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Abstract 

Treated sewage sludge is commonly used in agriculture as fertilizer. It is, therefore, necessary to 

determine possible detrimental influences of sludge application on soil contamination and 

accumulation of contaminants in tissues of terrestrial animals, which in the long run could also have 

undesirable effects on humans. With that aim, the study was performed using earthworm Eisenia 

fetida as test organism and semi-solid depot sludge from wastewater treatment plant as exposure 

media. The concentrations of 26 metals/metalloids were determined in depot sludge, and their 

bioaccumulation was estimated in whole tissue of E. fetida, and for the first time in the soluble tissue 

fraction, which represents metal fraction available for metabolic requirements and toxic effects. 

Obtained results have revealed acceptable levels of several elements (Cd, Cr, Cu, Ni, Pb, Zn) in depot 

sludge, when compared to currently valid regulations, and only moderate accumulation of some 

elements (e.g. As, Ba, Cd, Co, Fe, Tl, V, and Zn) in earthworms, as a consequence of exposure to 

depot sludge. However, concentration increase after exposure to depot sludge was observed in E. 

fetida for several elements (Cd, Mo, and Zn), which were present in lower concentrations in the 

exposure mixtures than in soil. Contrary, concentration decrease was observed for Cs, Mn, and Rb, 

although they were present in higher concentrations in depot sludge than in soil. It was an indication of 

disturbance in metal homeostasis in earthworms, possibly caused by exposure to complex mixture of 

contaminants present in depot sludge. The cumulative effect of exposure to a number of various 

contaminants (inorganic, organic, microbiological and pharmaceutical), even if each of them was not 

present in very high concentrations, could have caused distress in earthworms exposed to depot 

sludge.  

 

 

Keywords: earthworms, metal bioaccumulation, semi-solid depot sludge, soil metal contamination, 

metals in soluble tissue fraction 
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1. Introduction  

Biosolids, such as active and depot sludge, are often used in agriculture as fertilizers, due to their 

ability to enhance growth of agricultural crops (Scheifler et al., 2003; Carpené et al., 2006; Braguglia 

et al., 2015). However, besides the obvious benefits of agricultural use of sludge, possible 

disadvantages should also be considered. As is well known, sludge can contain various organic, 

inorganic and microbiological contaminants, which could be transferred to soil or accumulated in 

crops, and consequently could have toxic effects on animal and human health (Scheifler et al., 2003; 

Carpené et al., 2006; Braguglia et al., 2015). Although the use of sewage sludge in agriculture is 

regulated by national and international directives (Minister of Environmental Protection, Physical 

Planning and Construction, 2008; Council of the European Communities, 1986), these regulations are 

unfortunately constrained on providing recommendations only for few selected contaminants. In 

addition to the fact that total content of contaminant in the soil is less important for risk assessment 

than its bioavailable amount (Nahmani et al., 2007a), the regulations also do not take into 

consideration the possibility of contaminant interactions, as well as the enhanced toxicity of complex 

mixtures of contaminants. Therefore, bioavailability and possible toxicity of multicontaminated soil 

could only be determined by exposure and effect assessment using various bioindicator organisms 

(Kamitani and Kaneko, 2007; Calisi et al., 2013).  

 

According to the available literature, earthworms are one of the most adequate organisms for testing 

toxicity of soil (Nahmani et al., 2007a). They can accumulate high levels of contaminants due to their 

feeding habits (Morgan and Morgan, 1998; Carpené et al., 2006; Hsu et al., 2006), as well as due to 

dermal exposure of their whole body (Lanno et al., 2004; Kamitani and Kaneko, 2007). The most 

commonly used earthworm species for biomonitoring is Eisenia fetida (Nahmani et al., 2007a), which 

is recommended for use in several international standard toxicity tests (OECD, 2004). The reasons for 

its frequent use are related with its fast maturation, higher reproductive rate and a shorter generation 

time compared to other species, as well as responsiveness to a wide range of toxicants (Paoletti, 1999; 

Nahmani et al., 2007a). It can be easily cultured in large quantities in the laboratory, and is readily 

available from commercial suppliers (Nahmani et al., 2007a). 

 

A large number of studies using soils prepared and contaminated with selected contaminants in the 

laboratory have been performed using earthworms as bioindicator organisms (Leveque et al., 2014; 

Irizar et al., 2015). However, Nahmani et al. (2007a) have pointed out that there is a need for further 

accumulation studies which use real contaminated soils with a variety of properties. In that way, 

synergistic effects of various contaminants present in the soil would be better understood and more 

useful data for risk assessment would be collected. Therefore, to follow the recommendations and 

cognitions of current scientific trends, we have aimed to perform a study of toxicity of real semi-solid 

depot sludge obtained from a wastewater treatment plant (WWTP) which purifies municipal, hospital 
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and sugar factory wastewaters. Special emphasis was directed on metal/metalloid contamination. The 

specific aims of the study were: (1) to define the level of metal/metalloid contamination of depot 

sludge; (2) to establish a baseline for metal/metalloid elements in whole earthworm tissues, as well as 

for the first time in the soluble tissue fraction, based on the measured concentrations in non-exposed 

organisms; and (3) to study the patterns of metal/metalloid variability in earthworms after exposure to 

depot sludge. Commonly, only few selected elements are monitored in the earthworms, such as Cd, 

Cu, Fe, Pb, and Zn (Carpené et al., 2006; Kamitani and Kaneko, 2007; Suthar and Singh, 2009; Li et 

al., 2010; Giska et al., 2014). Only seldom studies extend on larger number of elements (Nahmani et 

al., 2007b; Nahmani et al., 2009; Nannoni et al., 2014). In our study, 26 trace and macro elements 

were analysed, thus providing extensive database for future soil monitoring programmes. Our study 

was primarily focused on the analyses of contamination of the depot sludge with metals and metalloids 

and their accumulation in the earthworms. However, we have further estimated the overall effect that 

exposure to complex mixture of contaminants, such as the one present within the depot sludge, could 

have on earthworm general well-being. 

 

2. Materials and methods  

 

2.1. Experimental organisms  

Adult E. fetida (Savigny, 1826) earthworms (Oligochaeta, Lumbricidae) were randomly collected 

from earthworm farm Eršek in Donja Bistra (Croatia). In the laboratory, they were maintained in the 

dark in glass terrarium filled with soil from the earthworm farm, under controlled temperature 

(20±1°C). Soil in glass terrarium was periodically moistened and pH was monitored. Since metal 

concentrations may vary considerably according to the stage of earthworm development (Ma, 2004), 

only adult specimens with well-developed clitellum and weighing 170.0±14.8 mg were selected for 

this study. 

