricting and pessimistic, since in practice the solution of (4.0.1) can
often be obtained even for significantly less sparse s∗ than the upper bound (4.1.7) suggests, by
solving the relaxed problem (4.1.5). Regarding the stability of `1 minimization when noise is
present, a result similar to the Theorem 4.3 holds.

Theorem 4.5. If the solution s∗ of (4.0.2) satisfies

‖s∗‖0 <
1
4

(
1+

1
µ(A)

)
, (4.1.8)

then the solution ŝ of the relaxed problem

min
s
‖s‖1 subject to ‖x−As‖2 ≤ δ , (4.1.9)

where δ ≥ ε , satisfies

‖ŝ− s∗‖2
2 ≤

(ε +δ )2

1−µ(A)(4‖s∗‖0−1)
.

The proof can be found in [24].

The problems (4.1.5) and (4.1.6) can be rewritten as linear and quadratic programs, respec-
tively, and solved using standard convex optimization methods (like interior point methods)
[15]. There are also many specialized methods that are much faster for large problems, see
[105] for some references.

Neither OMP nor `1 relaxation is uniformly better than the other, meaning that neither condi-
tion (4.1.4) nor (4.1.8) is stronger than the other. For example, it is known that `1 minimization
performs better than OMP when all nonzero elements of the true solution s∗ have similar magni-
tude (`1 minimization is not sensitive to the distribution of magnitudes of the nonzero elements
in s∗) [74].

In the next section, we review one very effective method for sparse recovery, that has some
advantages over both greedy methods like OMP, and convex relaxation methods (`1 minimiza-
tion). It was used to obtain the experimental results presented in Chapter 7.
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4.2 Smoothed `0 method

4.2.1 The algorithm

`1 norm is useful as a relaxation of `0 function since, as a norm, it is a convex function. How-
ever, it is a crude approximation of ‖ · ‖0. Therefore, `p pseudo-norms (p < 1) can be used
as a better approximations of `0. Of course, they are non-convex functions with many local
minima. Namely, for A ∈ RM×N , N > M, with maximal spark (spark(A) = M + 1), there are
at least as many local minima as M×M sub-matrices of A formed by taking M of its columns,
i.e. at least

(N
M

)
local minima, which can be a huge number. This follows since every quadratic

sub-matrix of A yields one solution ŝ of the system As = x with ‖ŝ‖0 = M. This fact explains
why algorithms minimizing `p pseudo-norms are very sensitive to initialization. Although even
this approach often outperforms `1 minimization on randomly generated under-determined sys-
tems (see [80], for example), here we consider another approach. Namely, `0 function can be
approximated as

‖x‖0 ≈ Fσ (x) = ∑
i

(
1− exp

(
− x2

i
2σ2

))
= ∑

i
(1− fσ (xi)) , (4.2.1)

where σ is a parameter. For every ε > 0, there is small enough σ such that |‖x‖0−Fσ (x)|< ε .
To see the effect of σ , let us consider our basic sparse recovery problem (4.0.1). Let us denote
by sp one solution of the under-determined system

As = x, (4.2.2)

for example sp = A†x, and by V ∈ RN×(N−M) full-column-rank matrix such that AV = 0.
Namely, columns of V form a basis for the nullspace of A. V can be obtained from the SVD of
A. Then, every solution ŝ of the system (4.2.2) is of the form ŝ = sp+Vc, where c ∈RN−M. By
choosing N−M = 2, we can visualize the function

F̃σ (c) = Fσ (sp +Vc) ,

see Figure 4.2.1.

The figure illustrates that for large values of σ , local minima of the function F̃σ are smoothed
out. Also, F̃σ is easier to optimize for larger σ , since for small σ it becomes almost flat except
in the small region around every local minimum. However, it is not clear whether the global
minimum of F̃σ for larger values of σ corresponds to or is even close to the global minimum
of ‖sp +Vc‖0. The basic idea of the Smoothed `0 (SL0) [79] algorithm is the following: by
performing local minimizations of F̃σ for decreasing sequence of σ , we hope that the obtained
sequence of points will converge to s∗, the global optimum of the initial problem. We review
formal conditions under which the convergence can be obtained in the next subsection. The
algorithm steps are outlined in Algorithm 4.1.
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Figure 4.2.1: (a) Graph of F for large value of σ . (b) Graph of F for smaller σ . F is almost
discontinuous and has many local minima.

Algorithm 4.1 Smoothed `0 (SL0) algorithm for the noiseless sparse recovery problem (4.0.1)

• Initialization:

– let ŝ0 be one solution of the system As= x (for example, minimum `2-norm solution,
ŝ0 = A†x)

– choose a suitable decreasing sequence σ1, . . . ,σJ , a small step size µ > 0, number
of iterations J and the number of inner iterations L

• for j = 1, . . . ,J

1. let σ = σ j

2. approximately minimize the function Fσ defined in (4.2.1) on the set S =
{s : As = x} using L iterations of gradient descent followed by projection onto S:

– initialization: s = ŝ j−1

– for l = 1, . . . ,L
a) let δ = ∇Fσ (s)
b) let s← s−µδ

c) project onto the feasible set S: s← s−A† (As−x)

3. set ŝ j = s

• final approximation is ŝ = ŝJ

The parameters of the algorithm: J, suitable decreasing sequence of σ j-s, L and µ , depend
on the application. In Section 4.3 we present some details regarding the parameters selection
and some experiments on synthetic data. Both these synthetic experiments and the inpainting
experiments in Chapter 7 indicate that the algorithm is not too sensitive to the choice of the
parameters.
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4.2. Smoothed `0 method

4.2.1.1 Noisy version

The Algorithm 4.1 is designed to solve the noiseless problem (4.0.1). However, formulation
(4.0.2) is more realistic. The noiseless version of the algorithm, outlined in Algorithm 4.1,
can also be used in the noisy case, see Theorem 4.7 in the next section for theoretical results.
However, better results can be achieved by using noise-aware version of the algorithm. Namely,
the step (2c) in Algorithm 4.1 can be modified to perform the projection onto S = {s : As = x}
only if

∥∥Aŝ j−x
∥∥

2 > ε , where ŝ j denotes the current approximation of the solution, and ε is
an estimate of the noise level. This is the only difference between the algorithm outlined in
Algorithm 4.1 and the modification, presented in [26].

4.2.2 Theoretical analysis

Here we review some theoretical conditions for the convergence of SL0 algorithm to the global
optimum of the problems (4.0.1) and (4.0.2). These results are taken from [79]. The basic
assumption on A will be that spark(A) = M+1 (this condition is called unique representation

property (URP) in [79]). Without loss of generality, we can assume that the columns ai of A
are normalized, ‖ai‖2 = 1, for all i. It is also assumed that the minimization of Fσ is done
perfectly for every σ , i.e. a global solution is found for every σ . This is not very unrealistic
since by gradually decreasing σ it can be assumed that local minima of `0 are avoided and the
approximation is guided towards the true solution. The basic theorem is stated as follows [79].

Theorem 4.6. Let us denote S = {s : As = x}. Let us consider a family of functions fσ , indexed

by σ ∈ R+, that satisfy:

1. limσ↓0 fσ (s) = 0, for all s 6= 0;

2. fσ (0) = 1, for all σ ∈ R+;

3. 0≤ fσ (s)≤ 1, for all σ ∈ R+, s ∈ R;

4. for every ν > 0, α > 0, there is σ0 ∈ R+ such that

|s|> α ⇒ fσ (s)< ν , for all σ < σ0. (4.2.3)

Let sσ be the (global) minimizer of Fσ on S. Then,

lim
σ↓0

sσ = s0.

This theorem is based on the following lemmas.

Lemma 4.1. Let spark(A) = M+1. If N−M elements of s ∈ null(A) converge to zero, than all

elements of s converge to zero.
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Proof. Let β > 0. Let us denote by Iα the set of indices i such that |si|> α . Since s ∈ null(A),
it follows

∑
i∈Iα

siai + ∑
i/∈Iα

siai = 0,

and therefore∥∥∥∥∥∑
i∈Iα

siai

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i/∈Iα

siai

∥∥∥∥∥
2

≤ ∑
i/∈Iα

‖siai‖

≤ ∑
i/∈Iα

|si|

≤ (N−|Iα |)α ≤ Nα.

The sub-matrix AIα
, consisting of columns ai, i ∈ Iα , is regular (more precisely, full rank) since

|Iα | ≤M can be assumed (N−M elements of s are arbitrarily small). Then,

‖sIα
‖2 =

∥∥∥∥∥A−1
Iα

(
∑
i∈Iα

siai

)∥∥∥∥∥
2

≤
∥∥∥A−1

Iα

∥∥∥
2

∥∥∥∥∥∑
i∈Iα

siai

∥∥∥∥∥
2

≤
∥∥∥A−1

Iα

∥∥∥
2

Nα.

It follows that

‖s‖2 ≤ ‖sIα
‖2 +

∥∥∥sIC
α

∥∥∥
2
≤
(∥∥∥A−1

Iα

∥∥∥
2
+1
)

Nα.

If we denote

MA = max
{∥∥A−1

I

∥∥
2 ; |I| ≤M

}
,

it follows

‖s‖2 ≤ (MA +1)Nα.

Lemma 4.2. Let a function fσ have the properties (2) and (3) from Theorem 4.6, and let Fσ be

defined as in (4.2.1). Assume that there exists a sparse solution s0 ∈ S such that
∥∥s0∥∥

0 = k≤ M
2

(therefore, s0 is the unique solution of (4.0.1)). Then, if a solution ŝ ∈ S satisfies

Fσ (ŝ)≤M− k, (4.2.4)

and if α > 0 is such that the elements ŝi of ŝ with |ŝi|> α satisfy fσ (ŝi)<
1
N , then∥∥∥ŝ− s0

∥∥∥
2
≤ (MA +1)Nα.
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Proof. Let Iα be as before. We have

Fσ (ŝ) = N−

(
∑
i∈Iα

fσ (ŝi)+ ∑
i/∈Iα

fσ (ŝi)

)
> N− ((N−|Iα |)+1) .

Combining this with (4.2.4) yields |Iα |− 1 < Fσ (ŝ) ≤M− k, i.e. |Iα | ≤M− k. Now we have
that ŝ− s0 has at most k+ |Iα | ≤M elements with absolute values greater than α , and of course
ŝ− s0 ∈ null(A). Lemma 4.1 implies the statement.

Lemma 4.2 implies the following corollary.

Corollary 4.1. Let fσ , Fσ , S, s0 be as in Lemma 4.2, and let sσ be the minimizer of Fσ on S.

Then sσ satisfies (4.2.4).

Proof. We have

Fσ (sσ ) ≤ Fσ

(
s0
)

≤ k ≤M− k.

The second inequality above follows since s0 has M− k zeros. The last inequality is true since
k ≤ M

2 .

Now we have the proof of the main theorem (in the noiseless case).

Proof of Theorem 4.6. We need to show

∀β > 0 ∃σ0 > 0 such that ∀σ < σ0

∥∥∥sσ − s0
∥∥∥< β .

For β > 0, we define α = β

N (MA +1). For ν = 1
N , condition (4) of the theorem gives σ0 for

which (4.2.3) holds. For σ < σ0, this condition states that for elements sσ
i of sσ for which∣∣sσ

i

∣∣> α , we have fσ

(
sσ

i
)
< 1

N . By Corollary 4.1, the condition (4.2.4) of Lemma 4.2 follows.
Therefore, by Lemma 4.2 and by definition of α , the statement of the theorem follows.

In the noisy case (4.0.2), a similar result holds. We state the theorem from [79]. The proof is
similar to the proof of Theorem 4.6, see [79] for details.

Theorem 4.7. Let Sε = {s : ‖As−x‖2 < ε}, ε > 0. Assume that A and fσ satisfy the conditions

of Theorem 4.6. Let s0 ∈ Sε be a sparse solution with k =
∥∥s0∥∥

0 <
M
2 . Assume that fσ satisfies

the following additional conditions:

1. there exists γ > 0 such that∣∣∣ f ′σ (s)
∣∣∣< γ

σ
, for all σ > 0 and all s;

50



4.3. Comparison of methods on synthetic data

2. for every ν > 0 and σ0 > 0 there exists α > 0 such that

|s|> α ⇒ fσ (s)< ν for all σ < σ0.

Let

σ0 =
Nγε

∥∥A†
∥∥

2
M−2k

.

Then, optimizing Fσ0 , the sparse solution s0 can be estimated with an error smaller than

(MA +1)(Nα + ε) ,

where α is such that the above condition (2) holds for σ0 and ν = 1
N .

The function fσ (s) = exp
(
− s2

2σ2

)
satisfies all the conditions of both Theorem 4.6 and

Theorem 4.7. It is used in the implementation of Algorithm 4.1.

4.3 Comparison of methods on synthetic data

In this section, we generate synthetic sparse recovery problems to compare the performance
of three methods reviewed in previous sections: OMP as a representative of greedy (direct)
methods, `1-minimization as a convex relaxation of the problem, and Smoothed `0 method.
First of all, it should be stressed that the level of sparsity of true solution s∗ of (4.0.1) and the
properties of A (spark, coherence...) are not the only factors that affect the empirical perfor-
mance of algorithms. Namely, the distribution of the amplitudes of non-zero elements of s∗

also affects the performance. For example, in the papers [74, 97] an extensive performance
analysis was done by comparing the recovery success of sparse recovery algorithms for vari-
ous distributions of amplitudes of non-zero elements of a sparse vector. Here, we illustrate the
performance of OMP, `1-minimization and Smoothed `0 method on the synthetic example with
normal-distributed sparse vectors. Namely, it is a realistic scenario, since for real-world signals
like images, their sorted coefficients in some dictionary usually have slowly decaying magni-
tude, which is well modelled by the normal p.d.f. See Chapter 7, Figure 7.1.3 for an illustration.
Before the presentation of the results obtained on synthetic data, we briefly review some results
from the literature on the empirical evaluation of algorithms.

4.3.1 Empirical evaluation of the performance of
algorithms

Since it is relevant for this section, here we repeat a paragraph from the introduction (it is taken
from the paper [74]):
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4.3. Comparison of methods on synthetic data

The empirical tuning approach has a larger significance for the field of sparse
representations and compressed sensing. Many of the better known papers in this
field discuss what can be proved rigorously, using mathematical analysis. It re-
quires real mathematical maturity to understand what is being claimed and what
the interpretation must be, and to compare claims in competing papers. Often,
what can be proved is vague (with unspecified constants) or very weak (unrealis-
tically strong conditions are assumed, far from what can be met in applications).
For practical engineering applications it is important to know what really happens
rather than what can be proved. Empirical studies provide a direct method to give
engineers useful guidelines about what really does happen.

These few claims sum up the problems regarding the interpretation of theoretical conditions for
the performance of algorithms presented in previous sections. As already noted, the theoreti-
cal conditions are mostly too pessimistic, since they result from the worst case analysis. On
the contrary, synthetic experiments indicate that the algorithms usually perform better or much
better. The term usually here refers to the fact that synthetic experiments use Monte Carlo
simulations (i.e., problem instances are generated randomly), which don’t reflect the worst-
case behaviour. Namely, Monte Carlo simulations indicate what happens in most of the cases

(or, with high probability). Therefore, both the theoretical conditions and empirical evaluation
have advantages and disadvantages. An approach presented in [74] consists in generating many
instances of the sparse recovery problem for various levels of sparsity and underdeterminacy
of the system. Namely, if we denote by ρ = k

M the level of sparsity of the solution, where k

denotes the `0 function of the true solution, and by δ = M
N the level of underdeterminacy of

the system, for every point on some grid of (δ ,ρ) value pairs in [0,1]2 a certain number of
sparse recovery problems was randomly generated (100 in [74]), and the number of successful
recoveries was counted. An important result used in [74] for empirical assessment of the per-
formance of algorithms roughly states the following (see section III in [74]). For fixed ε > 0,
the probability that the sparsest solution of the linear system As = x, where A ∈ RM×N , can be
recovered by solving the `1-relaxed problem (4.1.5) tends to 0 or 1 with increasing system size
as k ∼M · (ρ`1 (δ )± ε), where ρ and δ are defined as above. In other words, for large system
sizes (N → ∞) there is a curve ρ`1 in the (δ ,ρ) plane under which the recovery is successful,
and above which the recovery is unsuccessful (both with overwhelming probability). This curve
is called (`1-) phase transition curve, since it indicates the sharp transition in the recovery per-
formance. This result was obtained under the assumption that A is generated randomly from
Gaussian distribution and s is k-sparse (‖s‖0 ≤ k). However, similar phase transitions have been
proved or empirically observed for other types of distributions of A and s (see references in
[74]). The phase transition curve was estimated for several iterative sparse recovery algorithms
in [74]: iterative soft thresholding, iterative hard thresholding and two-stage thresholding (see
paper for details) by optimal tuning (i.e. optimal parameters for the algorithms were selected by

52



4.3. Comparison of methods on synthetic data

extensive computational experiments). In the following subsections, we present simpler exper-
iments, by generating random instances of the problem only for several levels of sparsity and
for fixed M and N. We compare only the OMP algorithm, `1 minimization and SL0 method,
since it was shown in [74] that `1 minimization offers the best performance compared to other
algorithms used in that paper. The purpose of these comparisons is to show good performance
of SL0 method compared to OMP and `1 minimization, which are the most often used sparse re-
covery methods. These comparisons justify the use of SL0 in numerical experiments presented
in Chapter 7.

The numerical simulations reported in the following subsections were done in MATLAB 7.9 on a
3.4 GHz Quad-Core 64-bit Windows 7 PC with 12 GB memory.

4.3.2 Synthetic examples in the noiseless case

We generate synthetic examples as follows. We set M = 400, N = 1000, and generate A by
command randn(M, N) in MATLAB, i.e. the elements of A are i.i.d., generated from N (0, 1).
The columns of A are normalized after A is generated in this way. We vary the `0 function of the
sparse solution s∗ ∈ RN , denoted by k = ‖s∗‖0, in the range [80, 100, 120, 140, 160, 180, 200].
We generate k indexes of non-zero elements of s∗ randomly from {1, . . . ,N}. The non-zero
elements are generated as i.i.d sequence from N (0, 1). Measurement vector x is generated
as x = As∗. For every sparsity level k, we generate 100 instances of under-determined linear
systems, and count the number of successful recoveries of the true sparse solution for every
algorithm. The recovery is considered successful if ‖ŝ− s∗‖

∞
< 10−5, where ŝ denotes the

result of the algorithm.

