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Abstract 

Underdetermined blind separation of nonnegative dependent sources consists in 

decomposing set of observed mixed signals into greater number of original nonnegative 

and dependent component (source) signals. That is an important problem for which very 

few algorithms exist. It is also practically relevant for contemporary metabolic profiling 

of biological samples, such as biomarker identification studies, where sources (a.k.a. 

pure components or analytes) are aimed to be extracted from mass spectra of complex 



multicomponent mixtures. This paper presents method for underdetermined blind 

separation of nonnegative dependent sources. The method performs nonlinear mixture-

wise mapping of observed data in high-dimensional reproducible kernel Hilbert space 

(RKHS) of functions and sparseness constrained nonnegative matrix factorization 

(NMF) therein. Thus, original problem is converted into new one with increased 

number of mixtures, increased number of dependent sources and higher-order (error) 

terms generated by nonlinear mapping. Provided that amplitudes of original components 

are sparsely distributed, that is the case for mass spectra of analytes, sparseness 

constrained NMF in RKHS yields, with significant probability, improved accuracy 

relative to the case when the same NMF algorithm is performed on original problem. 

The method is exemplified on numerical and experimental examples related 

respectively to extraction of ten dependent components from five mixtures and to 

extraction of ten dependent analytes from mass spectra of two to five mixtures. 

Thereby, analytes mimic complexity of components expected to be found in biological 

samples.  

 

Key words: Underdetermined blind source separation, Dependent sources, Reproducible 
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1. INTRODUCTION 

Blind source separation (BSS) refers to extraction of unknown source signals from 

observed mixture signals only [1-4].  Within BSS framework a nonnegative BSS 

(NBSS), where both mixing and source matrix are nonnegative, has drawn significant 



attention recently yielding algorithms such as nonnegative independent component 

analysis (NICA) [5], nonnegative matrix factorization (NMF)  [3, 6-8], convex 

analysis/geometry [9-11], nonnegative least correlated component analysis (nLCA) 

[12], determinant based sparseness measure approach to NBSS [13], and sparse 

component analysis (SCA) that combines data clustering and 1ℓ -minimization [14, 15].  

A challenge for NBSS algorithms set by real world problems is characterized by more 

sources than mixtures available, i.e. NBSS problem is underdetermined (uNBSS), 

whereas sources are dependent. Such problems, associated with research related to 

health, food and environment, set motivation for development of the uNBSS algorithm 

to be presented herein. For example, 326 analytes were quantified in extracts of 

Arabidopsis thaliana leaf tissue [16], while the independent gas chromatography-mass 

spectrometry (GC-MS) study of Arabidopsis thaliana leaves detected 497 unique 

chemical components [17]. Metabolic profiling, that is seen as one of the most 

challenging tasks in chemical biology [18], aims to identify and quantify small-

molecule analytes (a.k.a. pure components or sources) present in biological samples,  

typically urine, serum or tissue extract. Thereby, number of analytes can be large. For 

example, analysis of human adult urinary metabolome by liquid chromatography-mass 

spectrometry (LC-MS) revealed presence of 1484 components, while 384 of them were 

characterized by matching their spectra with references stored in libraries [19].  Great 

majority of algorithms developed for separation of dependent sources are incapable to 

deal with uNBSS problem, [5, 6, 9-14]. As opposed to them, few algorithms capable to 

handle uNBSS problem with dependent sources include [7, 8, 15, 20]. Hence, we 

propose new method for uNBSS problem with nonnegative dependent sources. It is a 

preprocessing method that performs nonlinear mixture-wise mapping of observed data 



and sparseness constrained NMF in high-dimensional mapped space. As properly 

pointed out in [13], performances of many algorithms depends on optimal usage of 

parameters required to be known a priori, such as balance parameter that regulates 

influence of sparseness constraint [15, 20], or number of overlapping components that 

exist in mixtures [8]. These parameters are difficult to select optimally in practice. To 

the best of our knowledge the nonnegative matrix underapproximation (NMU) 

algorithm is the only one that can handle uNBSS problem with dependent sources and 

does not require a priori information from the user. Therefore, we propose herein to 

combine nonlinear preprocessing transform (NPT) with the NMU algorithm in mapped 

high-dimensional space. Hence, the NPT-NMU algorithm. The NPT-NMU is 

exemplified on numerical and experimental problems. Nevertheless, proposed 

preprocessing method can be used in combination with other sparseness constrained 

NMF algorithms such as NMF algorithm with 0ℓ -constraints (NMF_L0) [8]. 

 The rest of the paper is organized as follows. Section 2 introduces instantaneous 

(memoryless) linear mixture model, commonly used in chemometrics, defines uNBSS 

problem and presents theory upon which proposed NPT approach is based. Section 3 

describes experiments performed on synthetic and MS mixtures. Results of comparative 

performance analysis between NMU, NMF-L0, NPT-NMU and NPT-NMF-L0 

algorithms are discussed in Section 4. The NMF-L0 algorithm has been used as a 

reference since it is known that 0ℓ -constraints yield best results in the case of dependent 

(overlapping) sources [21, 22]. In numerical, and even experimental, examples it was 

possible to set optimally parameter related to number of overlapping sources. 