 

2.2. Sewage sludge sampling 

Semi-solid depot sewage sludge was sampled in April 2014 from depot of the municipal WWTP in 

Virovitica (Croatia), serving an area of about 20,000 population estimate. Depot is located near an 

agricultural area, approximately 1.5 km away from WWTP, and the sludge has been disposed there 

over the years. By primary and secondary processes, WWTP purifies municipal, hospital and sugar 

factory wastewaters. Basic properties of soil from the earthworm farm and of depot sludge are given in 

Table 1. Values of pH were determined by use of 3200P Benchtop pH Meter (Agilent Technologies, 

USA) and conductivity by use of Datalogging Conductivity TDS Meter – 850039 (Sper Scientific, 

USA).  
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2.3. Experimental design 

For the present study, collected depot sludge was mixed with soil from the earthworm farm in order to 

achieve two exposure concentrations, 30% and 70% of depot sludge, which are much higher than 

concentrations usually applied for fertilization, but interesting for toxicity testing. The soil from 

earthworm farm itself was used as a control. The mixtures were manually homogenized and placed 

into two 3L glass jars, one containing 30% of depot sludge and the other one containing 70% of depot 

sludge. In each jar, 70 adult earthworms were inoculated and covered with a perforated lid, for 

requirements of this study and parallel studies of acute, semi-acute and chronic toxicity. During 

exposure period, jars were kept in the dark at 20±1°C and moisture was maintained at ~30 %. At the 

end of each exposure period, earthworms were randomly selected (five earthworms after 14 days and 3 

earthworms after 28 days from each jar), rinsed with distilled water and placed on moist filter paper to 

remove gut content. After depuration which lasted 24 hours, earthworms were frozen at -80°C until 

further analyses. As a control group, five earthworms were taken directly from farm soil. Altogether, 

21 earthworms were analyzed in this study. During the experiment, significant mortality of 

earthworms was not observed. 

 

2.4. Digestion of soil and depot sludge 

Dry samples of soil and depot sludge were ground and homogenized using an agate mill. Subsamples 

of ground and homogenized soils (0.1 g) were subjected to total digestion in the microwave oven 

(Multiwave 3000, Anton Paar, Graz, Austria) in two step procedure. The first step consisted of 

digestion with a mixture of HNO3 (4 mL), HCl (1 mL) and HF (1 mL). It was followed by second 

digestion after addition of 6 mL of H3BO3. Resulting solutions were transferred to a 100 mL flask and 

diluted with Milli-Q water. Prior to measurement, aliquots of these solutions were further diluted with 

Milli-Q water, 10 times for trace element analyses and 100 times for macro element analyses, and 

acidified with HNO3 (Suprapur, Merck, Germany; final concentration in the samples 1.3%). 

 

2.5. Isolation of soluble tissue fraction from earthworms 

Homogenization of frozen earthworms was performed in five volumes of cooled homogenization 

buffer 100 mM Tris-HCl/Base (Sigma, pH 8.1 at 4°C) supplemented with reducing agent (1 mM 

dithiotreitol, Sigma) and inhibitors of proteolytic activity (0.5 mM phenylmethylsulfonylfluoride and 

0.006 mM leupeptine) by ten strokes of Potter-Elvehjem homogenizer (Glas-Col, USA) in an ice-

cooled tube at 6,000 rpm. An aliquot of each homogenate was separated for digestion and 

determination of total metal concentrations. The remaining volumes of homogenates were centrifuged 

(Avanti J-E centrifuge; Beckman Coulter) at 50,000×g for 2 h at 4°C. The obtained supernatants, 

which correspond to water-soluble tissue fraction, were separated and stored at -80°C for subsequent 

metal/metalloid analyses. Prior to measurement, supernatants were diluted with Milli-Q water, 10 
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times for trace element analyses, and 100 times for macro element analyses, and acidified with HNO3 

(Suprapur, Merck, Germany; final concentration in the samples: 0.65%). 

 

2.6. Digestion of earthworm tissue homogenate 

Digestion of earthworm tissue homogenate (0.3 mL) was performed in laboratory drying oven (ST-05, 

Instrumentaria, Croatia) for 3.5 h at 85°C in PFA (perfluoroalkoxy polymer resin) vials, by use of 

digestion mixture containing HNO3 (1.35 mL; 65%, Suprapur, Merck, Germany) and H2O2 (0.45 mL; 

30%, Suprapur, Merck, Germany). After digestion, obtained solutions were diluted with Milli-Q water 

to lower the acid level in the samples below 10%, 5 times for trace element analyses, and 20 times for 

macro element analyses. 

 

2.7. Determination of metal and metalloid concentrations in soluble tissue fractions, digested tissue 

and digested soil and depot sludge 

Measurements of 26 elements were performed on a high-resolution inductively coupled plasma mass 

spectrometer (HR ICPMS Element 2, Thermo Finnigan, Germany) equipped with an autosampler 

ASX 510 (CETAC Technologies, USA). Typical instrumental conditions and measurement parameters 

used throughout the work were reported previously (Fiket at al., 2007). Measurements of 7Li, 82Se, 

85Rb, 98Mo, 111Cd, 133Cs, 205Tl, 208Pb, and 238U were operated in low-resolution mode; of 23Na, 24Mg, 

27Al, 42Ca, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu, 66Zn, 86Sr, and 138Ba in medium resolution 

mode; and of 39K and 75As in high resolution mode. External calibration was performed using standard 

solutions prepared from multielement stock standard solution for trace elements (Analitika, Czech 

Republic) in which single element standard solution of U (Aldrich, USA) was added. Separate external 

calibration was performed for macro elements using standard containing Ca, Mg, Na, and K (Fluka, 

Germany). All standards were prepared in 1.3% HNO3 (Suprapur; Merck, Germany). Prior to 

measurement, In (1 µg L-1; indium atomic spectroscopy standard solution, Fluka, Germany) was added 

to all samples and standards as internal standard (Fiket et al., 2007). Quality control of measurements 

on HR ICP-MS was performed by simultaneous analysis of the blanks and quality control (QC) 

samples for trace metals (QC trace metals, catalog no. 8072, lot no. 146142-146143; UNEP GEMS, 

Burlington, Canada) and for macro elements (QC minerals, catalog no. 8052, lot no. 146138-146139; 

UNEP GEMS). The results of quality control are presented as supplementary information (Table SI-

1). Additional control of measurements in digested soil samples was performed by analysis of certified 

reference material for soil (NCS DC 73302, also known as GBW 07410, China National Analysis 

Center for Iron and Steel, Beijing, China). Good agreement was obtained between analysed and 

certified concentrations in the certified reference material for soil, within analytical uncertainties for 

all measured elements (±10%). Limits of quantification (LOQ) for measurements of trace and macro 

elements in the soluble tissue fractions and in the acid digested tissues of earthworms were calculated 
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based on three standard deviations of five measurements performed in adequate blank samples (Table 

SI-1). 

