
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Davor Davidović
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Abstract
Dense symmetric eigenproblem is one of the most significant problems in the numerical
linear algebra that arises in numerous research fields such as bioinformatics, computational
chemistry, and meteorology. In the past years, the problems arising in these fields become
bigger than ever resulting in growing demands in both computational power as well as the
storage capacities. In such problems, the eigenproblem becomes the main computational
bottleneck for which solution is required an extremely high computational power. Modern
computing architectures that can meet these growing demands are those that combine
the power of the traditional multi-core processors and the general-purpose GPUs and are
called hybrid systems. These systems exhibit very high performance when the data fits
into the GPU memory; however, if the volume of the data exceeds the total GPU memory,
i.e. the data is out-of-core from the GPU perspective, the performance rapidly decreases.

This dissertation is focused on the development of the algorithms that solve dense
symmetric eigenproblems on the hybrid GPU-based architectures. In particular, it aims
at developing the eigensolvers that exhibit very high performance even if a problem is out-
of-core for the GPU. The developed out-of-core eigensolvers are evaluated and compared
on real problems that arise in the simulation of molecular motions. In such problems the
data, usually too large to fit into the GPU memory, are stored in the main memory and
copied to the GPU memory in pieces. That approach results in the performance drop due
to a slow interconnection and a high memory latency.

To overcome this problem an approach that applies blocking strategy and re-designs
the existing eigensolvers, in order to decrease the volume of data transferred and the
number of memory transfers, is presented. This approach designs and implements a
set of the block-oriented, communication-avoiding BLAS routines that overlap the data
transfers with the number of computations performed. Next, these routines are applied
to speed-up the following eigensolvers: the solver based on the multi-stage reduction to a
tridiagonal form, the Krylov subspace-based method, and the spectral divide-and-conquer
method.

Although the out-of-core BLAS routines significantly improve the performance of these
three eigensolvers, a careful re-design is required in order to tackle the solution of the
large eigenproblems on the hybrid CPU-GPU systems. In the out-of-core multi-stage
reduction approach, the factor that mostly influences the performance is the band size
of the obtained band matrix. On the other hand, the Krylov subspace-based method,
although it is based on the memory-bound BLAS-2 operations, is the fastest method
if only a small subset of the eigenpairs is required. Finally, the spectral divide-and-
conquer algorithm, which exhibits significantly higher arithmetic cost than the other two
eigensolvers, achieves extremely high performance since it can be performed completely
in terms of the compute-bound BLAS-3 operations. Furthermore, its high arithmetic cost
is further reduced by exploiting the special structure of a matrix.

Finally, the results presented in the dissertation show that the three out-of-core eigen-
solvers, for a set of the specific macromolecular problems, significantly overcome the
multi-core variants and attain high flops rate even if data do not fit into the GPU mem-
ory. This proves that it is possible to solve large eigenproblems on modest computing
systems equipped with a single GPU.

Keywords: numerical linear algebra, eigenproblems, out-of-core, GPU, high-performance
computing



Rješavanje velikog punog simetričnog
svojstvenog problema na hibridnim
arhitekturama

Problem efikasnog rješavanja svojstvenih problema jedan je od najvažnijih pravaca
istraživanja iz područja numeričke linearne algebre. Svojstveni problemi javljaju se u
brojnim granama istraživanja kao što su bioinformatika, računalna kemija ili meteo-
rologija. Zbog iznimno velike složenosti algoritama za njihovo rješavanje (često kubne
složenosti) rješavanje svojstvenog problema postaje jedan od računalno najzahtjevnijih
zadataka koji tradicionalni višejezgreni procesori teško mogu efikasno i brzo izvršiti. Za
rješavanje takvih problem danas se uobičajeno koriste velika paralelna računala s distri-
buiranom memorijom (eng. distributed memory systems). Takva računala pružaju dovo-
ljno procesorske snage za efikasno rješavanje svojstvenih problema, međutim relativno
ih je teško programirati, zahtijevaju velike troškove održavanja i troše puno električne
energije potrebne za rad i hlađenje. Pojavom grafičkih kartica opće namjene (GPGPU)
problem potrebe za velikom računalnom snagom je djelomično riješen, međutim, zbog
sve većih problema s kojima se moderna znanost susreće i relativno malog memorijskog
kapaciteta grafičkih kartica, računalna snaga GPU kartice se ne može u potpunosti isko-
ristiti. Kako bi se riješio taj problem, u zadnjih nekoliko godina počelo se intenzivno
raditi na razvoju hibridnih algoritama koji istovremeno koriste računalnu snagu i memo-
riju višejezgrenih procesora i grafičkih kartica. Međutim, jedan od glavnih problema
grafičkih kartica, relativno mali kapacitet memorije te mala propusnost (eng. bandwidth)
između glavne memorije procesora i memorije grafičke kartice, i dalje predstavlja usko
grlo računanja. Taj problem pogotovo odlazi od izražaja prilikom rješavanje problema čiji
memorijski zahtjevi uvelike premašuju kapacitet grafičkih kartica, često zvani i problemi
vanjske memorije (eng. out-of-core problems). Jedno od uskih područja istraživanja je i
razvoj algoritama koji će omogućiti brzo rješavanje problema vanjske memorije. Uvidom
u trenutno stanje tehnike dolazi se do zaključka da se, iako postoje implementacije koje su
sposobne postići vrlo visoke performanse na grafičkim procesorima, postižu loše ili uopće
ne mogu riješiti probleme koji premašuju kapacitet memorije grafičkih kartica. Jedan od
takvih problema je i rješavanje gustih simetričnih svojstvenih problema, koji je i glavni
cilj ovog doktorskog istraživanja.