Concluding remarks are given in Section 5. 



2. THEORY AND ALGORITHM 

Aimed application of proposed method is in extraction of analytes from 

multicomponent mixtures of mass spectra. MS is chosen due to its increasing 

importance in clinical chemistry, safety and quality control as well as biomarker 

discovery and validation. Identification of analytes is often achieved by matching 

experimental spectra to the ones stored in the library [23]. For an example the NIST and 

Wiley-Interscience universal spectral library [24], contains more than 800 000 mass 

spectra (corresponding to more than 680 000 compounds). Thus, we also assume that 

library of reference mass spectra is available to evaluate quality of components 

extracted by the proposed method.1 Although various analytical methods are available 

for the separation of individual compounds from mixtures, ideal separation cannot be 

always accomplished, especially when dealing with complex samples [19]. There are 

also analytes that are prone to chemical decomposition and thus cannot be isolated [25]. 

Furthermore, when two or more analytes elute from chromatography column close to 

each other in time their peaks overlap partially or completely [26]. Thus, instead of 

analytes, their mixture will be compared with the reference pure components in the 

library. This sets motivation for development of algorithm for uNBSS problem with 

dependent sources. 

2.1. Underdetermined nonnegative blind source separation with dependent sources 

                                                           
1
 Please note that any BSS algorithm when applied to experimental data requires some kind of expert 

knowledge to evaluate the separation results. Herein the library of pure components is such an "expert". 
The same concept is also in use in hyperspectral image analysis.  



Linear mixture model (LMM) is commonly used in chemometrics [27-30]  in general, 

and in MS in particular [29, 30]. It is the model upon which linear instantaneous BSS 

methods are based [1-4]. In the absence of additive noise the model reads as: 

 =X AS          (1) 

where 0
N T×

+∈X ℝ represents matrix of acquired nonnegative mass spectra such that each 

row { } 1

N

n n=
x

i
 of  X contains one recorded multicomponent mixture mass spectra 

comprised of intensity values at T m/z channels. 0
N M×

+∈A ℝ  represents mixture matrix, 

whereas each column vector { } 1

M

m m=
a

i
 represents concentration profile of the 

corresponding analyte across the N mixture spectra. 0
M T×

+∈S ℝ is a matrix with the rows 

{ } 1

M

m m=
s

i
 representing mass spectra of the unknown number of M analytes present in the 

mixture spectra X. Thereby, the number of analytes M can be less than, equal to and 

greater than the number of recorded mixtures spectra N. This, respectively, leads to 

over-, even- and under-determined BSS problems in which case it is assumed that 

information about concentration of analytes (stored in the mixing matrix A) is not 

known to the BSS algorithm. That is, it is expected from BSS method to estimate matrix 

of analytes S by having at disposal matrix with recorded mixtures spectra X only. Due 

to high complexity of spectra of biological samples and, quite often, small number of 

recorded spectra available, it is certain that in such analyses corresponding BSS 

problem will be (highly) underdetermined: M >N.  Thus, in this paper the following 

assumptions are made on LMM (1): 



 A1) 0 1 1,..., 1,..., ,mts m M t T≤ < ∀ = = 2 

 A2) 0 1,..., 1,...,nma n N m M≥ ∀ = = and 
2

1 1,..., ,m m M= ∀ =a
i

3 

 A3) M N>  

 A4) M<<T, 4 

Due to A1) and A2) it is clear that X≥0 as well. Furthermore, components spectra will 

overlap implying that at some m/z coordinates multiple components will be present. 

This implies for column vectors of S: { }0 1

T

t t
K

=
≤s

i
, where 

0ts
i

 denotes 0ℓ quasi-norm 

that counts number of nonzero entries of ts
i
. Thus, K  stands for maximal number of 

analytes that can be present at the particular m/z coordinate. Hence, sources { } 1

M

m m=
s

i
 

will be statistically dependent. The uNBSS problem (1) is ill-posed due to the fact that 

matrix factorization suffers from indeterminacies: X=AS=AB-1BS for some invertible 

M×M  square matrix B. Hence, it has an infinite number of solutions. Meaningful 

solutions are characterized by the permutation and scaling indeterminacies in which 

case B=PΛΛΛΛ, where P represents permutation and  ΛΛΛΛ represents diagonal scaling matrix. 

                                                           
2 Provided that A1) is not satisfied it can be satisfied by scaling X with a constant c: X→X/c. The 

conservative scaling strategy that always guarantees A1) is given with: { }1 1
arg max

T

t tt
c

=
= x

i
. However, 

scaling by { } ,

, 1
,

arg max
N T

nt n t
n t

c
=

= X  will satisfy A1) in great majority of occasions. 

3
 Due to the scaling indeterminacy that is inherent to the BSS problem magnitude of the mixing vectors 

cannot be guaranteed. Therefore, A2) constraint is assumed commonly in BSS. 

4
 This technical assumption is necessary to ensure that resolution of the spectrometer is high enough to 

enable discrimination between components the number of which is expected to be large. 



