1	Combined	use of bioindicators and passive samplers for the assessment of the
2	river water	contamination with metals
3		
4	Zrinka Dragu	un*, Marijana Podrug and Biserka Raspor
5		
6	Ruđer Boško	wić Institute, Division for Marine and Environmental Research, P.O. Box 180,
7	10002 Zagre	b, Croatia
8		
9	* correspon	nding author
10	Phone:	xx385-1-4680216;
11	Fax:	xx385-1-4680242;
12	E-mail:	zdragun@irb.hr
13		
14		

1 Abstract

2

3 In the autumn 2005, the site-specific variability of cytosolic metal and protein concentrations 4 in the gills of the European chub from the Sava River could be mostly associated to the gill 5 mass variability. In the spring 2006, the correlations of metals and proteins with the gill mass 6 were mainly non significant, and their site-specific variability could be presumably associated 7 to the river water pollution. The spring cytosolic concentrations of Zn, Cu and Mn have not 8 differed significantly between the sites (median: 8.37-11.34 µg mL⁻¹, 68.2-86.2 ng mL⁻¹, 55.9-68.6 ng mL⁻¹, respectively), while increased cytosolic Cd concentrations were obtained at 9 10 Oborovo and Lukavec Posavski (median: 4.01 ng mL⁻¹), the sites influenced by the pollution 11 sources from two major urban areas, compared to the remaining sampling sites (median: 1.93 12 ng m L^{-1}). The cytosolic Fe concentrations were almost twice higher at Jasenovac (median: 11.98 µg mL⁻¹) compared to the concentrations at Sava-Zagreb (median: 6.72 µg mL⁻¹). The 13 14 labile Fe concentrations measured in the river water with passive samplers indicated that 15 cytosolic Fe concentrations in the spring possibly reflected the water-borne Fe-uptake. The 16 spring cytosolic protein concentrations decreased from upstream (Otok Samoborski: 27.2±5.6 mg mL⁻¹) towards the downstream sites (Lukavec Posavski: 14.8±2.8 mg mL⁻¹), possibly due 17 18 to the influence of organic pollution and water toxicity. The spring period seemed to be more 19 appropriate season for the assessment of the river water pollution, if the chub gills are used as 20 the target organ. 21

Key words: metals, proteins, gill cytosol, European chub, River Sava

23

1 Introduction

2

The simple approaches of chemical water analyses often fail to detect environmental changes that are harmful for aquatic organisms; the complex mixture of pollutants in natural waters, with their synergistic and antagonistic effects, combined with variable physico-chemical conditions make it difficult to predict the impact of toxicants on the ecosystem. Bioindicators and, in particular, long-living organisms such as fish are sensitive to the impact of a complex mixture of chemicals on a specific aquatic system, while tissue concentrations of chemicals present excellent indicators of their bioavailability in the environment (Chovanec et al. 2003).

11 In the freshwater fish, two different routes of uptake are important for metals: directly from 12 the water via the gills and from the food via the digestive tract. The gills make a good 13 indicator tissue based on the several reasons: for example, large respiratory surface and a high 14 pumping rate of water enhances the direct uptake of water-borne toxicants (Chovanec et al. 15 2003); furthermore, the gills of various fish species were previously reported to reflect the 16 metal contamination gradient in the ambient water (Andres et al. 2000), as well as to respond 17 quickly to changes in metal exposure (Kraemer et al. 2005). Laboratory exposures have 18 shown that metal concentrations will likely be higher at the site of uptake at the beginning of exposure (Giguère et al. 2004), and therefore, after short-term exposure, gills, digestive tract, 19 20 and liver usually show a high load of toxicants, whereas concentrations in kidney, bones and 21 muscles increase more slowly after a time-lag (Olson et al. 1978; Köck et al. 1996). 22 Consequently, the metal concentrations in the gills are expected to reflect the short-term metal 23 exposure in the water, contrary to the metal concentrations in several other organs which 24 represent the long-term storage of metals (Roméo et al. 1999).

1 Accordingly, the main objective of this study was to assess the metal pollution status of Sava 2 River water by supplementing the available information on the water contamination with 3 metals (Dragun et al., 2008a; Dragun et al., 2008b) with the information on metal levels in the 4 gills of European chub (Squalius cephalus). Typically, 50-80% of the metals stored in cells 5 are found in the cytosol; during chronic exposure to metals the portion of cytosolic metals 6 increases in relation to the total metal load of the cell (Olsson et al. 1998). The importance of 7 the cytosol is associated to the fact that it comprises two important cellular fractions: heat-8 sensitive proteins, such as enzymes, and heat-stable proteins, such as metallothioneins 9 (Wallace and Luoma 2003). Therefore, it comprises the metal fraction which is expected to be 10 associated with some biological impairment (bound to heat-sensitive proteins) (Wallace et al. 11 2000), but also the metal fraction which is considered as detoxified and not available to more 12 sensitive cellular fractions (bound to heat-stable proteins) (Kreamer et al. 2005). In this study, 13 the concentrations of nonessential metal Cd and four essential metals were, thus, determined 14 in the cytosolic fraction of the chub gills. Although Zn, Cu, Fe and Mn are essential for the 15 health of most organisms, forming integral components of proteins involved in all aspects of 16 biological function, in excess they can also be toxic, binding to biologically sensitive 17 molecules or forming dangerous free radicals (Bury et al. 2003).

