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Abstract: Predicting antitumor activity of compounds using regression models trained on a 

small number of compounds with measured biological activity is an ill-posed inverse 

problem. Yet, it occurs very often within the academic community. To counteract, up to 

some extent, overfitting problems caused by a small training data, we propose to use 

consensus of six regression models for prediction of biological activity of virtual library of 

compounds. The QSAR descriptors of 22 compounds related to the opioid growth factor 

(OGF, Tyr-Gly-Gly-Phe-Met) with known antitumor activity were used to train regression 

models: the feed-forward artificial neural network, the k-nearest neighbor, sparseness 

constrained linear regression, the linear and nonlinear (with polynomial and Gaussian 

kernel) support vector machine. Regression models were applied on a virtual library of  

429 compounds that resulted in six lists with candidate compounds ranked by predicted 

antitumor activity. The highly ranked candidate compounds were synthesized, characterized 

and tested for an antiproliferative activity. Some of prepared peptides showed more 

pronounced activity compared with the native OGF; however, they were less active than 

highly ranked compounds selected previously by the radial basis function support vector 

machine (RBF SVM) regression model. The ill-posedness of the related inverse problem 

causes unstable behavior of trained regression models on test data. These results point to 
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high complexity of prediction based on the regression models trained on a small  

data sample.  

Keywords: opioid growth factor (OGF); QSAR descriptors; consensus of predictors 

 

1. Introduction 

Peptides are attracting increasing attention and have growing significance as therapeutics. They are 

Nature’s toolkit known to control and direct various cellular functions and intercellular communication 

events. For many years, peptide-based therapeutics were only considered for hormonal disorders and 

hormone-dependent cancers. However, novel technologies comprising synthetic procedures (solid-phase 

synthesis), recombinant processes and especially recent progress in drug delivery technologies, 

overcome many of the former drawbacks associated with peptide-based drugs [1,2]. About half of the 

peptides in clinical trials address oncology, metabolic, infectious and cardiovascular diseases-related 

targets. However, it is expected in the future that peptide drugs will address other medical disorders as 

well. Peptides offer several advantages over “classical” small molecules (higher specificity/selectivity, 

lower toxicity and tissue accumulation) or antibodies (smaller size, lack of serious immune responses, 

easy storage). Some of the most applied peptide-based drugs today are glatiramer acetate for the 

treatment of multiple sclerosis [3], leuprolide acetate, a GnRH receptor agonist for the treatment 

of breast and prostate cancers [4] and exenatide, approved for the treatment of diabetes mellitus  

type 2 [5]. 

Among short peptides with significant therapeutic potential, the native opioid growth factor (OGF), 

Met-enkephalin (Tyr-Gly-Gly-Phe-Met) is of particular interest. Numerous studies revealed that it acts 

in a receptor-mediated fashion and has regulatory function in the onset and progression of different 

human cancers [6]. OGF binds to the OGF receptor (OGFr) and modulates cyclin-dependent kinase 

inhibition pathway. Cell proliferation can be reduced by the increase of the OGF-OGFr activity 

through the addition of exogenous OGF [7] or some immunomodulators, like resiquimod, an upregulator 

of the OGFr [8]. Recent studies under the phase II clinical trials showed that biotherapy with OGF 

improves clinical benefits and even survival in patients with advanced pancreatic cancer [9], while the 

combination of chemotherapy with gemcitabine and biotherapy with OGF decreases pancreatic cancer 

growth and also reduced toxic effects of chemotherapy (in vitro experiments and animal models) [10].  

The main drawback of OGF is low enzymatic stability and thus rapid hydrolysis in biological  

fluids. Some of the recent attempts to overcome this limitation involved incorporation of unnatural, 

adamantane-containing amino acids into primary OFG sequence [11]. It was found that the replacement 

of Gly2 with (R,S)-(1-adamantyl)glycine (Ada) gave the most effective derivative with antitumor 

activity against HEp-2, HBL, SW-620 and Caco-2 cell lines in vitro. Afterwards, the support vector 

machines (SVM) QSAR approach was undertaken to screen a virtual library of OGF-related 

compounds and identify novel structures with possibly improved antitumor activities [12]. Some of the 

top-rated compounds obtained by computational prediction were synthesized and showed more 

pronounced activity on the selected cancer cell lines. SVM approach is one of the most used QSAR 

models in rational drug design for the active/non-active classification problem. Additionally, probability 
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based- and artificial neural networks (ANN) regression models were applied on similar problems [13–15]. 

The size of the training set determinates quality of prediction and in examples mentioned above it ranges 

from 100 to 1400 compounds. A common problem within the academic community is availability of a 

limited number of samples with measured biological activity. Thus, reliable identification of novel lead 

compound(s) from a virtual library becomes a challenging problem. The situation is generally known 

as the “small N large p” problem [16], and is very common in medicine, bioinformatics, computational 

drug design, etc. Therefore, methodology for the selection of regression model(s) that can possibly 

yield reliable and stable prediction is of crucial importance. Stability implies that predictions do not 

change significantly if small number of compounds, or even one, with measured activity is replaced in 

the training sample. Thus, it is the aim of the present work to validate potential of methodology that 

uses consensus between regression models in predicting biological activity of virtual compounds. 

Therefore, we have trained the following regression models: the feed forward ANN, the k-nearest 

neighbor (KNN), the sparseness constrained linear regression, the linear SVM and nonlinear SVM 

with polynomial and Gaussian kernels on a dataset of 22 OGF-related peptides with measured antitumor 

activity. Learned models were then applied on a virtual library consisted of 429 peptides yielding six 

lists with candidate compounds ranked by predicted antitumor activity. Consensus between the ranking 

lists has been sought. By using the majority voting principle a final ranking list has been obtained. The 

highly ranked candidate compounds were synthesized, characterized and tested for an antiproliferative 

activity. The activities were compared against compounds selected previously from the same virtual 

library by the radial basis function SVM regression model [12]. 