However, constraints are necessary to be imposed on A and/or S to obtain solution of 

uNBSS problem (1) that is unique up to permutation and scaling indeterminacies. The 

necessary constraint is sparseness of analytes spectra { } 1

M

m m=
s

i
. Sparseness constraint 

implies that in relation to N and M the maximal number of analytes K present at the 

particular m/z coordinate is small enough. However, K is application dependent. When 

number of sources present in the mixture is large, K will grow. Compressive sensing 

theory has established condition between N, M and K necessary to obtain unique 

solution for underdetermined system of linear equations: { } 1

T

t t t=
=x As

i i
 assuming that A 

is known and random with the entries distributed according to Gaussian or Bernoulli 

distributions. For 1ℓ -constrained solutions { } 1

T

t t=
s

i
 number of measurements  N  

necessary to obtain unique solution with probability one is given with: N≈Klog(M/K) 

[31]. When pℓ -constraint, 0≤p≤1, is used instead, condition on number of 

measurements N  is given with: N≥C1(p)K + pC2(p)Klog(M/K) [21], where C1 and C2 

are constants that depend on choice of the norm p. Hence, 1
0

lim (0)
p

N C K
→

≥ , i.e. when p=0 

number of measurements  N  does not depend on M . That explains good results of 0ℓ -

constrained algorithms for solving (1) [8, 23], when compared against 1ℓ -constrained 

algorithms when K is increasing. However, when (1) is associated with uNBSS problem 

in chemometrics A is not random but deterministic, i.e. it is a concentration matrix. To 

the best of our knowledge there is only one result related to condition necessary for 

unique solution of the underdetermined system of equations: { } 1

T

t t t=
=x As

i i
 when A is 

deterministic. It is shown in [32] that for cyclic polynomial matrix A it applies: 

N=O(K2). That is significantly worse than N≈Klog(M/K) [31], for random A. When 



analysis of complex mixtures takes place, where number of sources can be large and 

consequently K will grow, it can be necessary to ensure large number of mixtures 

spectra N in order to obtain solution of the uNBSS problem (1) that is, possibly, unique 

up to scaling and permutation indeterminacies. However, when N is associated with 

biological samples it can virtually be impossible to satisfy this requirement. Therefore, 

we propose nonlinear transformation of LMM (1) into quasi-linear model with 

increased number of measurements. 

2.2. Nonlinear transform of linear mixture model 

We propose mixture-wise nonlinear transform of LMM (1): ( ){ }0 1

T
N

t t t
φ + =

∈x x
i i
֏ ℝ , 

such that N N≫ . We would like N  to be (very) large and possibly even infinite. The 

mapping has the following structure: 

 ( ) { }1

1
1

... 1 ,..., 0
1

... , 1,..., .N

N
N

T NNqq
t q q t Nt nq q

n

c x x such that q N t Tφ
=

=

 = ≤ ∀ =
  

∑x
i

   (2) 

In (2) { }
1... Nq qc  are real constants that are mapping dependent. By taking into account 

that 
1

M

nt nm mtm
x a s

=
=∑ , (2) can be written as: 

 ( ) 0 1 1

0
0

1,...,t HOT M
t

t HOT

c t Tφ ×

 
   = + + ∀ =   
    

x e B B 0
s

s
i

i

i

     (3) 

where HOT stands for higher order (nonlinear) terms introduced by mapping ( )tφ x
i

, e1 

is  a unit vector in N
ℝ , 0M×1 is column vector with zero entries and tHOTs

i
 is 1N M− −  

column vector comprised of { }1

1
1 ,..., 2

.. M

M

Nq q
t Mt q q

s s
=

× ×  and 
1

M

mm
q N

=
≤∑ . Provided that 



LMM (1) is related to MS data analysis, { } 1

M

mt m
s

=
 represent analytes in mixtures mass 

spectra at the particular  m/z coordinate, i.e. t corresponds to m/z. Then, all the cross-

terms 1
1 ... Mq q
t Mts s× ×  will be zero if only one analyte is not present at this coordinate. 

Thus,  tHOTs
i

 in (3) will simplify to 2 2
1 1... ... ...

T
N N

t HOT t Mt t Mts s s s ≈  s
i

. Due to assumption 

A1), { } 1
0 1

M

mt m
s

=
≤ < , many higher order terms in tHOTs

i
 will go to zero as power term 

increases. Speed of decay depends on distribution of amplitudes. For sparse 

distributions, such as those encountered in MS, it is reasonable to expect that only 

several HOT of each source will be significantly greater than zero. For an example, for 

amplitude smt=0.5, the 10th order power is 9.7×10-4.  Nevertheless, powers of  { } 1

M

m m=
s

i
 

will represent new sources that are statistically dependent with the original ones. Thus 

we can write (3) as: 

  ( ) 0 1

0
1,...,t

t

c t Tφ  
≈ + ∀ = 

 
x e B

si

i

      (4) 

where [ ]T

t t t HOT=s s s
i i i

and B  combines on appropriate way B and BHOT . Model (4) can 

be written in matrix format yielding: 

 ( ) 0 1 0 1

0
...