18

Due to the direct or indirect influence of very large set of abiotic and biotic factors on metal concentrations in fish tissues (Andres et al. 2000), we have first analyzed the variability of cytosolic metal and protein concentrations that could be associated to the season and the biotic factors, such as age and size (Dragun et al. 2007). The data analysis in this paper was, therefore, focused on clarifying the site-specific variability of the cytosolic metal and protein concentrations in the chub gills, with the general aim to assess the Sava River water contamination with metals. Additionally, the cytosolic metal concentrations in the chub gills

- were compared with labile metal concentrations in the Sava River water, which were
 measured simultaneously with fish sampling using the passive samplers for metals (diffusive
 gradients in thin films, i.e. DGTs) (Dragun et al. 2008a).
- 4

5 Materials and methods

6

7 Fish sampling

8

9 The selected bioindicator organism for this study was European chub, a fish species from the family of carps (Ciprinidae), widespread in European freshwater; according to IUCN Red 10 11 List of Threatened Species, since 2007 a valid name for European chub is Squalius cephalus 12 L. instead of a former name Leuciscus cephalus L. The fish were caught in Sava River in 13 Croatia, which is the biggest tributary (945 km) to the Danube River. The section of Sava 14 River, 150 km long, starting at the Croatian-Slovenian state border and ending at the town of 15 Jasenovac (the state border between Croatia and Bosnia and Herzegovina) was chosen for the 16 present study due to the well-defined gradient of pollution ranging from low polluted sites 17 upstream of the city of Zagreb (1 million inhabitants, heavily industrialized) up to the sites 18 affected by the pollution load from the Zagreb and Sisak city areas (Krča et al. 2007). Five 19 sampling sites were selected (Figure 1, Table 1): Otok Samoborski - low polluted, reference 20 location 10 km upstream of the city of Zagreb; Sava in Zagreb - located within the Zagreb 21 city area, but 20 km upstream of the main household and industrial wastewater outlets; 22 Oborovo - 15 km downstream of the main effluent outlet of the city Zagreb (mixed industrial 23 and municipal wastewater) and 5 km downstream of the wastewater outlet of the city Velika 24 Gorica (60,000 inhabitants); Lukavec Posavski - 15 km downstream of the city of Sisak (50,000 inhabitants, pesticides production facility, ironworks and oil refinery); Jasenovac - 50 25

km downstream of the city of Sisak, close to the confluence of the Una River, Sava River
right tributary (Krča et al. 2007). The basic physico-chemical parameters of Sava River water
were measured at the selected sampling sites (Table 1). The measurements of the dissolved
oxygen level in the river water and the water temperature were carried out *in situ* using the
portable device MO 128 (Mettler Toledo), while for the determination of pH (pH-meter
MP120, Mettler Toledo) and conductivity (conductivity meter S30 Seven Easy, Mettler
Toledo) river water was sampled in the plastic bottles.

8

9 The samplings were conducted in two seasons, autumn 2005 and spring 2006. The autumn sampling was accomplished within 10 days, at the end of September 2005 (September 19th to 10 11 28th), after the spawning period. Due to the unfavourable weather conditions, the spring sampling, conducted during April and May 2006, lasted over one month (April 18th to May 12 25th). The sampling was performed by electro fishing, according to the Croatian standard 13 14 HRN EN 14011:2005. In autumn 2005, the following number of European chub specimens 15 was caught: 22 at Otok Samoborski, 15 at Sava in Zagreb, 15 at Oborovo, 16 at Lukavec 16 Posavski, and 10 at Jasenovac. In spring 2006, 14 specimens were caught at Otok 17 Samoborski, 18 at Sava in Zagreb, 12 at Oborovo, 15 at Lukavec Posavski, and 14 at 18 Jasenovac. The captured fish were kept alive in aerated water tank till further processing in 19 the laboratory. After the fish were anesthetized with MS 222 (tricaine methane sulphonate, Sigma Aldrich) and sacrificed, the gills were isolated, weighted and stored at -80°C until 20 21 further analyses.

22

23 Isolation of cytosolic fraction

1 Isolation of the S50 cytosolic fraction from the chub gill tissue was performed according to 2 SOP (1999) developed at NIVA in the frame of the BEQUALM programme. The gill tissue 3 samples were first diluted 6 times with cooled homogenization buffer, consisting of 100 mM 4 Tris-HCl/Base (pH 8.1 at 4°C) and the reducing agent 1 mM dithiotreitol (both by Sigma). 5 The diluted tissue samples were then homogenized by Potter-Elverhjem homogenizer (Glas-6 Col, USA) in ice cooled tube at 6,000 rpm. The homogenates were centrifuged in the Sorval 7 RC28S centrifuge (Kendro, USA) at 50,000×g for 2 h at 4°C. Next, the supernatant (S50), 8 which represents water soluble cytosolic tissue fraction, was separated from the pellet and 9 stored at -80°C for subsequent metal and protein analyses. 10 11 Determination of total cytosolic protein concentration 12 13 Total cytosolic protein concentrations were measured in the gill cytosol (S50) according to 14 Lowry et al. (1951). The Bio-Rad DC Protein Assay was applied according to manufacturer's 15 instructions. The measurement was performed on the photometer Microplate Reader HT3 16 (Anthos, Austria) at 750 nm wavelength. Calibration curve was constructed with five different concentrations (0.2-2.0 mg mL⁻¹) of bovine serum albumin (Serva, Germany) dissolved in the 17

18 homogenization buffer.