 

2.8. Data processing and statistical analyses 

Statistical program SigmaPlot 11.0 for Windows was applied for graph creation and statistical 

analyses. Comparison of metal/metalloid concentrations in soil and depot sludge was performed by t-

test. Since data for metal/metalloid concentrations in earthworms were not normally distributed, and 

sample size was small and unequal (n=3-5), nonparametric statistical analysis was applied. Kruskal-

Wallis one way analysis of variance on ranks with post hoc Dunn’s test was used for comparison of 

metal/metalloid concentrations measured in different exposure groups, for both soluble fraction and 

acid digested tissue. By use of Spearman correlation coefficient we have defined which soluble metals 

and metalloids in earthworms exhibit similar pattern of variability (n=21). The same analysis was 

performed to compare the variability of each metal/metalloid in soluble and total fraction of 

earthworms (n=18). 

 

3. Results 

 

3.1. Metal and metalloid concentrations in soil and depot sludge 

Concentrations in depot sludge were found to be significantly higher than in soil for several 

metals/metalloids: Al, As, Ba, Ca, Co, Cr, Cs, Fe, Li, Na, Ni, Pb, Rb, Sr, Tl, U, and V (Table 2). 

Metals/metalloids that were significantly less present in the sludge compared to control were Cd, Cu, 

K, Mo and Zn (Table 2). For earthworm exposure, mixtures containing 30% and 70% of depot sludge 

were prepared and concentrations of above listed metals/metalloids were approximately 1.5-2 times 

higher in 30% mixture and 2.5-3 times higher in 70% mixtures compared to soil. Contrary, 

concentrations of few metals were lower in 30% and 70% mixtures than in soil: Cu (~10%), Cd, K and 

Zn (10% and 30%, respectively), whereas the most pronounced decrease was observed for Mo (20% 

and 60%, respectively). 

 

3.2. Soluble metals and metalloids in earthworms 

Concentrations measured in the earthworms taken from farm soil, considered as a control group, for 

25 analysed elements can be regarded as the baseline values for soluble tissue fraction of E. fetida 

(Fig. 1). Changes of soluble metal/metalloid concentrations in earthworms after exposure to depot 

sludge referred at the most to 1.5-3 fold concentration increase of some metals/metalloids or 2-2.5 fold 

decrease of the others (Fig. 1). The most pronounced increase (3-fold) was observed for As, Ba, Cr, 

Li, Ni, Se, and V, whereas the least variability was observed for four macro elements (Ca, K, Mg, and 

Na) and for Sr. Furthermore, three common patterns of variability of metal/metalloid concentrations 

were observed after exposure to two mixtures of depot sludge (30% and 70%) lasting 14 and 28 days: 



8 
 

1) First pattern referred to continuous concentration increase during exposure period, and 

included eight elements: As, Ba, Cd, Co, Fe, Tl, V, and Zn. This was confirmed by high 

statistically significant positive inter-correlations between four of these elements (As, Cd, Co, 

and Fe; r=0.742-0.906, p<0.001), as well as their somewhat weaker correlations with V and 

Zn (0.499-0.669, p<0.05). However, only for Ba and Zn comparable increase was observed 

after exposure to both mixtures. For Tl and V increase was more pronounced after exposure to 

70% mixture (rTl-V=0.705, p<0.001) and for Cd and Co it was more pronounced after exposure 

to 30% mixture. An increase in accumulation of As and Fe was only observed after exposure 

to 30% mixture.  

2) Second pattern referred to opposite trend of continuous concentration decrease during 

exposure period, and included only four elements: Cs, Mn, Na, and Rb. Although continuous 

decrease was observed after exposure to both mixtures, it was more pronounced after exposure 

to 70% mixture for Cs, Mn, and Rb (inter-correlations r=0.583-0.639, p<0.01). For Na, merely 

slight decrease was observed after exposure to 70% mixture. 

3) Third pattern referred to concentration increase after 14 days of exposure, and subsequent 

decrease to initial concentrations after 28 days of exposure, and included 10 elements: Ca, Cr, 

Cu, Li, Mo, Ni, Pb, Se, Ti, and U. The concentration increase of Ca, Pb, Ti, and U after 14 

days was comparable after exposure to 30% and 70% mixture. For all the other elements (Cr, 

Cu, Li, Mo, Ni, and Se), the concentration increase observed after 14 days was more 

pronounced after exposure to 70% mixture. The inter-correlations between all these elements 

were positive, and mostly statistically significant, and especially within the group of five 

elements (Cr, Cu, Mo, Ni, and Se; r=0.471-0.946; p<0.05 to p<0.0001). 

 

3.3. Total metals and metalloids in earthworms 

Total metal/metalloid concentrations in the whole tissue of earthworms were also measured, with the 

exception of the group exposed to 30% mixture for 28 days, due to small available quantity of 

samples. Same as stated for metal/metalloid concentrations in the soluble tissue fractions, total tissue 

concentrations measured in the control group can be regarded as the baseline values of E. fetida (Table 

3). Changes of total metal/metalloid concentrations in earthworms after exposure to depot sludge were 

mainly even less pronounced than changes of their soluble concentrations, and referred for the most 

elements to either 1.1-2 fold concentration increase or 20-60% concentration decrease (Table 3). 

Somewhat higher increase (2.5-6-fold) was observed for Al, Ba, Ca, Li, Mn, Pb, Sr, Ti, and U. The 

patterns of total and soluble concentration variability were compared, indicating that although several 

elements followed the same trend as soluble metals/metalloids, some of them changed in a different 

way. 