The parameters for the algorithms were set as follows. For Smoothed `0 method, the initial
value σ1 of parameter σ was set to 2‖ŝ0‖∞

, where ŝ0 is the initial approximation of the solution.
The sequence σ1, . . . ,σJ was generated by σi+1 = cσi, where c = 0.5, wherein σJ ≤ 10−6. The
parameters L and µ in Algorithm 4.1 were set to L = 10, µ = 2. This choice yielded good
results, while the computational efficiency of the algorithm was preserved (for example, the
choice c ≈ 1 can significantly slow down the algorithm). For OMP, the stopping criterion was
selected in the following way: the algorithm stops when the number of selected indexes of the
approximation is twice the `0 function of the true solution s∗. This choice enables better results
than when the number of selected indexes is closer to the `0 function of the true solution s∗.
`1 minimization requires no parameter tuning. Figure 4.3.1 shows the frequency of successful
recovery (proportion of successful recoveries over 100 realizations) for various levels of sparsity
k and for all three algorithms.

Regarding the computational complexity, Figure 4.3.2 shows average running time for the three
algorithms.

Obviously, Smoothed `0 method achieves the best performance and is also very fast. The OMP

53



4.3. Comparison of methods on synthetic data

Figure 4.3.1: Comparison of performance of different algorithms.

Figure 4.3.2: Average running time for every algorithm.

algorithm exhibited a little worse performance with about the same running time (computational
complexity). The problem with OMP and related greedy algorithms, as already noted above, is
that it can select an index of a column of A which is not in the support of the true solution, and
this ‘greediness’ introduces error in the approximation.

It should be noted that some other distribution of the amplitudes of nonzero elements of the
true solution would yield different results. Namely, it is known that the worst case distribution
for most sparse recovery algorithms, except `1 minimization, is the symmetric Bernoulli and
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similar distributions [74]. `1-minimization approach, however, is not affected by the choice of
the distribution. Again, thorough examination of various algorithms’ performance for different
distributions of amplitudes of nonzero elements of the true solution was presented in [74, 97].

4.3.3 Noisy case

Synthetic examples were generated as in the previous subsection, except that the noise was
added to measurements: x = As∗+ n, where n ∈ RM is the noise vector. The noise level is
controlled through the ratio ‖As∗‖2 /‖n‖2, i.e. through signal-to-noise ratio, snr, defined as
snr(As∗, n) = 20log10

‖As∗‖2
‖n‖2

. Signal-to-noise ratio was varied in the range [5, 10, 15, 20, 25].
Here, the level of sparsity of the solution, k, was set to 100, since all algorithms perform well
in the noiseless case for this sparsity level (see Figure 4.3.1 in the previous subsection). The
performance of algorithms was again measured through signal-to-noise ratio snr(s∗,s∗− ŝ) =
20log10

‖s∗‖2
‖s∗−ŝ‖2

, where ŝ denotes the result of the algorithm.

The noise-robust version of Smoothed `0 method was used in this case, as explained in
Section 4.2.1.1. The projection in the step ((2c)) is done if ‖Aŝ−x‖2

2 > 1.1‖n‖2
2, where n is the

true noise vector, and ŝ denotes the current approximation of the solution. The other parameters
were the same as in the noiseless case. For OMP, the stopping criterion was the following: the
algorithm stops when the representation error falls below the small over-estimation of the noise
level, ‖Aŝ−x‖2

2 ≤ 1.1‖n‖2
2. For `1, the constrained formulation

min‖s‖1 subject to ‖As−x‖2
2 ≤ ε

of the problem was solved, wherein ε was set to 1.1‖n‖2
2. Figure 4.3.3 shows the results.

4.4 Summary

In this chapter we have presented several simple and often used methods for sparse recovery
problems (4.0.1) and (4.0.2). Although there are many more methods, which also sometimes
perform better than the methods we have reviewed here, we have concentrated on three simple
approaches that are good enough for the experiments we will present in Chapter 7. The results
presented there were obtained using the Smoothed `0 method presented in Section 4.2.1, since
it yielded the best results when compared to OMP and `1-minimization. In combination with
ICA-based dictionary learning method reviewed in Section 3.2, Chapter 3, it yielded very good
results in image inpainting and removal of impulse noise experiments.
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Figure 4.3.3: Comparison of performance of different algorithms in the noisy case.

56



Chapter 5

Algorithms for dictionary learning

In Chapter 2, Section 2.3, we have discussed methods for the sparse component analysis prob-
lem. The main assumption on the sources was sparsity. We saw that sparsity enables the solving
of underdetermined source separation problems, similarly as independence in the
(over)determined case. However, in practice, source signals are often not sparse themselves.
Instead, often there is a transformation such that the transformed signals are sparse or ap-
proximately sparse. We have already discussed this problem in the introduction of the section
Section 2.3 on sparse component analysis. However, nothing was said about the choice of the
sparsifying transformation. It can be chosen as one of many available fixed mathematical trans-
forms, like discrete cosine transform (DCT) or wavelets [75]. However, better results can be
obtained by using an adaptive transforms or dictionaries, specially designed to maximize spar-
sity for a given class of signals. The procedure of designing dictionaries that provide sparse
representations of signals in a given class is referred to as dictionary learning.

We now review important work done in the dictionary learning domain. In [84], the method has
been derived that yields an overcomplete dictionary trained on the patches of natural images by
maximizing sparseness based cost function. Similar results were presented in [10] using ICA,
and in [64, 65] using probabilistic methods. In a deterministic setting, with data matrix X of
size n×T with columns that represent the training set for the signals of interest, the dictionary
learning problem is stated as

argmin
D,C
‖X−DC‖2

F subject to ‖ci‖0 ≤ K, ∀i (5.0.1)

where ci denotes i-th column of the coefficients matrix C , and K is a bound on the sparsity of
representation. The usual method for solving (5.0.1) is alternating minimization: first, D is fixed
and C is approximated by some of the algorithms reviewed in the previous section. This stage
is called sparse coding. In the next step, C is fixed and D is updated. This alternating minimiza-
tion is repeated until convergence to a local minimum (it is also possible that algorithm gets
stuck in a saddle point of the problem). The MOD (Method of Optimal Directions) algorithm
[30] follows this approach. The dictionary update step in MOD is calculated as Dk+1 = XC†

k ,
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where subscript denotes iteration number and C† is pseudoinverse of C . Calculating the pseu-
doinverse in each iteration of the algorithm makes MOD slow. K-SVD algorithm [1], reviewed
in Section 5.1.1, fixed this partially. It should be noted that the dictionary learning problem
could be stated more generally than in (5.0.1), by using some other measures of representation
error and sparsity of coefficients. In the following two subsections, we discuss ICA- and K-
SVD-based approaches for approximating the solution of the problem (5.0.1). In Section 5.1.3,
another method for dictionary learning is described which is used in experimental comparison
of dictionary learning methods in Chapter 7.

5.1 Dictionary learning methods

5.1.1 K-SVD

The K-SVD algorithm [1] is a generalization of the K-means clustering approach to dictionary
learning with sparseness constraints when the number of dictionary elements that form one
cluster (that corresponds to the level of sparseness K) is greater than 1. Hence, philosophy
in dictionary learning by the K-SVD algorithm reflects the knowledge that clustering yields
the most efficient signal representation, i.e. representing the signal by one coefficient only. Its
development was inspired in part by computational inefficiency of the MOD dictionary learning
algorithm [30]. The K-SVD algorithm starts with the formulation (5.0.1). The improvement
upon the MOD is in the dictionary update stage. Contrary to the MOD, the K-SVD updates D
column by column. The objective function in (5.0.1) can be written as

‖X−DC‖2
F =

∥∥∥∥∥
(

X−∑
j 6=k

d j
(
c j)T

)
−dk

(
ck
)T
∥∥∥∥∥

2

F

where d j denotes j-th column of D , and
(
c j)T denotes j-th row of C . We denote by ωk a set of

indices i for which ck
i 6= 0 , and by Ωk a matrix of size T ×|ωk| with ones at positions (ωk(i), i)

and zeros elsewhere. Here, we have denoted by ωk (i) the i-th element of the set ωk according to
value, from smallest to largest. If we define the error matrix Ek by Ek = X−∑ j 6=k d j

(
c j)T , then

K-SVD minimizes
∥∥∥EkΩk−dk

(
ck)T

Ωk

∥∥∥2

F
with respect to dk and ck. Therefore, updated dk and

ck are scaled first left and right singular vectors of the restricted matrix EkΩk, respectively. By
restricting Ek and ck in this way, updated ck is forced to have the same or smaller support than the
previous one. Provided that sparse coding stage is solved exactly, this guarantees convergence
to a local minimum (or, possibly, a saddle point) of the objective function in (5.0.1) on the
constraints set. Since it is solved only approximately, convergence is not guaranteed. However,
it seems that convergence occurs in practice. Usually, the algorithm used in sparse coding stage
of K-SVD is OMP, for the following reasons: first, it naturally finds an approximation with
fixed number of nonzero coefficients, which fits into the dictionary learning framework (5.0.1),
and second, it is fast, especially when compared to convex relaxation methods. We discuss
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details related to the K-SVD algorithm, such as the choice of parameter K, in Chapter 7. Since
it has been demonstrated in [1] that the K-SVD outperforms the MOD algorithm, the MOD is
not included in the comparative performance analysis between dictionary learning algorithms
in Chapter 7.

5.1.2 ICA-based dictionary learning

As already mentioned, ICA is by itself a method for solving source separation problems that
uses the assumption of independence of the sources. The additional assumption of approximate

sparsity of the independent components is introduced implicitly through the choice of the non-
linear function in the ICA algorithm. Therefore, ICA is not a direct method for solving (5.0.1)
like K-SVD. Namely, the constraints in the problem formulation (5.0.1) generally can not be
satisfied when ICA is used. However, it can be used as an approximation. This is especially
the case in dictionary learning for some image restoration problems that we are interested in in
this thesis, namely inpainting and removal of impulse noise. See Section 3.1 and Section 3.2 in
Chapter 3 for the explanation of the biological background and justification of the use of ICA
for dictionary learning.

Here we explain the interpretation of the linear model X = DC in the context of ICA-based
dictionary learning. Since this thesis deals with applications in image processing, training set
(the columns of X) is composed of small parts of images, i.e. image patches (see Figure 3.1.1
in Section 3.1). Every row of X represents one mixed component. Rows of S represents in-
dependent (and approximately sparse) components. Columns of D are mixing vectors. Since
every row of C is approximately sparse, every column of C is also approximately sparse with
high probability. This means that every image patch (i.e. column of X) can be approximated
by a linear combination of a small number of mixing vectors. That is because the coefficients
in the linear combination are the elements of the corresponding column of C. Mixing matrix
D, therefore, corresponds to the dictionary matrix, since by combining its columns (atoms),
every image patch can be approximated. In this way, the dictionary for approximately sparse
representation of image patches is obtained as a byproduct of ICA.

In the experiments reported in Chapter 7, FastICA was used for the dictionary learning purpose.
In Paragraph 2.2.4.3.3, two choices for the nonlinear function in the FastICA algorithm were
presented that induce super-Gaussian sources and therefore can be used for dictionary learn-
ing. Both these functions yield similar results. It seems, as presented in the experiments in
Chapter 7, that the function (2.2.22) yields slightly better results, but function (2.2.23) can also
be used since it is faster to compute. The choice of other parameters for FastICA is described
in Chapter 7.
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5.1.3 Fields of experts image model

Since our experiments in Chapter 7 are concerned with image processing applications, here we
briefly review one special class of methods for learning the so-called image priors. Namely,
problems with incomplete data require some a-priori (prior) knowledge/assumptions on the
structure of data of interest, in our case images. In the case of dictionaries, this a-priori knowl-
edge/assumptions means sparsity of images (or image patches) in predefined dictionaries (see
the introduction of Chapter 3 for more details). The method that we review in this section as-
sumes some probabilistic prior knowledge of image structure. Namely, the spatial structure of
image(s) is formulated as Markov random field (MRF). Formally, an image X∈Rm×n is viewed
as a graph G = (V,E), where image pixels (measurements) Xi j form the set V of nodes of the
graph (or, more precisely, Xi j are indexed by the nodes v ∈ V of the graph, i.e. pairs (i, j) and
nodes v ∈ V are in bijection). Every node, i.e. image pixel, is viewed as a random variable.
E is the set of edges of the graph, which are chosen according to some regular neighbourhood
structure (the nodes are neighbours if there is an edge e ∈ E connecting them). Now we have
the following definition.

Definition 5.1. Xi j form a Markov random field (MRF) with respect to graph G if every Xi j is
conditionally independent to all other Xi′ j′ , (i′, j′) 6= (i, j), given the neighbours of Xi j, i.e.

P
(
Xi j = xi j,Xi′ j′ = xi′ j′

∣∣Xne((i, j)) = xne((i, j))
)

= P
(
Xi j = xi j

∣∣Xne((i, j)) = xne((i, j))
)
·

·P
(
Xi′ j′ = xi′ j′

∣∣Xne((i, j)) = xne((i, j))
) ,

(5.1.1)

where Xne((i, j)) denotes the set of neighbours of Xi j.

In the above definition, P(A |B) denotes the conditional probability of event A given B, and is
defined as P(A |B) = P(A∩B)/P(B).

A clique in a graph is a set of pairwise connected nodes. A special class of MRF-s are those
whose probability density can be facorized according to the cliques of a graph. More precisely,

p(X) = ∏
C∈cl(G)

ΦC (XC) ,

where cl (G) is the set of cliques of G, XC =
{

xi j ∈C
}

, and ΦC is the joint density of XC. In
[92] a high-order MRF of the form

p(X) =
1
Z

exp

(
−∑

k
Uk (Xk)

)
(5.1.2)

was used to model images, where Uk (Xk) is the so-called potential function for the clique Xk.
Uk was chosen as

Uk (Xk) =
n

∏
i=1

φi
(
JT

i Xk; αi
)
,
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where functions φi (·; ·) have the form

φi
(
JT

i x; αi
)
= exp

(
−αi

√
1+
(
JT

i x
)2
)
,

φi are referred to as ‘experts’. Consequently, the model (5.1.2) of images is called ‘fields of

experts’ (FoE) model. Ji are linear filters (pre-defined or learned vectors) and αi are the param-
eters. Here, JT

i x denotes scalar product Ji · x. Ji are modelling directions in the vector space
of pixel values in XC. In [92], neighbourhoods C, i.e. cliques of the image graph, were chosen
as all m×m overlapping image patches (small rectangular regions of an image). The approach
taken in [92] is to learn all parameters Θ = {Ji,αi : i = 1, . . . ,n} of the model on a training set,
i.e. to optimize model parameters so that the model error is minimized. Parameter n (the num-
ber of experts in the model) can be chosen based on the quality or computational complexity
of the model, depending on the application. We don’t go into details of (complex) optimization
used in [92] because it is not relevant for this thesis, see [92] for details. See Section 7.1 for
parameters used when comparing the ICA-based and the above method.

5.1.4 Other dictionary learning methods

Many other dictionary learning methods have been proposed in the literature. Mostly they use
the `1 regularization term for the coefficients matrix C, which makes both sub-problems (opti-
mization over dictionary D with fixed C and optimization over C with fixed dictionary) convex.
We don’t go into extensive review of the available literature, since the methods presented in
this chapter are good representatives of state of the art dictionary learning methods. For more
details and a (partial) review of the literature on dictionary learning, see the review paper [102].

5.2 Summary

In this chapter we have briefly reviewed several state of the art dictionary learning methods and
pointed to some references where more details on these and other dictionary learning methods
can be found. In Chapter 7 we present results of extensive experiments where we have compared
these and ICA-learned dictionary based method. These results illustrate comparable or better
performance of ICA-based method for inpainting with random pattern of missing values and,
perhaps practically more important, removal of salt-and-pepper noise.
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Chapter 6

Removal of salt-and-pepper and impulse
noise

Denoising is one of the fundamental problems in signal and image processing. It is impor-
tant both from theoretical and practical point of view. Many algorithms for denoising has been
presented in the literature. Mostly they deal with the case of additive white Gaussian (normal-

distributed) noise. This is justified by the central limit theorem, which roughly states that the su-
perposition (addition) of many individual independent processes (random variables) is Gaussian
or close to Gaussian. Since, usually, noise can be assumed to be the result of many individual
and independent interferences, it is natural to assume its Gaussianity. The Gaussianity assump-
tion also implies finitness of the noise variance. More precisely, the noise is assumed to be of
known, small variance. Even in cases where Gaussianity is not assumed, the noise is mostly
assumed to be of small variance, i.e. its realization is assumed to be of small norm. However,
in some cases the noise is impulsive, characterized by very high or even infinite variance.

Since our main applications are in image processing, here we define two main models for im-
pulse noise in images. A digital image is viewed as a matrix of grayscale or color values
of picture elements (pixels). In this chapter, we will deal only with grayscale images. We
will denote by s ∈ RN a column-vectorized form of an image, and by s̃ = s + n the noise-
degraded image s. Here, it is important to note that we consider only additive noise. Let
us denote by [dmin, dmax] the dynamic range of pixel values in an image s. In other words,
dmin = mini∈{1,...,N} si, dmax = maxi∈{1,...,N} si. The two impulse noise models are the following:

• salt-and-pepper noise:

s̃i =


dmin with probability p

2

dmax with probability p
2

si with probability 1− p

,

where p determines the density of salt-and-pepper noise;
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6.1. Nonlinear filtering

• random-valued impulse noise:

s̃i =

di with probability p

si with probability 1− p
,

where di is uniformly distributed random number in [dmin, dmax], and p determines the
density of noise.

In Chapter 7 we will reduce the problem of salt-and-pepper noise removal to the inpainting
problem by declaring all noise-corrupted pixels as missing. See Section 7.2 in Chapter 7 for
details.

The rest of this chapter is organized as follows. In Section 6.1 we describe median and myriad
filters, classical methods for removal of impulse noise in signals and images that are theoreti-
cally optimal from the filtering point of view (however, see Section 6.1.2 for precise results). In
Section 6.2, we discuss the inefficiency of the approach motivated from a Bayesian interpreta-
tion of the denoising problem.