Glavni cilj ovog doktorskog istraživanja je razviti i analizirati programske strate-
gije koje će poboljšati performanse postojećih algoritama za rješavanje velikih punih
simetričnih problema svojstvenih vrijednosti na GPU procesorima za probleme čiji memo-
rijski zahtjevi premašuju kapacitet memorije grafičkih kartica. Tri specifična cilja su:
dizajn i razvoj novih programskih strategija i algoritama linearne algebre za probleme
vanjske memorije, redizajn i poboljšanje postojećih algoritama za velike pune simetrične
problem na hibridnim arhitekturama temeljenima na GPU, te evaluacija performansi
novih algoritama na velikim problemima koji se javljaju u molekularnoj dinamici.

U Poglavlju 1 (Uvod) predstavljena je motivacija koja leži iza provedenog istraži-
vanja te se uvode neki temeljne pojmove nužni za razumijevanje ovog doktorskog rada.
Također u ovom poglavlju dan je i kratki pregled najnovijih istraživanja iz područja nume-
ričke linearne algebre, računarstva visokih performansi te razvoja naprednih algoritama
prilagođenih izvršavanju na grafičkim karticama opće namjene. Predstavljeni su posto-
jeći algoritmi i biblioteke za rješavanje problema svojstvenih vrijednosti na hibridnim
arhitekturama, kao i njihovi nedostaci, pogotovo iz perspektive rješavanje vrlo velikih
problema, odnosno problema vanjske memorije. U nastavku su navedeni glavni ciljevi



rada te poželjna svojstva koja novi algoritmi, razvijeni u okviru rada, trebaju ispunjavati.
U Poglavlju 2 uvode se temeljni matematički pojmovi i notacija potrebni za definiranje

i razumijevanje problema svojstvenih vrijednosti, kao što su vektori, matrice, matrična
norma te neka njihova svojstva. Zatim se definiraju svojstvene vrijednosti i svojstveni
vektori, te se objašnjavaju temeljne matematičke metode kao što su spektralni rastav
(dekompozicija), te Krilovljevi i invarijantni potprostori. Na kraju poglavlja dana je i
kratka analiza i ocjena grešaka dobivenih svojstvenih vrijednosti te se definira pojam
povratne stabilnosti (eng. backward stability) algoritama.

Poglavlje 3 opisuje arhitekturu modernih računalnih sustava temeljenih na grafičkim
karticama opće namjene (GPGPU) poznatih pod nazivom hibridni računalni sustavi. Ovo
poglavlje podijeljeno je u tri veća potpoglavlja, te je u svakom opisan jedan od tri dijela
hibridnog računalnog sustava. Prvo potpoglavlje donosi sažeti pregled povijesti razvoja
modernih računalnih sustava, od prvih mikroprocesora do današnjih modernih višejez-
grenih procesora. Nadalje, opisani su razni tipovi paralelnih arhitektura, načini ostvari-
vanja paralelizma na razini sklopovlja i programskoj razini, te memorijska hijerarhija koja
je od posebne važnosti za ostvarivanje visokih performansi u današnjim modernim raču-
nalnim sustavima. Drugo potpoglavlje opisuje arhitekturu i programske modele najnovi-
jih GPU kartica, s posebnim naglaskom na NVIDIA tehnologije, te detaljno pojašnjava
zašto su takve računalne arhitekture višestruko brže nego tradicionalni višejezgreni pro-
cesori. U zadnjem potpoglavlju je iznesen kratki pregled dizajna jedne takve hibridne
računalne arhitekture zasnovane na grafičkim karticama. Također, obrađen je i problem
latencije te brzine prijenosa podataka između glavne memorije i memorije grafičke kar-
tice te njihov utjecaj na ukupne performanse sustava. Na kraju ovog poglavlja uvodi se
nova metodologija u kojoj se memorija grafičke kartice promatra kao velika i brza „cache“
memorija što predstavlja osnovu daljnjem istraživanju ovog doktorskog rada.