1) Concentrations of total As, Cd, Co, Fe, Tl, V, and Zn showed the increasing trend, Na and Rb 

decreasing trend, whereas total Ca, Cu, Pb, Se, and U increased after 14 days of exposure and 
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then decreased again, which was comparable to the pattern of changes of their soluble 

concentrations. This was confirmed by high positive correlations between soluble and total 

concentrations of As, Cd, Co, Cu, Na, Pb, Rb, Se, Tl, and U (r=0.637-0.962; p<0.05 to 

p<0.0001), as well as of Fe and V (r=0.533; p=0.06). However, the variability of total Ca 

during exposure period was much more observable than of soluble Ca, and referred to 6-fold 

concentration increase after 14 days of exposure compared to only 10% increase of soluble 

Ca. It also resulted with lower correlation between soluble and total Ca concentrations 

(r=0.379; p>0.05). Similarly to total Ca, total Sr increased 3-fold after 14 days of exposure 

and then decreased to its initial values, whereas its soluble form exhibited only slight 

concentration variability. 

2) Total concentrations of following elements changed in different way than their soluble 

concentrations after exposure to depot sludge: total Ba increased after 14 days and then 

decreased again, contrary to continuous increase of its soluble form; total Cs continuously 

increased during the exposure to depot sludge, whereas total Mn increased after 14 days and 

then decreased again, contrary to continuous decrease of their soluble forms; total Cr, Li, Mo, 

Ni, and Ti continuously increased after exposure to depot sludge, contrary to increase of their 

soluble forms after 14 days of exposure and subsequent decrease after 28 days. 

3) Total concentration of Al was continuously increasing during the exposure period, and the 

increase was more pronounced after exposure to 30% sludge mixture, whereas soluble form of 

Al was at the level of LOQ, and thus could not be discussed. 

It was interesting to observe that increase of total metal/metalloid concentrations was generally more 

pronounced after exposure to 30% than 70% mixture of depot sludge. This was opposite to 

observations for soluble metal/metalloid concentrations, which mainly exhibited more intense changes 

after exposure to 70% mixture. 

 

3.4. Percentage contribution of soluble to total metal and metalloid levels in earthworms 

Comparison of metal/metalloid concentrations in soluble tissue fraction with their total concentrations 

in whole earthworm tissue enabled grouping of metals/metalloids according to their portion in the 

soluble form (Table 4). Elements which presence in the soluble form was almost negligible were Al, 

Cr, and Ti (less than 5%), whereas elements completely present in the soluble form were As, Cd, Na, 

Rb, Se, and Zn (100-200%). Even higher concentrations obtained in the soluble fraction than in total 

tissue for few elements (As, Cd, Se, and Zn) were possibly the consequence of uneven metal/metalloid 

distribution in tissue homogenate, a part of which was separated for digestion and subsequent 

determination of total metal/metalloid concentrations. The other possible cause for the observed 

discrepancy is the effect of matrix on measurements in soluble tissue fraction, since it was only diluted 

prior to analyses, and not digested like whole earthworm tissue. As could be expected the best 
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matching of soluble and total metal/metalloid concentrations was obtained for the elements which 

were mainly present in the soluble fraction (As, Cd, Na, Rb, and Se; rsol-tot=0.802-0.962; p<0.0001). 

 

4. Discussion 

 

4.1. Characterization of depot sludge 

Since depot sludge is commonly used in agriculture for soil enrichment and fertilization, it is of 

outmost importance to define possible negative effects of its application on terrestrial organisms. In 

this study, soil mixtures containing 30% and 70% of depot sludge were used, and they were 

characterized by following metal/metalloid composition (on wet mass basis, Table 2): the 

concentrations above 1,000 µg g-1 were found for Ca>Al>K>Fe>Mg>Na>Ti, from 100-1000 µg g-1 for 

Mn>Ba>Sr, from 10-99 µg g-1 for Zn>Rb>V>Cr>Li>Cu>Ni>Pb, from 1-9 µg g-1 for 

Co>As>Cs>U>Mo and the lowest concentrations below 1 µg g-1 for Cd>Tl>Se. Among analysed 

elements in this study, only five metals are regulated in depot sludge intended for agricultural use. 

Their permitted levels (µg g-1, expressed on dry mass basis) defined by Croatian (Minister of 

Environmental Protection, Physical Planning and Construction, 2008) and European provisions 

(Council of the European Communities, 1986) are, respectively, the following: Cd 5 and 20-40; Cu 

600 and 1000-1750; Ni 80 and 300-400; Pb 500 and 750-1200; Zn 2000 and 2500-4000 (Minister of 

Environmental Protection, Physical Planning and Construction, 2008; and Council of the European 

Communities, 1986; respectively); and Cr 500 (Minister of Environmental Protection, Physical 

Planning and Construction, 2008). The concentrations of these elements in depot sludge, after 

multiplication with fresh to dry tissue mass ratio (1.42), were still manifold lower compared to 

regulations. In addition, based on the comparison with previously published concentrations of several 

metals (Cd, Cu, Fe, and Zn), depot sludge used in our study could be categorized as uncontaminated or 

weakly contaminated soil (Carpené et al., 2006). However, increased concentrations of ammonia, 

nitrate, phosphate, total nitrogen and phosphorus, as well as high total bacteria count were found in 

treated wastewater discharged from the same WWTP from which depot sludge used in this study was 

acquired (unpublished results). It was an indication that depot sludge probably contained other 

inorganic and organic contaminants in addition to metals and metalloids. A pharmaceutical 

contamination could also be presumed, based on high resistance profiles towards tested antimicrobial 

compounds which were established for treated wastewater (unpublished results). It was probably a 

consequence of hospital discharge contribution, which is treated at that same municipal WWTP. 

 

4.2. Patterns of variability of metal/metalloid concentrations in soluble tissue fractions 

 

It has often been pointed out that soil chemical analysis is not sufficient to assess the risk of 

deleterious effects of contaminants present in the soil on the biota (Sanchez-Hernandez, 2006). It does 



11 
 

not take into account toxicity of non-analysed chemicals or the interactive effects of contaminants 

(Calisi et al., 2013). Taking that in consideration, as well as the fact that only moderately higher 

metal/metalloid concentrations were measured in depot sludge than in soil, it had to be considered that 

contaminants and factors other than metal exposure could have brought about at least a part of the 

observed variability in metal/metalloid accumulation in the soluble tissue fractions of earthworms in 

this study. Nahmani et al. (2007b) also concluded that factors other than metal concentrations had 

impact on life cycle parameters of metal exposed earthworms. Accordingly, it is possible that 

toxicological effects on earthworm metabolism, as well as on ion transport and excretion systems, 

could have occurred as a consequence of exposure of earthworms to complex mixture of contaminants 

in depot sludge. It could have resulted in various changes of metal concentrations in earthworm 

tissues. This assumption is in accordance with significant inhibition of multixenobiotic resistance 

transport activity, histopathological alterations of body wall and intestine, significant increase of 

oxidative stress, as well as behavioural changes which were found in E. fetida exposed to same depot 

sludge as used in this study (unpublished results).  

