Direct determination of Cd in NaCl containing metallothionein fractions

of different red mullet tissues by GF-AAS

Zrinka Dragun* and Biserka Raspor

Ruđer Bošković Institute, Center for Marine and Environmental Research, POBox 180, 10002 Zagreb, Croatia

* phone: xx385-1-4680216; fax: xx385-1-4680242; e-mail:zdragun@rudjer.irb.hr

0.9% NaCl (n = 10)					
Concentration	Mean measured Cd	SD	RSD %	Recovery %	
of Cd, µg/L	concentration, µg/L	μg/L			
0.050	0.041	0.006	13.5	82.0	
0.050	0.055	0.004	7.6	110.0	
0.150	0.150	0.004	2.8	100.0	
0.300	0.309	0.007	2.4	103.0	
0.500	0.508	0.009	1.7	101.6	
0.800	0.793	0.018	2.3	99.1	
1.000	1.044	0.013	1.2	104.4	
1.150	1.160	0.073	6.3	100.9	

Table 1. Precision and recovery of Cd measurement in standard solutions of Cd in 0.9% NaCl (n = 10)

Table 2. Precision of Cd measurement in heat-treated cytosol (S50) of different redmullet tissues (n = 10)

Tissue sample	Mean measured Cd	SD	RSD %
	concentration, µg/L	μg/L	
Brain sample 1	0.068	0.006	8.7
Brain sample 2	0.115	0.005	4.4
Brain sample 3	0.129	0.005	3.9
Liver sample 1	0.387	0.006	1.6
Liver sample 2	0.644	0.006	1.0
Liver sample 3	0.517	0.008	1.5
Kidney sample 1	0.420	0.010	2.3
Kidney sample 2	0.469	0.007	1.5
Kidney sample 3	0.222	0.011	4.8
Intestine sample 1	0.464	0.009	1.9
Intestine sample 2	0.333	0.007	2.2
Intestine sample 3	1.064	0.008	0.7
Intestine sample 4	0.228	0.005	2.1

Tissue sample	Cd sample	Cd standard	Expected Cd	Measured Cd	RSD %	Recovery
	concentration	solution	concentration in	concentration		%
	μg/L	concentration	spiked sample	μg/L		
	(*n=10; **n=5)	μg/L	μg/L	n = 5		
Brain sample 1	$*0.068 \pm 0.006$	0.150	0.109	0.160 ± 0.007	4.7	146.8
Brain sample 2	*0.115 ± 0.005	0.300	0.208	0.220 ± 0.010	4.7	105.8
Brain sample 3	$*0.129 \pm 0.005$	0.300	0.215	0.227 ± 0.007	3.0	105.6
Brain sample 4	**0.138 ± 0.006	0.300	0.219	0.215 ± 0.005	2.4	98.2
Brain sample 5	$**0.080 \pm 0.003$	0.300	0.190	0.200 ± 0.005	2.3	105.3
Brain sample 6	$**0.075 \pm 0.007$	0.150	0.113	0.126 ± 0.004	3.1	111.5
Liver sample 1	$*0.387 \pm 0.006$	1.150	0.769	0.844 ± 0.016	1.9	109.8
Liver sample 2	$*0.644 \pm 0.006$	1.400	1.022	0.984 ± 0.027	2.8	96.3
Liver sample 3	$*0.517 \pm 0.008$	1.400	0.959	0.833 ± 0.020	2.5	86.9
Liver sample 4	$**0.449 \pm 0.004$	1.400	0.925	0.863 ± 0.027	3.1	93.3
Liver sample 5	$**0.835 \pm 0.007$	1.400	1.118	0.994 ± 0.040	4.0	88.9
Liver sample 6	$**0.409 \pm 0.004$	1.150	0.780	0.734 ± 0.025	3.5	94.1
Kidney sample 1	$*0.420 \pm 0.010$	1.150	0.785	0.793 ± 0.031	3.9	101.0
Kidney sample 2	$*0.469 \pm 0.007$	1.150	0.810	0.800 ± 0.009	1.1	98.8
Kidney sample 3	*0.222 ± 0.011	0.500	0.361	0.384 ± 0.005	1.4	106.4
Intestine sample 1	$*0.464 \pm 0.009$	1.400	0.932	0.937 ± 0.013	1.4	100.5
Intestine sample 2	$*0.333 \pm 0.007$	1.000	0.667	0.687 ± 0.010	1.4	103.0
Intestine sample 4	$*0.228 \pm 0.005$	0.800	0.514	0.511 ± 0.011	2.1	99.4

Table 3. Recovery of Cd in spiked heat-treated cytosol of different red mullet tissues. The samples were spiked in such a way that one volume of sample was mixed with one volume of appropriate standard solution.

