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Abstract 

We introduce improved model for sparseness constrained nonnegative matrix factorization 

(sNMF) of amplitude mixtures nuclear magnetic resonance (NMR) spectra into greater number 

of component spectra. In proposed method selected sNMF algorithm is applied to the square of 

the amplitude of the mixtures NMR spectra instead to the amplitude spectra itself. Afterwards, 

the square roots of separated squares of components spectra and concentration matrix yield 

estimates of the true components amplitude spectra and of concentration matrix. Proposed model 
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remains linear in average when number of overlapping components is increasing, while model 

based on amplitude spectra of the mixtures moves away from the linear one when number of 

overlapping components is increased. That is demonstrated through conducted sensitivity 

analysis. Thus, proposed model improves capability of the sparse NMF algorithms to separate 

correlated (overlapping) components spectra from smaller number of mixtures NMR spectra. 

That is demonstrated on two experimental scenarios: extraction of three correlated components 

spectra from two 1H NMR mixtures spectra and extraction of four correlated components spectra 

from three COSY NMR mixtures spectra. Proposed method can increase efficiency in spectral 

library search by reducing occurrence of false positives and false negatives. That, in turn, can 

yield better accuracy in biomarker identification studies which makes proposed method 

important for natural products research and the field of metabolic studies. 

 

Keywords: Nuclear magnetic resonance spectroscopy, (non-)linear mixture model, blind source 

separation, nonnegative matrix factorization, compound identification. 

 

1 Introduction 

Metabolites, low-molecular-weight compounds, are functional endpoints of metabolism and are 

reflection of genetic and environmental perturbations of the system. Measurement of metabolites 

in biological fluids, typically urine and serum, is actually measurement of living system’s 

responses to disease, drugs or toxins. Metabolic profiling is therefore indispensable tool in drug 

development [1, 2], toxicology studies [3], disease diagnosis [4, 5], food, nutrition and 

environmental sciences [6]. Nuclear magnetic resonance (NMR) spectroscopy is emerging as a 
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key technique in metabolomics in an attempt to identify and quantify individual compounds the 

biological fluids are composed of [8, 9, 10]. The problem is notoriously difficult owing to the 

presence of large number of analytes in studied samples. It is estimated that 2766 metabolites are 

to be derived from humans, and many of them are species independent [11]. Quantitative 

metabolomic profiling of patients with inflammatory bowel disease, characterized 44 serum, 37 

plasma, and 71 urine metabolites by use of 1H NMR spectroscopy [12]. Since many analytes are 

structurally similar, their NMR spectra are highly correlated with many peaks overlapping. It is 

thus, the complexity of samples that limits identification of analytes, that is seen as one of the 

most challenging tasks in chemical biology [13]. Compound identification is often achieved by 

matching experimental spectra to the ones stored in the library [14, 15], for an example 

BioMagResBank metabolomics database [16] or, in case of mass spectrometry, the NIST 11 

Mass Spectral Library [17] . However, complexity (i.e. purity) severely hampers identification of 

individual compounds contained in the spectra of biological samples [15, 18]. Thus, instead of 

analytes, their mixture is often compared with the reference components in the library. 

Algorithmic approaches to solve this problem may be grouped in three main categories. The 

scoring methods assess the matches between the experimental and theoretical spectra. To this 

end, similarity scores are developed to reduce the false alarm rate [19, 20]. It is clear that this 

approach fails when number of analytes in a mixture spectra increases. Machine learning 

approaches try to learn a classifier using reference components from the library and apply it to 

experimental spectra [21, 22]. Accuracy of this approach highly depends on representativeness 

and size of the training dataset (library). Thus, when diversity of datasets is high or number of 

spectra from a specific group is small accuracy in analytes identification will deteriorate. 

Moreover, accuracy will be affected further by the overlapping of analytes spectra. The third 
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category of methods is known as source separation or "deconvolution" methods.1 The source 

separation methods, also known as multivariate curve resolution (MCR) methods, extract 

concentration and spectra of individual components from multicomponent mixtures spectra [24]. 