U Poglavlju 4 detaljno su opisane najnovije metode i algoritmi za rješavanje gustih
simetričnih problema svojstvenih vrijednosti. U uvodnom potpoglavlju opisani su algo-
ritmi i njihove implementacije koje se koriste za transformaciju generaliziranog svojstvenog
problema u standardnu formu. U sklopu istraživanja oblikovana su tri nova algoritma za
rješavanje velikih problema na grafičkim karticama koji se temelje na postojećim meto-
dama opisanima u ovom poglavlju, a to su: višestupanjska (eng. multi-stage) metoda,
Lanczova metoda temeljena na Krilovljevnim potprostorima i spektralna podijeli-i-vladaj
(eng. divide-and-conquer) metoda. Za svaku od postojećih metoda dan je detaljan opis,
najnovija dostignuća i implementacije, ali i diskutirani glavni nedostaci za efikasno rješa-
vanje velikih problema, pogotovo takvih za koje je potrebna memorija veća od kapaciteta
memorije grafičkih kartica.

Poglavlje 5 donosi detaljan opis novih algoritama za rješavanje velikih gustih simetričnih
svojstvenih problema na hibridnim arhitekturama. Za svaki od postojeća tri algoritma,
opisanih u poglavlju 4, detaljno su opisana poboljšanja te promjene u dizajnu, a koji
su nužni kako bi se postiglo da se i problemi koji premašuju memoriju grafičkih kartica
mogu ubrzati uz istovremeno postizanje vrlo visokih performansi, kao što su kraće vri-
jeme izvođenja ili postizanje visokog broja izvršenih računskih operacija u sekundi (eng.
flops). Neke od metoda unaprijeđenja opisanih u ovom poglavlju su blok-algoritmi za
GPU, smanjenje volumena podataka i broja memorijskih prijenosa preoblikovanjem toka
podataka u postojećim algoritmima te smanjenje složenosti algoritama iskorištavajući
specifičnu strukturu matrica (npr. u spektralnoj podijeli-i-vladaj metodi). Izvedba pred-
loženih algoritama, kao i postojećih metoda opisanih u prethodnom poglavlju, temelji se
na dostupnim programskim primitivima prilagođenima izvođenju u hibridnom okruženju,
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što omogućava izravnu primjenu novih algoritama u hibridnim računalnim sustavima.
Analiza performansi i vrijeme izvršavanje novih algoritama opisanih u 5. poglavlju

su dani u Poglavlju 6. Analize su provedene nad stvarnim problemima proizašlima iz
molekularne dinamike, konkretno iz simulacije gibanja velikih makro-molekularnih struk-
tura. Svaki od tri nova algoritma je posebno analiziran te dobiveni rezultati detaljno
diskutirani uz napomenu kako postići maksimalne performanse. U sklopu provedenih
analiza pokazano je da sva tri nova algoritma ostvaruju vrlo visoke performanse nad
specifičnim problemima čak i kad dani problem ne stane u memoriju grafičke kartice.
Također, iznesena je i kratka diskusija u kojim slučajevima je koja metoda bolja te koji
su optimalni parametri za postizanje najboljih rezultata.

Završno poglavlje, Poglavlje 7, donosi zaključno razmatranje, ukratko analizira ostva-
renje očekivanih doprinosa te predstavlja smjernice za daljnje istraživanje.

Rješavanje velikih problema jedan je od ključnih ciljeva računale znanosti. Jedan od
pristupa rješavanju problema je korištenjem hibridnih arhitektura temeljenih na grafičkim
procesorima opće namjene. Takav pristup se pokazao kao iznimno učinkovit za rješavanje
problema čiji memorijski zahtjevi ne premašuju kapacitet GPU memorije. Međutim,
pokazalo se da najnovije implementacije ili ne postižu željene performanse ili uopće ne
mogu riješiti probleme koji premašuju kapacitet GPU memorije. Stoga je problem kori-
štenja GPU procesora za računanje vrlo velikih problema glavni predmet istraživanja
ovog doktorskog rada. Tijekom istraživanja razvijena su tri nova algoritma, temeljena
na postojećim metoda, koji omogućavaju rješavanje vrlo velikih problem, tj. problema
vanjske memorije, na grafičkim procesorima.