6.1 Nonlinear filtering

The concept of nonlinear filtering was introduced to enable processing of non-Gaussian ran-
dom processes (signals). The connection between the nonlinear filtering and the classical, well
developed, linear filtering is similar to the connection between principal and independent com-
ponent analysis. Namely, since the majority of processes (signals) encountered in practice are
in fact non-Gaussian, better results in many practical signal processing problems were obtained
when the non-Gaussianity was taken into account. In this section we briefly review main results
in nonlinear filtering theory. The main reference for this section is the book [5].

6.1.1 Median filters

Firstly, we introduce several definitions. Let us denote by s ∈RN a discrete signal. For now, we
restrict ourselves to one-dimensional signals. Therefore, the element indices of s are referred to
as time indices. Later we will extend the following definitions to 2-D signals, like images. We
have the following basic definition.

Definition 6.1. The output y ∈ RN of a running median smoother (or filter) with window size

NL +NR +1, where NL +NR +1≤ N, operating on a discrete sequence (discrete signal, vector)
s ∈ RN is defined at time index 1≤ n≤ N as

yn = median(sn−NL , . . . ,sn, . . . ,sn+NR) . (6.1.1)

When n ≤ NL or n ≥ N−NR +1, yn is defined by extending the values of s according to some
boundary conditions (see later text for details).
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6.1. Nonlinear filtering

We will suppose that NL = NR in the above definition, so that the window is symmetric. Accord-
ing to the definition, the median smoother replaces every element of s by the sample median
of all values of elements of s with indexes in the neighbourhood of the index of the selected
element. The statistical foundation for this definition is as follows. Suppose that the elements
of s represent a random sample from some distribution with location parameter (mean, if it is
finite) β (notice that it is assumed that the elements of s are independent!). If the underlying
distribution is Gaussian (with mean β and variance σi, where σi, i = 1, . . . ,N, can be different
for every element of s), the maximum likelihood (ML) estimate β̂ of the location parameter β

given the sample s is given as

β̂ = argmin
β

N

∑
i=1

1
σ2

i
(si−β )2 =

∑
N
i=1 wisi

∑
N
i=1 wi

,

where wi =
1

σ2
i

. In other words, the ML estimate of the location parameter β is given as a
weighted sample mean. When the underlying distribution of samples si is Laplacian, the ML
estimate β̂ of location is given as

β̂ = argmin
β

N

∑
i=1

1
σi
|si−β | , (6.1.2)

where σi is again the variance of the corresponding element of s (more precisely, of the un-
derlying random variable). If we suppose that σi = σ j, for all i, j, the above β̂ is exactly the
sample median of s. Therefore, median smoother replaces every element of a sequence s by
the robust estimate of mean of neighbouring elements of s. Correspondingly, weighted median
smoother replaces elements by the weighted sample median of their neighbourhood. Notice that
the weighted sample median (of a sample s) is defined as β̂ in 6.1.2, and it is equal to one of the
samples si. See also Section 6.1.2 for generalization.

In the case of two-dimensional signals like images, the definition of weighted median smoother
is naturally extended by using 2-D windows in the Definition 6.1. Namely, every image pixel is
replaced by the (weighted) sample median of its 2-D neighbourhood.

The elements on the boundary are processed by extending the signal s beyond its boundaries
according to some boundary conditions. Some often used boundary conditions are symmet-
ric and zero boundary conditions. Symmetric conditions mean that a signal is extended beyond
boundaries by mirroring. Zero boundary conditions imply that extended samples are zero. How-
ever, zero boundary conditions are ineffective in image processing since artifacts appear on the
boundaries of an image.

There are many important variants of the weighted median smoother that were introduced in
the literature. For example, center-weighted median smoother allows only the center sample to
be weighted. Center-weighted median smoothers are especially suited for image denoising in
the presence of impulsive noise, since by simply tuning the center weight, the desired degree of
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6.1. Nonlinear filtering

smoothing, i.e. outlier (noise) rejection can be obtained. See also Section 6.1.2. This type of
filter was used in the experiments presented in Chapter 7, Section 7.2.

Usually, the term smoother is reserved for the case when the weights wi above are nonnegative.
The above statistical interpretation of median smoothers naturally implies nonnegativity con-
straints on the weights. However, it was demonstrated in practice that, in some applications,
improved results can be obtained if negative weights are also allowed. See chapter 6 in [5] for
more details.

Notice that, in Definition 6.1, every sample is replaced by the (weighted) median of its neigh-
bourhood, wherein neighbourhood consists of neighbouring samples before they were pro-
cessed by median smoother. This kind of median smoother (filter) is referred to as non-
recursive. The output of a recursive median smoother is defined as (the notation is the same
as in definition (6.1.1))

yn = median(yn−NL , . . . ,yn−1,sn,sn+1, . . . ,sn+NR) .

Therefore, “previous” samples are replaced by median-smoothed versions. Recursive weighted
median smoothers are defined analogously.

Median filters work well when the noise is not highly impulsive. When highly impulsive noise
is present, median filters need to be modified to improve robustness. In Chapter 7, Section 7.2,
we have compared some modified versions of median filters with the method based on inpaint-
ing using the ICA-learned dictionary. Although these modified median filters (significantly)
improve upon basic median filters, the approach based on inpainting using the ICA-learned dic-
tionary still outperforms it by large margin. See Section 7.2.1 for the results of the experiments
that confirm this.

Median filters are theoretically optimal for the Laplace-distributed noise. In some applications,
the noise distribution is much more impulsive than the Laplace distribution, and median filters
don’t perform well (unless some modifications are introduced, see previous paragraph). In the
next subsection, we review myriad filters, that are specifically designed to perform well in the
presence of highly impulsive noise.

6.1.2 Myriad filters

The idea of myriad filters is based on some concepts from the field of robust statistics. There-
fore, before formally defining the myriad filter, we introduce some definitions and notation.
The results in this subsection are taken from [43]. The following definition introduces robust

estimates of the location parameter of a distribution.

Definition 6.2. Let x1, . . . ,xN be a random sample from some distribution. An M-estimator of
the location parameter of the underlying distribution is defined as

β̂ = argmin
β

N

∑
i=1

ρ (xi−β ) ,
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6.1. Nonlinear filtering

where ρ is a cost function associated with β̂ .

The cost function ρ characterizes an M-estimator. For example, when ρ(x) = x2, the M-
estimator corresponds to the sample mean. When ρ(x) = |x|, the M-estimator corresponds
to the sample median. When ρ(x) =− log f (x), where f is a p.d.f., β̂ is a maximum likelihood
estimator associated with f . Here, we are concerned with impulsive distributions f . More pre-
cisely, we are interested in a specific sub-class of α-stable distributions. α-stable distributions
are those which appear as limits of sums of independent and identically distributed (i.i.d.) ran-
dom variables (distributions) in central limit theorem of the general form. It is known (see, for
example, [25]) that the characteristic function φ of a α-stable distribution is of the form

φ(t) = exp
(
−γ |t|α

)
, (6.1.3)

where γ > 0 and α ∈ (0, 2]. The parameter α determines the heaviness of the tail of the dis-
tribution. It can be shown (exercise 3.7.5 in chapter 3 in [25]) that the tail behaviour of the
α-stable distribution is

P(|X |> x)≥ cx−α ,

for a constant c (here, X denotes a random variable with α-stable distribution with specific
parameter α). The case α = 1 corresponds to the Cauchy distribution, which has density

f (x) =
γ

π

1
γ2 + x2 .

Apart from the Gaussian, the Cauchy distribution is the only α-stable distribution for which the
closed form expression for its p.d.f. exists. It can also be used as a good model for impulsive
distributions. For these reasons, it is used in the definition of the robust estimator of the location
parameter in the presence of impulsive noise. Note that the negative logarithm of f is associated
to

ρ(x) = log
(
k2 + x2) ,

where k (that corresponds to γ in (6.1.3)) is called the dispersion parameter. We have the
following definition [43].

Definition 6.3. Given a set of samples x1, . . . ,xN and a parameter k > 0, the sample myriad of
order k is defined as

β̂k = myriad{k; x1, . . . ,xN}= argmin
β

N

∑
i=1

log
[
k2 +(xi−β )2

]
.

The impulsiveness of the underlying Cauchy distribution in the sample myriad estimator is
controlled through the parameter k. We have the following results [43].
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6.1. Nonlinear filtering

Proposition 6.1. Given a set of samples x1, . . . ,xN , the sample myriad β̂k converges to the

sample average as k→ ∞.

When k is small, the estimator becomes more resistant to the presence of impulsive noise.
Before looking at the behaviour of the estimator when k→ 0, we state the following definition.

Definition 6.4. Let x1, . . . ,xN be a set of samples. The mode-myriad estimator, β̂0, is defined as

β̂0 = lim
k↓0

β̂k.

The following result holds.

Proposition 6.2. Let M be the set of the most repeated values in the sample x1, . . . ,xN . The

mode-myriad can be expressed as

β̂0 = arg min
x j∈M

N

∏
i=1,xi 6=x j

∣∣xi− x j
∣∣ .

In other words, mode-myriad is one of the repeating values of the sample. Therefore, this
estimator’s output is equal to one of the samples.

Given a data sample x1, . . . ,xN , in practice one needs to choose the dispersion parameter k to
reflect the properties of the noise present in the data. When the noise is impulsive, the estimator
should interpret many of data samples as outliers. Therefore, the underlying Cauchy distribution
should be highly localized, i.e. k should be ‘small’. Geometrically, k is equivalent to half of the
interquartile range. Since in the extreme when every sample is a possible outlier, the estimator
should be equal to (one of) the sample modes (repeating values), the distribution should be
localized so that it is close to an impulse around the sample mode. Therefore, k should be of
the order

k ∼min
i 6= j

∣∣xi− x j
∣∣ .

We now review basic theoretical facts about the sample myriad estimator. The following propo-
sition holds [43].

Proposition 6.3. Let Tα,γ (x1, . . . ,xN) denote the maximum likelihood estimator of the location

(mean) derived from a symmetric α-stable distribution with characteristic exponent α and dis-

persion γ . Then,

lim
α↓0

Tα,γ (x1, . . . ,xN) = myriad{0; x1, . . . ,xN} .

Therefore, the sample myriad is theoretically optimal for highly impulsive (α close to zero)
distributions.

Usually, a modified form of a sample myriad estimator is used. It is introduced in the following
definition.
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6.1. Nonlinear filtering

Definition 6.5. Let w = [w1, . . . ,wN ] be a vector of non-negative weights. The weighted myriad

of order k, for k > 0, for the data sample x1, . . . ,xN is defined as

β̂k,w = myriad{k; w1 ◦ x1, . . . ,wN ◦ xN}

= argmin
β

N

∑
i=1

log
[
k2 +wi (xi−β )2

]
(6.1.4)

where ◦ denotes the weighting operation in Definition 6.5.

The weighted myriad estimator has properties similar to those of a myriad estimator. Namely,
we have the following results.

Proposition 6.4. Let the weights w1, . . . ,wN be assigned to samples x1, . . . ,xN . Then,

lim
k→∞

β̂k,w =
∑

N
i=1 wixi

∑
N
i=1 wi

.

Therefore, for large k, weighted myriad estimator corresponds to the weighted sample mean. A
generalization of the mode property also holds.

Proposition 6.5. Let the weights w1, . . . ,wN be assigned to samples x1, . . . ,xN . Let M denote

the set of the most repeated values in the sample, and let r j be the number of repetitions associ-

ated with an element x j of M . Then,

β̂0,w = lim
k↓0

β̂k,w (x1, . . . ,xN)

= arg min
x j∈M

(
1

w j

) r j
2 N

∏
i=1,xi 6=x j

∣∣xi− x j
∣∣ .

In Chapter 7, Section 7.2, we have compared the weighted myriad estimator and the method
based on inpainting using the ICA-learned dictionary for removal of salt-and-pepper noise in
images. See Section 7.2 for details regarding the setting of parameters for the myriad filter.
Although the myriad-filter-based denoising can perform well when the density of noise is low
or moderate with appropriate parameter tuning, we demonstrate there that the method based on
inpainting using the ICA-learned dictionary yields significantly better results when the density
of salt-and-pepper noise is high.

6.1.3 Other nonlinear filtering methods

Apart from median and myriad filters and their modifications, many other nonlinear filtering
methods have been proposed in the literature. One notable approach that yielded very good

68



6.1. Nonlinear filtering

results in practice was presented in [99] (see also review paper [78]). They considered the
measurement model

yi = si +ni, (6.1.5)

where si represents the value of the signal of interest (for example, an image) at the position
xi, i = 1, . . . ,n (xi is a two-dimensional vector, xi = [xi,1,xi,2]

T , in the case of images), yi is
the noisy measured signal and ni represents noise. The general kernel regression framework
consists in estimating the underlying s by using the estimates of the form

ŝ
(
x j
)
= arg min

s(x j)

n

∑
i=1

[
yi− s

(
x j
)]2 K

(
xi,x j,yi,y j

)
, (6.1.6)

where s
(
x j
)

denotes the value of s at x j, and K is a weight (or kernel) function that is required
to be symmetric, positive and unimodal. Its role is to measure “similarity” between the samples
yi and y j at respective positions xi and x j [78]. If K depends only on the spatial locations xi

and x j, the resulting estimator is known as classical, non-adaptive kernel regression estimator.
Adaptive estimators use kernel K that also takes into account values yi and y j, and not just
spatial locations. Another important question is the range in the sum in (6.1.6). This range is
what separates local and non-local estimators.

The name kernel regression is justified by the following. The measurement model (6.1.5) is
represented in a slightly different form:

yi = z(xi)+ni,

where z(·) represents some (a-priori unspecified) regression function. It is assumed that z can
be approximated by its Taylor expansion:

z(xi)≈ β0 +β1 (xi− x)+β2 (xi− x)2 + · · ·+βN (xi− x)N ,

where βi = z(i) (x) is the i-th derivative of z at x, and x is close to xi. This Taylor representation
can be seen as a local representation of the regression function, and the parameter β0 would
yield an estimate of the data at xi. The idea is to estimate the parameters βi from the data,
while giving the nearby samples (much) higher weights than samples far away (since the Taylor
approximation is local). Namely, in the most basic form of the kernel regression estimation, βi

are estimated by solving

min{βn} ∑
n
i=1

[
yi−β0−β1 (xi− x)−β2 (xi− x)2−

−·· ·−βN (xi− x)N
]2

1
hK
(xi−x

h

) , (6.1.7)

where K is the kernel function that penalizes the distance from the local position xi. Other,
more advanced kernel regression methods, use kernel K that depends both on spatial distances
between samples and their values. For more details, see the review paper [78].
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6.2. Maximum-a-posteriori (MAP) approach

In Chapter 7, Section 7.1.4, we present the results of the experimental comparison between the
kernel-regression method and the method based on inpainting using the ICA-learned dictionary
applied to the image inpainting problem. It shows that, although kernel-regression is a very
effective method, it does not outperform the method based on inpainting using the ICA-learned
dictionary on the inpainting problem.

6.2 Maximum-a-posteriori (MAP) approach

Another possible approach to removal of impulse noise is based on the Bayesian interpretation
of the problem. Namely, let us recall the formulation (3.0.1) of the problem

y = Hx+n,

where y ∈ Rm represents observed data, H ∈ Rm×M is the degradation operator (wherein M ≥
m), x ∈ RM is the vector of clean data that we want to recover, and n ∈ Rm represents noise.
More precisely, n represents a realization of the random noise vector ñ. In the case of denoising,
H = I, where I denotes the identity matrix. The likelihood function L(y) = p(y |x) is defined
as the likelihood of the data given the true (unknown) solution x. It depends on the noise
statistics. The most common assumption about noise is that it is Gaussian and has independent
elements, i.e. ñ∼N

(
0,σ2I

)
, where I is the m×m identity matrix. In this case, the likelihood

of the data is given as the probability density function p(y |x) ∼ N
(
x,σ2I

)
. In Bayesian

statistics, prior distribution of the unknown parameters that are of interest refers to the user’s
assumptions on the parameters. In our case, it means that we assume that the true vector x is
a realization of some underlying random vector with density function p(x). The maximum-
a-posteriori (MAP) approach to estimation of the vector of parameters, in our case x, consists
of the maximization of the posterior distribution p(x |y). This posterior distribution is, by
Bayes theorem, proportional to p(y |x) p(x). Equivalently, MAP estimate of x is obtained
by minimizing the negative logarithm of the posterior. If we suppose p(x)∼ exp(−φ (x)), the
negative logarithm of the posterior (under the i.i.d Gaussian noise assumption) can be expressed
as

− ln p(x |y)∼ 1
2
‖x−y‖2

2 +φ (x) . (6.2.1)

The assumption of sparsity on x usually results in non-convex regularization term φ (x). For
example, generalized Gaussian distribution, whose pdf is given by

pµ;α,β (x) =
β

2αΓ

(
1
β

) exp

(
−
(
|x−µ|

α

)β
)
,

where µ,α and β are parameters, can be used as a model of sparse distribution if β ≤ 1. The
choice β < 1 results in φ that is proportional to `p quasi-norms, p < 1. The non-convex regu-
larization term leads to non-convex optimization problems, which have, however, proven useful
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in sparse recovery problems. However, if we assume that the noise is impulsive, the first term
in (6.2.1) also becomes non-convex. Namely, we have seen in the previous section (on myr-
iad filters) that impulsive noise can be well modeled by the Cauchy distribution. This noise
distribution results in the first term in (6.2.1) of the form

∑
i

ln
(

1+(x−y)2
i

)
,

which is (highly) non-convex in x. Therefore, the resulting optimization problem is extremely
hard to solve in practice. Because of this, the MAP approach to removal of impulse noise is
usually avoided.