2. Results and Discussion 

2.1. Regression Model Selection for Compound Activity Prediction 

The training sample composed of 22 compounds with measured biological activity and  

1,647 molecular descriptors (features) generated by the QSAR methodology to characterize each 

compound (details in the Experimental Section). Thus, the training data are described with the set: 

 221647

1
R , Rn n n

y


 x  or in matrix formulation with X ∈ R22 × 1647 and y ∈ R22. When using stratified 

cross-validation (CV) to optimize prediction models small data sample with the large number of 

features yields CV error with large variance [17]. Since too few labeled data are available to 

distinguish role of different features in error analysis, selection of the parameters of regression models 

is uncertain [18–20].  

In order to possibly counteract overfitting problems, we have trained six regression models listed 

previously. Prior to training and regression all compound descriptors were standardized to zero mean 

and unit variance whereupon the compound activity values y were scaled to [−1, 1] interval. 

Regression models were trained by leave-one-out and leave-two-out CVs using 1000 random partitions. 

The mean correlation between true and predicted values has been used as performance measure. The 

results of CV analysis are reported in Table S1 in the Supplementary Information. Sparse regression 

model was the only one with the mean correlation above 0.7 in both CV modes and the ANN model 

was closed to that. Linear SVM also has correlation value above 0.7 in leave-one-out CV. The RBF 

SVM had quite low correlation value, but top 5 compounds predicted by it agreed with the top 5 
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compounds predicted by models with better CV performance (see below). Among used regression 

models, only sparse linear regression model performs feature selection during the training process. 

That was expected to increase chance of predicting compound with high biological activity. This 

choice follows the principle of parsimony, also known as Occam’s razor, since the experimental data 

are explained with a less complex model (smaller number of features). Hence, overfitting should be 

reduced substantially.  

Sparse regression model w is obtained as solution of the underdetermined system of linear equations 

y = X w + e, where e represents modeling error: 
2

2 1

1
arg min

2
  

z
w y Xz z and  represents regularization 

constant. Its value depends on the noise variance. The least absolute shrinkage and selection operator 

(LASSO) [21] is such regression model. However, over the last decade a number of methods for  

sparse solution of the linear inverse problems with the formulations equivalent to above, have been 

developed [22–24] and conditions necessary for uniqueness of the solution are established. To be more 

specific, let us suppose that k = |w|0, i.e., w has only k important (non-zero) coefficients that point out 

to corresponding molecular descriptors. Unique solution of y = X w in the problem considered here is 

obtained when: k < 22 and 22  k log 1647/k. Maximal number of molecular descriptors k that satisfies 

above inequality is 3. It is, however, not likely that compounds can be characterized with 3 QSAR 

molecular descriptors only. Some of the well conducted studies on the prediction of antibacterial 

activity of polypeptides were based on 44 [14] and 20 “inductive” QSAR descriptors [15]. Moreover, 

the prediction error 2

2
y Xw  can’t be made reasonably small with such a small number of molecular 

descriptors. The interior point method [24] used to solve related inverse problem yielded regression 

vector with 7 coefficients that are significantly different than zero. But k = 7 implies that 39 samples 

(equations) with measured activity should be available to guarantee uniqueness and, consequently, 

stable behavior of learned regression model on test data. Evidently, that was impossible to achieve 

with such a small training dataset. The unstable behavior is demonstrated in disagreement between 

features that correspond with seven large coefficients of the regression vector (molecular descriptors 

GMTI, w, D/D, SRW07, SRW09, IDET and SHP2) and features (piID, MATS4p, Mor20m—see also 

Table S2 in the Supplementary Information) that are highly correlated (above 0.7) with the prediction 

of this sparse regression model on test data. This unstable behavior has been already recognized and 

discussed in gene selection for cancer prediction [25].  

From the mathematical standpoint there is analogy between antitumor activity prediction in 

chemoinformatics and cancer prediction in bioinformatics. Thus, some advanced concepts used in 

microarray data analysis could potentially be beneficial in the problem considered here. Consensus 

between feature selection algorithms has been used very recently in microarray data analysis to 

alleviate disagreement between them and improve credibility of selected features (genes) [26]. 

Therefore, to counterattack uncertainty in selection of regression models, consensus between them has 

been sought after they were applied to unseen data. 

Trained regression models were applied to 429 compounds from the virtual library (details 

regarding construction of the virtual library are given in the Experimental Section). For each regression 

model a list was formed with compounds ordered by predicted activity. Then we looked at lists that 

overlap significantly in top ten compounds. This has been achieved with the lists corresponding with 

the linear SVM, sparse regression model, feed forward ANN and RBF SVM (Table 1). Moreover, 
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these four regression models yielded highly correlated predictions when applied to library of  

429 virtual compounds with the correlation value above 0.94 (Table 2). Rankings of first  

10 compounds in each of four lists were combined using the majority voting and yielded a final list 

where the first position has been reached with the minimal score. The final list of first 15 compounds is 

presented in Table 1 together with the top 10 compounds predicted by [12]; compound 10 had an 

overall score equal to 4 implying that it was first on the list of each of four regression models. The first  

5 compounds were in the top 10 compounds in each of the four lists. It is important to point out that 

structures of these 5 compounds differ significantly from those predicted by the SVM Gaussian  

kernel [12]. This finding prompted us to synthesize compounds 10–14, evaluate their biological 

potential and finally compare utilities of different regression models for a given problem. 