In particular, blind source separation (BSS) methods [25] refer to class of multivariate data 

analysis methods capable of blind (unsupervised) extraction of analytes from mixtures spectra, 

i.e. concentrations of analytes are not required to be known to the BSS algorithms. It is however 

clear that under stated conditions related inverse problem is severely ill-posed. To narrow-down 

infinite number of solutions to, possibly, essentially unique one, constraints have to be imposed 

on analytes spectra. Typically, constraints include uncorrelatedness, statistical independence, 

sparseness and nonnegativity. This, respectively, leads to principal component analysis (PCA) 

[26], independent component analysis (ICA) [27, 28], sparse component analysis (SCA) [29, 30] 

and nonnegative matrix factorization (NMF) [31]. These methods have already been applied 

successfully on analytes extraction from spectroscopic mixtures [32-39].  PCA, ICA and many 

NMF algorithms require that the unknown number of analytes is less than or equal to the number 

of mixtures spectra available [32, 33, 36-39]. That is also true for many "deconvolution" 

methods [40]. This makes them inapplicable for the analysis of multicomponent mixtures spectra 

such as those acquired from biological samples. Sparseness-based approaches to BSS are 

currently highly active research area in signal processing. Unlike PCA and ICA methods, SCA 

methods enable solution of an underdetermined BSS problem, i.e. extraction of more analytes 

than mixtures available in 1D and 2D NMR spectroscopy [34, 35]. Sparseness implies that at 

each frequency (in a case of NMR spectroscopy) only small number of analytes is active. 

                                                 

1 It is properly pointed out in [18] that the term "deconvolution" is essentially wrong, since it actually denotes 
inversion of a convolution, a particular kind of integral transform that describes input-output relations of linear 
systems with memory [23]. As opposed to that, extraction of analytes from mixtures of overlapped spectra is related 
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However, majority of SCA algorithms require that each analyte is active at certain spectral 

region alone [34, 35, 41, 42]. This assumption is increasingly hard to satisfy when complexity of 

mixture grows and when, due to reasons elaborated previously, multiple analytes get overlapped. 

Intuitively, it is clear that when there are tens or hundreds of analytes in the mixture, it will be 

virtually impossible to isolate spectral regions where each analyte is active alone. Very recent 

developments in blind separation of positive and partially overlapped sources require that each 

analyte is dominant, instead of active alone, at a certain spectral region [43]. Nevertheless, for 

complex multicomponent spectra the same conclusion applies as above. The NMF algorithms, 

that in addition to nonnegativity also use sparseness constraint, are capable to solve nonnegative 

underdetermined BSS problem without explicitly demanding existence of spectral regions where 

each analyte is active alone [44-48]. Thereby, the NMF algorithms that do not require a priori 

knowledge of sparseness related regularization parameter are of practical value [44]. However, 

in majority of cases the NMF algorithms have been applied to extract number of components that 

is smaller than number of available mixtures NMR spectra [37, 38]. Herein, we demonstrate how 

sparseness constrained NMF ought to be applied to mixtures NMR spectra to improve quality of 

separation of correlated NMR components spectra. It is conjectured that proposed method will 

be practically relevant for the extraction and identification of analytes in biomarker related 

studies. It could also increase efficiency in spectral library search procedures through reduced 

occurrence of false positives and negatives. Increased robustness of linearity of proposed method 

against number of overlapping components is compared with amplitude mixtures spectra-based 

model and demonstrated through sensitivity analysis. Proposed method is further compared with 

state-of-the-art SCA algorithms. To this end, three highly correlated 1H NMR components 

                                                                                                                                                             

to solving system of linear equations that describes memoryless (instantaneous) system with multiple inputs 
(analytes) and multiple outputs (mixtures spectra). 
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spectra are were extracted from two mixtures [34] and four highly correlated COSY NMR 

components spectra were extracted from three mixtures [35]. 