Kako bi se postojeći algoritmi i metode uspješno redizajnirali u svrhu rješavanje pro-
blema vanjske memorije na GPU procesorima, razvijeno je nekoliko metoda i tehnika
koje omogućuju izvršavanje osnovnih problema linearne algebre, kao što su npr. matri-
čno množenje. Pokazano je da se algoritmi, koji se temelje na matričnim operacija,
konkretno BLAS-3 operacijama, mogu vrlo efikasno implementirati tako da u potpunosti
sakriju negativne posljedice sporog kopiranja između glavne memorije i GPU memorije
te tako postignu vrlo visoke performanse. Korištenjem takvih tehnika, uz redizajn posto-
jećih metoda, moguće je dobiti vrlo brze i efikasne algoritme za rješavanje velikih punih
simetričnih problema svojstvenih vrijednosti.U višestupanjskoj metodi, odlučujući faktor
koji utječe na performanse je širina vrpce tražene vrpčaste matrice. Nadalje, Lanczosova
metoda, iako se ne može opisati u pogledu BLAS-3 operacija, pokazala se kao najbrža
metoda za dani testni skup problem, ali samo za slučajeve kad se traži samo mali broj
svojstvenih vrijednosti. Spektralna podijeli-i-vladaj metoda postiže daleko najbolje per-
formanse u pogledu broj računskih operacija u sekundi (FLOPS) međutim, zbog iznimno
velike složenosti samog algoritma, pokazala se kao najsporija. Sve tri razvijene metode
pokazale su da se veliki problemi mogu efikasno rješavati na hibridnim arhitekturama
temeljenima na GPU procesorima, te da su značajno brže od postojećih višejezgrenih
implementacija.

Ključne riječi: numerička linearna algebra, svojstvene vrijednosti, tehnike vanjske
memorije, GPU, računarstvo visokih performansi
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Chapter 1

Introduction

1.1 Motivation
Computing the eigenvalues and eigenvectors of a matrix is one of the central problems in
linear algebra. In many problems that arise in a number of research fields such as quan-
tum mechanics, molecular dynamics, dense functional theory, and principal component
analysis, computing the eigenvalues becomes the main computational bottleneck. The
complexity of solving the eigenproblem depends on the number of sought-after eigenval-
ues and eigenvectors, size of the problem, i.e. dimension of the representation matrix,
and structure of the eigenproblem. In some problems, the complexity can be significantly
reduced by exploiting the sparsity structure of the matrix. However, for some eigen-
problems, such as ones arising in molecular dynamics, the complexity cannot be reduced
since all entries are non-zeros. Such problems are called dense eigenproblems and their
efficient solution requires a large amount of storage space and computational power. A
special type of dense eigenproblem, covered by this dissertation, is the symmetric dense
eigenproblem that is the most computationally intensive component of macromolecular
motion simulations.

Traditionally, in order to speed-up solving of the dense symmetric eigenproblem, dif-
ferent parallel programming models have been employed that can exploit the performance
of parallel computing architectures such as multi-core processors. When solving very large
dense eigenproblems, supercomputers and large distributed systems, composed of a large
number of computational units (processors and/or cores) and a large amount of memory,
are used. The main disadvantages of such systems are very high costs of procurement,
maintenance, and energy for power and cooling. Moreover, distributed systems are very
hard to be fully exploited due to different scalability problems as well as latency and
bandwidth between different distributed memory locations.

The most significant milestone in the high performance computing occurred in 2006,
with the release of the first version of CUDA architecture. This novel architecture facil-
itated the rapid deployment of GPUs as general-purpose computational units capable of
performing billions of floating point operations per second (FLOPS). The performance of
modern GPU devices exceeds those of the most recent multi-core processors. Because of
their extremely high performance and a hardware design that is most suitable for ma-
trix and vector operations, many highly tuned implementations of basic linear algebra
algorithms have been developed paving the way for a strong development of GPU-based
kernels for advanced linear algebra routines. In addition, these GPU-based kernels sig-
nificantly reduce the computational time of dense eigenproblems. When the problem size
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increases, a main drawback appears due to the limited size of the on-board GPU memory
which may prevent problems that cannot fit into the GPU memory to exploit its high
performance. Therefore, a possible solution to tackle large dense eigenproblem is to utilize
a distributed-memory system.

An alternative to distributed systems are hybrid computing systems. Today, the most
popular hybrid systems are GPU-based hybrid systems equipped with one or more multi-
core processors and one or more GPU devices. The reason for their popularity lies in
the high performance of modern GPU processors that significantly outperforms those of
CPUs. The top-end GPU devices consist of more than 2000 processing units and can easily
deliver more than 1 TFLOPS (1012 floating-point arithmetic operations per seconds or
FLOPS) while modern multi-core processors exhibit performance in order of a few dozen
GFLOPS. Because of their extremely high performance, two supercomputers in the most
recent Top 10 supercomputers list are accelerated by GPUs.