Table 1. Ranking list of the activity of virtual compounds as predicted by four regression 

models (linear SVM, sparse regression, MLP ANN, RBF SVM). Numbers in parentheses 

represent position of given compound on individual lists obtained by four regression models. 

Top-rated compounds predicted in reference [12] are given for comparison. 

Rank/(position on the lists/mean value) Compounds MW log P log S 

1. (1-1-1-1/1) H-Phe-Ala-Met-Met-Met-OH (10) 629.96 0.89 −5.23 

2. (2-3-2-4/2.75) H-Phe-Ada-Met-Met-Met-OH (11) 750.17 1.12 −6.06 

3. (5-2-4-3/3.25) H-Phe-Gly-Met-Met-Met-OH (12) 615.93 0.76 −5.22 

3. (4-4-3 -2/3.25) H-Phe-Ala-Met-Met-OH (13) 498.74 0.62 −4.70 

5. (8-5-5-5/5.25) H-Tyr-Ala-Met-Met-Met-OH (14) 645.96 0.58 −4.99 

Compounds below are listed on three lists only 

6. (3-6-x -6/ 5) H-Phe-Ada-Met-Met-OH 618.95 0.91 −5.70 

7. (6-7-6 -x/ 6.33) H-Tyr-Ada-Met-Met-Met-OH 766.17 0.72 −5.66 

Compounds below are listed on two lists only 

8. (x-x-8-7/7.5) H-Phe-Ala-Phe-Met-Met-OH 645.93 0.78 −5.42 

9. (7-x-9-x/8) H-Phe-Ada-Phe-Met-Met-OH 766.14 1.40 −5.77 

10. (9-8-x-x/8.5) H-Tyr-Ada-Met-Met-OH 634.95 0.62 −5.27 

11. (x-x-7-10/8.5) H-Phe-Ala-Met-Met-Gly-OH 555.80 0.80 −4.58 

12. (x-10-x-8/9) H-Phe-Gly-Met-Met-OH 484.71 0.58 −4.69 

Compounds below are listed on one list only 

13. (x-9-x-x) H-Tyr-Gly-Met-Met-Met-OH 631.93 0.50 −4.95 

13. (10-x-x-x-x) H-Phe-Ada-Met-Met-Gly-OH 676.01 0.83 −5.53 

13.(x-x-x-9) H-Tyr-Ala-Met-Met-OH 514.74 0.51 −4.26 

13. (x-x-10-x) H-Tyr-Ala-Met-Met-OH 514.74 0.51 −4.26 

Top-rated compounds predicted in [12]     

H-Tyr-Ada-Gly-Phe-Met-OH 

H-Phe-Ada-Gly-Phe-Met-OH 

H-Phe-Ada-Gly-Phe-Phe-OH 

H-Tyr-Ada-Gly-Phe-Phe-OH 

H-Trp-Ada-Gly-Phe-Met-OH 

H-Tyr-Ada-Gly-Phe-Gly-OH 

H-Trp-Ada-Gly-Phe-Phe-OH 

H-Phe-Ada-Gly-OH 

H-Phe-Gly-Gly-Phe-Phe-OH 

H-Phe-Gly-Aaa-Gly-OH 

 
 

 

- - - 
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Table 2. Correlation of predictions between regression models. 

 sparse Lin SVM MLP RBF SVM Poly SVM KNN 

sparse 1.0 0.9701 0.9391 0.9406 0.5510 0.3275 
Lin SVM - 1.0 0.9631 0.9568 0.4860 0.3141 

MLP - - 1.0 0.9359 0.4152 0.2685 
RBF SVM - - - 1.0 0.6278 0.3631 
Poly SVM - - - - 1.0 0.1396 

KNN - - - - - 1.0 

2.2. Peptide Synthesis 

Synthesis of methionine rich peptides 10–14 was based on the 2 + 2 and 2 + 3 coupling between  

Boc-protected dipeptides 1–4 and H-Met-Met-OH or H-Met-Met-Met-OH (Scheme 1). Different 

methods of peptide bond formation were tested; finally peptides 5–7 were obtained by the DCC/HOSu 

method, activation with HATU yielded Ada-containing pentapeptide 8, while pentapeptide 9 was 

obtained by the mixed anhydride method (details in the Experimental section). Finally, deprotection of 

the Boc group was performed by acid hydrolysis and extra precautions were taken due to the known 

susceptibility of methionine residue toward acid-promoted oxidation to sulfoxide. Therefore, 

deprotection step was performed in ice bath, crude product was immediately purified by the HPLC and 

residual acid removed by passing through the short C18 column. This procedure hampered oxidation 

of Met residue in all derivatives with the exception of Ada containing pentapeptide 11, which showed 

extreme susceptibility to oxidation. The full scan mass spectrum of product(s) obtained in deprotection 

step (Figure 1) clearly revealed presence of only traces of 11 (m/z 750) and all three possible oxidized 

forms of 11 (m/z 766, 782 and 798). During the purification procedure, only oxidized product 15 was 

isolated. All prepared compounds were characterized by NMR spectroscopy and deprotected 

compounds 10 and 12–15 additionally by tandem mass spectrometry and HRMS. The main feature of 

MS/MS spectra of the molecular [M + H]+ ions of all peptides is high abundance of Y” and B-type 

fragment ions (Figure S1, Supplementary Information). 