 

2 Theory and method 

2.1 Linear mixture model of multicomponent NMR spectra  

Linear mixture model (LMM) is commonly used in chemometrics [24, 32-39] in general and in 

NMR spectroscopy in particular [32, 34-38]. It is the model upon which linear instantaneous 

BSS methods are based [25, 28-31]. Taking into account the fact that NMR signals are 

intrinsically time domain harmonic signals with amplitude decaying exponentially with some 

time constant, [49], linear mixture model in the absence of additive noise reads as: 

 

  X AS          (1) 

 

where  1

1
:

NN T T
n n

 


  X x  represents mixture matrix such that each row of X contains one 

multicomponent temporal NMR mixture signal comprised of amplitude values at T time instants 

and symbol " =:" means "by definition".  10 0 1
:

MN M N
m m

 
  

  A a   represents mixture (a.k.a. 

concentration) matrix, whereas each column vector represents concentration profile of one of the 

M analytes across the N mixtures.  1

1
:

MM T T
m m

 


  S s   is a matrix with the rows 
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representing NMR temporal signals of the analytes present in the mixture signals X.2 Thereby, it 

is assumed that M >N. That leads to underdetermined BSS problem in which case it is assumed 

that information about concentration of analytes, stored in the mixing matrix A, is not known to 

the BSS algorithm. Thus, it is expected from BSS method to estimate matrix of analytes S and 

matrix of concentrations A by having at disposal matrix with recorded mixture signals X only. 

However, amplitude spectra of the NMR signals, that are of the actual interest, are amplitudes of 

the Fourier transform of the corresponding time domain NMR signals. Due to linearity of Fourier 

transform it yields linear mixture model in frequency domain with the same structure as (1), 

whereas T time domain instants are now interpreted as T frequencies. However, NMF algorithms 

are inapplicable to (1). That is because, in Fourier domain mixtures   1

N

n n
X are complex numbers 

such that real and imaginary parts can be positive and negative. Nevertheless, amplitude spectra 

of the mixtures  0 1
:

NN T
n n


 

 X X are nonnegative. Thus, an attempt is made to apply NMF to 

X  assuming linear mixture model [37]: 

 

  X B S          (2) 

 

                                                 

2 From the viewpoint of model (1) it is assumed that in case of multidimensional NMR spectroscopy either time- or 
frequency domain multidimensional signals are mapped onto their one-dimensional equivalents. It is also understood 
that in transformation of time domain NMR signals into frequency domain multidimensional Fourier transform is 

applied to multidimensional time domain NMR signals mixture-wise:   
1

:
N

n n n
F


X x , where F stands for Fourier 

transform of appropriate dimension. 
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By purpose, we have denoted mixing matrix in (2) by B as opposed to A in (1). Since A stands 

for matrix of concentrations B stands for something else? Actually, the NMR spectra of analytes 

  
1

: :
M

m m m
F


 S S s  are related to NMR spectra of mixtures  

1

N

n n
X through nonlinear 

relation that at specific frequency t reads as: 

 

            22

1
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( ) ( )
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M

n t nm m t ni nj i t j t i t j tm
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M

nm m tm

a a a

a CT k

     




 





  

 

 



X S S S S S

S

         0kM, 1tT ,  1nN   (3) 

 

where Re(Si), resp. Im(Si), stand for real, resp. imaginary, part of Si, Ik denotes an index set 

corresponding with the k  pure components that are active at frequency t and  

 

             ( ) 2 Re Re Im Im
k k

ni nj i t j t i t j t
i I j I

j i

CT k a a    
 



  S S S S  

 

stands for cross-terms that are explicitly dependent on k. Thus, linear mixing model (2) does not 

hold. It is correct only at frequencies  ( ) 1

L

t l l



where no analytes are active or where analyte m is 

active alone, that is when k<2, in which case the cross-terms CT(k) equal zero: 
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     ( ) ( )n t l nm m t la X S      l=1,...,L  and  1t(l)T   (4) 

 

At all other frequencies the model (2) is approximate. Nevertheless, we can square amplitude 

mixture spectra in (3) and that yields: 

 

     2 22

1
( )

M

n t nm m tm
a CT k 


 X S   0kM, 1tT ,  1nN (5) 

 

Due to square root operation in (3) it is intuitively clear that linearity of model (5), defined in 

terms of the squares of the mixture coefficients   ,2

, 1

N M

nm n m
a


and squares of the amplitudes of pure 

components   
1

M

m t m



S , will be more robust with respect to (w.r.t.) number of overlapping 

components k than linearity of model (3). This statement is supported through sensitivity 

analysis in section 3.1. Hence, selected NMF algorithm should be applied to : .
squared  X X X , 

where . denotes entry-wise multiplication, in order to estimate   ,2

, 1
. :

N Msquared
nm n m

a


  A A A  and 

: .
squared  S S S : 

 

   ˆ ˆ,
squared squaredsquared NMF    

A S X        (6) 
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Afterwards, estimates of S and A are obtained by: 

 

  ˆ ˆ squared

S S , ˆ ˆ squaredA A       (7)  

 

where square-root operation is also performed entry-wise. 