19

20 Determination of cytosolic metal concentrations

21

The concentrations of five metals (Zn, Fe, Cu, Mn and Cd) were measured in a duplicate in the five times diluted S50 fraction of chub gills by Varian SpectrAA 220 atomic absorption spectrometer. Flame technique (air/acetylene) was applied for the measurement of Zn (at 213.9 nm) and Fe (at 248.3 nm), while graphite furnace with universal platforms (Varian

1	GTA-100) was used for the measurement of Cu (at 324.8 nm) (Dragun and Raspor 2008), Mn
2	(at 279.5 nm) and Cd (at 228.8 nm). Deuterium lamp was used for background correction.
3	External calibration was performed for each metal. The calibration standards were prepared
4	using the metal stock solutions (Zn, Fe, Cu, Mn or Cd, 1000 mg L ⁻¹ by Merck) and five times
5	diluted homogenization buffer, which was also used as the blank sample. The detection limits
6	for five measured metals were the following: Zn 0.007 mg L^{-1} ; Fe 0.015 mg L^{-1} ; Cu 0.270 μ g
7	L ⁻¹ ; Mn 0.224 μ g L ⁻¹ ; and Cd 0.023 μ g L ⁻¹ . Since the reference material with a matrix
8	corresponding to the cytosolic fraction was not commercially available, the quality control of
9	the metal determination was regularly performed using the water control samples, such as
10	WP-036 by US EPA. Furthermore, the accuracy of metal measurements was assured by
11	periodical participation in the international intercalibration studies organized by Vituki
12	(Hungary) and UNEP GEMS (Burlington, Canada).

14 Statistical analyses

15

16 Statistical analyses were performed using standard statistical package SigmaStat for 17 Windows, Version 1.0. The gill masses and cytosolic metal and protein concentrations 18 measured in the chub gills at different sites were compared using Kruskal-Wallis test 19 followed by Dunn's test. The levels of significance for Kruskal-Wallis test are given 20 throughout the text, while the level of significance for Dunn's test was always p < 0.05. The 21 association of the chub size with the metal and protein concentrations was previously tested 22 using the Pearson correlation and linear regression analyses, while the differences between 23 two seasons were tested using two-way ANOVA and Bonferroni t-test; the results of those 24 analyses were presented in detail in Dragun et al. (2007).

1 Results and Discussion

2

According to our previous reports on heavy metal concentrations in the Sava River water, this river is exposed to anthropogenic influence, but is still comparable with relatively unpolluted world rivers (Dragun et al. 2008a; Dragun et al. 2008b). Therefore, we had the opportunity to study the changes of the metal concentrations in the chub gill cytosol in only moderately polluted river system, and to establish if the cytosolic metal levels reflect subtle differences in metal concentrations in the river water observed between different sites.

9

10 The variability of the cytosolic metal and protein concentrations in the autumn period 11 In the autumn period, strong positive correlations with the gill mass were obtained for the 12 cytosolic concentrations of total proteins (r=0.327 to 0.885), Mn (r=0.295 to 0.794) and Zn 13 (r=0.216 to 0.657) (Dragun et al. 2007). The gill mass was used as the indicator of the fish 14 size, due to the high positive and statistically significant correlations (r=0.720 to 0.994; 15 p < 0.01) obtained between three biometric parameters associated to the chub size (length, total 16 mass and gill mass) (Dragun et al. 2007). Accordingly, the site-specific distribution of total 17 proteins, Mn and Zn (Figure 2c, Figure 3 a and c) was comparable to the site-specific 18 distribution of the chub gill masses, which were the highest at Oborovo and Sava-Zagreb, and the lowest at Lukavec Posavski (Figure 2a, statistically significant differences, p<0.001). 19 20 Although the statistically significant differences in total protein and Mn (p < 0.0001), as well 21 as Zn concentrations (p < 0.01) were also obtained between different sites, the chub size have 22 to be considered as a possible cause of these differences, and not necessarily different fish 23 exposure to metals in water. The differences between sites in the cytosolic concentrations of 24 remaining two essential metals, Fe and Cu, were also statistically significant (p < 0.05 and 25 p < 0.01, respectively). Their correlations with the gill mass were, however, weaker, positive in

1 the case of Fe (r=0.258 to 0.505) and negative in the case of Cu (r=-0.026 to -0.594) (Dragun 2 et al. 2007). Accordingly, somewhat higher cytosolic Fe concentrations (Figure 4a) and lower 3 Cu concentrations (Figure 3e) were found at Oborovo, the site where the biggest fish were 4 caught. For both Fe and Cu, cytosolic concentrations measured at four remaining sites were 5 comparable. Only for nonessential metal Cd, due to the lack of clear association with the gill 6 mass (Dragun et al. 2007), it could be assumed that statistically significant differences 7 between sites (p < 0.0001) possibly originated from different exposure in water (Figure 4c). 8 The sampling site Oborovo, which is located downstream of the municipal sewage outlets of 9 cities Zagreb and Velika Gorica, was the site with the highest cytosolic Cd concentration in 10 the chub gills, about 100% higher compared to the lowest measured cytosolic Cd 11 concentration at the sampling site in the city of Zagreb.