 

Many studies have reported that concentrations of metals (such as Cd, Cu, Fe, Pb, and Zn) in whole 

worms are directly related to availability of metals in soil (Morgan and Morgan, 1998; Suthar and 

Singh, 2009; Nannoni et al., 2014). The uptake of Cd and Pb in earthworms was even sometimes 

characterized by linear pattern, due to their commonly very slow or non-existent elimination (Giska et 

al., 2014). The continuous concentration increase during the exposure period which was observed for 

As, Ba, Cd, Co, Fe, Tl, V, and Zn in this study, therefore, would not be surprising, if only the 

concentrations of all eight elements were also increased in the exposure mixtures. However, the 

concentrations of Cd and Zn were lower in the depot sludge than in soil. And, still, slight accumulation 

of both Cd and Zn was recorded. The ability of earthworms for high Cd accumulation is probably 

related to the induction of Cd-binding proteins which have characteristics of metallothioneins (MT) 

(Suzuki et al., 1980; Morgan et al., 1989; Morgan and Morgan, 1998; Calisi et al., 2009; Calisi et al., 

2011). The accumulation of some other metals, like Cu, Pb and Zn, in earthworms was also described 

as a result of their binding to MTs (Kagi and Kojima, 1987; Maity et al., 2011). But, as is well known, 

the synthesis of MTs can be induced by other compounds, such as antibiotics, vitamins and herbicides, 

and not only metals (Amiard et al., 2006). Exposure to such contaminants in the depot sludge was 

plausible, and could have resulted with increased MT level, which in return could have bound 

additional quantity of Cd and Zn. 

 

Contrary to Cd and Zn, which demonstrated accumulation in the earthworms exposed to depot sludge, 

despite of lower metal exposure, the concentrations of several other elements decreased in the 

earthworms exposed to depot sludge, although their concentrations in the exposure mixtures were 

either higher (Cs, Na, and Rb) or equal (Mn) to concentrations in soil. It is possible that they were 
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displaced as a consequence of enhanced accumulation of several other metals, since some metal 

cations may be sufficiently similar to replace other cations. Due to existence of transporters of low 

specificity, different cations can use the same transport system (Barton, 2005): the cation which is 

present in higher concentration in the environment, or has a higher affinity for the transport protein, 

will enter the cell in higher concentration or even cause removal of the other cation. For example, in 

bacteria Mn2+, Ni2+ and Co2+ use the same non-specific transport system for Mg2+, whereas Cd2+ 

uptake by bacteria takes place by either Zn2+ or Mn2+ transport system (Barton, 2005). Therefore, 

observed decrease of Mn concentrations in earthworms could be hypothetically associated to 

concurrent concentration increase of Co, Cd and Zn. Similarly, in bacteria Tl2+, Rb2+ and Cs2+, as 

chemical analogues of K+, could be transported into the cell through the same nonspecific K+ transport 

system (Barton, 2005). Thus, observed concentration decrease of Rb and Cs in earthworms could be 

possibly connected to simultaneous concentration increase of Tl. It was already reported that very 

strong toxicity of Tl on growth and reproduction of E. fetida may be related to its competition with the 

physiologically essential element K (Fischer and Molnár, 1997). 

 

Third pattern of variability, observed for Ca, Cr, Cu, Li, Mo, Ni, Pb, Se, Ti, and U, referred to initial 

concentration increase after 14 days of exposure, which was followed by decrease to original 

concentrations after 28 days. It is, however, interesting to point out that among these 10 elements, Cu 

and especially Mo were present in the exposure mixtures in lower concentrations than in soil. 

Similarly to previously mentioned Zn increase, initial increase of their concentrations could not be the 

result of increased metal exposure. In addition, earthworms very efficiently physiologically regulate 

body concentrations of essential elements until a certain threshold (Spurgeon and Hopkin, 1999) and 

many authors have reported lack of concentration increase after exposure of earthworms to Cu and Zn 

in soil (Nahmani et al., 2007b; Giska et al., 2014; Nannoni et al., 2014). Concentration increase of 

these essential elements in our study, therefore, was possibly a consequence of some disturbance in 

their homeostasis. For example, it was previously reported that, next to high-affinity transport systems, 

molybdate anions are also cotransported by sulphate and phosphate transporters (Mendel and Schwarz, 

2002). Consequently, any factor that stimulates the activity of those transporters to intensify sulphate 

and phosphate uptake would probably also result in enhanced Mo uptake. On the other hand, metal 

concentration decrease which has occurred after 28 days of exposure to mixtures of depot sludge was 

possibly a consequence of an increase in elimination rate or a toxicological effect on earthworm 

metabolic rate (Nahmani et al. 2007a), due to prolonged exposure to complex mixture of 

contaminants. It was previously described that many metals show high affinity for accumulation and 

immobilization in earthworm alimentary canal (Morgan and Morgan, 1998), which inner coelomic 

wall is abundantly covered by vesicular cells (Sharma, 2010). These cells, known as chloragogen or 

yellow cells, absorb nitrogenous waste from the blood vessels and deposit it in a form of granules of 

chloragosome, which is excretory substance within their cytoplasm (Sharma, 2010). In time, 
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chloragogen cells increase in size, get detached from the coelomic epithelium and break up in the 

coelomic fluid, from where they are removed through the dorsal pores or septal nephridia (Sharma, 

2010). In the animals from uncontaminated sites, the major elemental components of the 

chloragosomes were P, Ca, S and Zn (Morgan and Morgan, 1998). However, chloragosomes possess 

significant cation-exchange capacities (Fischer, 1977). They are, therefore, able to accumulate and 

immobilize many metals via a mechanism of cationic displacement of Ca, resulting in diminished 

chloragosomal Ca (Morgan and Morgan, 1998). It is, therefore, possible that decrease of soluble Ca, 

which was even more observable for total Ca concentration after 28 days of exposure, was a 

consequence of Ca displacement due to accumulation of several other metals in chloragosome. In 

addition, due to toxic effect of prolonged exposure to depot sludge, it is also possible that removal of 

chloragogen cells from coelomic cavity was accelerated. It was in agreement with previously 

described increased turnover rate of chloragocytes after exposure of earthworms to organic chemicals 

(Sforzini et al., 2015). Several other studies have also shown that chloragocyte depletion may occur in 

worms as a way of eliminating toxic chemicals (Fischer and Molnár, 1992; Cancio et al., 1995). 