Figure 1. Part of the full scan mass spectrum of the reaction mixture during the 

deprotection of 8 showing presence of oxidized forms of methionine. 
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Scheme 1. (a) HOSu (1.1 eqv), DCC (1.2 eqv), KHCO3 (1.2 eqv), then H-Met-Met-Met-OH 

(for 5 and 6) or H-Met-Met-OH (for 7) (1.1 eqv) in DMF; (b) NMM (1.2 eqv), HATU  

(1.2 eqv), then H-Met-Met-Met-OH (1.2 eqv) in DMF; (c) NMM (2.3 eqv), ClOCOiBu 

(1.2 eqv), H-Met-Met-Met-OH (1.1 eqv) in DMF; (d) TFA-H2O (9:1).  

 

2.3. Proliferation Assay 

Peptides 10, 12–14 as well as trisulfoxide derivative 15 were screened for possible antiproliferative 

effects on three cell lines: SW 620 (colon carcinoma), MCF-7 (breast carcinoma) and HeLa (cervical 

carcinoma), according to the previously published procedure [12]. Table 3 summarizes activities found 

for tested peptides, expressed as percentage of growth (PG) of three cell lines, together with values for 

OGF and three OGF-related peptides proposed by the SVM radial basis function kernel (RBF) [12].  

In vitro screening results confirmed that some of tested compounds possess more pronounced activity 

compared to the OGF on certain cell lines (numbers in bold, Table 3). However, compared to three 

OGF-related peptides proposed by the SVM radial basis function kernel (RBF), compounds predicted 

by the consensus of regression models proposed herein are less effective in inhibition of tumor cells 

growth. Comparison with the most active peptides from the training set revealed comparable 

antiproliferative effects on the SW620 cell line, but improved activities on HeLa and especially MCF-7 

cell lines (Table 3). Therefore, the approach presented here managed to select peptides with improved 

biological activities from virtual library.  
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Table 3. Growth inhibition effects of OGF-related peptides. 

Compound 
PG(%) a 

SW620 MCF-7 HeLa 

H-Phe-Ala-Met-Met-Met-OH (10) 100 74 88 
H-Phe-Gly-Met-Met-Met-OH (12) 95 86 86 
H-Phe-Ala-Met-Met-OH (13) 86 68 71 
H-Tyr-Ala-Met-Met-Met-OH (14) 97 71 91 
H-Phe-Ada-Met(O)-Met(O)-Met(O)-OH (15) 77 82 64 

H-Tyr-Gly-Gly-Phe-Met-OH (OGF) 85 92 88 

H-Phe-Ada-Gly-Phe-Met-OH b 35 39 49 
H-Phe-Ada-Gly-Phe-Phe-OH b 39 41 23 
H-Tyr-Ada-Gly-Phe-Phe-OH b 38 81 71 

H-Tyr-(S)-Ada-OH c 72 100 92 
H-Tyr-(R)-Ada-OH c 88 99 97 
H-Tyr-(S)-Ada-Gly-OH c 85 100 90 
H-Tyr-(R)-Ada-Gly-OH c 87 100 89 
H-Tyr-Ada-Gly-Phe-Met-OH c 85 100 85 
a PG = percentage of growth at c = 10−4 M; b data from Reference [12]; c data from Reference [11]. 

Regarding amino acid sequence, peptides proposed by the consensus of regression models differ 

significantly from those prepared following the RBF SVM regression model prediction [12]. Only one 

derivative in top-five contains non-natural adamantane-related amino acid, and all are rich in 

methionine. Contrary to that, prevalence of phenylalanine is characteristic of peptides described in [12]. 

Improved biological activity was attributed to the hydrophobic character and somewhat fixed 

conformation concluded from CD spectra. Presence of Ada, a -turn inducer, contributes to the observed 

conformational change when compared with the native OGF. Peptides prepared according to the 

consensus of regression models are less hydrophobic (log P values, Table 1), and absence of bulky 

Ada residue probably influences flexibility of prepared peptides. On the other hand, in peptides 

prepared in [12] third position was occupied with Gly, which allow flexibility of the peptide chain and 

thus help accommodation of the rigid Ada amino acid. It can be expected that, owing to the prevalence 

of nonpolar aliphatic amino acid methionine, peptides prepared in this work are structurally distinct 

from those prepared in [12] where aromatic amino acid phenylalanine is incorporated. Therefore, all 

these diversities can influence observed lower antiproliferative potential of tested peptides. 

Interestingly, trisulfoxide derivative 15 obtained by the oxidation of unstable, the only Ada-containing 

peptide 11, showed similar antiproliferation potential as other peptides tested in this work, despite  

its unfavourable characteristics (log P − 1.49, log S − 3.03). Therefore, different structural and 

conformational factors contribute to biological profiles of studied peptides.  

Although top 5 ranked compounds were on the lists of four regression models, compounds 

synthesized from that list were less effective in inhibition of tumor cell growth than RBF SVM predicted 

compounds in [12]. This confirms complexity and unreliability of prediction when regression models 

are trained on a sample with small number of compounds with measured antitumor activity and large 

number of features. This instability of prediction is consequence of the high ill-posedness of the 

concrete problem and is inherent to all “small N large p problems”, as shown in [25] for the gene 
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subset selection problem. Thus, it is possibly wise to propose development of mathematical model for 

evaluation of the quality of prediction achieved by various statistical and machine learning methods in 

the spirit of the methods developed in [27] for validation of gene selection algorithms. It is also 

important to focus efforts and attention strictly on feature selection methods and try to reduce 

redundant features before training of regression models. Since reduction of features increases the 

ration between number of labeled samples and number of features this should up to some extent 

counteract instability of predictions on test data caused by overfitting. One such concept that combines 

L1 and L2 regularization has been proposed recently in [28].  