6.3 Summary

In this chapter we have reviewed some classical methods for removal of impulse noise, with
an emphasis to median and myriad filters. These are well known and theoretically founded
methods. However, they don’t perform well when the density of impulse noise is high. We
demonstrate in Section 7.2 that the method for removal of salt-and-pepper noise based on using
the learned dictionaries for sparse representations outperforms median, myriad, and specialized
modified median filters, on the removal of salt-and-pepper noise problem, by large margin.
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Chapter 7

Applications

This chapter presents the results of the comparative performance analysis of dictionary learning
methods on the problems of inpainting and denoising of natural images. The reported numerical
simulations were done in MATLAB 7.9 on a 3.4 GHz Quad-Core 64-bit Windows 7 PC with 12
GB memory. The chapter is organized as follows. In Section 7.1.1 we describe the dictionary
learning procedure. Section 7.1.2 describes the parameter selection of sparse recovery algo-
rithms used for the inpainting experiments. There, inpainting methods used in the comparative
performance analysis are described as well. Section 7.2 presents the results of the experiments
related to the denoising of natural images corrupted by the salt and pepper noise. The results
presented in Section 7.1 and Section 7.2 were published in [34, 35]. Section 7.3 presents one
application of under-determined source separation methods in bioinformatics. It is a short ver-
sion of the paper [60].

7.1 Image inpainting

In Section 7.1.1, the used dataset and parameters for all dictionary learning methods are de-
scribed. In Section 7.1.2, the results of extensive inpainting experiments are presented. Section 7.1.3
presents an extension of the inpainting/denoising concept to color images. In Section 7.1.4, ad-
ditional comparison with kernel regression method for inpainting is presented.

7.1.1 Dictionary learning

Six images of natural scenes, shown in Figure 7.1.1, were used as the training set for learning of
the dictionary matrix. Images were taken from the publicly available database1 and converted
to grayscale. Training images were of the size 576×768 pixels. We randomly extracted 18000
patches of the size 16× 16 pixels from six training images (3000 patches per training image)
and organized them as columns of the 256×18000 data matrix X. Mean value was subtracted

1A. Olmos, F. A. A. Kingdom, McGill calibrated color image database, 2004.,
http://pirsquared.org/research/mcgilldb/
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from every patch: this is a very important preprocessing step. Then, the ICA and the K-SVD
were used for dictionary learning. In many papers in the literature, smaller patches were used,
and hence also smaller number of atoms in the K-SVD training stage. For example, in [28]
the authors used patches of the size 8×8 pixels, and the number of atoms in the training stage
was 6, whereas in the inpainting experiments in [73] (although they worked with color images)
patches of the size 9×9 pixels were used and the number of atoms in the training stage was 20.
Therefore, for comparison, below we also present results obtained using smaller patches, of the
size 8×8 pixels, and smaller number of atoms in the K-SVD training stage, namely 4. It should
be noted that one of the seminal papers [84] also used patches of size 16× 16 pixels, as well
as recent paper [72] (in which few patch sizes were used for comparison). Another important
point is that the same patch sizes are used for both dictionaries, which allows fair comparison
between them.

Figure 7.1.1: Six images from the training set used for bases learning. Images were randomly
selected from1.

MATLAB implementations of the FastICA algorithm, available at2, and the K-SVD, available at3,
were used. As discussed in Paragraph 2.2.4.3.3, tanh nonlinearity (function g1 from (2.2.24)) in
the FastICA algorithm has been used because it yields components with sparse (super-Gaussian)
distributions. The parameter a1 from (2.2.24) was set to 5 by empirical tuning. Sparse coding
stage in the K-SVD was done using the OMP algorithm with 40 nonzero coefficients of a solu-
tion. Smaller number of nonzero coefficients would speed up the K-SVD algorithm and possibly
find sparser representation, but simulations showed that this doesn’t yield a better performance.
Namely, if the training set doesn’t allow such a sparse representation, which seems to be the
case with real signals such as natural images, then this model is not appropriate. Therefore, this
number was chosen heuristically to obtain sparsity, but only at a reasonable, realistic level. For
comparison, we have also tried running the K-SVD algorithm with 4 nonzero coefficients of a
solution, see later text. It is expected that better performance can be obtained by using some
other reconstruction algorithm, but the reason for choosing the OMP is its speed. Dictionary

2The FastICA package for MATLAB, http://www.cis.hut.fi/projects/ica/fastica/index.shtml
3The KSVD-Box MATLAB toolbox, http://www.cs.technion.ac.il/∼ronrubin/software.html
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learning with the K-SVD algorithm took around 5 hours for 100 iterations, while dictionary
learning for the complete case with the FastICA took around 3 hours. It should be noted that
the K-SVD is much faster when using smaller number of atoms, but with larger number of
atoms better performance was obtained. Figure 7.1.2 shows basis vectors (i.e. dictionary atoms)
learned by the FastICA and K-SVD algorithms with the patches of the size 16×16 pixels. The
FastICA and K-SVD were also used for learning of the overcomplete dictionary. Sequential
version of the FastICA algorithm was modified to perform quasi-orthogonalization after every
step, as explained in Section 2.3.3. Parameter α in (2.3.10) was set to 0.5. The K-SVD takes
the number of atoms directly as a parameter.

Figure 7.1.2: 256 matricized atoms of the size 16× 16 pixels learned by FastICA, (a), and
K-SVD, (b), algorithms. The atoms are the columns of the learned dictionary.

7.1.2 Inpainting results

In all examples in this section with random pattern of missing pixels, 80 percent of pixels
were removed. We have used freely available MATLAB implementation of the Smoothed `0

(SL0) algorithm4 for image reconstruction, i.e. inpainting. Justification of this choice was
already discussed in Chapter 4. The parameter σ in (4.2.1) was chosen as suggested by the
authors: we randomly selected an image patch and computed its coefficients in the learned
dictionary by applying a direct transformation. Then the absolute values of these coefficients
were sorted in descending order and the smallest 80 percent of them were interpreted as noise.
Parameter σ was selected to be few times larger than the standard deviation of the vector of these
smallest coefficients. In this way, since natural image patches are not exactly sparse signals (see
Figure 7.1.3), smallest coefficients in selected dictionary were interpreted as noise/error. We
have also experimented with other values of σ and found that this choice yields the best results.
In our simulations the SL0 algorithm worked better and was much faster than other approaches,

4http://ee.sharif.ir/∼SLzero/
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especially those using `1 minimization. For example, we have also tested the `1ls algorithm for
the problem (4.1.6) (MATLAB implementation is available at5). On average, reconstruction using
the `1ls took 10 to 15 minutes per image, while the SL0 took about 30 seconds per image only.
The OMP performed worse (in terms of the measures of the quality of reconstructed images, see
below) than the SL0 and the `1ls, with a computational complexity of the order of few minutes.
For every patch, before the reconstruction, mean value of the observed pixels in the patch was
subtracted from the vector of the observed pixels and added back after the reconstruction. Thus,
DC component was artificially added in the reconstruction, yielding better results than when the
DC component was a part of the dictionary. To prevent border effects, reconstruction was done
with two rows, i.e. columns, of adjacent patches overlapping. After reconstruction, overlapping
regions were averaged.

Figure 7.1.3: Coefficients in different bases of a patch chosen randomly from a natural image.
Coefficients were normalized for comparison purpose. Without normalization, coefficients in
K-SVD and DCT dictionaries are much larger in absolute value (up to three orders of magni-
tude) than those in ICA dictionary.

For measuring the quality of the reconstructed images, we have used structural similarity index
(SSIM) [107], [108] and peak signal-to-noise ratio (PSNR). We have noted that PSNR can give
higher values (that should correspond to higher image quality) despite obvious visual quality
degradation. That is in line with the objection already pointed out in [107] that high PSNR value
does not always correspond with the high quality of visual perception. It was demonstrated
that the SSIM is the metric that better corresponds to subjective quality of visual perception.
The SSIM index is computed locally on image patches, within a sliding window that moves
pixel-by-pixel across the image; local SSIM measures the similarity of local patch brightness
values, contrasts and structures. For more details, we refer the interested reader to the paper

5http://www.stanford.edu/∼boyd/l1_ls/
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[108]. Global SSIM is computed as the average of SSIM values across the image. It has values
between −1 and 1, achieving maximum value 1 if and only if the images being compared are
equal. MATLAB code for computing the SSIM index is available at6.

We have also compared our results with those obtained with morphological component analysis
(MCA) method, explained in [29]. The MCA approach models an image as a combination
of piecewise smooth (‘cartoon’) and ‘texture’ parts. The image decomposition part and the
inpainting (the authors in [29] used the term filling-in) part are integrated using a union of fixed
bases consisting of one adapted for cartoon and the other adapted to texture part. Inpainting is
performed by combining sparse representations of each part. More precisely, it is assumed that
a column-vectorized image, s ∈ RN , can be represented as

s = Dtαt +Dcαc, (7.1.1)

where Dt ∈ RN×Lt , Lt ≥ N, is a dictionary that allows sparse representation of textures in an
image, while Dc ∈RN×Lc , Lc ≥N, is a dictionary that enables sparse representation of a cartoon
part of an image. The dictionaries Dt and Dc are supposed to be incoherent; in other words, it
is assumed that Dt can not sparsely represent the cartoon part of an image, and that Dc can not
sparsely represent the texture part. Let us denote by M ∈ Rn×N a projection matrix that selects
given n elements of an image (image ‘pixels’) and discards the others. Then, [29] proposed to
solve the following problem

argmin{αt ,αc} {‖αt‖1 +‖αc‖1+

+λ ‖M(s−Dtαt−Dcαc)‖2
2 + γTV(Dcαc)

}
to obtain the sparse representation coefficients. Therefore, they used the `1 norm as a measure
of sparsity. The additional regularization term TV(Dcαc) denotes the total variation of the
reconstructed cartoon part of an image. The total variation is basically the `1 norm of the image
gradient, see paper [29] for details. This term forces the reconstructed cartoon part to have
sparser gradient, and hence be closer to a piecewise smooth image. It is important to note that
the cartoon part was modelled globally, using wavelet-like dictionaries (curvelets), contrary
to patch-based approaches. Also, both dictionaries Dt and Dc are fixed operators, contrary
to learned dictionaries. This is one of the reasons that MCA performs worse than learned-
dictionary-based approaches. MATLAB implementation of the MCA is available as a part of the
MCALab package7. Dictionaries used in the MCA were curvelets for the cartoon part and two-
dimensional cosine packets for the texture part. Parameters of the MCA were the same as in the
Barbara image inpainting example that is available as a part of the MCALab package. Namely,
window width for cosine packets was 32 pixels, and the coarsest scale for curvelets was 2. Hard
thresholding was used with a linear decrease schedule, and the number of iterations was 300.

6http://www.ece.uwaterloo.ca/∼z70wang/research/ssim/
7MCALAB webpage

76

http://www.ece.uwaterloo.ca/~z70wang/research/ssim/
http://www.greyc.ensicaen.fr/~jfadili/demos/WaveRestore/downloads/mcalab/Home.html


7.1. Image inpainting

We have also used the FoE method [92] for comparison. MATLAB implementation of the FoE
method is available at8. Default values of the parameters were used.

Figure 7.1.4: Images used for validation purpose. Images were randomly selected from1.

Six images shown in Figure 7.1.4, also taken from1, were used as the validation set. These
images were reshaped to the size of 512× 512 pixels. Since the distribution of missing pixels
was generated randomly, we repeated the inpainting experiment 10 times for every image in the
validation set, every time randomly generating missing pixels distribution. We did not repeat
inpainting experiments with the MCA and FoE 10 times because reconstruction was slow (the
MCA took about 50 minutes for one image, while the FoE took about 5 hours for one image).
Table 7.1.1 shows detailed results of inpainting of six natural images in the validation set using:
the ICA and K-SVD learned complete bases and DCT and symmlet 4 wavelet fixed bases. Also
presented are results using the MCA and the FoE. Numbers in the table stand for mean values
and standard deviations of the SSIM metric of the reconstructed images after 10 runs.

It is clear that the learned bases greatly outperformed fixed bases. It is also clear that ICA
outperformed the K-SVD, although not by large margin. One reason for better performance of
the ICA-learned dictionary is its smaller coherence, see Figure 7.1.5. Average coherence (or
t-coherence [27], see caption of the Figure 7.1.5) better describes columns’ correlations than
the coherence alone.

Table 7.1.2 shows the corresponding results in terms of the PSNR metric. It can be seen that
the results in terms of both metrics are consistent. For comparison, in Table 7.1.3 we also show
results obtained by the ICA and K-SVD bases learned on patches of the size of 8× 8 pixels,
wherein the number of atoms used in the K-SVD training phase was 4. It can be seen that
the comparative performance of the two bases is similar. The K-SVD dictionary performed
even worse than when using larger patches and larger number of atoms in the training phase.

8FoE webpage
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Table 7.1.1: Inpainting results in terms of the SSIM metric for the complete bases learned on
patches of size 16×16 pixels.

ICA K-SVD DCT Symmlet 4
wavelet

MCA FoE

Fig. 7.1.4a 0.907 ±
0.0008

0.905 ±
0.001

0.75 ±
0.0008

0.736 ±
0.0022

0.789 0.92

Fig. 7.1.4b 0.76 ±
0.0016

0.749 ±
0.0012

0.55 ±
0.0015

0.503 ±
0.0015

0.682 0.77

Fig. 7.1.4c 0.773 ±
0.0007

0.766 ±
0.0011

0.617 ±
0.0011

0.562±0.003 0.644 0.78

Fig. 7.1.4d 0.944 ±
0.0005

0.94 ±
0.0004

0.81 ±
0.0007

0.81±0.0017 0.854 0.95

Fig. 7.1.4e 0.6 ±
0.002

0.577 ±
0.0015

0.434 ±
0.0015

0.35±0.0022 0.491 0.6

Fig. 7.1.4f 0.919 ±
0.0006

0.917 ±
0.0005

0.84 ±
0.0003

0.812 ±
0.0009

0.852 0.92

Mean 0.817 ±
0.001

0.809 ±
0.0009

0.666 ±
0.0008

0.63±0.002 0.719 0.824

Figure 7.1.5: Comparison of t-coherence of ICA and K-SVD learned bases as a function of t.
For a given t, 0 ≤ t < 1 , t-coherence of a matrix is defined as the mean value of all absolute
normalized inner products between different columns of the matrix that are above or equal to
t. For t→ 1, t-coherence approaches a mutual coherence measure which is defined as maximal
absolute normalized inner product between the columns of a matrix.

Figure 7.1.6 shows degraded and reconstructed versions of two images from the validation
set, whereupon 80 percent of pixels were removed randomly from each image. Images re-
constructed using fixed dictionary are not shown because they are inferior. Table 7.1.4 shows
detailed results of inpainting for learned overcomplete bases in term of the SSIM values, while
Table 7.1.5 shows corresponding PSNR values. Both bases were twice overcomplete, i.e. of
the size 256× 512. Again, for comparison, in Table 7.1.6 we also show results obtained with
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Table 7.1.2: Inpainting results in terms of the PSNR metric for the complete bases learned on
patches of size 16×16 pixels. The values are in dB.

ICA K-SVD DCT Symmlet 4
wavelet

MCA FoE

Fig. 7.1.4a 30.2 ±
0.07

30.2 ±
0.08

25.4 ±
0.02

23.4±0.1 27.1 30.9

Fig. 7.1.4b 24.4 ±
0.04

24.1 ±
0.04

21.6 ±
0.02

19.8±0.03 23.6 24.7

Fig. 7.1.4c 29.7 ±
0.01

29.3 ±
0.02

27.1 ±
0.02

25.6±0.05 27.6 29.8

Fig. 7.1.4d 34.3 ±
0.08

34.4 ±
0.06

28.4 ±
0.05

27±0.1 30.3 35.5

Fig. 7.1.4e 19.5 ±
0.03

18.8 ±
0.03

18.2 ±
0.01

16±0.01 18.4 19.5

Fig. 7.1.4f 33.4 ±
0.09

32.9 ±
0.07

30.5 ±
0.02

28.6±0.09 30.7 33.1

Mean 28.6 ±
0.05

28.3 ±
0.05

25.2 ±
0.03

23.4±0.07 26.3 28.9

Table 7.1.3: Inpainting results in terms of the SSIM metric for the complete bases learned on
patches of size 8×8 pixels.

ICA K-SVD
Fig. 7.1.4a 0.9±0.002 0.9±0.0007
Fig. 7.1.4b 0.75±0.003 0.74±0.0016
Fig. 7.1.4c 0.77±0.001 0.76±0.0012
Fig. 7.1.4d 0.936±0.0004 0.935±0.0007
Fig. 7.1.4e 0.58±0.004 0.575±0.0015
Fig. 7.1.4f 0.91±0.001 0.914±0.0008

Mean 0.809±0.002 0.804±0.0011

bases learned on patches with the size of 8×8 pixels, wherein number of atoms used in K-SVD
training was 4. It can be seen that smaller patches and smaller number of atoms in the K-SVD
training phase did not bring performance improvement. It can be seen from the Table 7.1.4 and
Table 7.1.5 that the ICA dictionary again outperformed the K-SVD learned dictionary. It is also
clear that the use of overcomplete bases did not make significant performance improvement
with respect to the complete case, which seems to be consistent with the conclusion already
presented in [65] in the speech coding problem.

It should be said that the K-SVD algorithm is designed to minimize the mean squared error
(MSE) of the representation, and thus does not necessarily give good performance in terms of
the SSIM. The authors in [73] themselves noted that using some metric other than the MSE in
the K-SVD could be an interesting direction to study. However, such extensions of the K-SVD
are not straightforward.
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Table 7.1.4: Inpainting results in terms of the SSIM metric for the two times overcomplete bases
(256×512) learned on patches of size 16×16 pixels.

ICA K-SVD
Fig. 7.1.4a 0.907±0.0005 0.903±0.0011
Fig. 7.1.4b 0.76±0.0008 0.754±0.0011
Fig. 7.1.4c 0.773±0.0011 0.772±0.001
Fig. 7.1.4d 0.944±0.0004 0.94±0.0004
Fig. 7.1.4e 0.6±0.0009 0.596±0.0014
Fig. 7.1.4f 0.919±0.0005 0.918±0.0005

Mean 0.817±0.0007 0.814±0.0009

Table 7.1.5: Inpainting results in terms of the PSNR metric for the two times overcomplete
bases (256×512) learned on patches of size 16×16 pixels. The values are in dB.