T times

c cφ
×

   
 ≈ +  
    

X e e B
S�����

       (5) 

where ( ) 0
N Tφ ×

+∈X ℝ , 1
0
N P× +

+∈B ℝ  and 0
P T×

+∈S ℝ . Hence, the uNBSS problem (1) 

characterized by triplet (N, M, K) is converted into new problem (5) characterized by 

triplet (N , P, Q)  where P>M  stands for number of dependent sources in (5) and Q>K 



stands for number of overlapping sources in (5). Provided that amplitudes of the sources 

are sparsely distributed  it is justified to expect that: 

  ( N /N) >>(P/M) as well as (N /N) >>(Q/K).    (6)  

In the light of the uniqueness condition related analysis presented in [32], sparseness 

constrained factorization of (5) will with significant probability yield, depending on 

fulfillment of (6), increased accuracy when compared against the same factorization 

method used for the uNBSS problem (1). The difficulty with factorization of problem 

(5) is that N  can be large or even infinite, in which case factorization becomes 

computationally intractable. To alleviate this difficulty a special type of nonlinear 

mapping  φ  is selected such that space induced by it is reproducible kernel Hilbert 

space (RKHS) of functions. To this end we introduce the following definitions and 

theorems.  

Definition 2.2.1. A real function : N Nκ × →ℝ ℝ ℝ  is positive semi-definite if it is 

symmetric and satisfies for any finite set of points { } 1

T

t t=
x

i
in N

ℝ and real numbers 

{ } 1

T

t t
α

=
: ( ), 1

, 0
T

i j i ji j
α α κ

=
≥∑ x x

i i
.    

Theorem 2.2.1. The Moore-Aronszajn theorem, [33]. Given any nonnegative definite 

function ( ),x yκ there exists a uniquely determined RKHSHκ consisting of real valued 

functions on set N⊂X ℝ :f X → ℝ  such that:  (i) ( ), , Hκκ∀ ∈ ∈x X x� ;  (ii) 

( ) ( ), , , ,
H

f H f f
κ

κ κ∀ ∈ ∀ ∈ =x X x x� . Here, ,� �  denotes the inner product 

associated with Hκ .  



Definition 2.2.2. Replacing ( )f x  in (ii) in Theorem 2.2.1. by ( ),κ x� , it follows 

( ) ( ) ( ), , , ,t t Hκ
κ κ κ=x x x x

i i
� � . By selecting the nonlinear map as ( ) ( ),φ κ=x x�  it 

follows ( ) ( ) ( ), ,t t Hκ
κ φ φ=x x x x

i i
. That is known as kernel trick. The nonlinear 

mapping ( )tφ x
i

 is called explicit feature map (EFM). 

 

Practical importance of the kernel trick is enormous since it substitutes evaluation of 

inner product of possibly infinite dimensional mappings ( ) ( ),t Hκ
φ φx x

i
in Hκ  by 

evaluation of kernel function ( ),tκ x x
i

in the space spanned by empirical set of patterns 

X. To substitute EFM-based nonlinear mappings in (5) by implicit kernel-based 

mappings we need to define empirical kernel map (EKM). To this end we use the 

following definition, see also definition 2.15 in [34]. 

Definition 2.2.3. Empirical kernel map. For a given set of patterns { }
1

DN
d d =

∈ ⊂v X
i

ℝ , 

D ∈ℕ , we call : N Dψ →ℝ ℝ , where 

( ) { } ( ) ( )
1

1, , ,..., , 1,...,D
d d

T

t t t D t t Tκ κ κ
=

= ∀ =  v
x x v x v x

i

i i i i i i
֏ �  the empirical kernel 

map with respect to { } 1

D

d d =
v

i
.  

 

Hence, EKM ( )tψ x
i

 is obtained by projecting EFM ( )tφ x
i

 associated with kernel 

( ), tκ x
i

�  on a D-dimensional subspace in RKHS spanned by ( ){ }
1

D
N

d d
φ

=
∈v

i
ℝ : 



 ( ) ( ) ( ) ( )
( )

( )

1

1

,

... .... 1,...,

,

t
T

t D t

t D

t T

κ
ψ φ φ φ

κ

 
 = = ∀ =    
  

x v

x v v x

x v

i i

i i i i

i i

.    (7) 

If (4) is substituted in (7) we obtain: 

( ) ( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( )

1 1 0 1

1 1

0 1

1

0
... ...