Consequently, depletion of chloragocytes would cause loss of the metals which possess affinity for 

accumulation in chloragosome. For example, the loss of Pb was observed after 28 days of exposure, 

but not of Cd, which is in accordance with reports on Pb accumulation in chloragosome of 

Aporrectodea caliginosa, but not Cd (Morgan and Morgan, 1998). The hypothesis on involvement of 

chloragocytes in metal loss after 28 days of exposure to depot sludge can be further confirmed by 

much more severe damages on chloragogenous tissue observed in E. fetida after 28 days than after 14 

days of exposure to the same depot sludge as used in this study (severe necrosis vs. atrophy and 

aggregation) (unpublished results). 

 

4.3. Total metal/metalloid concentrations in earthworms 

As expected, the highest total metal concentrations in the earthworms were measured for four macro 

elements (Na, K, Ca, Mg). Among trace elements, the highest concentrations were measured for Fe, as 

previously observed for the earthworm Allolobophora caliginosa (Carpené et al., 2006). For many 

elements, total concentrations in the tissues of earthworms were much higher than their soluble 

concentrations, indicating that only small metal/metalloid percentage is present in soluble, 

metabolically and toxicologically available form. Partly it could be attributed to the fact that portions 

of metals which entered the cells were detoxified and immobilized in a form of insoluble granules 

(Morgan and Morgan, 1998). Additional explanation is based on the fact that earthworms extract their 

nutrients, including heavy metals, by the ingestion of large amounts of soil (Carpené et al., 2006). 

Therefore, to remove the soil, they have to be depurated prior to metal analyses. However, depuration 

should not last too long to prevent tissue detoxification and excretion of metals (Nahmani et al., 

2007a). Consequently, it was also possible that some soil remained within earthworm alimentary canal 

or even on its body surface. Thus, the influence of residual soil content on total metal content should 
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also be considered. In that case, higher presence in insoluble fraction could be expected for elements 

which were present in the soil in high concentrations, such as Al, Ti, Fe (>1000 µg g-1) and Mn (400-

500 µg g-1). And, indeed, more than 85% of these metals were present in the insoluble form. This was 

especially evident for Al, which soluble portion was extremely low (0.5%), and could not be reliably 

detected (<1 µg g-1), contrary to its total concentrations in earthworms, which were rather high (~20-

60 µg g-1) and continuously increased during the exposure period. For many elements, the pattern of 

variability of soluble and total concentrations was comparable, but for some of them it was evidently 

different. Since the variability of total metal concentrations reflects both soluble metals and metals 

immobilized in granules or contained in the residual soil, it was not surprising that the most 

pronounced differences between pattern of variability of soluble and total metal concentrations was 

observed for eight elements largely present in the insoluble form, i.e. Ba (40%), Cs (60%), Tl (65%), 

Mo (74%), Mn (85%), Ni (86%), Li (87%), and Cr (97%). 

 

In addition, contrary to observations made for the soluble metal concentrations, increase of total 

metal/metalloid concentrations was more pronounced after exposure to mixture containing 30% than 

after exposure to mixture containing 70% of depot sludge. Depot sludge was abundant in Al and Fe, 

and as is well known, metal sorption on particles like Al and Fe oxyhydroxides, when they are present 

in increased concentrations in soil, causes reduction of soluble metal concentrations in soil and 

consequently decrease of metal accumulation (Janssen et al., 1997; Peijnenburg et al., 1999; Nahmani 

et al., 2007a). Furthermore, previous studies have reported decrease of contaminant bioaccumulation 

by earthworms as their concentrations in soil increase due to reduced activity of earthworms (Sample 

et al., 1998). It is possible that earthworms have ingested less soil under the conditions of higher 

toxicity of mixture containing 70% of depot sludge, which consequently influenced more insoluble 

fraction, and thus also total concentrations, than soluble metal/metalloid fraction in earthworm tissue. 

 

5. Conclusion 

Analyses of metal/metalloid concentrations in soil and depot sludge from wastewater treatment plant 

which purifies municipal, hospital and sugar factory wastewaters revealed metal contamination which 

was within permitted limits of currently valid regulations. In addition, analyses of metal/metalloid 

concentrations in earthworm E. fetida after exposure to semi-solid depot sludge indicated continuous 

moderate accumulation during entire exposure period only for As, Ba, Cd, Co, Fe, Tl, V, and Zn. 

However, despite the fact that only weak increase in metal/metalloid concentrations was observed in 

earthworms after exposure to depot sludge, some disturbances in metal homeostasis have probably 

occurred. Continuous or temporary concentration increase was observed for several metals, such as 

Cd, Mo and Zn, which were present in lower concentrations in depot sludge than in soil. Contrary, the 

loss of several other metals, such as Cs, Mn and Rb was recorded, although they were present in 

increased concentration in depot sludge. Obviously, exposure to depot sludge, which presents complex 
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mixture of different contaminants, could cause nonspecific disturbances in metal transport. They could 

potentially result in diverse toxic effects, either as a consequence of enhanced uptake of toxic elements 

or due to loss of essential elements. Although depot sludge was only weakly contaminated by metals 

and metalloids and, therefore, each particular contaminant present in it did not pose a risk for 

earthworm health by itself, the complex combination of numerous contaminants which constitutes 

depot sludge obviously could cause distress for terrestrial organisms. Additional benefit of the study 

was identification of soluble tissue fraction of earthworms as a more reliable and relevant 

compartment for metal determination in process of metal exposure evaluation than commonly used 

total acid digested tissue. Metal concentrations determined in soluble tissue fraction of earthworms 

refer mainly to metals which are accessible for both metabolic requirements and possible toxic effects, 

contrary to total metal concentrations, which comprise both potentially toxic metals and metals which 

are immobilized and thus detoxified. In addition, specific difficulty of working with earthworms as 

test organisms is probability that some soil will remain within their body after exposure experiments. 