12

13 The variability of the cytosolic metal and protein concentrations in the spring period 14 The seasonal changes of metal concentrations in the fish tissues can arise due to the changes 15 of the feeding and growth rates, as well as the result of the changes in the fish condition 16 (McCoy et al. 1995; Farkas et al. 2002). Fulton condition indices of European chubs caught in 17 the spring period $(1.07\pm0.10\%)$ were higher compared to the autumn period $(0.96\pm0.07\%)$; 18 Dragun et al. 2007), indicating to more intense recent feeding activity (Lambert and Dutil 19 1997). Furthermore, the liver mass, as well as the cytosolic Mn and metallothionein 20 concentrations in the liver of the same chub specimens as used in this study were also higher 21 in the spring than autumn period (Podrug and Raspor 2008). Since the metal concentrations, 22 especially for essential metals like Zn, increase following the increase of the fish metabolic 23 activity (Andres et al. 2000), it can be hypothesized that higher Zn and Fe concentrations in 24 the chub gill cytosol in the spring period compared to the autumn (Figures 3c-d and 4a-b) 25 were an indication of the increased metabolic and feeding rates of European chub, as

1 previously elaborated (Dragun et al. 2007). Consequently, due to the well known negative 2 association of metabolic and filtration rates with the fish size (Neely 1979), the positive 3 correlations between the gill mass and the cytosolic metal and protein concentrations obtained 4 in the autumn have attenuated in the spring; they were mainly non significant (Dragun et al. 5 2007). Although Kruskal-Wallis test has indicated to the significant differences between the 6 gill masses obtained at different sites (p < 0.05), the gill size was more uniform in the spring 7 compared to the autumn period (Figure 2a-b). It can be, thus, assumed that possible 8 differences of the cytosolic metal levels between sites in the spring period could be attributed 9 to different metal bioavailability from river water. However, the concentrations of three 10 essential metals (Mn, Zn and Cu) varied very little between sites (Figures 3 b, d, f), and only 11 statistically significant difference was associated to lower Zn concentration at Lukavec 12 Posavski compared to three other sites (Figure 3d). It can be explained by the fact that the 13 concentrations of essential elements, such as Zn and Cu, are generally efficiently regulated in 14 the fish tissues by homeostatic processes, except at highly polluted sites (Andres et al. 2000; 15 Sorensen 1991). Andres et al. (2000), for example, reported that although Zn concentrations 16 in the river water varied greatly between sites in river Lot and its affluent, Zn 17 bioaccumulation in chub gills varied only slightly. Similar observation was made by Giguère 18 et al. (2004) for Cu concentrations in the gills of yellow perch (Perca flavescens) in Canadian lakes, while Amundsen et al. (1997) reported that both Zn and Cu in the gills of whitefish 19 20 (Coregonus lavaretus) in river Pasvik did not reflect increase of Zn and Cu concentrations in 21 the water in the vicinity of smelters. Among the essential metals measured in this study, the 22 cytosolic Fe concentrations exhibited the most pronounced site-specific variability in the 23 spring period (Figure 4b; p < 0.0001). Although the significant differences between seasons 24 indicated that Fe concentrations are strongly influenced by the fish physiological status

(Dragun et al. 2007), the site differences within spring season possibly reflected different Fe exposure in water at different sites.

3

4 For nonessential metals, such as Cd, the concentration gradient in water can be also expected 5 in fish organs (Andres et al. 2000), because Cd tissue concentrations are independent of strict 6 physiological control which is characteristic for the majority of essential metals (Sorensen 7 1991). Therefore, it can be assumed that higher Cd concentrations measured in the fish gills 8 reflect higher bioavailability in the ambient water, as previously confirmed by Kraemer et al. 9 (2005) in the study on yellow perch (*P. flavescens*) in Canadian lakes, by Andres et al. (2000) 10 in the study on chub (S. cephalus), roach (Rutilus rutilus), perch (Perca fluviatilis) and bream 11 (Abramis brama) in river Lot, and by Amundsen et al. (1997) in the study on whitefish (C. 12 lavaretus) in river Pasvik. In our study, statistically significant differences of the cytosolic Cd 13 concentrations in the chub gills between sites were obtained again in the spring period 14 (p<0.0001), and, same as in the autumn, indicated to increased Cd bioavailability at Oborovo 15 (Figure 4c-d). However, in the spring period, increased cytosolic Cd was also found at 16 Lukavec Posavski, and the differences between sites were more pronounced than in the 17 autumn (Figure 4d). Therefore, the hypothesis can be made that in the spring period increased 18 water filtration and feeding rates lead to increased uptake of metals, which resulted in easier 19 identification of metal contaminated sites, at least for nonessential metals, such as Cd, and 20 only for a particular essential metal, i.e. Fe.