3. Experimental Section 

3.1. Construction of the Virtual Library 

Details about training set, QSAR descriptors and virtual library construction are available at [29]. 

Web-site also contains structures of peptides in the virtual library, their molecular descriptors, and the 

predicted cytostatic activities. Briefly, 22 OGF-related peptides with measured antiproliferative 

activity were submitted to the E-Dragon web service [30], that predicts a probable three-dimensional 

structure using CORINA [31] and computes molecular descriptors for each compound. A virtula library 

was constructed encompassing OGF-like tri-, tetra- and pentapeptides. Amino acids present in training 

set peptides were used in the virtual library with two additional members to raise variety. At the  

N-terminal position, aromatic amino acids Tyr, Phe and Trp were used, at the second position Gly, Ala 

and Ada were varied, while other positions were occupied with Gly, Ala, Ada, Phe and Met. We used 

Marvin 5.1.1 software [32] to visualize, browse, and otherwise handle the molecules in the  

virtual library. 

3.2. Software Environment 

The regression models were implemented in MATLAB script language using functions available in 

the classification toolbox: newff, train and sim for the feed forward ANN, knnclassify for the KNN 

predictor and our own MATLAB implementation of the linear and nonlinear SVM-based regression 

models (files in MATLAB script language are given in Supplementary Information). The feed-forward 

ANN was composed of one input layer with ten nonlinear neurons (sigmoids) and one output layer 

with pure linear neuron. The network was trained in the backpropagation mode and the smallest  

CV-based prediction error has been obtained in the trainoss mode (the one step secant algorithm). 

Sparse linear regression was implemented by the interior point method [24], designed for the solution 

of large scale linear inverse problems with a MATLAB code available at [33]. 

3.3. Peptide Synthesis 

3.3.1. Materials and Methods 

Reaction courses were monitored by TLC on Silica Gel 60 F254 Merck plates and examined under 

UV light or detected with HBr/ninhydrine. Column chromatography was performed with Merck silica 

gel (0.040–0.063 mm). Optical activities were measured on Optical Activity LTD automatic AA-10 
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polarimeter at 20 °C. Analysis was performed on HPLC system coupled with UV detector; C-18 

semipreparative (250 × 8 mm, ID 5µm) column at flow rate 1 mL/min, or analytical (150 × 4.5 mm,  

ID 5 µm) column at flow rate 0.5 mL/min was used under isocratic conditions using different 

concentration of MeOH in 0.1% aqueous TFA. UV detection was performed at 254 or 280 nm. NMR 

spectra were recorded on 600 MHz and 300 MHz spectrometers, operating at 150.92 or 75.47 MHz for 
13C and 600.13 or 300.13 MHz for 1H nuclei. TMS was used as an internal standard. Mass 

spectrometry measurements were performed on HPLC system coupled with triple quadrupole mass 

spectrometer, operating in positive electrospray ionization (ESI) mode. Spectra were recorded from a 

10 μg/mL compound solution in 50% methanol/0.1% FA by injection of 2 μL into the ion source of the 

instrument by autosampler, at the flow rate of 0.2 mL/min (mobile phase 50% methanol/0.1% FA). 

HRMS analysis was performed on MALDI-TOF mass spectrometer operating in reflectron mode. 

Calibration type was internal with calibrants produced by matrix ionization (monomeric, dimeric and 

trimeric CHCA), azithromycin and angiotensin II dissolved in α-cyano-4-hydroxycinnamic acid matrix 

in the mass range m/z 190.0499 to 749.5157 or 1046.5417. Accurately measured spectra were 

internally calibrated and elemental analysis was performed on Data Explorer v. 4.9 Software with  

mass accuracy better than 5 ppm. Samples were prepared by mixing 1 μL of analyte methanol solution 

with 5 μL of saturated (10 mg/mL) solution of α-cyano-4-hydroxycinnamic acid (α-CHCA)  

and internal calibrants (0.1 mg/mL) dissolved in 50% acetonitrile/0.1% TFA. Synthesis of  

(R,S)-(1-adamantyl)glycine (Ada) and Boc-Phe-Ada-OH (4) is described previously [11].  

3.3.2. General Procedure for the Synthesis of Compounds 5–7 

Selected Boc-protected dipeptide 1 or 2 (Boc-Phe-Ala-OH or Boc-Phe-Gly-OH, respectively) 

(0.150 mmol) was dissolved in dry DMF at 0 °C. HOSu (0.180 mmol) and DCC (0.195 mmol) were 

added into the solution and the resulting mixture was stirred for 30 min at 0 °C and then at room 

temperature overnight. The reaction mixture was filtered and the precipitate washed with DMF. Mother 

liquor was added dropwise into the suspension of KHCO3 (0.198 mmol) and H-Met-Met-Met-OH or 

H-Met-Met-OH (0.180 mmol) in water. The reaction mixture was stirred for 3 hours at room 

temperature. pH of the solution was set to 2–3 with 10% citric acid and the product was extracted with 

Et2O, washed with brine and water and purified by flash chromatography.  

3.3.3. Boc-Phe-Ala-Met-Met-Met-OH (5) 

Yield: 19% (colorless oil). Rf 0.22 (petrol ether-EtOAc-AcOH 10:10:0.5). [α]D –10° (c 1, MeOH). 