,
0 0

... ... 1,...,

,

T T

t D t D
t

T

D
t t

D

c

c t T

ψ φ φ φ φ φ

κ
φ φ

κ

  
= ≈ +         

  

 
    ≈ + ≈ + ∀ =        
    

  B

c

x v v x v v e B
s

e v

v v B c B
s s

e v

i i i i i i

i

i

i i

i i

i

���������

�������

 

  Hence, we can write (7) in the matrix version as: 

  ( ) 1 Tψ × 
≈ +  

 

0
X C B

S
       (8) 

where ( ) 0
D Tψ ×

+∈X ℝ , 0
D T×

+∈C ℝ  , 1
0
D P× +

+∈B ℝ  and 0
P T×

+∈S ℝ . C in (8) represents bias term 

and does not play a role in parts based decomposition of ( )Ψ X that is enforced by 

sparseness constrained NMF. Hence, the uNBSS problem (1) characterized by triplet 

(N, M, K) is converted into new problem (8) characterized by triplet (D, P, Q)  where 

P>M  stands for number of dependent sources in (8) and Q>K  stands for number of 

overlapping sources in (8). Analogously to (6), provided that amplitudes of the sources 

are sparsely distributed  it is justified to expect that: 

  (D/N) >>(P/M) as well as (D/N) >>(Q/K).     (9)  

In the light of the uniqueness condition related analysis presented in [32], sparseness 

constrained factorization of (8) will with significant probability yield, depending on 



fulfillment of (9), increased accuracy when compared against the same factorization 

method used for the uNBSS problem (1). Thus nonnegativity and sparseness 

constrained factorization of (8) should extract original sources { } 1

M

m m=
s

i
 as well as their 

powers that actually are new sources that are dependent with the original ones. While in 

(5) N  is large or even infinite, D in (8) is finite. To perform projection implied by (7) a 

basis in the original empirical data set X has to be constructed { }0 1

DN
d d+ =

= ∈V v
i

ℝ  such 

that 

  ( ){ } ( ){ }
1 1

D T

d td t
span spanφ φ

= =
≈v x

i i
     (10) 

where span denotes a vector space spanned by particular set of vectors, i.e. it is 

expected that basis vectors span the same vector space that is spanned by empirical set 

of patterns.  The basis V can be constructed on several ways, for example using data 

clustering whereas cluster centers represent basis vectors. Hence, basis construction can 

be computationally challenging problem for itself. This, however, can be avoided if 

each pattern vector { } 1

T

t t=
x

i
 is chosen as a basis vector, i.e. V=X. Then condition (10) is 

satisfied perfectly. In this case, however, dimension of the projected sub-space D equals 

the number of the m/z channels T.  Hence, the matrix ψ(X) implied by (8) will have 

dimensions T×T. For low-resolution mass spectrometry T is of the order of several 

thousands and matrix factorization problems implied by (8) are computationally 

tractable even on today's personal computers. When it comes to the kernel function 

( ), tκ x
i

�  necessary to compute ( )tψ x
i

in (7), respectively (8) for matrix formulation, it 

is important that induced RKHS is high-dimensional. Although there are many kernel 

functions that satisfy this requirement we restrict ourselves herein to the one, arguably, 



most often used kernel, [34]: the Gaussian kernel 

( ) ( )2 2, expi j i jκ σ= − −x x x x
i i i i

where σ2 denotes kernel bandwidth or variance. In 

principle, optimal value of σ2 depends on dimension N and has to be estimated through 

cross-validation. When A1) and A2) apply we have found empirically that variance is in 

the interval σ2∈[0.1, 1]. Higher order terms (HOT) present in S  in (8) can also be seen 

as a noise that is generated by nonlinear transformation. Thus, error introduced by HOT 

can be reduced by applying entry-wise either soft thresholding nonlinearity on 

( ){ } ,

, 1

D T

dt d t
ψ

=
X : ( ) ( )( ) ( )( ){ } ,

, 1
max 0,

D T

dt dt dt d t
τψ η ψ ψ τ

=
→ = −X X X , [35],  or hard 

thresholding nonlinearity: ( ) ( )( ) ( ) ( ){ } ,

, 1
1

dt

D T

dt dt dt d t
τ ψ τψ ν ψ ψ > =

→ = XX X X  where ( )1
dt

ψ τ>X  

represents indicator function. Through numerical experiments under assumptions A1) 

and A2) we have empirically found that, if "de-noising" operator is applied, 

thresholding parameter ought to be set to τ ≈10-7. Hence, from the user perspective the 

NPT-NMU algorithm is virtually almost parameter free. 

2.3. Sparseness constrained factorization 

The NMU algorithm [7], with a MATAB code available at [36], has been used to 

evaluate effectiveness of proposed nonlinear mixture expansion method. The NMU 

method performs factorization of (8) in a recursive manner extracting one component at 

a time. After identifying optimal rank-one solution ( )1 1,b s
i i

the rank-one factorization is 

performed on the residue matrix ( ) ( ) 1 1ψ ψ← −X X b s
i i

. To preserve non-negativity of 

ψ(X) an underapproximation constraint is imposed on B  and S : ( )ψ≤BS X . This 

constraint yields localized parts-based decomposition where different basis elements 



describe disjoint parts of the input data ψ(X). It has been proven in theorem 1 in [7] that 

sparseness (number of non-zero entries) of B  and S  is less than sparseness of ψ(X). A 

main reason for preferring the NMU algorithm over other sparseness constrained NMF 

algorithms is that there are no regularization constants that require a tuning procedure. 

When performing NMU-based factorization of matrix ψ(X) in (8), the unknown number 

of analytes P needs to be given to the algorithm as an input. P represents nonnegative 

rank of ( )ψ X  in (8) and its optimal selection is related the model order selection. 