ICA K-SVD
Fig. 7.1.4a 30.2±0.06 30±0.1
Fig. 7.1.4b 24.5±0.03 24.3±0.03
Fig. 7.1.4c 29.7±0.03 29.6±0.02
Fig. 7.1.4d 34.4±0.06 34.1±0.06
Fig. 7.1.4e 19.5±0.03 19.3±0.02
Fig. 7.1.4f 33.3±0.09 33.2±0.05

Mean 28.6±0.05 28.4±0.05

Table 7.1.6: Inpainting results in terms of the SSIM metric for the two times overcomplete bases
(256×512) learned on patches of size 8×8 pixels.

ICA K-SVD
Fig. 7.1.4a 0.899±0.0006 0.896±0.0013
Fig. 7.1.4b 0.745±0.0013 0.74±0.0011
Fig. 7.1.4c 0.765±0.0007 0.765±0.0011
Fig. 7.1.4d 0.936±0.0006 0.931±0.0004
Fig. 7.1.4e 0.593±0.0016 0.59±0.0017
Fig. 7.1.4f 0.915±0.0006 0.915±0.0004

Mean 0.809±0.0009 0.807±0.001
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Figure 7.1.6: Examples of two images from the validation set with 80 percent of missing pix-
els: a) and b). Inpainting of two degraded images using ICA learned dictionary: c) and d).
Inpainting of two degraded images using K-SVD learned dictionary: e) and f).

We also include the results of the inpainting experiments with stronger structure of missing
pixels, namely lines, blocks and text. We have modified the patch based algorithm presented
above for the case when missing regions are larger than the used patch size: only patches that
overlap with the missing region and have ratio of known pixels greater than the predefined
threshold are inpainted; after the whole image is processed, this procedure is repeated. Simi-
lar iterative approaches were used in [45, 46]. Threshold of 0.8 was used in our experiments.
Table 7.1.7 shows the results of inpainting, using the ICA and K-SVD bases, where missing pix-
els have block structure. The ICA dictionary again performed better compared to the K-SVD.
Figure 7.1.7 shows two degraded and reconstructed images from the validation set, whereupon
images are corrupted by the block pattern of missing pixels. It can be seen that the inpainted
regions are blurry, but this is a known effect when large missing regions are being inpainted
(for an example, see [29]). Figure 7.1.8 shows another, often used example. It should be noted
that our heuristic approach in this case can not compete with more specialized methods like
[46, 92]. Table 7.1.8 shows the results of inpainting of images corrupted by the line structures.
Figure 7.1.9 shows two degraded and reconstructed images from the validation set, whereupon
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images are corrupted by the lines pattern of missing pixels. Figure 7.1.10 shows another often
used example. We also show the results of text inpainting in Figure 7.1.11 (the images and
the corresponding masks were taken from9). These examples should illustrate that ICA-based
approach to dictionary learning performs reasonably well on realistic inpainting problems.

Figure 7.1.7: Examples of two images from the validation set with the block pattern of missing
pixels: a) and b). Inpainting of two degraded images using ICA learned dictionary: c) and d).

Figure 7.1.8: a) The Barbara image corrupted by the block structure of missing pixels. b)
Inpainting using ICA learned dictionary.

9http://www.dtic.upf.edu/∼mbertalmio/restoration0.html
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Table 7.1.7: Inpainting results in terms of the SSIM metric for the block pattern of missing
pixels.

initial ICA K-SVD
Fig. 7.1.4a 0.9284 0.9746 0.963
Fig. 7.1.4b 0.9303 0.9658 0.9488
Fig. 7.1.4c 0.9254 0.9689 0.9554
Fig. 7.1.4d 0.9265 0.9775 0.97
Fig. 7.1.4e 0.9337 0.9545 0.942
Fig. 7.1.4f 0.9205 0.9885 0.98

Mean 0.927 0.9716 0.96

Table 7.1.8: Inpainting results in terms of the SSIM metric for the lines pattern of missing
pixels.

initial ICA K-SVD
Fig. 7.1.4a 0.939 0.997 0.9965
Fig. 7.1.4b 0.9439 0.9935 0.9887
Fig. 7.1.4c 0.935 0.9943 0.9913
Fig. 7.1.4d 0.935 0.9982 0.9983
Fig. 7.1.4e 0.952 0.9895 0.9825
Fig. 7.1.4f 0.924 0.9975 0.9964

Mean 0.938 0.995 0.9923

7.1.3 Extension to color images

The presented approach to image inpainting can be extended to color images. An (RGB) color
image is a 3D-tensor, with every pixel being a vector whose components specify the color of
the pixel. The RGB color space is the most often used color space for color images. However,
some other color space (like YCbCr) could also be used. Here we restrict ourselves to RGB
images. The simplest approach to inpainting of color images would be to process every color
channel (R, G and B in the case of RGB images) separately. However, we show later that it
leads to (severe) color artifacts in the reconstructed image, which degrades its visual quality.
Therefore, here we present a method in which every 3D-patch of a color image is vectorized
(that is, color channels are not processed separately) and processed in a ‘grayscale-like’ way.
This approach yields results comparable to state-of-the-art, as presented in this subsection.

Before presenting the results, we describe another possible approach to color image inpaint-
ing. An RGB image is a 3D tensor. Therefore, color image inpainting is basically a tensor

completion problem [39]. One approach to solve it is based on minimization of the trace norm
of the matricized tensor [39, 101, 69]. Nuclear norm, which is defined as the sum of the sin-
gular values of a matrix, is the tightest convex lower bound of the matrix rank on the set of
matrices {Y : ‖Y‖2 ≤ 1}. Because of its convexity, it is often used as an approximation of the
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Figure 7.1.9: Examples of two images from the validation set with the lines pattern of missing
pixels: a) and b). Inpainting of two degraded images using ICA learned dictionary: c) and d).

Figure 7.1.10: a) The Girls image. b) Inpainting using ICA learned dictionary.

matrix rank. Hence, the nuclear norm heuristic for tensor completion assumes that a tensor
unfolded (matricized) in the selected mode (‘dimension’) is of low-rank. However, fulfillment
of the low-rank asumption is data dependent and fails in some applications. When it comes to
RGB images, experimental checking demonstrates that the rank of a matricized tensor in each
of the three modes mostly equals tensor dimension in that mode. Thus, for RGB color images,
low-rank assumption is rarely satisfied. Moreover, it has been demonstrated [95] that the nu-
clear norm minimization problem can have multiple solutions (i.e., the solution is generally not
unique). As shown in [95], the nuclear norm minimization fails to recover a color image dam-
aged by a thick line pattern of missing pixels. Therefore, the nuclear norm heuristic is generally
not applicable to the color image inpainting problem.

The dictionary for color image patches was learned on a generic database of natural images. The
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Figure 7.1.11: Inpainting for text removal. a) Image with text. b) Inpainting using ICA learned
dictionary.

Figure 7.1.12: Training set of color images

23 images used for training are shown in Figure 7.1.12. The patch size was
√

l×
√

l×3, where√
l = 8, i.e. l = 64. Around 3000 patches were extracted from every image in the training set,

wherein patches with small variance were not used for training. Vectorized 3-D patches were
stacked as columns in a matrix S ∈ R3l×T , where T is the number of extracted color patches.
The color patches need to be pre-processed in a different way than for grayscale image patches.
Namely, it is important that the average colors are taken into account. More precisely, for
color image patches it is important that the patches are not centered before dictionary learning.
Otherwise, color artifacts appear in the reconstructed image. The rest of the dictionary learning
process is performed in the same way as for grayscale images. Namely, we used ICA for
dictionary learning, with the same parameters as for grayscale images. We note that gauss

nonlinearity (2.2.25) can also be used, yielding similar (almost the same) results faster. Learned
dictionary atoms are shown in Figure 7.1.13.

When inpainting images with missing (color) pixels, again it is important not to center the
patches with missing pixels, since centering results in color artifacts. This simple approach
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Figure 7.1.13: Learned color dictionary atoms

works (surprisingly) well for color images. This is in contrast to (complex) modifications
introduced in K-SVD-like color image inpainting/denoising procedure described in [73]. In
Figure 7.1.14 an example is presented. This image was also used in the paper [73] in an exam-
ple of color image inpainting performance of their method. They obtained 29.65 dB of PSNR,
while the method described here achieves performance of 29.36 dB (average over 5 runs, see
Figure 7.1.14c for a representative inpainting result). Therefore, it can be seen that the (sim-
ple) method described here achieves a result comparable to the one obtained with the more
specialized method of [73].

Figure 7.1.14: Color image inpainting example. a) Original image. b) Image with 80 percent
pixels missing. c) Inpainting result.

Figure 7.1.15 shows the result achieved by inpainting every channel of the image separately (in
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grayscale-like manner). It is clear that the resulting image is of bad quality because of color
artifacts.

Figure 7.1.15: The result of inpainting every channel separately. Obtained image is obviously
of poor quality because of color artifacts.

The results presented in this subsection were published in [35].

7.1.4 Comparison with kernel regression method(s)

In Section 6.1.3 in Chapter 6 an effective nonlinear filtering method which uses kernel regres-

sion was reviewed. Here we present inpainting results obtained by using one variant of kernel
regression, and compare them to the results obtained using the learned dictionary-based inpaint-
ing, described in Section 7.1.2.

Firstly, we describe kernel-regression-based inpainting in more detail (again, see [99]). The
kernel used (see (6.1.7)) is of the form

Kadapt (xi−x,yi− y) = KHsteer
i

(xi−x) ,

wherein Hi are data-dependent (so called steering) matrices. In other words, the kernel K is
local since it does not take into account the pixel values yi,y, but only spatial distance from the
center point xi. The steering matrices Hi are of the form

Hsteer
i = hµiC

− 1
2

i ,

where Ci are covariance matrices estimated based on the differences in local pixels’ values, µi is
the scalar that captures the local density of data samples and can be set to 1, and h is the global
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smoothing parameter. The steering kernel KHsteer
i

is selected as the Gaussian kernel centered at
xi and with Ci as the covariance matrix. Ci are estimated as follows. The local gradient matrix
Gi is defined as

Gi =


...

...
z1
(
x j
)

z2
(
x j
)

...
...

= UiSiVT
i ,

where x j ∈ wi are coordinates of a pixel in the local analysis window wi (in other words, wi is
the set of coordinates of pixels neighbouring xi), while z1 (·) and z2 (·) are the first derivatives
along horizontal and vertical directions. UiSiVT

i is the truncated singular value decomposition
of Gi, wherein Si is the 2×2 diagonal matrix representing the energy in dominant directions. Gi

is estimated from the data. The right singular vector corresponding to the smaller singular value
should point in the dominant direction of the local gradient field. If we define θi = arctan

(
ν1
ν2

)
,

where v2 = [ν1,ν2]
T is the second column of Vi, and σi =

s1+λ ′

s2+λ ′ , wherein s1, s2 are diagonal
elements of Si and λ ′ ≥ 0 is a regularization parameter, the covariance matrix Ci should be set
to

Ci = γiUθiΛiUT
θi
,

Uθi =

[
cosθi sinθi

−sinθi cosθi

]
,

Λi =

[
σi 0
0 σ

−1
i

]
.

γi is the scaling parameter of the kernel. In [99] it was suggested to set γi to

γi =

(
s1s2 +λ ′′

M

) 1
2

,

where λ ′′ is a regularization parameter (which prevents γi from becoming zero), and M is the
number of samples (pixels) in the local analysis window wi. This choice of the scaling parameter
makes the kernel area larger in flat areas and smaller in textured areas (areas with edges). Notice
that the procedure described above to construct the covariance matrix from the data is equivalent
to applying PCA to the set of local image gradients.

It was suggested in [99] to apply the procedure of the previous paragraph iteratively. They
demonstrate that the method is most effective when the output of one iteration (less noisy image)
is used to estimate the new parameters of the kernel.

We tested this method on two widely used images, shown in Figure 7.1.16: Lena and Boat.
These two images were also used to compare the inpainting result with the results obtained
using a modified median filters, presented in Section 7.2.1. Although these filters are used for
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salt-and-pepper denoising, the results can be compared with inpainting since these two prob-
lems (inpainting and removal of salt-and-pepper noise) are very similar. The code for kernel-
regression-based image reconstruction was downloaded from10.

Figure 7.1.16: Images used for comparison. a) Lena image. b) Boat image.

All reported results in terms of the PSNR (in dB) are obtained as the mean over 3 realizations
of spatial distribution of missing pixels, generated randomly. Results are very similar for dif-
ferent random masks (the difference in peak SNR is less than 0.5 dB). More realizations of
missing pixels’ spatial distribution can be used, but it turns out empirically that it is not neces-
sary. The images were damaged by removing 70 and/or 90 percent of pixels randomly. Firstly,
Lena image was damaged by removing 70 percent of pixels. The inpainting result using the
ICA-learned dictionary was 31.89 dB and 31.74 dB for steering kernel regression described
previously. The results of removal of salt-and-pepper noise using two versions of modified
median filters were 24.3 and 29.72 dB, see Section 7.2.1 for more details. For 90 percent of
missing pixels, the inpainting method that uses ICA-learned dictionary achieved 27.164 dB and
kernel regression 27.168 dB. Median-filter-based method, reviewed in Section 7.2.1, performed
much worse. For Boat image, with 70 percent of missing pixels, ICA-learned dictionary-based
method achieved 29.59 dB, and kernel regression 28.685 dB . The parameters used for kernel
regression in all examples were as follows. The size of the local analysis window was 9× 9
pixels, the regularization parameter λ ′ above was set to 1, and the global smoothing parameter
h was set to 2.3 (which is the default value in the toolbox10). These few examples show that
ICA-learned-dictionary-based inpainting performs comparably or little better than the kernel
regression method.

7.2 Removal of salt-and-pepper noise

Presented approach to image inpainting can also be used for the image denoising purpose when
image is corrupted by additive impulsive noise such as salt and pepper noise. All pixels with

10kernel regression toolbox
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maximal intensity in the given resolution (when salt noise is considered) or with zero inten-
sity (when pepper noise is considered) are declared as missing. Due to the high efficiency of
nonlinear image reconstruction methods and the learned dictionary that provides sparse repre-
sentation of an image, the small amount of correct pixels that is possibly mistakenly declared
as corrupted will not significantly influence the quality of denoising. Yet, such noise corrupted
pixel detection scheme is very simple. Impulsive noise belongs to the class of alpha stable
processes, has infinite variance and is, in some sense (see Chapter 6), optimally filtered out
by means of myriad filters, [5], [43]. In the comparative performance analysis presented be-
low we have used two-dimensional myriad filter with the sliding window of size 5× 5 pixels.
Larger window would filter out impulsive noise better, but would also cause a loss of details
in filtered image. We refer the interested reader to ref. [5], page 337, for other details related
to parameter settings for myriad filtering based denoising of grayscale images. Figure 7.2.1a
and Figure 7.2.1b show an image chosen from the validation set and corrupted with impulsive
noise. Corrupted pixels were selected randomly to respectively occupy 5 and 20 percent of the
image. Denoising results obtained by myriad filtering are respectively shown in Figure 7.2.1c
and Figure 7.2.1d, while denoising results obtained by inpainting in ICA learned dictionary are
shown in Figure 7.2.1e and Figure 7.2.1f. It can be seen that myriad filtering failed to denoise
the image well, especially when 20 percent of the image pixels were corrupted. On the con-
trary, quality of visual perception of the image denoised through inpainting approach with the
ICA learned dictionary is very good. Numerical results for all six images from the validation
set are shown in Table 7.2.1 and Table 7.2.2 for the corruption level of 5 and 20 percent re-
spectively. It is evident that denoising using myriad filtering becomes very poor when higher
percentage of the pixels is corrupted. On the contrary, denoising based on inpainting approach
with learned dictionary remains robust even when as much as 80 percent of the pixels are cor-
rupted, see Figure 7.2.1. Obtained results are explained by the fact that filtering is trying to
smoothen the image corrupted by additive impulsive noise, while, on the other hand, inpainting
is based on nonlinear signal reconstruction approach whereupon pixels corrupted by additive
noise are treated as missing pixels. Hence, provided that the learned dictionary yields sparse
representation of the image, good reconstruction is possible even when a large number of pixels
is corrupted. In the filtering approach, this requires a smoothing window with a large support
that causes severe loss of details in the image.

7.2.1 Comparison with new, modified versions of median-filter based
approaches to salt-and-pepper noise removal

Several modifications of basic median filters for image denoising were proposed in recent papers
[32, 70]. The modified decision-based unsymmetric trimmed median filter proposed in [32]
proceeds roughly as follows. An image is processed as usually, in raster-scan order. We assume
that values of image pixels are in the range [0,255] (8-bit image). If the pixel value is different
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Figure 7.2.1: Examples of noisy image from the validation set with 5 and 20 percent of cor-
rupted pixels, respectively: a) and b). Denoising using two-dimensional myriad filtering with
the sliding window of size 5×5 pixels: c) and d). Denoising using inpainting and ICA learned
dictionary: e) and f).

from 0 and 255, the pixel is classified as clean. Otherwise, a window is selected around the
current pixel (usually, 3× 3, 5× 5 or 7× 7 window). Two cases are possible. If all values
in the current window are 0-s and 255-s, the pixel value is replaced with the mean value of
all pixels in the window. Otherwise, 0-s and 255-s are eliminated from the window, and pixel
value is set to the median of the remaining values. This modified median filter performs much
better than ordinary medians when the level of noise is high. However, it is still inferior to
learned-dictionary-based inpainting. See the end of this subsection for the results.

Another modification was introduced in paper [70]. Namely, the authors proposed to introduce
a directional-weighting into the median filtering. Their approach proceeds as follows. In every
local window around the given pixel, absolute differences between the center pixel xi, j and its
neighbours xi+∆i, j+∆ j are computed:

d(k)
i, j = ∑

∆i
∑
∆ j

w∆i,∆ j
∣∣xi+∆i, j+∆ j− xi, j

∣∣ ,
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Table 7.2.1: Denoising results in terms of the SSIM metric when 5 percent of pixels were
corrupted by impulsive noise.

ICA Myriad filtering
Fig. 7.1.4a 0.998 0.873
Fig. 7.1.4b 0.983 0.93
Fig. 7.1.4c 0.986 0.865
Fig. 7.1.4d 0.999 0.909
Fig. 7.1.4e 0.871 0.854
Fig. 7.1.4f 0.998 0.771

Mean 0.973 0.867

Table 7.2.2: Denoising results in terms of SSIM metric when 20 percent of pixels were cor-
rupted by impulsive noise.