 

2.2 Sparseness constrained factorization.  

The underdetermined BSS problem (6) is ill-posed because matrix factorization suffers from 

indeterminacies: 1squared squared squaredsquared squared  X A S A DD S  for some MM  square 

invertible matrix D. Hence, it has an infinite number of possible solutions. Meaningful solutions 

of the instantaneous BSS problem are characterized by the permutation and scaling 

indeterminacies in which case D=P, where P represents permutation and  represents diagonal 

scaling matrix. Constraints are necessary to be imposed on Asquared and 
squared

S to obtain solution 

of (6) unique up to permutation and scaling indeterminacies. For underdetermined BSS (uBSS) 

problems, of interest herein, the necessary constraint is sparseness of squares of analytes spectra 

stored in rows of 
squared

S . Due to the character of the problem, nonnegativity constraint is 

imposed on  Asquared and 
squared

S as well i.e. Asquared0 and 
squared

S 0. While several methods are 
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available for solving sparseness constrained NMF problem (6) [44-48], in the experiments 

reported below we have used the nonnegative matrix under-approximation (NMU) algorithm 

[44] with a MATLAB code available at [50]. The NMU method performs factorization of (6) in 

a recursive manner extracting one component at a time. After identifying optimal rank-one 

solution  1 1,
squaredsquareda s the rank-one factorization is performed on the residue matrix 

1 1

squared squared squaredsquared X X a s . To preserve non-negativity of  
squared

X  an 

underapproximation constraint is imposed on Asquared and 
squared

S :  Asquared 
squared

S  
squared

X . It 

has been proven in theorem 1 in [44] that number of non-zero entries of Asquared and 
squared

S is 

less than number of non-zero entries of 
squared

X . That is important in light of the very recent 

result proved in [51], see Theorem 4 and Corollary 2, that uniqueness of some asymmetric NMF 

X=WH implies that each column of W (row of H) contains at least M-1 zeros, where M  is 

nonnegative rank of X. A main reason for preferring the NMU algorithm over other sparseness 

constrained NMF algorithms [45, 46, 48] is that there are no regularization constants that require 

a tuning procedure. When performing NMU-based factorization of matrix 
squared

X , the 

unknown number of analytes  M  needs to be given to the algorithm as an input. It is emphasized 

in [52] and recently in [38] that no criterion for determining number of analytes is completely 

satisfactory when used alone. We, thus, do not treat this problem herein but assume that this 

information is available. 

 

3 Experiment and materials 
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The proposed model/method was validated on computational example related to comparative 

sensitivity analysis of models (3) and (5) and two experiments: blind extraction of three analytes 

1H NMR spectra from two mixtures and blind extraction of four analytes COSY NMR spectra 

from three mixtures.3 The first experiment has already been described in [34] and the second 

experiment in [35]. Both were designed to validate SCA approach to blind extraction of analytes 

and their concentrations. The SCA approach explicitly demands observation points (not 

necessarily in Fourier domain) where each analyte is active alone at least once. For this purpose 

a wavelet basis had to be constructed in order to isolate such points [34, 35]. Thereby, a data 

clustering procedure, the performance of which depends on tuning parameters, had to be used to 

estimate matrix of concentrations A. Afterwards, either linear program or least square program 

regularized by 1 -norm (implemented by interior-point method) [53] had to be solved in 

frequency domain to estimate amplitude spectra of the analytes (optimal value of the 

regularization constant has to be selected by the user). Please see [34, 35] for detailed 

description of the SCA method. We demonstrate herein that proposed methodology, which 

applies the NMU algorithm in (6) on squares of the mixtures amplitude NMR spectra (the 

NMU-S), yields basically the same accuracy without explicitly demanding existence of "single 

analyte points" and being virtually free of the tuning parameters. In accordance with model 

(2)/(3), we also apply NMU algorithm on the amplitude mixtures NMR spectra (the NMU-A) in 

order to demonstrate deterioration in accuracy of the estimated analytes amplitude spectra. For 

the purpose of completeness the experiments reported in [34, 35] are briefly described here. 