ESI-MS: [M + H]+ m/z 730. 13C NMR (DMSO-d6): δ = 14.5 (SCH3 Met3,4,5), 18.4 (β Ala), 28.1 (CH3 

Boc), 29.5, 29.6, 29.7 (β Met3,4,5), 31.8, 32.1, 33.3 (γ Met3,4,5), 37.3 (β Phe), 44.4 (α Ala), 51.6 (α Phe), 

52.1, 53.0, 55.6 (α Met3,4,5), 78.5 (C Boc), 126.1 (ζ Phe), 127.9 (ε Phe), 129.2 (δ Phe), 138.1 (γ Phe), 

155.3 (CO Boc), 169.9, 170.8, 172.3 (CO Met3,4,5), 171.3 (CO Phe), 171.4 (CO Ala). 1H NMR 

(DMSO-d6): δ =1.10–1.31 (m, 12H, CH3 Boc, β Ala), 1.92–2.10 (m, 15H, β Met3,4,5, SCH3 Met3,4,5), 

2.21–2.52 (m, 6H, γ Met3,4,5), 2.72–2.92 (m, 2H, β Phe), 4.01–4.71 (m, 5H, α Phe, α Ala, α Met3,4,5), 

6.94 (br d, 1H, NH Phe), 7.20–7.35 (m, 5H, ε, δ, ζ Phe), 7.72–7.85 (m, 1H, NH Met3), 7.91–8.34 (m, 

3H, NH Ala, NH Met4,5). 
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3.3.4. Boc-Phe-Gly-Met-Met-Met-OH (6) 

Yield: 45% (colorless oil). Rf 0.18 (petrol ether-EtOAc-AcOH 10:10:0.5). [α]D –17 ° (c 1, MeOH). 

ESI-MS: [M + H]+ m/z 716. 13C NMR (DMSO-d6): δ = 14.6 (SCH3 Met3,4,5), 24.4, 25.3 (β Met3,4,5), 

28.1 (CH3 Boc), 29.4, 29.5, 29.6 (γ Met3,4,5), 37.3 (β Phe), 42.1 (α Gly), 47.5, 51.8 (α Met3,4,5), 55.7 (α 

Phe), 78.1 (C Boc), 126.1 (ζ Phe1), 127.9 (ε Phe), 129.2 (δ Phe), 138.2 (γ Phe), 155.2 (CO Boc), 168.7 

(CO Phe), 170.5 (CO Met3,4,5), 172.8 (CO Gly). 1H NMR (DMSO-d6): δ =1.25–1.30 (m, 9H, CH3 Boc), 

1.49–1.80 (m, 6H, β Met3,4,5), 1.94–2.04 (m, 9H, SCH3 Met3,4,5), 2.40–2.44 (m, 6H, γ Met3,4,5),  

2.70–2.75, 3.00–3.01 (dd, 2H, β Phe), 3.70–3.74 (m, 2H, α Gly), 4.00–4.15 (m, 2H, α Phe, α Met3), 

4.30–4.39 (m, 2H, α Met4,5), 6.96 (d, 1H, NH Phe), 7.18–7.26 (m, 5H, ε, δ, ζ Phe), 7.89, 7.97, 8.14 (br 

d, 3H, NH Met3,4,5), 8.20–8.22 (m, 1H, NH Gly). 

3.3.5. Boc-Phe-Ala-Met-Met-OH (7) 

Yield: 54% (colorless oil). Rf 0.28 (petrol ether-EtOAc-AcOH 10:10:0.5). [α]D –15 ° (c 1, MeOH). 

ESI-MS: [M + H]+ m/z 599. 13C NMR (DMSO-d6): δ = 15.0, 15.1 (SCH3 Met3,4), 18.6 (β Ala), 28.7 

(CH3 Boc), 29.8, 30.0 (β Met3,4), 30.0, 31.3 (γ Met3,4), 37.4 (β Phe), 48.7 (α Phe), 51.9, 52.3 (α Met3,4), 

56.2 (α Ala), 78.5 (C Boc), 126.6 (ζ Phe), 128.5 (ε Phe), 129.6 (δ Phe), 138.7 (γ Phe), 155.7 (CO Boc), 

171.3 (CO Phe), 171.9, 172.5 (CO Met3,4), 173.6 (CO Ala). 1H NMR (DMSO-d6): δ =1.23–1.29 (m, 

12H, CH3 Boc, β Ala), 1.80–2.00 (m, 10H, β Met3,4, SCH3 Met3,4), 2.41–2.62 (m, 4H, γ Met3,4),  

2.71–2.96 (m, 2H, β Phe), 4.15–4.36 (m, 4H, α Phe, α Ala, α Met3,4), 6.94 (d, 1H, NH Phe), 7.19–7.26 

(m, 5H, δ, ε, ζ Phe), 8.07 (m, 3H, NH Ala, NH Met3,4). 

3.3.6. Synthesis of Boc-Phe-Ada-Met-Met-Met-OH (8) 

Boc-Phe-Ada-OH (3) (50 mg, 0.110 mmol), NMM (24 μL, 0.132 mmol) and HATU (50 mg,  

0.132 mmol) were dissolved in DMF and stirred at room temperature for 2 hours. H-Met-Met-Met-OH  

(55 mg, 0.132 mmol) was added and the reaction mixture was stirred overnight. The solvent was 

evaporated in vacuo and the product was purified by flash chromatography in EtOAc-petrol  

ether-AcOH 10:5:0.5. 

Yield: 63% (colorless oil). Rf 0.51 (EtOAc-petrol ether-AcOH 10:5:0.5). [α]D –13° (c 1, MeOH). 