ICA Myriad filtering
Fig. 7.1.4a 0.991 0.643
Fig. 7.1.4b 0.977 0.691
Fig. 7.1.4c 0.974 0.569
Fig. 7.1.4d 0.997 0.674
Fig. 7.1.4e 0.916 0.743
Fig. 7.1.4f 0.993 0.287

Mean 0.975 0.601

where k denotes the direction index, and 1 ≤ k ≤ 12 (i.e., there are 12 directions). The sets of
horizontal (∆i) and vertical (∆ j) offsets in the above sums depend on the given direction index
(see paper for details). In order to detect an edge in an image, the direction with minimum sum
is selected:

k∗ = argmin
k

{
d(k)

i, j : 1≤ k ≤ 12
}
.

The pixel can be declared as noisy if d(k∗)
i, j > T , for a given threshold T (this is true both for

edges and flat regions). If the pixel is declared as noisy, it is replaced by the trimmed median
of the values in the current window (again, values 0 and 255 are excluded when calculating
the median). The procedure can be repeated after the whole image is processed, by decreasing
the value of the threshold T . T is set to large value initially (the authors suggest initial value
T ≈ 500 for 8-bit images) and decreased by T ← cT , where c < 1 (for example, c = 0.8). This
approach yields better results than [32] since the edges are better preserved. However, learned-
dictionary-based approach still performs (much) better. Namely, again we use the two images
from Figure 7.1.16 for comparison. For Lena image (Figure 7.1.16a) with 70 percent pixels
missing, the method [32] achieves 24.3 dB, while the method [70] achieves 29.72 dB. Still,
we have seen in Section 7.1.4 that ICA-learned-dictionary-based approach performs around
31.8 dB, which is significantly better than median-filter-based approach [70]. For Boat image
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with 70 percent missing pixels, the method [70] achieves 26.58 dB, while we have seen that
learned-dictionary-based approach performs about 29.5 dB, which is much better. It is obvious
that median filtering approach is inferior to learned-dictionary-based approaches and even more
advanced nonlinear filtering approaches like kernel regression (see Section 7.1.4).

7.2.2 Discussion

The inherent trade-off when using median and myriad filters is between better removal of out-
liers (noisy pixels) and image blurring. Some degree of blurring is unavoidable because of the
low-pass nature of median and myriad filters, which is needed to remove high-frequency impul-
sive noise. On the other hand, the concept of (approximate) sparsity in a dictionary is based on
the underlying structure of images, i.e. image patches. This enables recovery even when large
number of image pixels is corrupted, i.e. missing. The modified decision-based unsymmetric
trimmed median filter proposed in [32] is good at discarding outliers (impulse noise-corrupted
pixels), however it estimates pixel value based on the (uncorrupted) values in the neighbour-
hood, which can be only few. Dictionary atoms contain basic structure learned from many
patches from training images. Therefore, dictionary-based inpainting/denoising is in this sense
non-local, which enables excellent reconstruction from only small number of samples (pixels).
The locality of median filters is one of the reasons for their inferior performance. Median filters
are better tailored to problems with some other type of impulse noise, different from salt-and-
pepper. Namely, it is then very hard to determine which pixels are noise-corrupted, and which
are not. Therefore, the inpainting-based approach to denoising would have problems in that
case. Here, we restricted ourselves only to inpainting and removal of salt-and-pepper noise.

7.3 Feature extraction in proteomics and genomics

In this section we describe one application of sparsity-regularized under-determined source
separation methods in bioinformatics. Namely, bioinformatics data analysis is often based on
the use of a linear mixture model of a sample, wherein the mixture is composed of compo-
nents that are generated by the unknown number of sources. For example, components can
be generated during disease progression that causes cancerous cells to produce proteins and/or
other molecules that can serve as an early indicators (‘biomarkers’) representing disease-related
chemical entities. Source separation methods enable extraction of individual components (or
groups of individual components) from their mixtures. However, source separation is generally
an unsupervised technique, meaning that it is not clear which of the extracted components needs
to be retained for further analysis. Namely, the goal of source separation in bioinfomatics is the
extraction of features/components that can later be used for disease prediction or retained for
biomarker identification. Many approaches to feature extraction in bioinformatics have been
proposed in the literature. We review some of them in Section 7.3.1. In Section 7.3.2, the
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description of the method published in [60] is presented. Results are presented in Section 7.3.3.

7.3.1 Overview of the literature

In [48], a matrix factorization approach to the classification of infrared spectra is proposed that
takes into account class labels. In other words, feature extraction and classification stages are
unified. Thus, this concept is classifier specific. It is formulated as the multiclass assignment
problem where the number of components equals the number of classes and must be smaller
than the number of samples available. In [2], gene expression profile is modelled as a linear su-
perposition of three components comprised of up-regulated, down-regulated and differentially
not expressed genes, whereas existence of two fixed thresholds is assumed to enable a deci-
sion to which of the three components the particular gene belongs. The thresholds are defined
heuristically and in each specific case the optimal value must be obtained by cross-validation.
Moreover, the upper threshold cu and the lower one cl are mutually related through cu =

1
cl

. As
opposed to that, the method proposed in [60] and reviewed in Section 7.3.2 decomposes each
sample (experiment) into components comprised of up-regulated, down-regulated and not dif-
ferentially expressed features using data adaptive thresholds. They are based on mixing angles
of an innovative linear mixture model of a sample. The method proposed in [93] uses available
sample labels (the clinical diagnosis of the experiments) to select component(s), extracted by
ICA or nonnegative matrix factorization (NMF), for further analysis. ICA or NMF are used to
factorize the whole dataset simultaneously and one selected component (gene expression mode
for ICA and metagene for NMF) is used for further analysis related to gene marker extraction.
This component cannot be used for classification. Alternatively, basis matrix with labelled col-
umn vectors (for ICA) or row vectors (for NMF) can be used for classification in which case the
test sample needs to be projected onto the space spanned by the column/row vectors, respec-
tively. However, in this case no feature extraction can be performed. As opposed to ICA/NMF
method proposed in [93], the method proposed in [60] extracts disease and control specific
component from each sample separately. Since no label information is used in the selection
process, extracted components can be used for classification and that was the goal in [60]. The
disease specific component can, however, also be retained for further biomarker related analysis
as in [93]. The important difference is that by the method proposed in [60] such component can
be obtained from each sample separately while the method in [93], as well as in [68, 71, 63],
needs the whole dataset. The method [68] uses again ICA (the FastICA algorithm) to factorize
the microarray dataset. Extracted components (gene expression modes) were analyzed to dis-
criminate between those with biological significance and those representing noise. However,
biologically significant components can be used for further gene marker related analysis but
not for classification. The reason is that, as in [93], the whole dataset composed of case and
control samples is reduced to several biologically interesting components only. In the extreme
case it can happen that there is only one such component. In [71] ICA is used to decompose
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the whole dataset into components (gene expression modes). As in [93, 68], these components
cannot be used for classification. They are used for further decomposition into submodes to
identify a regulating network in the problem considered there. We want to emphasize that the
component selected as disease specific by the method proposed in [60] can also be interpreted
as a sub-mode and used for the similar type of analysis. However, since it is extracted from
an individual and labelled sample, it can be used for classification as well. The method in [63]
again uses ICA to extract components (gene expression modes). Similarly, as in [93, 68, 71],
these components are not used for classification. Instead, they are further analyzed by data clus-
tering to determine biological relevance and extract gene markers. Similar types of comments
as those discussed in relation to [93, 68, 71, 63] can also be raised to other methods that use
either ICA or NMF to extract components from the whole dataset, [96, 20, 17, 40, 58]. Hence,
although related to component selection methods [48, 93, 68, 71, 63], the method proposed in
[60] is dissimilar to all of them by the fact that it extracts the most interesting components on
a sample (experiment)-by-sample basis. To achieve this, the linear mixture model (LMM) used
for components extraction is composed of a test sample and a reference sample representing
control and/or case group. Hence, a test sample is, in principle, associated with two LMMs.
Each LMM describes a sample as an additive mixture of two or more components. Two of them
are selected automatically (no thresholds need to be predefined) as case (disease) and control
specific, while the rest are considered neutral i.e. not differentially expressed. Decomposition
of each LMM is enabled by enforcing sparseness constraint on the components to be extracted.
This implies that each feature (m/z ratio or a gene) belongs to two components at most (disease
and neutral, or control and neutral). The model formally presumes that disease specific features
are present in the prevailing concentration in disease samples as well as that control specific
features are present in prevailing concentration in control samples. However, the features do
not have to be expressed equally strong across the whole dataset in order to be selected as a
part of disease or case specific components. It is this way due to the fact that decomposition is
performed locally (on a sample-by-sample basis). This should prevent losing some important
features for classification. Accordingly, the level of expression of indifferent features can also
vary between the samples. Thus, postulating one or more components with indifferent features
enables their removal that is sample adaptive. As opposed to that, existing methods try to op-
timize a single threshold for the whole dataset. Geometric interpretation of the LMM based
on a reference sample enables automatic selection of disease and control specific components,
without using label information. Hence, the selected components can be further used for dis-
ease prediction. By postulating existence of one or more components with differentially not
expressed features, the complexity of the selected components can be controlled, whereas the
overall number of components is selected by cross-validation. Although the feature selection is
the main goal of the presented method, component extracted from the sample as disease specific
can also be interpreted as a sub-mode as in [93, 68]. Thus, it can be used for further biomarker
identification related analysis. We see the linearity of the model used to describe a sample as a

95



7.3. Feature extraction in proteomics and genomics

potential limitation of a proposed method. Although linear models dominate in bioinformatics,
it has been discussed in [63] that nonlinear models might be more accurate description of bio-
logical processes. Assumption of an availability of a reference sample might also be seen as a
potential weakness. Yet, we have demonstrated that, in the absence of expert information, the
reference sample can be obtained by a simple average of all the samples within the same class.
The proposed method is demonstrated in Section 7.3.3 on the experimental datasets related to a
prediction of ovarian, prostate and colon cancers from protein and gene expression profiles.

7.3.2 Description of the method

Let us suppose that xcontrol ∈ Rn and xdisease ∈ Rn are two protein or gene expression levels of
given samples from a healthy and ill patient, respectively. The elements of a sample are referred
to as features (mass/charge (m/z) ratios in the case of protein expression profiles, i.e. genes in
the case of gene expression profiles/samples). Figure 7.3.1 shows mass spectrum (a) and gene
expression levels (b) of typical samples.

Figure 7.3.1: (a) Protein mass spectrum of a typical sample from the ovarian cancer dataset (see
Section 7.3.3) and (b) gene expression levels of a typical sample from the colon cancer dataset
(again, see Section 7.3.3).

For a sample x ∈ Rn under consideration, belonging to a test group of samples, we assume the
following two linear models:[

xT
control

xT

]
= AcontrolScontrol (7.3.1)

and [
xT

disease

xT

]
= AdiseaseSdisease, (7.3.2)

where Acontrol ∈R2×M and Adisease ∈R2×M denote the mixing matrices whose coefficients rep-
resent relative amounts of concentration (therefore, the columns of A are referred to as relative
concentration profiles, or concentration vectors) at which related rows of Scontrol and Sdisease,
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which represent underlying ‘components’, are present in the mixture samples x, xcontrol and
xdisease. The number of components M is supposed to be ≥ 2. The rows of the source ma-
trices Scontrol and Sdisease are interpreted as components comprised of disease-specific, con-

trol-(healthy) specific and differentially not expressed (indifferent) features. Depending on the
postulated number of components M, different number of indifferent components is assumed.
Importance of postulating components with indifferent features is to obtain less complex disease
and control specific components used for classification. Components with indifferent features
absorb features that do not vary substantially across the sample population. These features are
removed automatically from components comprised of disease- and control-specific features.
Figure 7.3.2 nicely illustrates that an increased number of indifferent components yields less
complex disease-specific components than when using smaller M. Therefore, by the principle
of parsimony, larger M should be preferred since it yields less complex components.

Figure 7.3.2: Colon cancer feature vectors. Components containing disease-specific genes ex-
tracted from a cancerous sample with respect to a control reference sample using LMM (7.3.1):
a) assumed number of components M = 2; b) assumed number of components M = 4.

The underlying assumption in the above models is that disease-specific, i.e. control-specific
components are present in prevailing concentration in control- and disease-specific samples
xcontrol and xdisease, respectively. Likewise, it is assumed that control-, i.e. disease-specific
components are present in minor concentrations in disease-, i.e. control-specific samples, re-
spectively. Features that are not differentially expressed are assumed to be present in similar
concentrations in both disease-specific and control-specific samples. The next crucial assump-
tion in models (7.3.1) and (7.3.2) is that at most two components of S are active at the same
time at the specific feature point (i.e., column of S). Therefore, the source matrices Scontrol

and Sdisease are (relatively) sparse, and sparse component analysis methods can be used for the
estimation of the above mixing models.

Mixing matrix estimation technique described in Chapter 2,
Section 2.3.1 can be used to estimate Acontrol and Adisease. Namely, it is supposed that there
exists a complex transformation of rows of matrices Scontrol and Sdisease such that there is at
least one point (corresponding to a column of the transformed source matrix), “single-source
point”, at which only one (transformed) component is active, i.e. different from zero, and that is
true for all components. In the experiments reported in Section 7.3.3, the analytic continuation

was used to obtain complex representation of real data. The analytic continuation of a vector
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x ∈ RM, denoted as xa, is defined as xa = x+
√
−1xi, where xi denotes Hilbert transform of

x. Hilbert transform of a vector x is defined as an inverse transformation of a discrete Fourier
transform xf of x, wherein coefficients of xf that correspond to negative frequencies are set to
zero. Finding the single-source points enables simple estimation of mixing matrix by clustering,
as explained in Section 2.3.1. Of course, there are no exact single-source points because of the
non-exactness of the model, but it is enough to find single-dominant points to enable approx-
imate estimation of the mixing matrix. Single-dominant points (columns of the transformed
source matrix) are defined as those whose real and imaginary parts (which are vectors) are
within some predefined angle (let us denote it by ∆θ ). ∆θ can be set to 1%, 3% or even larger,
depending on the number of points that satisfy this criterion of closeness of real and imaginary
parts. In real-world datasets, ∆θ often has to be set to a value larger than zero because of the
non-exactness of the linear model and non-existence of exact single-source points. It should be
emphasized that the transformation to complex domain is only for the mixing matrix estimation

purpose. After the mixing matrix has been estimated, source matrices Scontrol and Sdisease are
found from the original (not transformed) samples.

After estimating the mixing matrix, source matrices Scontrol and Sdisease are found by sparse
recovery methods. Let us denote by Âcontrol and Âdisease the approximations of the mixing
matrices. The approximations of the source matrices are found by

Ŝcontrol = argminS

1
2

∥∥∥∥∥ÂcontrolS−

[
xT

control

xT

]∥∥∥∥∥
2

F

+

+λ ‖S‖1}

(7.3.3)

and

Ŝdisease = argminS

1
2

∥∥∥∥∥ÂdiseaseS−

[
xT

disease

xT

]∥∥∥∥∥
2

F

+

+λ ‖S‖1}

(7.3.4)

where ‖S‖1 = ∑i ‖si‖1, where si is i-th column of S, and λ is a regularization parameter. The
above minimization problems (7.3.3) and (7.3.4) are convex optimization problems (more pre-
cisely, `1-regularized least squares problems) and can be solved by one of many specialized
methods. In [60], the iterative soft thresholding (IST) algorithm described in [8] was used, for
the following reasons. Although the above minimization problems can be written as a sequence
of independent vector optimization problems, it is impractical to solve them one by one since
the number of features (columns of S) is usually (very) large. Namely, in bioinformatics prob-
lems the number of features is usually of the order of thousands or tens of thousands. The IST
algorithm is the first-order algorithm for sparse reconstruction, specifically tailored for the prob-
lems of the form (7.3.3) and (7.3.4), that can be easily implemented in ‘batch’ mode. In other
words, instead of solving many independent vector optimization problems one by one, they can
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be solved simultaneously, using matrix-matrix operations in MATLAB. This, together with fast
convergence of the fast IST algorithm presented in [8], makes solving the above optimization
problems (7.3.3) and (7.3.4) very fast.

After estimating the factors of the mixing models (7.3.1) and (7.3.2), it remains to select the
component(s) that will be retained for classification purpose. The following approach was sug-
gested in [60]. Let us look at the model (7.3.1), where the reference sample is control (healthy)
sample. If a current sample x belongs to the control group, it is expected that it contains similar
concentration of control-specific features, whereas related component is postulated to be one
of the rows of Ŝcontrol. Therefore, the control-specific (healthy) component is postulated to be

the one for which the corresponding mixing vector closes the minimal angle with
[

1 0
]T

.
If we assume that the model is a good approximation of reality, this mixing vector (closest to[

1 0
]T

) should in fact be close to
[

1 1
]T

(in the case of a healthy reference and healthy
test sample). Due to biological variability of the samples within the same group (there are no
two equally ‘healthy’ individuals), the similarity (measured by the angle between the mixing

vector and
[

1 0
]T

) between the test sample from control group and control reference sam-
ple will vary on a sample-by-sample basis. This is especially obvious if we take into account
that, in our experiments, reference samples are defined as the mean of the healthy, i.e. cancerous
group of samples. The main assumption in our model is that the control-specific (respectively,
disease-specific) component (feature) should be significantly present in the control (respec-
tively, disease) reference sample. The criterium for the selection of components comprised of
disease- and control-specific features stems directly from this assumption. The extreme (or

close to extreme) case could happen when the vector
[

1 0
]T

(or a vector close to it) is one
of the mixing vectors. That would mean that the corresponding component (with row index the

same as column index of the vector
[

1 0
]T

) is chosen as the control-specific. However, the

case when one of the mixing vectors closes small angle with
[

1 0
]T

happens rarely (in the
case when both the reference and test sample are of the same type (healthy or cancerous)). This
justifies the use of models (7.3.1) and (7.3.2) in practice. Similarly to the previous discussion,

the component whose corresponding mixing vector closes the maximal angle with
[

1 0
]T

is
postulated to be disease-specific.