The GPU-based hybrid systems are popular, not only because of very high perfor-
mance exhibited by the attached GPU devices but the possibility to perform a fine-tuned
scheduling between the two different types of computational units, multi-core processors
and GPUs. This allows applications to balance the workload by off-loading the compu-
tationally intensive parts to the GPU while simultaneously performing other operations
on the multi-core CPU. Thus, for example, the most computationally intensive parts of
eigensolvers, such as matrix-matrix operations, are executed on GPUs, while the memory-
bounded parts are performed on multi-core. This design allows the concurrent execution
on all computational units potentially exhibiting much higher performance. In this sce-
nario, the main bottleneck in GPU execution, a memory transfer between the system’s
main memory and the GPU memory, can be hopefully overlapped with the useful com-
putations.

Modern GPU-based eigensolvers for hybrid architectures can attain very high perfor-
mance by off-loading computationally intensive parts to the GPU devices. However, only
a few of them can compute eigenvalues if the problem cannot fit into the GPU memory,
i.e. the problem is out-of-core (OOC) from the GPU perspective. Generally, a problem is
regarded as out-of-core, with the respect to a certain memory space, if the problem size
exceeds the memory capacity. Opposite to the OOC problems, the in-core problems are
those that can entirely fit into the certain memory space. The data of the out-of-core
problem, too large to fit into the GPU memory, are stored in the main memory and
transferred to/from the GPU memory in pieces which may result in large communication
overhead. The development of the high performance algorithms that efficiently overcome
the communication bottleneck is an extremely challenging task.

1.2 State-of-the-art
The history of graphic processors as general-purpose processors (GPGPU) dates back
to 2001 and the paper of Larsen et al. [1]. In that paper the authors introduced the
first successful implementation of the matrix-matrix multiplication for graphic processing
units. This paper was followed by other papers [2, 3] that proposed novel optimization
strategies for basic linear algebra operations and the first LU factorization. These works
increased the appeal interest of linear algebra implementations on GPU.

The major breakthrough in the implementation of linear algebra routines on GPUs was
initiated with the introduction of the CUDA architecture in 2006 by NVIDIA. This novel
architecture turned programming GPUs as general-purpose computational devices easier
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and thus more accessible to a wider community. One of the most referenced papers in
high-performance linear algebra was published by Volkov and Demmel [4]. In that paper,
the authors analyzed the performance results of modern GPUs and the implementations
of the most common linear algebra routines: matrix-matrix multiplication, and the LU,
QR, and Cholesky factorizations.

Together with the adaption of the specific linear algebra routines on GPUs, big ven-
dors, such as NVIDIA, published their computational libraries for basic linear algebra
routines. The most widely used is the CUBLAS computational library for NVIDIA GPU
architectures. The authors in [5] analyze the performance of the CUBLAS implementa-
tions of the level-3 BLAS operations and introduce some optimizations techniques based
on hybrid approach that off-loads computations between the CPU and the GPU.

With the evolution of the hybrid computing platforms based on the GPU proces-
sors, new methods were developed to exploit the massive hardware concurrency of these
emerging computing platforms.The authors in [6] developed an approach for a dense linear
algebra routines for platforms equipped with multi-core processors and multiple hardware
accelerators. This work was followed by scalable implementation of the Cholesky, LU and
QR factorizations for a hybrid system equipped with several GPUs [7] that was the basis
for the MAGMA library [8, 9]. The aim of MAGMA library is to implement LAPACK
routines for hybrid computing architectures base on GPU and multi-GPUs.

Specifically, conventional eigenvalue solvers can be found in LAPACK [10], ScaLA-
PACK [11], and PLAPACK [12] for both shared-memory and distributed memory sys-
tems. Furthermore, vendor-specific libraries such as MKL [13] and ACML [14] provide
a set of eigensolvers highly tuned for Intel and AMD processors, respectively. Recent
developments in eigenvalue solvers aim at accelerating both the reduction from dense
symmetric matrix to tridiagonal form and the subsequent tridiagonal eigensolver applied
for solution of tridiagonal eigenproblem. The reduction is accelerated by introducing a
two-step reduction, in which matrices are first reduced to band form, and then consec-
utively, to tridiagonal form. This approach exhibits higher computational cost but can
be efficiently accelerated by off-loading the computations on the GPU. In [15] and [16]
the authors off-load the computational intensive task of the reduction phase, such as
matrix-matrix multiplication and two-sided update, on the GPU, for one-stage and the
multi-stage reduction to tridiagonal form, respectively. Furthermore, the authors in [17]
introduce a novel implementation that reduces a symmetric dense matrix to tridiagonal
form based on the tile strategy. The improvements in the tridiagonal eigensolvers are
mostly based on developing strategies for multi-core architectures, such as that presented
in [18] for the four most commonly used tridiagonal eigensolvers: QR iteration [19, 20],
bisection and inverse iteration [21, 22], the divide-and-conquer method [23, 24], and the
method of multiple relatively robust representation (MRRR) [25, 26, 27].