21

In the spring period, distinctive site-specific distribution was furthermore observed for total
cytosolic proteins. The highest protein level was obtained at the most upstream sampling site
Otok Samoborski (27.2±5.6 mg mL⁻¹), which is assumed to have the least polluted river
water, and then gradually decreased towards the lowest level of 14.8±2.8 mg mL⁻¹ at Lukavec

1 Posavski (Figure 2d), and the differences were statistically significant (p < 0.0001). The protein 2 concentrations were significantly higher in the spring period than in the autumn at all 3 sampling sites (Figure 2c-d; Dragun et al. 2007), but the relative increase was more 4 pronounced at the reference site Otok Samoborski (2.7 times) compared to downstream 5 sampling sites (about 1.5 times). As seen from Figures 2d and 4d, the sites with the lowest 6 protein concentrations were at the same time the sites with the highest cytosolic Cd 7 concentrations. Metal exposure has been shown in the laboratory to affect protein 8 metabolism; study on yellow perch (Perca flavescens) in metal contaminated Whitson lake, 9 for example, suggested that metal exposure could be related to lower tissue protein 10 concentrations or lower biosynthetic capacities (Audet and Couture 2003). However, due to 11 only moderate metal pollution reported for Sava River water (Dragun et al. 2008a; Dragun et 12 al. 2008b), it is more probable that decreased total protein concentrations in the chub gills at 13 the sites downstream of the city of Zagreb, and especially at Oborovo and Lukavec Posavski, 14 were not solely associated to metal pollution, but rather reflected the combination of different 15 types of pollution. This conclusion can be supported by the results of several chemical and 16 toxicological assays performed during the SARIB project (European FP6 project - Sava River 17 Basin: Sustainable Use, Management and Protection of Resources), which have indicated to 18 moderate organic pollution (PCB, PAH) and water toxicity at the sites downstream of the city 19 of Zagreb, most probably as a reflection of enhanced hydrocarbon input by main municipal 20 sewage vent at Oborovo, and the oil refinery and ironworks situated in the city of Sisak (Čalić 21 et al. 2006; Čalić et al. 2007; Krča et al. 2007; Källqvist et al. 2008; Grung et al. 2007). More 22 prominent influence of the polluted water on the protein concentrations observed in the chub 23 gill cytosol in the spring than autumn period is probably the result of stronger impact of the 24 environment on the fish organism in the period of more intense metabolism, due to the 25 accelerated gill ventilation and uptake of different toxicants (Chovanec et al. 2003).

2 The comparison of the cytosolic metal concentrations in the chub gills with labile metal 3 concentrations in the river water

4 It is assumed that the labile metal concentrations are proportional to biological response of 5 aquatic organisms (Campbell 1995). Therefore, to establish if indeed some cytosolic metal 6 concentrations measured in the spring period in the chub gills present potential indicators of 7 metal bioavailability from the river water, they were compared with the labile metal 8 concentrations simultaneously measured in the river water using DGTs at three out of five 9 fish sampling sites (Sava in Zagreb, Oborovo and Lukavec Posavski; Table 2; Dragun et al. 10 2008a). Labile Mn concentrations were 30-50% higher at Lukavec Posavski, while labile Cu 11 concentrations were 40-60% higher at Oborovo compared to the remaining two sampling sites 12 (Table 2). In the same period Mn and Cu cytosolic concentrations were comparable at all 13 three sites (Figure 3 b and f), further supporting the assumption that the concentrations of 14 these essential metals are regulated in the chub gills up to a certain level of exposure. The 15 concentration increase for majority of essential metals in fish tissues obviously can be 16 expected only after fish are exposed to rather high concentrations of those metals in the 17 ambient water. Accordingly, increased Cu concentrations in the gills of North African catfish 18 (Clarias gariepinus) and Mozambique Tilapia (Oreochromis mossambicus) were reported for river Olifants at dissolved Cu concentrations in water higher than 10 μ g L⁻¹ (Kotze et al. 19 20 1999), which is approximately 20 times higher than dissolved Cu concentrations measured in the river Sava ($0.54\pm0.14 \ \mu g \ L^{-1}$; Dragun et al. 2008b). In the same study, Kotze et al. (1999) 21 reported increased gill concentrations of Zn at dissolved Zn concentrations in water higher 22 than 100 µg L⁻¹. Andres et al. (2000) observed increased concentrations of Zn in the chub gills 23 after exposure to extremely high concentration of dissolved Zn in river Lot water (890 µg L⁻ 24 ¹), while increase was still not observed at water Zn concentration of 45 µg L⁻¹. Dissolved Zn 25

concentrations in the river Sava were much lower, and amounted to $2.27\pm1.53 \ \mu g \ L^{-1}$ (Dragun 1 2 et al. 2008b). That is why it is surprising that the lowest concentration of cytosolic Zn was 3 measured at Lukavec Posavski (Figure 3d), the same site where the lowest concentration of 4 labile Zn was found (approximately twice lower compared to Sava in Zagreb and Oborovo; 5 Table 2). However, the most of the cellular Zn, due to its presence in over 300 Zn dependent 6 enzymes (Coyle et al. 2002), is bound to high molecular mass protein fraction, as shown by 7 Roch et al. (1982) in the study on rainbow trout. Therefore, it is possible that low cytosolic Zn 8 at Lukavec Posavski can actually be associated to lower protein concentration at that site 9 (Figure 2d). The labile Fe concentrations were 2.5-3 times higher at Oborovo than at the other 10 two sites (Table 2), and corresponded well with higher cytosolic Fe at Oborovo compared to 11 Sava in Zagreb and Lukavec Posavski (Figure 4b). Unfortunately, the labile Fe concentration 12 was not determined in the water at Jasenovac, where the highest cytosolic Fe was found, so 13 further investigation is required to confirm with certainty the association of cytosolic Fe 14 concentrations in the chub gills with the Fe-exposure from the river water. Labile Cd 15 concentrations were very low in the Sava River water (<2 ng L⁻¹) and comparable at all three 16 sampling sites (Table 2), while cytosolic Cd was two times higher at Oborovo and Lukavec 17 Posavski than at Sava in Zagreb (Figure 4d). Cadmium, as non-essential metal, tends to 18 accumulate in tissues of aquatic organisms even at relatively low water concentrations; 19 however, in water with low metal level, metal uptake from food prevails (Dallinger and 20 Kautzky 1985). Accordingly, Harrison and Klaverkamp (1989) reported significant Cd 21 accumulation in the gills after fish were exposed to Cd from food. In the study on three-22 spined stickleback (Gasterosteus aculeatus), positive correlation of gill Cd was observed with 23 Cd in food (invertebrates), and not with Cd in water; as a result of low concentrations of dissolved Cd in water (0.3-1.3 μ g L⁻¹), Cd uptake from food was predominant (Bervoets et al. 24 25 2001). This was also a possible explanation for increased cytosolic Cd at Oborovo and