                                                 

3 To emphasize contribution of proposed method in extraction of more components spectra than mixtures available 
we point out to the method recent introduced in [38]. There, sparseness constrained NMF algorithm [48] has been 
used in three experiments to extract 3, 5 and 2 pure components spectra from respectively 30, 30 and 32 pulse field 
gradient 1H NMR mixtures spectra. 
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3.1 Numerical Experiment: Sensitivity Analysis of Mixture Models (3) and (5) 

The purpose of this numerical experiment is to comparatively validate sensitivity of the linearity 

of the mixture models (3) and (5) w.r.t. to the number of analytes 0kM  simultaneously active 

at some frequency t , t=1,..,T. Therefore, we calculate variation of  n tX in (3) w.r.t. 

 m tS  as well as variation of    2

n tX  in (5) w.r.t.   2

m tS  as follows: 
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            (8) 
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            (9) 

 

where  m t   stands for phase of the pure component m at frequency t. For k=1 linearity 

condition for eq.(8), i.e. model (3), is established as: 



  14

  
 
 

n t
nm

m t

a








X

S
        (10) 

and for eq.(9), i.e. model (5), as: 

  
 
 

2

2
2

n t
nm

m t

a









X

S
        (11) 

In simulation of eq.(8) and (9) we have assumed that component m=1 is dominantly active at 

frequency t with amplitude   1m t S  and arbitrary phase    0, 2m t   . Amplitudes and 

phases of other components, for k2, were drawn randomly with uniform distribution from (0,1] 

and [0,2] intervals. 106 draws were executed for each value of k. Entries of the mixing vector 

were kept fixed at   1
1

k

ni i
a


 . That is because strength of the presence of source i=2,..,k has been 

regulated by random amplitude  i tS .  

 

3.2 1H NMR Measurements  

Compounds Boc2-Tyr-NH2 (1), Boc-Phe-NH2 (2) and Boc-Phe-NH-CH2-CCH (3) were used 

for the preparation of two mixtures: X1 (1:2:3 = 20 mg: 20 mg: 7 mg) and X2 (1:2:3 = 10 mg: 25 

mg: 15 mg). Mixtures were dissolved in 600 L of DMSO-d6. NMR experiments were carried 

out on a Bruker AV600 spectrometer equipped with a 5 mm BBO probe with z-gradient. The 

liquid-state 1H spectra (600.13 MHz) were measured in DMSO-d6 at 298 K.  

 

3.3 COSY NMR Measurements  
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Compounds 6-O-(N,O-bis-tert-butyloxycarbonyl-L-tyrosyl-L-prolyl)-D-glucopyranose (4), 6-O-

(N,O-bis-tert-butyloxycarbonyl-L-tyrosyl-L-prolyl-L-phenylalanyl)-D-glucopyranose (5), 6-O-

(N-tert-butyloxycarbonyl-L-prolyl-L-phenylalanyl-L-valyl)-D-glucopyranose (6) and 6-O-(N,O-

bis-tert-butyloxycarbonyl-L-tyrosyl-L-prolyl-L-phenylalanyl-L-valyl)-D-glucopyranose (7), [54], 

were used for the preparation of three mixtures with different ratios of 4-7: X3 (4:5:6:7 = 

1.1:1.7:2.7:1), X4 (4:5:6:7 = 2.5:1.7:1.3:1) and X5 (4:5:6:7 = 1:4:2.7:2.2). Compounds 4-7 and 

mixtures X3 toX5 were dissolved in 600 L of DMSO-d6. 2D COSY NMR spectra were acquired 

on a Bruker AV300 spectrometer, operating at 300.13 MHz and 298 K.  

 

3.4 Software Environment  

Studies on experimental data reported below were executed on a personal computer running 

under Windows 64-bit operating system with 24GB of RAM using Intel Core i7 920 processor 

and operating with a clock speed of 2.67 GHz. MATLAB 2011b (the MathWorks Inc., Natick, 

MA) environment has been used for programming. 