Our study demonstrated that residual soil had the main impact on insoluble metal levels and thus 

ultimately affected total metal concentrations, whereas soluble metal concentrations more realistically 

reflected actual metal exposure in soil. 
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Figure legends 

Figure 1. The concentrations (g g-1; on wet mass basis) of 25 metals/metalloids (As, Ba, Ca, Cd, Co, 

Cr, Cs, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Se, Sr, Ti, Tl, U, V, Zn) in the soluble tissue 

fractions of the earthworm Eisenia fetida from soil and after 14 days (14D) and 28 days (28D) of 

exposure to mixtures containing 30% (I) and 70% (II) of depot sludge. The results are presented as 

box-plots. The boundaries of box-plot indicate 25th and 75th percentiles; a line within the box marks 

the median value; whiskers above and below the box indicate 10th and 90th percentiles. Differences 

among exposure groups are indicated with different letters (a, b), based on Kruskal-Wallis one way 

analysis of variance on ranks (p values indicated in figures) and post hoc Dunn’s test (p<0.05). 

Number of samples per each group was the following: control n=5; I-14D n=5; I-28D n=3; II-14D 

n=5; II-28D n=3. 
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Figure 1. 
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Highlights 

 Exposure of earthworm Eisenia fetida to depot sludge - complex contaminant mixture  

 Bioaccumulation of 26 metals/metalloids in whole earthworm tissue 

 First data for metal/metalloid levels in soluble tissue fraction of E. fetida 

 Continuous mild increase of As, Ba, Cd, Co, Fe, Tl, V, Zn during exposure period  

 Disturbance of metal homeostasis in earthworms due to exposure to depot sludge 
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Table 1. Basic properties of soil from earthworm farm and depot sludge from wastewater 

treatment plant.  
 

 Soil Depot sludge 

   
Texture solid semi-solid 

Composition 

mixture of loam, 

compost and peat in 

equal proportions 

mixture of liquid active sludge removed after 

secondary WWTP treatment and semi-solid 

sludge from the sugar factory 

pH (1:2.5 H2O) 7.80 ± 0.3 7.61 ± 0.4 

Conductivity (1:2.5 H2O) 7.94-8.08 µScm-1 383.0-385.2 µScm-1 

Moisture 75% 30% 
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Table 2. Measured metal/metalloid concentrations (µg g-1, on wet mass basis) in soil 

andin depot sludge (mean±standard deviation), and calculated concentrations for 

exposure mixtures containing 30% and 70% of depot sludge. 
 

 Soil Depot sludge 30% mixture 70% mixture 

     
Al* 11,626±586 49,594±1,770 23,016 38,204 

As* 1.96±0.07 6.59±0.96 3.35 5.20 

Ba* 142.4±2.43 311.2±18.7 193.0 260.5 

Ca* 24,197±272 80,165±10,418 40,988 63,375 

Cd* 0.423±0.007 0.219±0.023 0.362 0.280 

Co* 2.82±0.06 8.57±0.58 4.55 6.84 

Cr* 16.38±0.86 58.94±3.34 29.15 46.17 

Cs* 1.02±0.03 3.28±0.17 1.69 2.60 

Cu* 21.10±0.63 17.35±0.39 19.97 18.47 

Fe* 6,092±268 24,349±2,002 11,569 18,872 

K* 23,623±1,766 12,569±389 20,307 15,885 

Li* 8.38±0.26 29.63±1.24 14.75 23.25 

Mg 7,529±124 7,612±219 7,554 7,587 

Mn 436.0±10.9 517.7±140.0 460.5 493.2 

Mo* 1.86±0.40 0.321±0.025 1.40 0.78 

Na* 2,816±86 10,185±397 5,027 7,974 

Ni* 9.16±0.18 23.57±1.44 13.48 19.25 

Pb* 5.88±0.10 16.20±0.60 8.97 13.10 

Rb* 45.01±1.03 71.74±3.21 53.03 63.72 

Se ND ND - - 

Sr* 63.08±1.80 172.5±24.2 95.90 139.65 

Ti 997.6±4.4 4319±178 1,994 3,322 

Tl* 0.131±0.005 0.395±0.008 0.210 0.316 

U* 0.515±0.012 1.80±0.10 0.899 1.411 

V* 19.00±0.56 71.43±2.83 34.73 55.70 

Zn* 95.20±13.86 53.37±2.13 82.65 65.91 
 

* statistically significant difference between concentrations in soil and in depot sludge, 

according to t-test (p<0.01) 

ND – nondetectable. 

 



24 
 

 

Table 3.Total metal/metalloid concentrations (µg g-1; on wet mass basis)in acid digested tissue of 

earthworm Eisenia fetida(median, with minimum and maximum in brackets). Legend: exp I - 

exposure to mixture containing 30% of depot sludge; exp II - exposure to mixture containing 70% of 

depot sludge. 
 

 Control 
Exp I / 

14 days 

**ExpI / 

28 days 

Exp II / 

14 days 

Exp II / 

28 days 

      
Al 17.22 (3.60-21.61) 63.38 (20.15-63.57) - 34.17 (6.77-36.79) 45.23 (16.24-53.82) 

As 3.00 (0.81-5.89) 3.92 (2.32-4.38) - 4.49 (2.33-5.70) 2.09 (1.76-5.13) 

Ba 0.72 (0.24-0.98) 2.21 (0.87-2.52) - 2.04 (0.57-2.13) 0.56 (0.17-0.59) 

Ca* 651 (416-807)a 3506 (1650-3639) - 4141 (1730-5066)b 811 (623-827) 

Cd 0.223 (0.102-0.326) 0.270 (0.230-0.308) - 0.236 (0.186-0.244) 0.221 (0.198-0.356) 

Co 0.365 (0.132-0.579) 0.561 (0.370-0.795) - 0.446 (0.371-0.492) 0.412 (0.307-0.653) 

Cr 11.67 (6.02-15.34) 19.76 (8.26-28.81) - 5.24 (3.65-7.72) 24.32 (8.02-25.20) 

Cs 0.005 (0.002-0.006) 0.010 (0.004-0.010) - 0.005 (0.002-0.006) 0.007 (0.003-0.007) 

Cu 1.36 (0.87-1.52) 1.70 (1.23-2.37) - 1.80 (1.67-1.96) 1.22 (1.00-1.46) 

Fe 134.5 (51.8-135.6) 301.7 (129.3-316.8) - 183.6 (108.8-232.5) 202.4 (99.1-243.4) 