1 Lukavec Posavski observed in our study, since dissolved Cd concentrations in Sava River water were not higher than 0.025 μ g L⁻¹ (Dragun et al. 2008b). However, there is another 2 3 possibility: it is known that metabolic stimulation during stress can accelerate gill ventilation 4 and thus also the uptake of toxicants (Chovanec et al. 2003). Therefore, organic pollution and 5 water toxicity at Oborovo and Lukavec Posavski (Čalić et al. 2006; Čalić et al. 2007; Krča et 6 al. 2007; Källqvist et al. 2008; Grung et al. 2007), could have caused higher water filtration 7 rate at these two sites compared to remaining sampling sites, resulting with higher Cd 8 accumulation in the chub gills. In each case, increased cytosolic Cd in the chub gills can be 9 used as an indicator of unfavourable living conditions in the ambient water.

10

11 Conclusions

12

13 In the autumn period, the site-specific variability of the cytosolic concentrations of proteins 14 and essential metals Zn, Fe and Mn in the gills of European chubs caught in the river Sava 15 was comparable to the site-specific variability of the chub gill masses, while Cu 16 concentrations showed the opposite trend. In the spring period, the cytosolic concentrations of Zn, Cu and Mn seemed to be regulated in the chub gills at the moderate level of metal 17 18 pollution observed for the River Sava, while the concentrations of total cytosolic proteins, Cd 19 and Fe could presumably be associated to the level of water pollution. The cytosolic protein 20 concentrations in the chub gills could be associated to the pollution gradient in the Sava River 21 water, with decreased level observed at the sites affected by organic pollution and higher 22 water toxicity. Increased cytosolic Cd concentrations were probably caused by dietary uptake 23 or by stress-induced increase of the gill ventilation at the sampling sites affected by the 24 pollution sources from Zagreb and Sisak areas. And, based on the comparison with the labile 25 metal concentrations in the river water, our data indicated that cytosolic Fe concentrations

- 1 possibly reflected the water-borne Fe-uptake. Therefore, the spring period can be
- 2 recommended as more appropriate season for the assessment of the river water pollution, if
- 3 the gills are used as the target organ.

1 Acknowledgements

2

The financial support by the Ministry of Science, Education and Sport of the Republic of Croatia (project No. 098-0982934-2721) is acknowledged. This study was carried out as a part of the European FP6 project SAva RIver Basin: Sustainable Use, Management and Protection of Resources (INCO-CT-2004-509160). The authors are thankful to all SARIB project participants for the help in the fish sampling and dissection.

1 References	1	Referen	ces
--------------	---	---------	-----

3	Amundsen P-A, Staldvik FJ, Lukin AA, Kashulin NA, Popova OA, Reshetnikov YS
4	(1997) Heavy metal contamination in freshwater fish from the border region between
5	Norway and Russia. Sci Total Environ 201:211-224
6	Andres S, Ribeyre F, Tourencq J-N, Boudou A (2000) Interspecific comparison of
7	cadmium and zinc contamination in the organs of four fish species along a
8	polymetallic pollution gradient (Lot River, France). Sci Total Environ 248:11-25
9	Audet D, Couture P (2003) Seasonal variations in tissue metabolic capacities of yellow
10	perch (Perca flavescens) from clean and metal-contaminated environments. Can J
11	Fish Aquat Sci 60:269-278
12	Bervoets L, Blust R, Verheyen R (2001) Accumulation of metals in the tissues of three
13	spined stickelback (Gasterosteus aculeatus) from natural fresh waters. Ecotoxicol
14	Environ Saf 48:117-127
15	Bury NR, Walker PA, Glover CN (2003) Nutritive metal uptake in teleost fish. J Exp
16	Biol 206:11-23
17	Chovanec A, Hofer R, Schiemer F (2003) Fish as bioindicators. In: Markert BA, Breure
18	AM, Zechmeister HG (eds) Bioindicators & Biomonitors: Principles, Concepts and
19	Applications. Elsevier, pp 639-676
20	Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a
21	critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal
22	Speciation and Bioavailability in Aquatic Systems. IUPAC, John Wiley and Sons
23	Ltd., New York, pp 45-102