ESI-MS: [M + H]+ m/z 851. 1H NMR (CD3OD): δ = 1.42 (s, 9H, Boc), 1.56–1.80 (m, 12H, CH2Ada), 

1.90–2.15 (m, 18H, CH Ada, β Met3,4,5, SCH3 Met3,4,5), 2.48–2.65 (m, 6H,  Met3,4,5), 2.86–2.94;  

3.10–3.19 (m, 2H, β Phe), 4.35–4.60 (m, 5H, α Phe, α Ada, α Met3,4,5), 7.17–7.35 (m, 5H, δ, ε, ζ Phe). 

3.3.7. Synthesis of Boc-Tyr(Boc)-Ala-Met-Met-Met-OH (9) 

Boc-Tyr(Boc)-Ala-OH (4) (50 mg, 0.110 mmol) and NMM (28 μL, 0.254 mmol) were dissolved in 

DMF at 0 °C and ClOCOiBu (19 μL, 0.133 mmol) was added. After 10 min, H-Met-Met-Met-OH  

(50 mg, 0.122 mmol) was added and the reaction mixture was stirred for 30 min at 0 °C and then at 

room temperature overnight. The solvent was evaporated; water was added to the residue and pH 

adjusted to 2–3 with 10% citric acid. The product was extracted with EtOAc, washed with brine and 

water and purified by flash chromatography in petrol ether-EtOAc-AcOH 10:10:0.5. 
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Yield: 19% (colorless oil). Rf 0.19 (petrol ether-EtOAc-AcOH 10:10:0.5). [α]D –7° (c 1, MeOH). 

ESI-MS: [M + H]+ m/z 847. 13C NMR (DMSO-d6): δ = 15.1 (SCH3 Met3,4,5), 18.6 (β Ala), 28.6, 28.7 

(CH3 NHBoc, CH3 OBoc), 29.9, 30.2, 30.1 (β Met3,4,5), 32.1, 32.3, 32.9 (γ Met3,4,5), 37.1 (β Tyr),  

48.5 (α Tyr), 49.1, 52.5, 54.0 (α Met3,4,5), 56.0 (α Ala), 78.5 (C OBoc), 83.5 (C NHBoc), 115.3 (ζ Tyr), 

121.3 (ε Tyr), 130.6 (δ Tyr), 136.3 (γ Tyr), 149.6 (CO NHBoc), 151.8 (CO OBoc), 155.8, 170.1, 171.3 

(CO Met3,4,5), 171.8 (CO Tyr), 171.4 (CO Ala). 1H NMR (DMSO-d6): δ =1.13–1.48 (m, 21H, CH3 

OBoc, CH3 NHBoc, β Ala), 1.95–2.06 (m, 15H, β Met3,4,5, SCH3 Met3,4,5), 2.32–2.50 (m, 6H,  

γ Met3,4,5), 2.70–3.03 (m, 2H, β Tyr), 3.20–4.40 (m, 5H, α Tyr, α Ala, α Met3,4,5), 6.60 (d, 1H, NH Tyr), 

6.80 (br d, 2H, ε Tyr), 7.10 (br d, 2H, δ Tyr), 7.20–8.22 (m, 4H, NH Ala, NH Met3,4,5). 

3.3.8. General procedure for the synthesis of compounds 10–14 

Boc-protected peptides 5–9 were treated with cold TFA-H2O (9:1) mixture in ice bath for 5 min. 

After addition of cold diethyl ether, the precipitate was collected by centrifugation, purified by HPLC 

and the residual TFA removed by passing through the short C18 column.  

3.3.9. H-Phe-Ala-Met-Met-Met-OH (10) 

Yield: 25% (colorless oil). Rt 11.6 min (40% MeOH in 0.1% TFA). ESI-MS: [M + H]+ m/z 630.  
1H NMR (CD3OD): δ = 1.46 (d, 3H, β Ala), 1.92–2.23 (m, 15H, β Met3,4,5, SCH3 Met3,4,5), 2.46–2.68 

(m, 6H, γ Met3,4,5), 2.81–2.88; 2.95–3.01 (m, 2H, β Phe), 3.59, 3.69 (br d, 2H, α Met4,5), 4.20–4.53 (m, 

3H, α Phe, α Ala, α Met3), 7.20–7.36 (m, 5H, ε, δ, ζ Phe). HRMS (MALDI): m/z [M + H]+ calcd for 

C27H43N5O6S3 630.2448, found 630.2456. 

3.3.10. H-Phe-Gly-Met-Met-Met-OH (12) 

Yield: 20% (colorless oil). Rt 14.5 min (40% MeOH in 0.1% TFA). ESI-MS: [M + H]+ m/z 616.  
1H NMR (CD3OD): δ = 1.93–2.00; 2.10–2.17 (m, 6H, β Met3,4,5), 2.06; 2.90; 2.10 (s, 9H, SCH3 

Met3,4,5), 2.45–2.60 (m, 6H, γ Met3,4,5), 2.86–2.91, 3.11–3.15 (m, 2H, β Phe), 3.57 (br s, 1H, α Met3), 

3.79; 3.92 (br d, 2H, α Gly), 4.24–4.28 (m, 1H, α Phe), 4.44–4.50 (m, 2H, α Met4,5), 7.21–7.33 (m, 5H, 

ε, δ, ζ Phe). HRMS (MALDI): m/z [M + H]+ calcd for C26H41N5O6S3 616.22928, found 616.2286. 