However, the well-known difficulty with model selection methods is that very often, 

due to different theoretical assumptions, they yield (significantly) different result when 

applied to the same data.  Due to this reason and also due to the reason of not to lose 

some of the components our strategy was to set an assumed value of P as:P̂ D T= = . 

Then, due to (8), ˆP P< . Then, the NMU algorithm will extract all the P̂  components 

contained in ( )ψ X  at an increased computational complexity, i.e. the T-P rank-one 

factors will be computed unnecessarily. Nevertheless, that is the price worth being paid 

in order not to lose some components that potentially can lead to biomarker discovery. 

When all T components are extracted they are compared with the reference components 

from the library. We identify analytes candidates as those that are maximally correlated 

with components in the library. As a reference solution in the benchmark problem we 

have used solution obtained by applying the NMF_L0 algorithm [8], to the original 

problem (1). The MATLAB code of the NMF_L0 algorithm is available at [37]. 

NMF_L0 is based on natural sparseness measure, the 0ℓ -pseudo-norm of the source or 

component matrix S . The NMF_L0 when applied to (1) requires a priori information 

on the number of components M and number of overlapping components K. In 



numerical scenario both M and K are known while in experimental scenario selecting 

optimal (true) value of K can be difficult. Nevertheless, the NMF_L0 can provide a 

good reference in validating worst-case and average performance of the NMU algorithm 

when applied on uNBSS problem (1) and as well as the NPT-NMU algorithm, that is 

the NMU algorithm applied on uNBSS problem (8). We summarize the NPT-NMU 

algorithm in the Algorithm 1. 

 

3. EXPERIMENTS  

Studies on numerical and experimental data reported below were executed on personal 

computer running under Windows 64-bit operating  system with 64GB of RAM using 

Intel Core i7-3930K processor and operating  with a clock speed of 3.2 GHz. Matlab 

2012b environment has been used for  programming. 

3.1. Numerical simulation 

In numerical study we simulate LMM (1) with N=5, M=10, T=1000 and K∈{2, 3, 4}. 

Each source is generated according to A1) and distributed according to probability 

density function of mixed state random variable, [38, 39]:  

 ( ) ( ) ( ) ( )*( ) 1 1,..., 1,...,mt mt mt mtp s s s f s m M t Tρδ ρ δ= + − ∀ = ∀ =   (11) 

where δ(smt) is an indicator function and δ*(smt)=1-δ(smt) is its complementary function, 

( ){ }
1

0
T

mt t
Pρ

=
= =s . Hence, ( ){ }

1
0 1

T

mt t
P s ρ

=
> = − . We have generated sources with 

probability of being zero ρ=0.9. The nonzero state of smt is distributed according to 

f(smt). We have chosen exponential distribution ( ) ( ) ( )1 expmt mtf s sµ µ= −  to model 



sparse distribution of the nonzero states such that the most probable outcomes were 

equal to µ=0.1 and µ=0.01.5 For these outcomes figures 1 and 2 respectively show 

values of normalized correlation coefficients  

  ˆ, , 1,...,mm m m m mc m M= ∀ =s s s s
i i i i

   (12) 

between true and separated sources versus Monte Carlo run index. Sources were 

separated by the NMU algorithm [7], the NMF_L0 algorithm [8] and proposed NPT-

NMU algorithm. Since for the NPT-NMU algorithm one run took roughly two hours, 

only 10 Monte Carlo runs were executed for each simulation scenario. Left column 

shows minimal value of the correlation coefficient attained by each of the algorithms 

while right column shows average value of the correlation coefficients for ten sources. 

The true values for M and K were reported to the NMF_L0 algorithm and true value for 

M was reported to the NMU algorithm. The NPT-NMU algorithm assumed that M=T.  

The NMF_L0 algorithm was run with the following parameter setup: reverse sparse 

nonnegative least square (rsNNLS) sparse coder and alternating nonnnegative least 

square (ANLS) for dictionary update stage. Careful inspection of results presented in 

figures 1 and 2 suggests that NPT-NMU algorithm yields better accuracy than NMU 

algorithm in 30% of the runs, while NMU is better in 60% of the runs. While average 

performance of the NMF_L0 algorithm is the best it yields the worse value of the 

minimal correlation coefficient. 

3.2. MS measurements 
                                                           
5
 Even though the exponential distribution has support on the [0,∞) interval setting  µ=0.1 implies that 

with probability  0.9999546 realizations will be contained in [0, 1] interval. For µ=0.01 realizations will 

be contained in [0, 1] interval with a probability that is close to 1 with an error of 3.72×10-44.  Thus, this 
justifies a choice of exponential distribution to model sparse distribution of amplitudes smt on interval 
[0,1]. 



3.2.1. Chemicals 

A library composed of mass spectra of ten amino acids, namely Ala, Asn, Asp, Gln, 

Glu, Leu, Lys, Phe, Pro and Val (C1-C10), was constructed. All amino acids and 

solvents were commercially available. Stock solutions of these amino acids (1 mg/mL) 

were prepared in 10% methanol. Working solutions (0.16 mg/mL) were prepared by 

diluting the stock solutions with 10% methanol. Five mixtures (X1-X5) were prepared 

by mixing different volumes of amino acid stock solutions according to Table S-1 given 

in Supplemental Information. Mass spectra of analytes were recorded by injection of 5 

µl of amino acid working solutions and mass spectra of five mixtures were obtained by 

injection of 15 µl of mixture solutions prepared as described above, to the ion source. 