None of the previous work addresses the solution of very large eigenproblems that
exceed the GPU memory, which require the development of novel programming strate-
gies. One approach is to port existing eigensolvers to large memory-distributed computing
clusters in which each node is equipped with one or more graphic processors. Such strat-
egy, however, is still unexploited. One of the first approaches to exploit the performance
of multi-GPUs was presented in [28] and is part of FLAME project and libflame li-
brary [29]. The dense generalized symmetric eigensolvers presented in [30] outperform
those of ScaLAPACK by improving the multi-stage reduction on a large hybrid multi-
GPU system. In [31] the authors proposed a multi-stage method that exhibits significantly
lower computational cost than the standard multi-stage methods. The implementation
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in the associated ELPA library [32] targets a distributed system with the nodes equipped
with multi-core processors, and assume that the problem data are distributed between
the main memories of the nodes.

Hybrid systems based on GPUs have become more and more popular as an alternative
to computer clusters. The research in this area aims to enable solving of a very large
problem on single-node computing systems by developing an out-of-core strategy. One of
the first out-of-core strategies that solve eigenproblems whose data are too large to fit into
the main memory of the CPU-only system were presented in [33]. The improvement is
based on scheduling techniques that optimize sequential data accesses from the disc and
the reuse of data stored in main memory. Out-of-core implementations of LU, QR and
Cholesky factorization for distributed memory platforms were presented in [34]. However,
the research in the direction of out-of-core GPGPU techniques and algorithms is still
a widely exploited area. An initial research of out-of-core techniques that efficiently
compute Cholesky and LU factorization for matrices that cannot fit into GPU memory
was performed in [35]. A state-of-the-art out-of-core QR factorization can be found in the
MAGMA library. Further research was done by the author of this thesis who is one of the
authors of the papers [36, 37] that introduce different out-of-core optimization techniques
to improve dense symmetric eigensolvers. These techniques aim at reducing the amount
of data transferred to/from the main memory and improve the reuse of data stored in the
GPU memory.

1.3 Objectives
In the past few years, hybrid computing platforms based on the graphic processors have
become very powerful computing systems used in every-day scientific computations. To
efficiently solve a large variety of problems on these platforms, numerous specialized high-
performance algorithms have been developed. Nevertheless, the majority of the developed
algorithms, though yielding very high performance, cannot solve problems whose required
storage space exceeds the available GPU on-board memory. That is an obvious disad-
vantage for numerous linear algebra routines, especially when large problems are to be
solved whose performance can be significantly improved by employing GPUs. Such large
problems, too large to entirely fit into the GPU memory, are stored in the main memory
and transferred in pieces. The development of strategies and algorithms that will hide
the memory latency and amortize it with a sufficiently large number of floating-point
arithmetic operations (FLOPS) performed on the GPU is extremely challenging.

The general goal of this thesis is thus to design, develop, and evaluate programming
strategies to improve the performance of existing eigenvalue solvers for dense symmetric
eigenproblems on a single GPU when the required storage space exceeds the available GPU
memory. This general goal is divided into 3 specific objectives:

1. Design and develop programming strategies and basic linear algebra kernels for
out-of-core GPU execution.

2. Re-design and improve the performance of existing eigensolvers for dense symmetric
eigenproblems on GPU-based hybrid architectures.

3. Evaluate and compare the performance of the improved eigensolvers on real large
eigenvalue problems arising in molecular dynamics.

The performance improvements of advanced linear algebra kernels, e.g. eigenvalues
solvers, mostly come from the improvements that are made in the basic linear algebra
kernels, such as those from the BLAS computational library. The first objective of this
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research is to develop a set of highly-tuned BLAS routines, such as gemm, trmm and
symm, that will exhibit high performance even when the matrix cannot fit into the GPU
memory. The optimization will be based on extending the blocking strategy, used in
cache-aware algorithms, to improve the performance on the GPU by achieving better
reuse of data stored in the GPU memory. In addition, a new model will be designed to
exploit the matrix structure, if possible, and introduce a new passing strategy that will
reduce the number of data transfers between the CPU and GPU.