3.3.11. H-Phe-Ala-Met-Met-OH (13) 

Yield: 34% (colorless oil). Rt 17.1 min (40% MeOH in 0.1% TFA). ESI-MS: [M + H]+ m/z 499. 1H 

NMR (CD3OD): δ = 1.41 (d, 3H, β Ala, 3Jαβ = 7.1 Hz), 1.92–2.19 (m, 10H, β Met3,4, SCH3 Met3,4), 

2.48–2.62 (m, 4H, γ Met3,4), 2.63–2.70 (m, 2H, β Phe), 4.04–4.08, 4.36–4.49 (m, 4H, α Phe, α Ala,  

α Met3,4), 7.28–7.40 (m, 5H, ε, δ, ζ Phe). HRMS (MALDI): m/z [M + H]+ calcd for C22H34N4O5S2 

499.2043, found 499.2028. 

3.3.12. H-Tyr-Ala-Met-Met-Met-OH (14) 

Yield: 24% (colorless oil). Rt 20.9 min (43.5% MeOH in 0.1% TFA). ESI-MS: [M + Na]+ m/z 668. 
1H NMR (CD3OD): δ = 1.41 (d, 3H, β Ala, 3Jαβ = 7.1 Hz), 1.85–2.10 (m, 15H, β Met3,4,5, SCH3 

Met3,4,5), 2.50–2.63 (m, 6H, γ Met3,4,5), 2.85–3.10 (m, 2H, β Tyr), 4.04–4.08 (m, 1H, α Tyr) 4.36–4.49 
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(m, 3H, α Met3,4), 4.55–4.62 (m, 1H, α Ala), 6.80 (br d, 2H, ε Tyr), 7.10 (br d, 2H, δ Tyr). HRMS 

(MALDI): m/z [M + Na]+ calcd for C27H43NaN5O7S3 668.2216, found 668.2211. 

3.3.13. H-Phe-Ada-Met(O)-Met(O)-Met(O)-OH (15) 

Yield: 30% (colorless oil). Rt 15.9 min. (50.5% MeOH in 0.1% TFA). ESI-MS: [M + H]+ m/z 798. 
1H NMR (CD3OD): δ = 1.50–1.82 (m, 12H, CH2Ada), 1.95–2.15 (m, 9H, CH Ada, β Met3,4,5),  

2.45–2.65 (m, 15H,  Met3,4,5, SOCH3 Met3,4,5), 2.80–2.95; 3.10–3.15 (m, 2H, β Phe), 4.10–4.16 (m, 

1H, α Phe) 4.25–4.57 (m, 4H, α Ada, α Met3,4,5), 7.15–7.30 (m, 5H, δ, ε, ζ Phe). HRMS (MALDI):  

m/z [M + H]+ calcd for C36H55N5O9S3 798.3233, found 798.3232. 

3.4. Proliferation Assay 

The biological potential of prepared compounds has been tested in the Laboratory for experimental 

therapy (Ruđer Bošković Institute) following the previously published procedure [12]. Briefly, MCF-7, 

SW 620 and HeLa cells were cultured as monolayers and maintained in Dulbecco’s modified Eagle 

medium (DMEM), supplemented with 10% fetal bovine serum (FBS), 2mM L-glutamine, 100 U/mL 

penicillin and 100 μg/mL streptomycin in a humidified atmosphere with 5% CO2 at 37 °C. The panel 

cell lines were inoculated onto a series of standard 96-well microtiter plates on day 0, at 1 × 104 to  

3 × 104 cells/mL, depending on the doubling times of specific cell line. Test agents were then added in 

five, 10-fold dilutions (10−8 to 10−4 M) and incubated for a further 72 hours. Working dilutions were 

freshly prepared on the day of testing. The solvent was also tested for eventual inhibitory activity by 

adjusting its concentration to be the same as in working concentrations. After 72 hours of incubation 

the cell growth rate was evaluated by performing the MTT assay. For this purpose the substance 

treated medium was discarded and MTT was added to each well at a concentration of 20 μg/40 μL. 

After four hours of incubation the precipitates were dissolved in 160 μL of dimethylsulphoxide 

(DMSO). The absorbance that is directly proportional to the number of living, metabolically active 

cells was measured on a microplate reader at 570 nm. Each test point was performed in quadruplicate 

in three individual experiments.  

4. Conclusions 

The results of the present work demonstrate the complexity of prediction of biological activity of 

candidate molecules based on the regression models trained on a dataset of very small ratio between 

the number of labeled samples and number of features. Six regression models were trained on a dataset 

of 22 OGF-related peptides with measured antitumor activity (1647 QSAR descriptors) and then 

applied on a 429 virtual library members. To, possibly, hinder overfitting and instability of prediction, 

consensus among the regression models has been sought. Highly ranked compounds were prepared 

and tested. Although some of them showed more pronounced activity compared with the native OGF, 

they were less active than highly ranked compounds selected previously from the same virtual library 

by the RBF SVM regression model. The RBF SVM regression model has also been considered here 

and showed smaller cross-validation accuracy. However, its prediction has been a part of the 

consensus reached, in addition to RBF SVM, between feed-forward ANN, linear SVM and linear 
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sparse regression model. This seemingly paradoxical result confirms inherent instability of prediction 

that is based on regression model trained on a (very) small sample size. This has been additionally 

confirmed by high correlation (0.94) of predictions of test data between these four models, whereas list 

of features that are highly correlated with predictions of corresponding models do not overlap. As this 

situation is, unfortunately, often found within the academic community, it is possibly wise to consider 

development of a mathematical model for the evaluation of the quality of prediction achieved under 

such conditions, in the spirit of the methods developed recently in microarray data analysis. It is also 

recommended to consider application of existing or development of novel feature selection methods to 

remove redundant features. This would increase the ratio between the number of labeled samples and 

number of features before training of regression models and, thus, should reduce instabilities of 

predictions of test data.  
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