 

4 Results and discussion 

Figure 1 shows mean values ( standard deviation) of sensitivities (8) and (9) as a function of 

k=1,...,10. Results are shown for two different phases of the first component in order to 

demonstrate that its selection does not play a role in sensitivity analysis. Under simulation setup 

described in section 3.1 it follows that linearity condition for model (3), and implied by eq. (10), 

should be     1n t m t nma    X S . Likewise, linearity condition for model (5) implied by 
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eq. (11) should be    2 2 2 1n t m t nma    X S . It is seen that linearity condition for model 

(5) holds in average for all values of k while the standard deviation is increasing with k 

(implying that uncertainty of the outcome of the factorization is increasing with the increase of 

k). Implication of the sensitivity analysis of mixture model (5) is practically important. That is 

because in many cases it is reasonable to expect that only small number k out of M components 

will coincide at each particular frequency (otherwise components will be highly similar). As 

opposed to mixture model (5), linearity condition for model (3) is violated severely when k is 

increased both in average and in standard deviation. In summary, when k grows accuracy of the 

NMU-based factorization of the mixture model (5), the NMU-S algorithm, is expected to be 

greater than accuracy of the NMU-based factorization of the mixture model (2)/(3), the NMU-A 

algorithm. That justifies use of the proposed mixture model (5) for blind extraction of analytes 

from mixture of NMR spectra. 

 

 

Figure 1. Sensitivities ( standard deviation) (8) and (9) of, respectively, amplitude model (3) 

and squared amplitude model (5) vs. number of analytes k present at some frequency t. 

Simulation setup is described in section 3.1. Phase of component 1: left- 1=/4, right-1=5/7. 
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 Owing to significant overlap between pure components spectra blind separation of 1H 

NMR spectra is considered rarely in BSS analysis. Normalized correlation coefficient between 

three pure components 1H NMR spectra, shown in Figure 2, were: c12=0.4818, c13=0.3505 and 

c23=0.7607. Thus, due to high correlation between components spectra related underdetermined 

BSS problem is hard.  

 

Figure 2. 1H NMR magnitude spectra and structures of pure components 1-3. 
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Table 1 reports normalized correlation coefficients between pure components 1H NMR spectra 

and 1H NMR spectra of the components estimated by SCA algorithm [34], as well as NMU-S 

and NMU-A algorithms proposed herein. It is also reported the average absolute value of the 

error between true correlation matrix and correlation matrix between estimated and true spectra: 

 

   
   1 1

2

ˆ, ,
M M

i j i ji j
c c

M


 



  S S S S

    (12) 

 

such that  , ,i j i j i jc S S S S S S  , where iS  denotes 2 -norm of Si .  

 

Table 1. Normalized correlation coefficients between  true and estimated pure components 1-3 

1H NMR. Estimation error  is defined in eq. (12). The best values are in bold. 

 c11 c22 c33  

SCA 0.9254     0.9257     0.8473 0.1117 

NMU-S 0.9150 0.9160 0.8421 0.1140 

NMU-A 0.7496 0.6595 0.6988 0.1994 

 

 

Figure 3 shows 1H NMR magnitude spectra of the mixtures X1 and X2, while Figure 4 shows 1H 

NMR magnitude spectra of pure components 1, 2 and 3 estimated by the NMU-S algorithm 

proposed herein.  
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Figure 3. 1H NMR magnitude spectra of mixtures:X1 and X2. 
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Figure 4. 1H NMR magnitude spectra of pure components 1, 2 and 3 estimated by the NMU-S 

algorithm. 

 

It is observed from Table 1 that the NMU-S algorithm and SCA algorithm reported in [34] 

yielded virtually same performance in extraction of three correlated pure components 1H NMR 

spectra from two mixtures. Thus, approximate linear mixture model (5) is experimentally 

grounded. On the other side, the NMU-A algorithm yielded significantly worse separation 

performance implying that the linear mixture model (2), that is implicitly assumed by the NMU-

A approach, is inappropriate. As demonstrated in Figure 1, mixture model (3) moves away from 

linearity when number of analytes  k  simultaneously present at some frequency grows. The 