Mass spectra of analytes C1-C10 and mixtures X1-X5 are given in Supplemental 

Information (Figures S-1 and S-2). 

3.2.2. Mass spectroscopy measurements  

Electrospray ionization-mass spectrometry (ESI-MS) measurements operating in a 

positive ion mode were performed on a HPLC-MS triple quadrupole instrument 

equipped with an autosampler (Agilent Technologies, Palo Alto, CA, USA). The 

desolvation gas temperature was 300 ⁰C with flow rate of 6.0 L/min. The fragmentor 

voltage was 135 V and capillary voltage was 4.0 kV. Mobile phase was 0.1% formic 

acid in 50% methanol and a flow rate of mobile phase was 0.2 ml/min. Mass spectra as 

total ion current spectra were recorded in m/z segment of 10-300. All data acquisition 

and processing was performed using Agilent MassHunter software. 

3.2.3. Setting up an experiment 



Naturally occurring L-amino acids Ala, Asn, Asp, Gln, Glu, Leu, Lys, Phe, Pro and Val, 

Figure 3, were chosen for the construction of mass spectra library and preparation of 

five mixtures used in validation of the proposed method. Using amino acids as testing 

compounds is rationalized as follows: (a) they are metabolites often followed in 

metabolomic studies, [40, 41], (b) their mass profile falls into relatively narrow m/z 

window thus mimicking complexity (overlapping) expected to be found in spectra of 

real biological samples and (c) owing to the fragmentation often taking place in the MS 

ion source, mass spectra of amino acids are enriched with numerous fragment ions 

making separation problem even more challenging. Mass spectra of components C1-C10 

are given in Figure S-1 in Supporting Information together with the assignment of the 

most abundant fragment ions. Inspection of mass spectra clearly shows that some 

fragment ions are present in spectra of different components. For example, the fragment 

ion at m/z 84 share components C4, C5 and C7, while that at m/z 116 components C2, C3 

and C9. Moreover, difference in mass spectra of components C4 (Gln) and C7 (Lys) is 

only in the intensity of fragment ions. Normalized cross-correlation coefficients of 

components are shown in Table S-2 given in Supporting Information. As seen from 

mass spectra, many of them (C4 and C5, C5 and C7, C3 and C9, C2 and C3 as well as C2 

and C9) are significantly correlated, while correlation between C4 and C7 is 0.9539. 

Thus, blind extraction of these analytes from small number of given mixtures is a (very) 

hard problem. It is also important to emphasize that mass spectra of mixtures were 

obtained by direct injection of sample to the ion source (one minute run), without 

chromatographic separation prior to MS analysis.   

 



4. RESULTS AND DISCUSSION 

Sparseness constrained matrix factorization methods such as those used in our previous 

work [30] and the NMU method [7] failed to extract analytes from mixtures. That is 

explained by significant correlation (overlapping) between the analytes. The NMF_L0 

method [8] when applied to LMM (1) yielded decent results in extracting components 

from five mixtures. Correlation structure discussed in subsection 3.2.3 suggested that 

optimal value for K could be 4, 5 or 6. Thus, NMF_L0 was cross-validated for values of 

K∈{3,4,5,6}. Note, however, that in truly experimental scenario correlation structure of 

analytes is unknown and selection of optimal K would require extensive cross-

validation. Table S-3 shows the best results, in terms of maximal normalized correlation 

coefficients between extracted components and components in the library, obtained by 

applying the NMU and NMF_L0 algorithms on mixture spectra according to the LMM 

(1).  Arguably, the best result by NMF_L0 is obtained for K=5. Since recorded mass 

spectra were composed of 2901 m/z points, extraction of analytes according to model 

(8) has been reduced to NMU-, respectively NMF_L0, based factorization of the 

2901×2901 matrix in mapped space. Before mapping the mixing matrix X was scaled 

by { }1 1
arg max

T

t tt =
x

i
 as  well as by { } ,

, 1
,

arg max
N T

nt n t
n t

=
X  .  Gaussian kernel with σ2∈{0.1,1, 

10} has been used. Proposed NPT-NMU method managed to extract ten analytes with a 

reasonable accuracy from even two mixtures only. The accuracy improves by increasing 

the number of mixtures. In Table 1 selected results are shown in terms of maximal 

normalized correlation coefficient (12) obtained by the proposed NPT-NMU method as 

well as by NMF_L0, while more comprehensive results are reported in Table S-4 in the 

Supporting Information. In took roughly two hours in described software environment 



to perform decomposition of each particular combination of mixture spectra. It was 

especially demanding to cross-validate number of overlapping components Q in model 

(8), and that is required by the NMF_L0 algorithm,  since value of Q depends on how 

fast power terms of the original sources decay toward zero. The "best" result was 

obtained for Q≈50, but that is significantly worse than obtained by the NMF_L0 based 

factorization of (1) for K=5. On the other side the NPT-NMU method yielded much 

better result than NMF_L0 method. Although quality of components extracted by the 

NPT-NMU and NMF_L0 methods was not perfect they were assigned uniquely to the 

true ones in the library. This aspect is of practical importance in different areas such as 

disease diagnosis, food quality control, environmental related studies that depend on 

library matching. Mass spectra of analytes extracted by the proposed NPT-NMU 

method from five mixtures are shown in Figure S-3 in Supporting Information. To take 

into account scaling indeterminacy extracted analytes were scaled to 0-100 range 

(dividing each extracted analyte by its maximal value and multiplying by 100).  