Figure captions

Figure 1. Cd and background signals obtained after addition of various volumes of EDTA (6.0 g L⁻¹), of two different pH values: a) pH of EDTA solution was ~4.5, and volume 5 μ L; b) pH of EDTA solution was ~4.5, and volume 10 μ L; c) pH of EDTA solution was ~4.5, and volume 15 μ L; d) pH of EDTA solution was ~7.0, and volume 5 μ L. All signals were obtained using solution of Cd in 0.9% NaCl (ccd = 1.5 μ g L⁻¹).

Figure 2. Effect of atomisation temperature on Cd and background signals.

a) \blacktriangle Slope of a calibration straight line created using bulk standard solution of Cd in 0.9% NaCl ($c_{Cd} = 0.8 \ \mu g \ L^{-1}$) and EDTA (pH ~7.0) as a modifier; \bigtriangleup Background absorbance recorded at calibration zero.

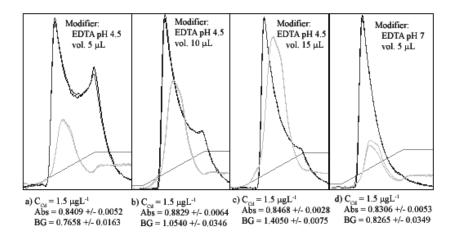
b) \circ Cd concentration in heat-treated cytosol of red mullet kidney; • Cd concentration in standard solution of Cd in 0.9% NaCl ($c_{Cd} = 0.5 \ \mu g \ L^{-1}$); \Box Cd concentration in heat-treated cytosol of red mullet intestine.

Figure 3. Background signals recorded at calibration zero: a) signal obtained using blank solution of 0.9% NaCl with addition of EDTA; b) signal obtained using only blank solution of 0.9% NaCl, without addition of EDTA; c) signal obtained using Milli-Q water with addition of EDTA.

Figure 4. Calibration straight line created at 11 different occasions with addition of EDTA, using bulk standard solution of Cd in 0.9% NaCl ($c_{Cd} = 0.8 \ \mu g \ L^{-1}$) and heating program from Table 1.

Figure 5. The comparison of metallothionein level (MT) and background absorbance (BG) in heat-treated cytosol of four tissues of red mullet (K-kidney; IN-intestine; L-liver; B-brain). A small inserted figure represents linear regression graph illustrating high correlation between MTs and BG.

Figure 1.



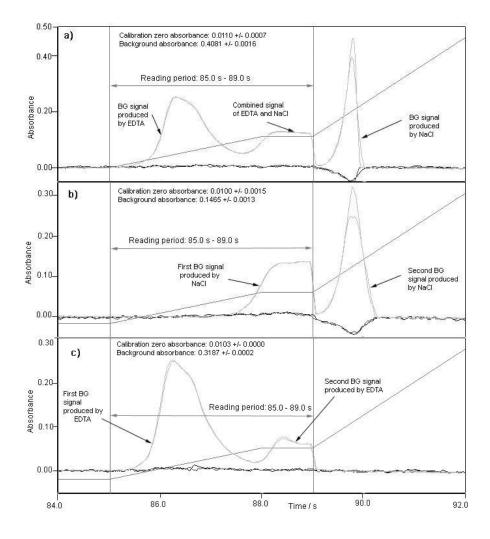


Figure 2.

Figure 3.

Figure 4.

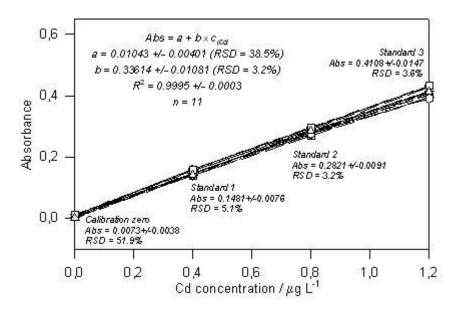
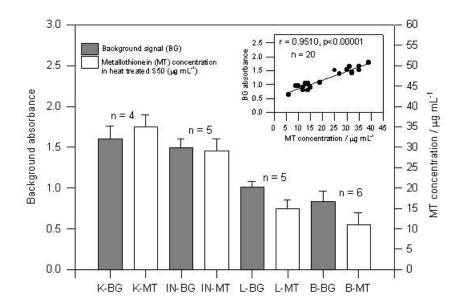



Figure 5.