The second objective is to re-design and improve the performance of existing eigen-
solvers. The aim of this thesis is not to pursue the improvement of a full set of eigen-
solvers; however, the improved BLAS kernels and new programming methods, obtained
within this research, can be used to improve the performance of other eigensolvers as
well. The following three eigensolvers will be addressed in this thesis: eigensolver based
on multi-stage reduction to tridiagonal form, implicitly restarted Lanczos method based
on Krylov-subspace approach, and spectral divide-and-conquer based eigensolver. These
algorithms are improved under the following assumptions:
• The algorithms must be hybrid CPU-GPU based eigensolvers that attain very high

performance by employing both CPU and GPU processors concurrently.
• The eigensolvers must be out-of-core algorithms, i.e. the algorithms capable to ex-

ploit a GPU even when the problem is too large to fit into the GPU memory.
• The algorithms must include specific strategies that decrease the number and volume

of transfers between the main memory and GPU memory in order to attain high
performances.

In order to fulfill all three goals, the constructed algorithms have to be re-designed to
leverage the highly-optimized out-of-core BLAS routine implementations obtained from
the previous objective. In addition, by applying a blocking strategy and increasing the
operational intensity (i.e. ratio between data transfered and floating point operations
performed) on GPU, it is expected to significantly increase the scalability of the existing
eigenvalue solvers across all computational devices of a hybrid platform independently of
the problem size.

The final objective is to evaluate the eigensolvers showing how these algorithms im-
prove the solution of the real dense symmetric eigenvalue problems arising in macro-
molecular motion simulations. Furthermore, we intend to demonstrate that, by carefully
re-designing the existing eigenvalue solvers and by employing highly-tuned BLAS and
LAPACK out-of-core GPU routines, it is possible to efficiently solve very large problems,
even on the modest computational hardware equipped with only one GPU.

1.4 Structure of the document
This thesis is structured in seven chapters. Chapter 1 motivates the research conducted
and described in this manuscript. Section 1.1 describes the motivation that encouraged
the development of novel eigensolvers that could efficiently solve problems by employing
general-purpose graphics processing units (GPGPU). Furthermore, this section pursues
the idea of employing a modest computational system equipped with a single GPGPU
in the solution of very large eigenproblems. Following the motivation, Section 1.2 survey
the state-of-the-art tools and libraries that are traditionally employed for the solution
of eigenproblems. The main goals of this research are addressed in Section 1.3 and the
structure of the document is given in Section 1.4.

Chapter 2 provides the mathematical background and theory necessary to understand
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the standard methods that are applied in the solution of the eigenvalue problem. The
chapter starts by introducing the basic mathematical notation, matrix operations, and
properties that are required to understand the rest of the thesis (Section 2.1). The main
mathematical problem of this thesis, computing the eigenvalues and the corresponding
eigenvectors, is formulated in Section 2.2. Furthermore, this section brings the theory
underlying the symmetric spectral decomposition that aims at reducing the problem into
a similar diagonal problem. The invariant subspace is introduced in Section 2.3. It is a
theoretical background for many powerful methods and is based on dividing the eigen-
problem into subproblems whose eigenvalues are easier to compute. Another approach for
the solution of eigenproblems is based on Krylov subspaces. Section 2.4 presents this class
of iterative eigensolvers. Finally, Section 2.5 discusses error approximations of obtained
eigenvalues, backward error and the stability of the methods.

Chapter 3 describes the architecture of modern hybrid computing systems equipped
with one or more general-purpose graphic processing units. The chapter is divided into 3
sections, each describing a different part of a GPU-based hybrid architecture. The host
part of a hybrid computing platform, a traditional multi-core processor, is introduced in
Section 3.1, from its early days to the most recent multi-core multi-socket architectures
capable of executing both data-parallel as well as task-parallel applications. Furthermore,
this section also surveys the types of parallel architectures, levels of parallelism, and mem-
ory hierarchy of modern computing systems. Section 3.2 describes the most recent GPU
architecture and programming models, explaining why GPUs are superior in performance
to modern CPU architectures. In Section 3.3 an overview is given of the architectural
design of a GPU-based hybrid platform. Moreover, it shows that the memory latency and
the bandwidth between CPU and GPU memory are two major constraints on system per-
formance. A new idea is presented there that considers GPU memory as a large “cache”
memory.