5. CONCLUSION 

Problems such as metabolic profiling of biological samples aim to extract many 

dependent (overlapping) analytes from small number of multicomponent mixtures mass 

spectra. That results in underdetermined nonnegative blind source separation problem 

(uNBSS) with dependent sources for which an algorithm is proposed. It performs 

nonlinear mixture-wise mapping of observed data into reproducible kernel Hilbert space 

(RKHS) of functions and sparseness constrained nonnegative matrix factorization 

(NMF) in RKHS. For sparse signals such as those encountered in mass spectroscopy the 

method yields, with significant probability, improved accuracy relative to the case when 



the same NMF algorithm is performed on the original uNBSS problem.  On demanding 

numerical and experimental problems the algorithm demonstrated capability to extract 

ten dependent analytes from two to five mixtures. Thereby, extracted components were 

assigned uniquely to the true ones in the library. That is practically important for 

biomarker identification studies. 
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Figure Captions 

Figure 1. Normalized correlation coefficient vs. Monte Carlo run index between true 

and extracted sources by algorithms: NMF_L0 (squares), NMU (stars) and NPT-NMU 

(circles). Left: minimal (worst) value; (right) mean value for ten sources. From top to 

bottom - number of overlapping sources K: 2, 3, and 4. Most probable value of the 

nonzero state, generated according to exponential distribution, equal to 0.1. 

Figure 2. Normalized correlation coefficient vs. Monte Carlo run index between true 

and extracted sources by algorithms: NMF_L0 (squares), NMU (stars) and NPT-NMU 

(circles). Left: minimal (worst) value; (right) mean value for ten sources. From top to 

bottom - number of overlapping sources K: 2, 3, and 4. Most probable value of the 

nonzero state, generated according to exponential distribution, equal to 0.01. 

Figure 3. Structures of components C1-C10. 



Table Captions 

 Algorithm 1. The NPT-NMF (preferably NMU) algorithm. 

Required: 

0
N T×

+∈X ℝ . If A1) is not satisfied perform scaling 

{ }1 1
arg max

T

t tt =
→X X x

i
or { } ,

, 1
arg max

N T

nt n t
nt

=
→X X X . 

1. Perform mapping ψ(X) in (7)/(8). 
2. Optionally, apply "de-noising" by soft- or hard thresholding operator 

entry-wise on ψ(X) in (8) with τ=10-7. 
3. Apply selected NMF algorithm to X in (1) and ψ(X) in (8) to estimate, 

respectively, S and S . 
4. Compare estimated S and S  with the reference components in the 

library to obtain the final estimate of S. 
 

  

 

 

 

 

 

 

 

 



Table 1. Maximal normalized correlation coefficients between analytes C1 to C10 and 

components extracted by the proposed NPT-NMU method. Columns from left to right: 

correlation coefficients; combinations of mixture spectra. The star '*' denotes analytes in 

the library associated with the same extracted component. As expected highly correlated 

analytes C4 and C7 were associated with the same extracted component. 

 X1 to X5 

NMF_L0 

X1 to X5 

NPT-NMU 

X(1,3,4,5) 

NPT-NMU 

X(1,2,3) 

NPT-NMU 

X(3,4) 

NPT-NMU 

c1,1 0.7269 0.8792 0.8486 0.7194 0.6232 

c2,2 0.9567 0.9370  0.8484 0.8855 0.8479 

c3,3 0.7448 0.9160  0.9142 0.6495 0.6889 

c4,4 0.8595 0.9816*  0.9008* 0.7474* 0.7308* 

c5,5 0.5616 0.6994 0.6107 0.5863 0.6461 

c6,6 0.9922 0.9844 0.9160 0.7958 0.9386 

c7,7 0.7117   0.9684* 0.8993* 0.7830* 0.7621* 

c8,8 0.6401 0.9869 0.9826 0.9671 0.9318 

c9,9 0.9924 0.9194 0.8746 0.9413 0.7998 

c10,10 0.9880 0.9398 0.9359 0.9826 0.8085 
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Summary abstract. A method for underdetermined blind separation of nonnegative dependent 

sources is proposed. The method performs nonlinear mixture-wise mapping of observed data 

and sparseness constrained nonnegative matrix factorization (NMF) in high-dimensional 

mapped space. Proposed method can be applied with existing NMF algorithms to extract 

analytes from mass spectra of multicomponent mixtures in biomarker related studies of 

biological samples. 

 

 