In complete analogy, the above discussion can be applied when the reference sample is cancer-
ous. The disease-specific component is the one whose corresponding mixing vector closes the

minimal angle with
[

1 0
]T

, while the control-specific is the one whose corresponding mix-

ing vector closes the maximal angle with
[

1 0
]T

. In this way, for every sample, four compo-

nents are selected, which together form four sets of labelled feature vectors
{

scontrol
control ref.;i,yi

}N

i=1
,{

sdisease
control ref.;i,yi

}N

i=1
,
{

sdisease
disease ref.;i,yi

}N

i=1
and

{
scontrol

disease ref.;i,yi

}N

i=1
. Here, yi, for i = 1, . . . ,N, de-

note sample labels (healthy or cancerous). Classifiers can be trained on every set of labelled
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feature vectors, and the classifier with highest accuracy achieved through cross-validation is
retained for disease diagnosis. The component comprised of disease-specific features can also
be retained for further biomarker identification procedure.

The classifier training and cross-validation (CV, see [47]) proceed as follows. Two-fold cross
validation is used. The set of all available samples is divided into two sets, training and test,
with the same number of samples (in the case of even number of samples). Classifier is trained
on the samples from the training set, and is then tested on the test set. This procedure is repeated
certain number of times (100, in our case). The classifier with the highest accuracy over 100
realizations is retained for classification purpose. Accuracy is defined as the average of mean
values of sensitivity and specificity over 100 realizations. Sensitivity of the classifier is defined
as the proportion of diseased samples that are classified as such (diseased), while specficity is
defined as the proportion of healthy samples that are correctly classified as such. The results
obtained with two-fold cross validation are more realistic than with, for example, three- or
ten-fold CV. This is the reason for using two-fold CV in [60]. Three classifiers were tested:
linear support vector machine (SVM, [57]) classifier and nonlinear SVM with gaussian and
polynomial kernels. We refer the reader to the paper [60] for more details which are not directly
connected to the topic of the thesis. In the following, we list the results obtained using the
described method on three experimental datasets.

The presented two-stage SCA-based approach for feature extraction/
component selection is presented in concise form in Algorithm 7.1.

Figure 7.3.3: Geometrical interpretation of the linear mixture model. The figure shows mix-
ing vectors (concentration vectors) of the linear mixture model composed of control reference
sample and a test sample, (7.3.1) and a), i.e. disease reference sample and a test sample, (7.3.2)
and b). Features (m/z ratios or genes) with prevailing concentration in the disease sample are
supposed to be highly expressed in the component associated to the red color mixing vector.
Likewise, features with prevailing concentration in the control sample are suposed to be highly
expressed in the component associated to the blue color mixing vector. Features that are not
differentially expressed are linearly combined into one or more components associated to green
color mixing vectors. The x-axis in a) and b) is associated to the reference sample, while the
y-axis is associated to the test sample.

100



7.3. Feature extraction in proteomics and genomics

Algorithm 7.1 The algorithm for feature extraction/component selection based on the linear
mixture model with a reference
Inputs. {xi ∈ Rn, yi ∈ {−1,1}}N

i=1 pairs of samples and sample labels, where n represents the
number of feature points (m/z ratios or genes); xcontrol and xdisease, representing control and
disease reference samples, respectively.

• Nested two-fold cross-validation (CV). Parameters: single component points
(SCP-s) selection threshold ∆θ ∈

{
π

180 ,
3π

180 ,
5π

180

}
; regularization constant λ ∈{

10−2λmax,10−4λmax,10−6λmax
}

, where λmax denotes the smallest value of the regu-
larization parameter for which the solution of the problem (7.3.3) or (7.3.4) is equal to
zero; the number of components M ∈ {2,3,4,5}; parameters of a selected classifier.

– Components selection from a mixture samples:

1. for every x ∈ {xi ∈ Rn}N
i=1 form a linear mixture models (LMM-s) (7.3.1) and

(7.3.2).
2. For LMM-s (7.3.1) and (7.3.2) select a set of single component points (SCP-s)

for given ∆θ .
3. Use clustering on the sets of SCP-s to estimate the mixing matrices Acontrol and

Adisease for given M.
4. Estimate source matrices Scontrol and Sdisease by solving (7.3.3) and (7.3.4), re-

spectively, for given regularization parameter λ .
5. Using minimal and maximal mixing angles estimated from the obtained ap-

proximations of mixing matrices Acontrol and Adisease, following the logic
illustrated in Figure 7.3.3, select disease- and control-specific components:
sdisease

control ref.;i, scontrol
control ref.;i, scontrol

disease ref.;i, sdisease
disease ref.;i.

– end of components selection.

• end of nested two-fold CV.

7.3.3 Results

7.3.3.1 Ovarian cancer prediction from protein mass spectra

Low resolution surface-enhanced laser desorption ionization time-of-flight (SELDI-TOF) mass
spectra of 100 controls and 100 cases have been used for ovarian cancer prediction study [86].
See also the website of the clinical proteomics program of the National Cancer Institute (NCI)11,
where the used dataset is labelled as “Ovarian 4-3-02”. All spectra were baseline corrected.
Thus, some intensities have negative values. Table 7.3.1 presents the best result obtained by the
proposed SCA based component selection method, together with results obtained for the same
dataset by competing methods reported in cited references as well as by predictive factorization
method proposed in [48].

Described SCA method has been used to extract four sets of components with the overall num-
11National Cancer Institute clinical proteomics program,

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
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Table 7.3.1: Comparative performance results in ovarian cancer prediction. Sensitivities and
specificities were estimated by 100 two-fold cross validations (standard deviations are in brack-
ets)

Method Sensitivity/specificity

Proposed method, M = 3, ∆θ = 5◦, Sensitivity: 96.2(2.7)%; specificity: 93.6(4.1)%;

λ = 10−4λmax, linear SVM accuracy: 94.9%. Control specific component

extracted with respect to a cancer reference sample.

Proposed method, M = 4, ∆θ = 3◦, Sensitivity: 95.4(3)%; specificity: 94(3.7)%;

λ = 10−6λmax, linear SVM accuracy: 94.7%. Control specific component

extracted with respect to a cancer reference sample.

[48] Sensitivity: 81.4(7.1)%; specificity: 71.7(6.6)%

[86] Sensitivity: 100%; specificity: 95%

(one partition only: 50/50 training; 66/50 test)

[6] Accuracy averaged over 10 ten-fold partitions:

98−99% (std: 0.3−0.8)

[66] Sensitivity: 98%; specificity: 95%,

two-fold CV with 100 partitions

[110] Average error rate of 4.1%, three-fold CV

ber of components M assumed to be 2, 3, 4 and 5. Figure 7.3.4 shows sensitivities and specifici-
ties estimated by 100 independent two-fold cross-validations using linear SVM classifier which
yielded the best results compared against nonlinear SVM classifiers based on polynomial and
RBF kernels. Performance improvement is visible when assumed number of components is
increased from 2 to 3, 4 or 5. The error bars are dictated by the sample size and would de-
crease with a larger sample. Thus, the mean values should be looked at to observe the trend in
performance as a function of M.

Figure 7.3.4: Ovarian cancer prediction. Sensitivities (a) and specificities (b) (with standard
deviations as error bars) estimated in ovarian cancer prediction from protein expression levels
using 100 independent two-fold cross-validations and linear SVM classifier. Four sets of se-
lected components were extracted by SCA-based factorization using LMM-s (7.3.1) and (7.3.2)
with control reference (c.r.) and disease reference (d.r.) samples respectively, where the overall
number of components M has been set to 2 (red bars), 3 (green bars), 4 (blue bars) and 5 (ma-
genta bars). Optimal values of parameters λ and ∆θ , obtained through nested CV, were used
for each M. Performance improvement is visible when the number of components is increased
from 2 to 3, 4 or 5.
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The best result (shown in Table 7.3.1) has been obtained with the linear SVM classifier for
M = 3 with sensitivity of 96.2% and specificity of 93.6%, but very similar results have been
obtained for several combinations of parameters M, ∆θ and λ , see Figure 7.3.4, most notably
M = 4 (see second row in Table 7.3.1). As seen in Table 7.3.1, only [66] reported better result
for a two-fold cross-validation with the same number of partitions. There, a combination of
genetic algorithm and k-nearest neighbours method, originally developed for mining of high-
dimensional microarray gene expression data, has been used for analysis of proteomics data.
However, the method [66] is tested on proteomic ovarian cancer dataset only, while the method
presented here exhibited excellent performance in prediction of prostate cancer from proteomic
data (reported in Section 7.3.3.2), as well as on colon cancer from genomic data (presented
in Section 7.3.3.3). The method shown in [86] used 50 samples from the control group and 50
samples from the ovarian cancer group to discover a pattern that discriminated cancer from non-
cancer group. This pattern has then been used to classify an independent set of 50 samples with
ovarian cancer and 66 samples unaffected by ovarian cancer. In [6], a fuzzy rule based classifier
fusion is proposed for feature selection and classification (diagnosis) of protein mass spectra
based ovarian cancer. Demonstrated accuracy of 98−99% has been estimated through 10 ten-
fold cross-validations (as opposed to 100 two-fold cross-validations used here). Moreover, as
demonstrated in Section 7.3.3.2 and Section 7.3.3.3, the method presented here exhibited good
performance on diagnosis of prostate and colon cancers from proteomic and gene expression
levels, respectively. In [110], a clustering based method for feature selection from mass spec-
trometry data is derived by combining k-means clustering and genetic algorithm. The method
exhibited an accuracy of 95.8% (error rate 4.1%), but this has been assessed through three-fold
cross-validations (as opposed to two-fold cross-validations used here).

7.3.3.2 Prostate cancer

Low resolution SELDI-TOF mass spectra of 63 controls: no evidence of cancer with prostate-
specific antigen (PSA)< 1, and 69 cases (prostate cancers): 26 with 4 < PSA < 10 and 43 with
PSA> 10, have been used for prostate cancer prediction study [85]. There are additional 190
control samples with benign cancer (4 < PSA < 10) available as well (see the website of the
clinical proteomics program of the NCI, see footnote 11), in dataset labelled as “JNCI_Data_7-
3-02”. However, in the two-class comparative performance analysis problem reported here
these samples were not used. Proposed SCA-based method has been used to extract four sets
of components with the overall number of components M assumed to be 2, 3, 4 and 5. The best
result has been achieved for M = 5 with sensitivity of 97.6% and specificity of 99%, but very
similar results have been obtained for several combinations of parameters M, ∆θ and λ , (see
Figure 7.3.5).

Table 7.3.2 presents two best results achieved by the presented SCA-based approach to com-
ponent selection together with the results obtained by competing methods reported in cited
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Figure 7.3.5: Prostate cancer prediction. Sensitivities (a) and specificities (b) (with standard
deviations as error bars) estimated in prostate cancer prediction from protein expression levels
using 100 independent two-fold cross-validations and linear SVM classifier. Four sets of se-
lected components were extracted by SCA-based factorization using LMM-s (7.3.1) and (7.3.2)
with control reference (c.r.) and disease reference (d.r.) samples respectively, where the overall
number of components M has been set to 2 (red bars), 3 (green bars), 4 (blue bars) and 5 (ma-
genta bars). Optimal values of the parameters λ and ∆θ , obtained through nested CV, were used
for each M. Performance improvement is visible when the number of components is increased
from 2 to 3, 4 or 5.

references.

Table 7.3.2: Comparative performance results in prostate cancer prediction. Sensitivities and
specificities were estimated by 100 two-fold CV-s (standard deviations are in brackets).

Method Sensitivity/specificity

Proposed method, M = 5, ∆θ = 1◦, Sensitivity: 97.6(2.8)%; specificity: 99(2.2)%;

λ = 10−4λmax, linear SVM accuracy: 98.3%. Control specific component

extracted with respect to a cancer reference sample.

Proposed method, M = 4, ∆θ = 1◦, Sensitivity: 97.7(2.3)%; specificity: 99.8(2.4)%;

λ = 10−4λmax, linear SVM accuracy: 97.9%. Control specific component

extracted with respect to a cancer reference sample.

[48] Sensitivity: 86(6.6)%; specificity: 67.8(12.9)%;

accuracy: 76.9%

[85] Sensitivity: 94.7%; specificity: 75.9%;

accuracy: 85.3%. 253 benign and 69 cancers.

Results were obtained on independent test set

comprised of 38 cancers and 228 benign samples.

[109] Sensitivity: 97.1%; specificity: 96.8%;

accuracy: 97%. 253 benign and 69 cancers.

Cross validation details not reported

[110] Average error rate of 28.97 on four class

problem with three-fold cross validation.

Linear SVM classifier yielded the best results when compared against nonlinear SVM classi-
fiers based on polynomial and RBF kernels. According to Table 7.3.2, comparable result (al-
though slightly worse) is in the reference [109] only. The method [109] is proposed for analysis
of mass spectra for screening of prostate cancer. The system is composed of three stages: a
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feature selection using statistical significance test, a classification by radial basis function and
probabilistic neural networks and an optimization of the results through the receiver-operating-
characteristic analysis. The method achieved sensitivity 97.1% and specificity 96.8%, but the
cross-validation setting has not been described in details. In [85], the training group has been
used to discover a pattern that discriminated cancer from non-cancer group. This pattern has
then been used to classify an independent set of 38 patients with the prostate cancer and 228
patients with benign conditions. The obtained specificity is low. The predictive matrix factor-
ization method [48] yielded significantly worse result than the method proposed here. In [110]
a clustering based method for feature selection from mass spectrometry data is derived com-
bining k-means clustering and a genetic algorithm. Despite the three-fold cross-validation, the
reported error was 28.97%. Figure 7.3.5 shows sensitivities and specificities estimated by 100
independent two-fold cross-validations using linear SVM classifier on components selected by
the method presented here. For each M the optimal values of the parameters λ and ∆θ (obtained
by cross-validation) have been used to obtain results shown in Figure 7.3.5. Increasing a postu-
lated number of components from 2 to 5 increased accuracy from 97.4% to 98.3%. Thus, better
accuracy is achieved with the smaller number of features (m/z ratios) contained in selected
components.

7.3.3.3 Colon cancer

Gene expression profiles of 40 colon cancer and 22 normal colon tissue samples obtained by
an Affymetrix oligonucleotide array [3], have also been used for validation and comparative
performance analysis of proposed feature extraction method. Gene expression profiles have
been downloaded from12. Original data produced by oligonucleotide array contained more than
6500 genes but only 2000 high-intensity genes have been used for cluster analysis in [3] and
are provided for download on the cited website. The proposed SCA-based approach to feature
extraction/component selection has been used to extract four sets of components with up- and
down-regulated genes and with the overall number of components M assumed to be 2, 3, 4 and
5. The linear SVM classifier has been applied to groups of four sets of selected components
extracted from gene expression levels for specific combinations of parameters ∆θ , λ and M.
The best result in terms of sensitivity and specificity for each M has been selected and shown in
Figure 7.3.6.

An increased number of postulated components M did not decrease the accuracy but it yielded
components selected for classification with reduced number of genes. This is verified in Figure 7.3.2,
which shows component with up-regulated genes extracted from a cancer labelled sample w.r.t.
the control reference for assumed number of components M = 2 and M = 4. Thus, it is con-
firmed again that an increased M yields less complex components that (following the principle
of parsimony), should be preferred over the more complex ones obtained by smaller M. In order

12Data pertaining to the article [3],
http://genomics-pubs.princeton.edu/oncology/affydata/index.html
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Figure 7.3.6: Colon cancer prediction. Sensitivities (a) and specificities (b) (with standard
deviations as error bars) estimated in colon cancer prediction from gene expression levels using
100 independent two-fold cross-validations and linear SVM classifier. Four sets of selected
components were extracted by SCA-based factorization using LMM-s (7.3.1) and (7.3.2) with
control reference (c.r.) and disease reference (d.r.) samples respectively, where the overall
number of components M has been set to 2 (red bars), 3 (green bars), 4 (blue bars) and 5
(magenta bars). Optimal values of the parameters λ and ∆θ , obtained through nested CV,
were used for each M. Increasing the number of components M did not decrease prediction
accuracy , but did reduce the number of features (genes) in components used for classification
(see Figure 7.3.2).

to (possibly) increase the prediction accuracy, we have applied nonlinear, polynomial and RBF
SVM classifiers to two groups of four sets of components that yielded the best results with the
linear SVM classifier: M = 2 (∆θ = 10) and M = 4 (λ = 10−2λmax and ∆θ = 50). The poly-
nomial SVM classifier has been cross-validated for degree of the polynomial equal to d = 2,
3 and 4. The RBF SVM classifier κ(x,y) = exp

(
−‖x− y‖2

2/
(
2σ2)) has been cross-validated

for the variance σ2 in the range 5 · 102 to 1.5 · 103 in steps of 102. The best result has been
obtained with σ2 = 1.2 ·103 for M = 2 and with σ2 = 1.0 ·103 for M = 4. Achieved accuracy is
comparable with the accuracy obtained by other state-of-the-art results reported. That is shown
in Table 7.3.3.

Predictive matrix factorization method [48] yielded slightly better results here, but it has shown
significantly worse result in the cases of ovarian (see Table 7.3.1) and prostate (see Table 7.3.2)
cancers. Gene discovery method [2] has been applied for three values of the threshold cu ∈
{2, 2.5, 3} used to select up-regulated genes. Maximum a posteriori probability has been used
for an assignment of genes to each of the three components containing up-, down-regulated
and differentially not expressed genes. Thus, for each threshold value, two components were
obtained for training of a classifier. The logarithm with base 10 has been applied to gene fold-
ing values prior to gene discovery/selection. The best result reported in Table 7.3.3 has been
obtained for component containing up-regulated genes with cu = 2.0 and an RBF SVM clas-
sifier, whereas σ2 has been cross-validated in the range 102 to 103 in steps of 102. The best
result has been obtained for σ2 = 5 ·102. The gene discovery method [2] slightly outperformed
the method proposed here. However, as opposed to the proposed method, the gene discovery
method [2] is not applicable to the analysis of mass spectra. The gene selection method in [89]
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Table 7.3.3: Comparative performance results in colon cancer prediction. Sensitivities and
specificities were estimated by 100 two-fold CV-s (standard deviations are in brackets).

Method Sensitivity/specificity

Proposed method, M = 2, ∆θ = 1◦, Sensitivity: 90.8(5.5)%; specificity: 79.4(9.8)%;

RBF SVM (σ2 = 1200, C = 1) accuracy: 85.1%. Control specific component

extracted with respect to a cancer reference sample.