1	Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: The multipurpose
2	protein. Cell Mol Life Sci 59:627-647
3	Čalić V, Picer N, Picer M (2006) Levels of polychlorinated biphenyls and chlorinated
4	insecticides in the liver and muscle tissues of the European chub (Leuciscus cephalus)
5	from the Sava River (Croatia). Organohalogen Compd 68:724-727
6	Čalić V, Picer M, Picer N (2007) Organochlorines from the Sava River (Croatia), levels
7	in fish and SPMD uptake. Organohalogen Compd 69:1360-1363
8	Dallinger R, Kautzky H (1985) The importance of contaminated food and uptake of
9	heavy metals by rainbow trout (Salmo gairdneri): a field study. Oecologia 67:82-89
10	Dragun Z, Raspor B, Podrug M (2007) The influence of the season and the biotic factors
11	on the cytosolic metal concentrations in the gills of the European chub (Leuciscus
12	cephalus L.). Chemosphere 69:911-919
13	Dragun Z, Raspor B (2008) Copper determination by ETAAS in fish tissue cytosols with
14	minimal sample pretreatment. Atom Spectrosc 29:107-113
15	Dragun Z, Raspor B, Roje V (2008a) The labile metal concentrations in Sava River water
16	assessed by diffusive gradients in thin films. Chem Spec Bioavailab 20:33-46
17	Dragun Z, Roje V, Mikac N, Raspor B (2008b) Preliminary assessment of total dissolved
18	trace metal concentrations in Sava River water. Environ Monit Assess, in press.
19	Farkas A, Salánki J, Specziár A (2002) Relation between growth and the heavy metal
20	concentration in organs of bream Abramis brama L. populating Lake Balaton. Arch
21	Environ Con Tox 43:236-243
22	Giguère A, Campbell PGC, Hare L, McDonald DG, Rasmussen JB (2004) Influence of
23	lake chemistry and fish age on cadmium, copper, and zinc concentrations in various

- organs of indigenous yellow perch (*Perca flavescens*). Can J Fish Aquat Sci 61:1702 1716
 Grung M, Lichtenthaler R, Ahel M, Tollefsen K-E, Langford K, Thomas KV (2007)
 Effects-directed analysis of organic toxicants in wastewater effluent from Zagreb,
 Croatia. Chemosphere 67:108-120
 Harrison SE, Klaverkamp JF (1989) Uptake, elimination and tissue distribution of dietary
- and aqueous cadmium by rainbow trout (*Salmo gairdneri* Richardson) and lake white
 fish (*Coregonus clupeaformis* Mitchell). Environ Toxicol Chem 8:87-97
- 9 HRN EN 14011:2005. Fish sampling by electric power [Uzorkovanje riba električnom
 10 strujom].
- Källqvist T, Milačić R, Smital T, Thomas KV, Vranes S, Tollefsen K-E (2008) Chronic
 toxicity of the Sava River (SE Europe) sediments and river water to the algae
 Pseudokirchneriella subcapitata. Water Res 42:2146-2156
- Köck G, Triendl M, Hofer R (1996) Seasonal patterns of metal accumulation in Arctic
 char (*Salvelinus alpinus*) from an oligotrophic Alpine lake related to temperature. Can
 J Fish Aquat Sci 53:780-786
- Kotze P, du Preez HH, van Vuren JHJ (1999) Bioaccumulation of copper and zinc in *Oreochromis mossambicus* and *Clarias gariepinus*, from the Olifants River,
 Mpumalanga, South Africa. Water SA 25:99-110
- Kraemer LD, Campbell PGC, Hare L (2005) Dynamics of Cd, Cu and Zn accumulation
 in organs and sub-cellular fractions in field transplanted juvenile yellow perch (*Perca*
- *flavescens*). Environ Pollut 138:324-337

1	Krča S, Žaja R, Čalić V, Terzić S, Grubešić MS, Ahel M, Smital T (2007) Hepatic
2	biomarker responses to organic contaminants in feral chub (Leuciscus cephalus) -
3	Laboratory characterization and field study in the Sava River, Croatia. Environ
4	Toxicol Chem 26:2620-2633
5	Lambert Y, Dutil J-D (1997) Can simple condition indices be used to monitor and
6	quantify seasonal changes in the energy reserves of Atlantic cod (Gadus morhua)?
7	Can J Fish Aquat Sci 54(Suppl. 1):104-112
8	Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the
9	Folin Phenol reagent. J Biol Chem 193:265-275
10	McCoy CP, O'Hara TM, Bennett LW, Boyle CR, Lynn BC (1995) Liver and kidney
11	concentrations of zinc, copper and cadmium in channel catfish (Ictalurus punctatus):
12	variations due to size, season and health status. Vet Hum Toxicol 37:11-15
13	Neely WB (1979) Estimating rate constant for the uptake and clearance of chemicals by
14	fish. Environ Sci Technol 13:1506-1510
15	Olson KR, Squibb K, Crusin RJ (1978) Tissue uptake, cellular distribution, and
16	metabolism of ¹⁴ CH ₃ HgCl and CH ₃ ²⁰³ HgCl by rainbow trout, <i>Salmo gairdneri</i> . J Fish
17	Res Board Can 35:381-390
18	Olsson P-E, Kling P, Hogstrand C (1998) Mechanisms of heavy metal accumulation and
19	toxicity in fish. In: Langston WJ, Bebianno MJ (eds) Metal metabolism in the aquatic
20	environment. Chapman and Hall, London, pp 321-350
21	Podrug M, Raspor B (2008) Seasonal variation of the metal (Zn, Fe, Mn) and
22	metallothionein concentrations in the liver cytosol of the European chub (Squalius
23	cephalus L.). Environ Monit Assess, DOI 10.1007/s10661-008-0509-x