K 1106 (925-1248) 1193 (756-1292) - 1036 (903-1037) 1171 (1147-1336) 

Li 0.025 (0.006-0.031) 0.072 (0.028-0.073) - 0.040 (0.009-0.042) 0.062 (0.021-0.074) 

Mg 259 (162-273) 320 (218-329) - 214 (149-249) 214 (184-223) 

Mn* 6.26 (3.09-7.88) 22.96 (10.04-25.49) - 23.92 (9.73-27.94) 4.70 (1.87-4.93) 

Mo 1.64 (0.83-2.03) 2.71 (1.12-3.59) - 0.812 (0.694-1.141) 2.76 (1.00-2.98) 

Na 1108 (913-1527) 1079 (827-1231) - 915 (809-1101) 891 (797-1009) 

Ni 8.25 (4.89-10.60) 14.01 (6.18-19.57) - 6.04 (3.68-8.42) 14.70 (5.01-15.09) 

Pb 0.053 (0.021-0.082) 0.145 (0.071-0.168) - 0.152 (0.044-0.206) 0.106 (0.053-0.194) 

Rb* 1.98 (1.33-2.26)a 1.90 (1.19-2.02) - 1.48 (1.42-1.53) 0.83 (0.82-1.06)b 

Se 0.116 (0.055-0.163) 0.185 (0.146-0.209) - 0.206 (0.205-0.264) 0.148 (0.125-0.215) 

Sr* 1.17 (0.72-1.61) 3.43 (1.83-4.05) - 3.29 (1.46-4.07) 1.23 (1.06-1.40) 

Ti 0.878 (0.232-1.024) 2.27 (0.78-2.47) - 1.03 (0.30-1.16) 1.86 (0.60-1.97) 

Tl* 0.003 (0.002-0.003) 0.005 (0.004-0.005) - 0.004 (0.003-0.004) 0.005 (0.004-0.006) 

U* 0.006 (0.003-0.008) 0.018 (0.011-0.023) - 0.020 (0.010-0.020) 0.007 (0.005-0.010) 

V 0.179 (0.073-0.199) 0.356 (0.204-0.415) - 0.215 (0.114-0.226) 0.322 (0.169-0.425) 

Zn 9.88 (7.77-12.40) 10.60 (8.31-11.85) - 9.38 (8.71-9.50) 10.17 (9.34-13.04) 
 

* statistically significant difference according to Kruskal-Wallis one way analysis of variance on ranks 

(p<0.05); different groups according to pairwise comparison performed by Dunn's test (p<0.05) were 

asigned different letters  

** there is no data for 28 days exposure to mixture containing 30% of depot sludge, due to small 

sample quantity 
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Table 4.The portion (%) of soluble intotal metal/metalloid quantity 

in whole tissue of earthworm Eisenia fetida, based on pooled data 

from all exposure groups. 
 

  Median Minimum Maximum 

     
<5% Al 0.5 0.0 2.9 

Ti 1.9 0.5 5.0 

Cr 3.2 0.6 8.6 

     
10-20% Fe 10.0 3.5 17.8 

Li 12.8 2.4 35.6 

Ni 14.1 6.4 30.3 

Mn 15.4 3.1 34.5 

     
21-50% V 23.9 8.1 42.5 

Mo 26.5 11.1 59.1 

U 29.7 17.2 52.8 

Pb 30.7 12.9 72.3 

Tl 35.2 17.4 54.1 

Cs 39.7 15.8 93.5 

Co 40.9 23.0 61.3 

Ca 43.3 10.0 74.4 

Sr 44.7 14.2 75.1 

     
51-80% Ba 59.5 12.4 302.3 

Cu 72.2 48.8 120.3 

Mg 77.1 57.9 92.2 

     
100-120% K 111.9 85.9 150.4 

Rb 113.3 97.8 141.7 

Na 119.5 99.9 146.1 

     
150-200% Zn 158.6 131.4 212.3 

Cd 168.7 150.7 216.9 

Se 181.6 137.3 273.0 

As 186.6 144.4 256.0 
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Table SI-1.Limits of quantification  (LOQ; µg g-1 on wet mass basis) for 

metal/metalloid concentrations in soluble tissue fraction and in whole tissue 

of earthworm Eisenia fetida, and the results of quality control (µg L-1) for 

metal/metalloid measurementsin E. fetida (control samples: QC for 

tracemetals, catalog no. 8072, lot no. 146142-146143; and QC for minerals, 

catalog no. 8052,lot no. 146138-146139; UNEPGEMS, Burlington, Canada). 

 

   Control sample 

 
LOQsoluble 

/ µg g-1 

LOQtotal 

/ µg g-1 

Assigned 

value 

/ µg L-1 

Measured 

value 

/ µg L-1 

Recovery 

/ % 

      
Al 0.078 0.288 1.47 1.70±0.12 116±8 

As 0.036 0.112 1.81 1.78±0.13 98±7 

Ba 0.005 0.264 2.93 2.84±0.14 97±5 

Ca 20.02 53.31 1000 1055±19 105±2 

Cd 0.006 0.001 0.788 0.773±0.007 98±1 

Co 0.000 0.001 1.16 1.14±0.01 98±1 

Cr 0.002 0.034 2.04 1.96±0.09 96±5 

Cs 0.000 0.001 - - - 

Cu 0.005 0.025 3.63 3.58±0.15 99±4 

Fe 0.026 0.204 3.13 2.86±0.14 91±5 

K 4.91 18.83 986 965±3 98±0 

Li 0.000 0.002 - - - 

Mg 3.07 6.68 776 745±5 96±1 

Mn 0.001 0.011 3.07 3.00±0.08 98±3 

Mo 0.011 0.030 1.49 1.40±0.01 94±1 

Na 18.31 77.53 5770 6131±18 106±0 

Ni 0.040 0.058 1.42 1.29±0.09 91±7 

Pb 0.008 0.033 1.56 1.55±0.02 100±1 

Rb 0.009 0.023 - - - 

Se 0.003 0.015 0.854 0.829±0.015 97±2 

Sr 0.009 0.037 1.09 1.06±0.04 98±3 

Ti 0.005 0.021 0.844 0.780±0.057 92±7 

Tl 0.000 0.000 2.14 2.22±0.04 104±2 

U 0.000 0.001 - - - 

V 0.000 0.001 1.54 1.51±0.01 98±1 

Zn 0.438 2.336 2.06 1.64±0.67 80±32 

 

 