Proposed method, M = 4, ∆θ = 5◦, Sensitivity: 89.8(6.2)%; specificity: 78.6(12.8)%;

λ = 10−2λmax, accuracy: 84.2%. Control specific component

RBF SVM (σ2 = 1000, C = 1) extracted with respect to a control reference sample.

[48] Sensitivity: 89.7(6.4)%; specificity: 84.3(8.4)%;

accuracy: 87%. 100 two-fold cross-validations.

[2] Sensitivity: 92.1(4.7)%; specificity: 85(10.1)%;

accuracy: 88.55%. 100 two-fold cross-validations.

cu = 2

[3] Sensitivity: 92−95%, calculated from Figure 5.

Specificity not reported.

[89] Accuracy: 85%. Cross-validation details not reported.

[4] Accuracy: 82.5%, ten-fold cross-validation

(RFE with linear SVM).

[50] Accuracy: 88.84%, two-fold cross-validation

(RFE with linear SVM and optimized

penalty parameter C).

is model driven, i.e. trying to take into account genes’ group behaviours and interactions by de-
veloping an ensemble dependence model (EDM). The microarray dataset is clustered first. The
EDM is based on modelling dependencies that represent inter-cluster relationships. Intercluster
dependence matrix is the basis for discrimination between cancerous and non-cancerous sam-
ples. Classification accuracy of 85% reported in [89] is very close to the one obtained by the
SCA-based method presented here. However, while SCA-based performance has been assessed
through two-fold cross-validation, no cross-validation details were reported in [89]. Similarly,
sensitivity had to be estimated indirectly from Figure 5 in [3]. The method in [4] combines a
recursive feature extraction and the linear SVM to yield accuracy of 82.5%. This is also less
accurate than what has been achieved by the method proposed here. Moreover, the accuracy
reported in [4] has been assessed by tenfold cross-validation only, and that is known to yield
too optimistic performance assessment. In this regard, accuracy reported in [50] can be taken
as more realistic since it has been assessed by two-fold cross-validation. This method, as [4],
again combines recursive feature elimination with SVM, but it is additionally taking into ac-
count the parameter C. Reported accuracy of 88.84% is slightly better than the one obtained
by the method presented here. However, the proposed method is classifier independent and, as
demonstrated in Section 7.3.3.1 and Section 7.3.3.2, it yields good results on cancer diagnosis
from proteomic datasets as well.
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7.3.3.4 Conclusion

The results presented in this section indicate that the proposed model and the sparse component
analysis method used to estimate its parameters, despite its simplicity, yield very good results,
comparable or better than other competing methods from the literature.

7.4 Summary

In this chapter we have presented results of the comparative performance analysis of the dic-
tionary learning methods on the problems of inpainting and removal of salt-and-pepper noise
in natural images. Some classical methods for image inpaiting and removal of salt-and-pepper
noise were also included in the comparison. Salt-and-pepper noise removal problem was re-
duced to the inpainting problem. The inpainting method using the dictionary for sparse repre-
sentation of natural images’ patches learned by ICA, in combination with the robust Smoothed
`0 method for sparse recovery, yielded excellent results on problems with random and some
structured (thin lines) patterns of missing pixels. Both grayscale and color images were con-
sidered. Reported results are better than or comparable to the results obtained with competing
methods from the literature.

Also, in this chapter we have presented a novel method for feature extraction in bioinformatics,
more precisely proteomics and genomics. It is based on a novel type of linear mixture model
with a reference sample that, through sparsity constrained factorization, enables automatic fea-
ture extraction on a sample-by-sample basis. Therein, sample label information is not used.
This allows the use of extracted features for the training of a classifier. The proposed method
is demonstrated on publicly available experimental datasets related to the prediction of ovar-
ian, prostate and colon cancers from protein and gene expression profiles. Obtained results are
better than or comparable to those obtained with competing methods.
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Chapter 8

Summary

This chapter presents a summary of contributions of the thesis.

The first contribution is the use of independent component analysis (ICA) for dictionary learn-
ing for natural images, and the application of the learned dictionary in image inpainting and
removal of salt-and-pepper noise problems. The salt-and-pepper noise removal problem was
reduced to the inpainting problem by declaring all noise-corrupted pixels as missing, as de-
scribed in Section 7.2. This is the second contribution of the thesis.

The dictionary is learned on patches (small rectangular parts) of natural images, which is a
common approach for dictionary learning for natural images. This approach has a biological
background and motivation, as described in Section 3.1. The proposed method was compared
to several representatives of state-of-the-art methods for image inpainting and salt-and-pepper
noise removal in Chapter 7. The results obtained with the proposed method are comparable
or better than the competing methods used in this comparative performance analysis. This is
especially the case in removal of salt-and-pepper noise problems. Namely, the method that uses
the dictionary learned by ICA performs much better than commonly used methods for removal
of impulse noise based on median and myriad filters. It also compares favorably with kernel
regression-based method. In inpainting experiments with random pattern of missing pixels,
only Fields of Experts (FoE) method, reviewed in Section 5.1.3, yielded better results than the
proposed method, but with much higher computational complexity.

The proposed method for inpainting and removal of salt-and-pepper noise was used both on
grayscale and color images. The extension to color images is straightforward and was described
in Section 7.1.3. Again, obtained results are comparable to those obtained with a state-of-the-art
method for color image inpainting.

In inpainting experiments, both random and some structured patterns of missing pixels were
used. Since the method is patch-based, it is better suited to inpainting of random pattern of miss-
ing pixels, and removal of salt-and-pepper noise. However, as demonstrated in Section 7.1.2, it
can also be used for inpainting of thin lines of missing pixels, or text inpainting. The method is
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limited by patch size in the case when larger missing regions are present. In this case, there are
more specialized methods in the literature that perform much better.

The above described results were presented in publications [34, 35]. Also, the MATLAB codes
for reproducing the results presented in these publications are available on author’s webpage1.

The third contribution of the thesis is related to the novel method for feature extraction in
bioinformatics. It is based on a novel type of linear mixture model with a reference sample that,
through sparsity constrained factorization, enables automatic feature extraction on a sample-by-
sample basis. Therein, sample label information is not used. This allows the use of extracted
features for training of a classifier. As opposed to that, existing matrix factorization methods use
the whole dataset to extract disease specific features by using label information. This prevents
the use of extracted features for the training of a classifier. The proposed method is demon-
strated on publicly available experimental datasets related to the prediction of ovarian, prostate
and colon cancers from protein and gene expression profiles. Obtained results are better than or
comparable to those obtained with competing methods. The method was described in the paper
[60].

1http://www.lair.irb.hr/ikopriva/marko-filipovi.html
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Appendix A

Approximation of entropy by cumulants

A.1 Properties of cumulants

Some of the properties of cumulants are listed in the following proposition [77, 61].

Proposition A.1. Let x1, . . . ,xM be random variables.

1. cum(a1x1, . . . ,aMxM) =
(
∏

M
i=1 ai

)
cum(x1, . . . ,xM).

2. cum(x1 + y1, . . . ,xM) = cum(x1, . . . ,xM)+ cum(y1, . . . ,xM), for random variable y1.

3. cum(x1, . . . ,xM) = cum(xp1, . . . ,xpM), where (p1, . . . , pM) is any permutation of

{1, . . . ,M}.

4. If a random variable y has an even p.d.f., the cumulants of y of odd order vanish.

5. cum(a+ x1, . . . ,xM) = cum(x1, . . . ,xM), for any a ∈ R.

6. If a proper subset of variables x1, . . . ,xM is independent of the others, then

cum(x1, . . . ,xM) = 0.

7. If random variables x1, . . . ,xM are mutually independent with y1, . . . ,yM, then

cum(x1 + y1, . . . ,xM + yM) = cum(x1, . . . ,xM)+ cum(y1, . . . ,yM).

8. If y is a Gaussian random variable with the same mean and variance as a given random

variable x, then for k ≥ 3 it holds c(k)x = m(k)
x −m(k)

y . Therefore, higher-order (k > 2)

cumulants of a Gaussian variable are zero.

A.2 Expansions of probability density functions

The expansion (2.2.5) (and the related, and often more useful, Edgeworth expansion) can be,
informally, derived as follows [76]. A moment generating function of a random vector x with
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A.2. Expansions of probability density functions

p.d.f. f , Mx : RN → R, is defined as

Mx (t) = E
(
exp
(
tT x
))

=

ˆ
RN

exp
(
tT x
)

f (x)dx,

whenever the expectation exists. Moments can be obtained from the coefficients in the Taylor
expansion of Mx. It is possible that the moment generating function does not exist, in which
case the characteristic function, which is always well defined, can be used. Cumulant generating
function is then defined as Cx (t) = logMx (t). To derive the expansion of p.d.f. f , an initial
approximating p.d.f. f0 is chosen. Let us denote the cumulants of f as κi, κi, j, κi, j,k and so on,
and cumulants of f0 as λi, λi, j,λi, j,k and so on. Let

Cx (ζ ) = ∑
i

κiζi +∑
i, j

κi, j
ζiζ j

2!
+ ∑

i, j,k
κi, j,k

ζiζ jζk

3!
+ · · ·

and

C0 (ζ ) = ∑
i

λiζi +∑
i, j

λi, j
ζiζ j

2!
+ ∑

i, j,k
λi, j,k

ζiζ jζk

3!
+ · · ·

be Taylor expansions of cumulant generating functions of f and f0, respectively. By formal

subtraction and exponentiation we get

Mx (ζ ) = M0 (ζ )
(

1+∑i ηiζi +∑i, j ηi j
ζiζ j
2! +

+∑i, j,k ηi jk
ζiζ jζk

3! + · · ·
) (A.2.1)

where we have denoted ηi = κi−λi, ηi, j = κi, j−λi, j and so on, and

ηi j = ∑
i, j

(
ηi, j +ηiη j

)
,

ηi jk = ∑
i, j,k

(
ηi, j,k +3ηiη j,k +ηiη jηk

)
,

ηi jkl = ∑
i, j,k,l

(
ηi, j,k,l +4ηiη j,k,l +3ηi, jηk,l +6ηiη jηk,l +ηiη jηkηl

)
and so on. Here, ηi,ηi, j,ηi, j,k, . . . are formal cumulants, while ηi j,ηi jk, . . . are formal moments.
(A.2.1) can be formally inverted term by term. Namely, M0(ζ ) transforms to f0(x), while the
second term, ζiM0(ζ ), transforms to fi(x) =−∂ f0(x)/∂xi, see [76] for details. The other terms
transform similarly, and we get

fx(x) = f0(x)+∑
i

ηi fi(x)+∑
i, j

fi j(x)
2

+ ∑
i, j,k

fi jk(x)
3!

+ . . . . (A.2.2)

(A.2.2) can be expressed as

fx(x) = f0(x)
{

1+∑i ηihi(x)+∑i, j ηi j
hi j(x)

2 +

+∑i, j,k ηi jk
hi jk(x)

3! + . . .
} ,
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A.2. Expansions of probability density functions

where

hi(x) =
fi(x)
f0(x)

,

hi j(x) =
fi j(x)
f0(x)

and so on. If f0 is chosen as the density of the multivariate normal distribution, i.e.

f0(x) =
1

(2π)
N
2
√

detM
exp
(
−1

2
(x−m)T M−1 (x−m)

)
,

where we have denoted by m the mean vector and by M the covariance matrix of f0, the above
functions hi and hi j are Hermite tensors, which in the univariate case N = 1 reduce to Hermite
polynomials (see [76] for details). We can take λi = κi and λi j = κi j and we obtain the expres-
sion (2.2.5) (or, more precisely, its equivalent for the multivariate case). However, if x is taken
as a standardized sum of n independent variables, the terms in this expansion are not monoton-
ically decreasing in n. The re-grouped expansion, formed by collecting together the terms that
are of equal order in n, is called Edgeworth expansion. However, the above derivation of this
series was only formal, without taking into account conditions for the convergence of series.
See [76] for details about conditions under which the Edgeworth expansion is valid.
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Appendix B

Statistical properties of the FastICA
estimator

B.1 Non-robustness

The following results are taken from [82]. Here we assume that, in the basic ICA model (2.1.3),
the sources s satisfy E(si) = 0 and E(s2

i ) = 1 for all i. We also assume that at most one source
has a Gaussian distribution, so that the sources s can be uniquely determined using the discrim-
inating ICA contrast. The following theorem then holds [82].

Theorem B.1. Assume that the moments cg, j = cov
(
g(s j),s j

)
= E

(
g(s j)s j

)
and ρg, j = E

(
g′(s j)

)
, where cov denotes the cross-

covariance of two random variables, defined as cov(x,y) = E(xy)−E(x)E(y), satisfy

If k < M, cg, j,ρg, j exist and cg, j 6= ρg, j for j = 1, . . . ,k.
If k = M, cg, j,ρg, j exist and cg, j 6= ρg, j for j = 1, . . . ,M−1.

Then the influence function of the FastICA estimator wG,k,

k ∈ {1, . . . ,M}, at the distribution Fx of the mixture x, can be expressed as

IFwG,k,Fx (z) = uk (s̄k)∑
M
j=k+1 s̄ jw j

−s̄k ∑
k−1
j=1
(
u j
(
s̄ j
)
+ s̄ j

)
w j−

(s̄2
k−1)
2 wk

, (B.1.1)

where

u j(s̄ j) =
g(s̄ j)−E

(
g
(
s j
))
− cg, j s̄ j

cg, j−ρg, j

and s̄ j = wT
j (z−ν), ν = EFx(x), is the projection of the centered contamination point z in the

direction w j.

It can be seen from the expression (B.1.1) that the weights next to demixing vectors w j are
unbounded functions of z, which shows that the estimators wG,k are generally not robust, re-
gardless of the choice of g.
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B.2. Asymptotic variance and non-efficiency

B.2 Asymptotic variance and non-efficiency

We recall some definitions first.

Definition B.1. Let x be a random variable with p.d.f. fθ (·), where θ ∈Θ is a parameter vector.
The Fisher information matrix F (θ) of θ is defined as

F (θ) = cov fθ [∇θ log fθ (x)] ,

where cov(·) denotes the covariance matrix.

Under some regularity conditions (see, for example, [33]), the inverse of the Fisher information
matrix is a lower bound on the variance of any unbiased estimator of θ . More precisely, if we
denote the covariance matrix of an unbiased estimator θ̂ of θ as cov

(
θ̂
)
, we have

cov
(
θ̂
)
≥F (θ)−1 , (B.2.1)

where the notation B ≥ C for matrices means that B−C is positive semi-definite. This lower
bound is referred to as the Cramer-Rao (CR) lower bound. More precisely, let x1, . . . ,xT be
a random sample from fθ (·). The Fisher information matrix is computed from the likelihood

∏
T
i=1 fθ (xi) as

Fn (θ) =
T

∑
i=1

covθ [∇θ log fθ (xi)] = T F(θ).

In this case, the inequality (B.2.1) is written as

cov
(
θ̂
)
≥ 1

T
F (θ)−1.

In the case of the (linear) ICA model (2.1.3), the unknown parameter vector that we wish to esti-
mate is the inverse of the mixing matrix, W=A−1. By denoting κi = var(φi (si)), where φi(s) =

− f ′i (s)/ fi(s) is the score function of the i-th independent component, and λi = var(φi (si)si)

(assuming the existence and finitness of these variances), the inverse of the Fisher information
matrix for W can be expressed as [83]

(
F (θ)−1) [i, j] =

{
1
λi

wiwT
i +∑

M
l=1, l 6=i

κl
κiκl−1wlwT

l i = j

− 1
κiκ j−1w jwT

i i 6= j
, (B.2.2)

where we have denoted θ = vec
(
WT), and the notation [i, j] denotes the (i, j)-block of size

M×M of the M2×M2 matrix F (θ)−1. In ICA, the performance of the separation is often
investigated via the matrix Ĝ = ŴA, where Ŵ is the estimate of W = A−1. Using the above
result (B.2.2), the lower bounds on the elements of Ĝ =

(
ĝi j
)

are as follows (again, see [83])

δi = ∑
N
j=1, j 6=i var

(
ĝi j
)
≥ 1

T ∑
N
j=1, j 6=i

κ j
κiκ j−1 ,

var(ĝii) ≥ 1
T

1
λi
.
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B.2. Asymptotic variance and non-efficiency

Note that we have used the notation N for the number of sources; however, we have supposed
that M = N, so that the above notation for the size of F (θ)−1 agrees with this one. Using the
expression (B.1.1) for the influence function of the FastICA estimator, the asymptotic covari-
ance matrix of the FastICA estimator can be obtained as [82]

ASV
(
ŵG,k,Fx

)
= E

[
IFwG,k,Fx(z) · IFwG,k,Fx(z)

T ] .
Therefore, the following theorem holds [82].

Theorem B.2. Under the assumptions of Theorem B.1, and the additional assumptions:

1. kurtosis γk = E
(
s4

k

)
−3 of the k-th source exists;

2.

σ2
g, j exists ∀ j = 1, . . . ,k k < M

σ2
g, j exists ∀ j = 1, . . . ,M−1 k = M

,

where σ2
g, j = var

(
g
(
s j
))

denotes the variance of g
(
s j
)
, the asymptotic covariance matrix of

the FastICA estimator ŵG,k, k ∈ {1, . . . ,M} is

ASV
(
ŵG,k,Fx

)
=

k−1

∑
j=1

(
αg, j +1

)
w jwT

j +βg,kwkwT
k (B.2.3)

+αg,k

M

∑
j=k+1

w jwT
j ,

where constants αg, j and βg, j are defined as

αg, j = var
(
u j
(
s j
))

= E
[
u j
(
s j
)2
]
=

σ2
g, j− c2

g, j(
cg, j−ρg, j

)2 ,

βg, j =
1
4

var
(
s2

j
)
=

1
4
(
γ j +2

)
,

and cg, j and ρg, j are as before.

It can be noted that the accuracy of k-th demixing vector ŵG,k depends on the distribution of
sources extracted previously. Also, the existence of kurtosis is required for all sources to ensure
the existence of the covariance matrix. Depending on the chosen non-linearity, the existence of
even higher order moments might be required. Also, the case cg, j ≈ ρg, j for any j ∈ {1, . . . ,k}
leads to very high asymptotic variances of the estimator ŵG,k.
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