1	Roch M, McCarter JA, Matheson AT, Clark MJR, Olafson RW (1982) Hepatic							
2	metallothionein in rainbow trout (Salmo gairdneri) as an indicator of metal pollution							
3	in the Campbell river system. Can J Fish Aquat Sci 39:1596-1601							
4	Romeo M, Siaub Y, Sidoumou Z, Gnassia-Barelli M (1999) Heavy metal distribution in							
5	different fish species from the Mauritania coast. Sci Total Environ 232:169-175							
6	SOP (1999) Preparation of S50-fraction from fish tissue (unapproved rev. 01). 1st							
7	Workshop in the frame of BEQUALM programme, 13-14 September 1999, NIVA,							
8	Oslo.							
9	Sorensen EMB (1991) Metal poisoning in fish. CRC Press, Boca Raton							
10	Wallace WG, Brouwer TMH, Lopez GR (2000) Alterations in prey capture and induction							
11	of metallothioneins in grass shrimp fed cadmium-contaminated prey. Environ Toxicol							
12	Chem 19:962-971							
13	Wallace WG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two							
14	bivalves. II. Significance of trophically available metal (TAM). Mar Ecol-Prog Ser							

15 257:125-137

Table 1. Fish sampling sites, the coordinates recorded with GPSMAP 76CS (Garmin International, USA), the sampling dates, and basic physicochemical parameters of Sava River water.

Fish sampling	Autumn, 2005				Spring, 2006					
sites	Date	^a WT	рН	^b O ₂	°Cond.	Date	aWT	рН	^b O ₂	°Cond.
Otok Samoborski N 45° 50.543' E 15° 43.497'	Sep-19 Sep-26	14.4 15.6	- 7.84	83.1 77.6	- 410	Apr-24	12.8	7.87	97.9	465
Sava in Zagreb N 45° 46.572' E 15° 56.524'	Sep-22	13.2	7.92	77.7	377	Apr-21	11.5	7.86	93.7	473
Oborovo N 45° 41.286' E 16° 14.875'	Sep-20	13.7	7.84	79.7	346	Apr-18 Apr-25	12.1	7.76 7.82	84.7 -	507 486
Lukavec Posavski N 45° 24.081' E 16° 32.337'	Sep-21 Sep-28	13.9 15.1	7.83 7.82	76.2 69.8	346 408	Apr-26 May-2 May-8	17.1 11.7 14.8	7.85 7.68 7.59	82.9 80.5 80.9	491 415 495
Jasenovac N 45° 15.825' E 16° 53.658'	Sep-23	13.3	7.89	79.5	352	May-25	19.5	7.59	76.0	403

^aWT: water temperature, °C; ^bO2: dissolved oxygen, %;

°Cond.: water conductivity, µS cm⁻¹.

Table 2. The labile metal concentrations (μ g L⁻¹) in Sava River water measured simultaneously with the fish sampling at three selected sites in the spring period of 2006 (March 29th - June 21st), using the diffusive gradients in thin films; DGTs were deployed 2-3 times per site, and deployments lasted from 20 to 36 days; details about the deployment, measurements and calculations are given in Dragun et al. (2008a)

	Number of deployments	Zn	Fe	Cu	Mn	Cd
Sava-Zagreb	2	1.38±1.28	3.41±4.75	0.128±0.014	1.90±0.69	0.0014 ± 0.0003
Oborovo	3	1.15±0.27	8.20±6.73	0.185 ± 0.082	2.19±0.92	0.0015 ± 0.0003
Lukavec Posavski	2	0.63±0.09	2.81±0.96	0.116±0.013	2.88±0.69	0.0017 ± 0.0005

1 Figure captions

2

Figure 1. The map of the selected section of the Sava River in Croatia, with marked sampling
sites (OS: Otok Samoborski, SZ: Sava in Zagreb; OB: Oborovo; LP: Lukavec Posavski; JAS:
Jasenovac).

6

Figure 2. The gill masses (a, b) and total cytosolic proteins (c, d) measured in the gills of the European chubs caught at five sites in the Sava River, in autumn 2005 and spring 2006. Data are presented as the boxes whose boundaries indicate 25^{th} and 75^{th} percentiles; a square within the box marks the median value; whiskers above and below the box indicate the non-outlier minimum and maximum. The statistically significant differences between sites (*p*<0.05) according to Dunn's test are indicated by different letters.

13

Figure 3. The cytosolic concentrations of essential metals Mn (a, b), Zn (c, d) and Cu (e, f) measured in the gills of the European chubs caught at five sites in the Sava River, in autumn 2005 and spring 2006. Data are presented as in Figure 2. The statistically significant differences between sites (p<0.05) according to Dunn's test are indicated by different letters.

18

Figure 4. The cytosolic concentrations of essential metal Fe (a, b) and nonessential metal Cd (c, d) measured in the gills of the European chubs caught at five sites in the Sava River, in autumn 2005 and spring 2006. Data are presented as in Figure 2. The statistically significant differences between sites (p<0.05) according to Dunn's test are indicated by different letters.

Figure 1.