NMU-S algorithm achieved similar performance as the SCA algorithm without explicitly 

demanding "single component point" assumption. As discussed in [34] to identify those points 

time domain NMR signals have to be transformed into wavelet domain by selecting appropriate 

wavelet function. Afterwards, concentration matrix ought to be estimated by tuning parameter 

dependent data clustering. NMU-S algorithm simplifies significantly components extraction 

procedure. Normalized correlation coefficient between four pure components COSY NMR 

spectra, shown in Figure 5, were: c45=0.6333, c46=0.2535, c47=0.4998, c56=0.3937, c57=0.6078 

and c67=0.8142. Due to high correlation between components spectra, related underdetermined 

BSS problem is demanding. Table 2 reports normalized correlation coefficients between pure 

components COSY NMR spectra and COSY NMR spectra of the components estimated by SCA 

algorithm [35], NMU-S algorithm and NMU-A algorithm. It is also reported the average 

absolute value of the error between true correlation matrix and correlation matrix between 

estimated and true spectra  in (12). Figure 6 shows COSY NMR magnitude spectra of the 
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mixtures X1 to X3, while Figure 7 shows COSY NMR magnitude spectra of the pure 

components 4 to 7 estimated by means of the NMU-S algorithm proposed herein. Again, the 

NMU-S algorithm the SCA algorithm [35] yielded very comparable performance, even though 

"single component points" were not explicitly required by the NMU-S algorithm. Achieved 

performance confirmed practical validity of the approximate linear mixture model (5). Due to 

second dimension added by COSY NMR, overlapping between the peaks is decreased. That is 

why performance of the NMU-A algorithm is compared more favorably than in case of the 1H 

NMR mixtures. It is however, in average, still worse than the performance achieved by the SCA 

algorithm [35] and the NMU-S algorithm. In summary, proposed method based on sparseness 

constrained NMF and squared amplitude mixture model (5) enables blind extraction of 

correlated NMR components spectra from smaller number of mixtures spectra without explicitly 

demanding existence of the "single analyte points" as well as without demanding a priori 

information about tuning parameters. That makes it practically relevant. 
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Figure 5 (color online). COSY NMR magnitude spectra and structures of pure components 4-7. 



  23

 

Figure 6 (color online). COSY NMR magnitude spectra of mixtures X3-X5. 
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Figure 7 (color online). COSY NMR magnitude spectra of components 4-7 estimated by the 

NMU-S algorithm. 

 

 

 

 

Table 2. Normalized correlation coefficients between  true and estimated pure components 4-7 

COSY NMR. Estimation error  is defined in eq. (12). The best values are in bold. 
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 c44 c55 c66 c77  

SCA 0.8468  0.8123     0.8779 0.7578 0.1026 

NMU-S 0.8742 0.8019 0.7313 0.8342 0.1177 

NMU-A 0.8883 0.6840 0.7164 0.8267 0.1251 

 

5 Conclusions 

Quantitative metabolomics has shown tremendous potential for studying nature of biological 

processes. However, development of analytical tools for analysis of complex datasets is what is 

necessary for full development of this potential.  Samples of biological origin (plasma, urine, 

saliva or tissues) contain large number of compounds. Due to this reason most of state-of-the-art 

MCR methods fail to provide unambiguous results in NMR spectra analysis.  Nevertheless, these 

methods are anticipated as a screening or diagnostic tool in biomedical research and clinical 

studies.  Proposed pre- and post-processing method can enable more accurate extraction of 

correlated analytes NMR spectra as well as their concentrations form smaller number of 

mixtures by using state-of-the-art sparseness constrained NMF algorithms. By selection of the 

NMU algorithm and the like, it removes demand on a priori knowledge of the tuning parameters 

such as sparseness related regularization constant as well explicit knowledge of "single analyte 

points". It is conjectured that proposed method can play an important role in identification of 

metabolites in biomarker identification studies and that is one of the most challenging tasks in 

chemical biology. In particular, it is expected that application of proposed method on NMR 

spectra mapped in reproducible kernel Hilbert space, see ref. 47, will enable more accurate 

separation of pure components that are present in mixtures spectra in small concentrations. It is 

also anticipated that proposed method could increase efficiency of spectral library search 

procedures by reducing number of false positives and negatives. 
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