Chapter 4 addresses the methods employed for the solution of large dense symmetric
eigenproblems. Since the problems arising in molecular dynamics are given in general-
ized eigenproblem form, this chapter starts with the methods and kernels that efficiently
transforms this critical problem into standard form by employing optimized Cholesky
and matrix-matrix operations, Section 4.1. Once the eigenproblem is in standard form,
the standard eigensolvers are employed. These are divided into 3 groups described in
the following sections. Section 4.2 presents two direct eigensolvers based on the direct
reduction to tridiagonal form. The first solver is the one-stage approach in which half of
the flops are performed in terms of memory-bounded level-2 BLAS kernels. To overcome
the shortcomings of the one-stage, the multi-stage eigensolver is introduced, which casts
the majority of operations in terms of highly-tuned matrix-matrix multiplication based
kernels. Opposite to direct eigensolvers, an iterative solver based on the Krylov subspaces
is addressed in Section 4.3. The algorithm, implemented in the ARPACK computational
library, exhibits a much lower FLOPS rate but is significantly less expensive than direct
solvers when only a small subset of eigenvalues is required. Finally, Section 4.4 introduces
the spectral divide-and-conquer algorithm that can be cast completely in terms of level-3
BLAS operations.

Chapter 5 improves the state-of-the-art algorithms at the previous chapter by off-
loading their computationally intensive parts on the graphics processing units. The
Chapter pursues the design and implementation of algorithms to efficiently solve the
eigenproblems even if required storage space exceeds the available GPU memory. Sec-
tion 5.1 improves the multi-stage reduction by performing the first stage, reduction from
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dense to band matrix form, out-of-core from the GPU viewpoint. The GPU OOC blocked
algorithms are designed to improve the performance of the QR factorization and the two-
side update. The bandwidth is chosen so that the second stage, reduction from band to
narrower band form, can be executed in-core from the GPU perspective. Section 5.2 in-
troduces two variants of the algorithm based on the Krylov-subspace, employing explicit
or implicit reduction to standard eigenproblem form. The reduction is done by moving
the computationally intensive parts to the GPU while memory-bounded Lanczos itera-
tions are performed in-core for GPU or by employing multi-threaded LAPACK library.
Section 5.3 reorganizes the spectral divide-and-conquer algorithm by designing an out-of-
core QR factorization for matrices with the special structure that appear in computing
the polar decomposition.

Chapter 6 analyzes the performance of the three new out-of-core GPU eigensolvers
applied to the solution of larger dense symmetric eigenproblems. The eigenvalue prob-
lems used as the test cases in the chapter are obtained from the real problems arising in
macromolecular motions. Section 6.1 gives a short introduction to macromolecular mo-
tions and the basic tools and methods, in particular the normal mode analysis (NMA),
that describe the collective motions at macromolecular level. The macromolecular collec-
tions used in this research are given in Section 6.3. The same section describes the testing
computing system and the libraries used in the experiments. Sections 6.3, 6.4 and 6.5
offer experimental results of each of three OOC eigensolvers, respectively, multi-stage,
Krylov subspace, and spectral divide-and-conquer eigensolver. The performance of the
new OOC eigensolvers is discussed by comparing it with that of the state-of-the-art eigen-
solvers. Finally, Section 6.6 compares the performance of the three OOC eigensolvers and
discusses which approach is the best to use for a specific eigenvalue problem.

Chapter 7 presents the main conclusions from this research and summarizes the main
contributions of the thesis that go beyond the state-of-the-art. Finally, it discusses a few
open research directions and future work related to the work done.
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Chapter 2

Mathematical Background

This chapter gives a short overview of the mathematical background required to better
understand the central problem of this thesis, the eigenvalue problem. This problem
belongs to the mathematical discipline called linear algebra and is one of its most stud-
ied and widely encountered problems. The eigenvalues and eigenvectors are of special
interest in quantum mechanics, molecular dynamics, dense functional theory, and prin-
cipal component analysis, just to name a few. For example, in molecular dynamics, the
eigenvalues and the corresponding eigenvectors describe the collective motions of a large
macromolecular system.

In this chapter we will be briefly introduce the mathematical theory that lies behind
the methods for solving of eigenvalue problem necessary for the construction of efficient
high-performance eigensolvers. For a more detailed description of the underlying linear
algebra theory, readers are encouraged to refer to [20, 38].

This chapter is organized as follows. Section 2.1 introduces the basic mathematical
notations, matrix operations, and properties that are required in the following section.
Eigenvalues and eigenvectors are introduced in Section 2.2. Furthermore, this section de-
fines eigenvalue decomposition together with some useful properties. Sections 2.3 and 2.4
introduce the theoretical background required for the two methods that compute the
eigenvalues of symmetric matrices, based on invariant subspaces and the Krylov sub-
space, respectively. Finally, Section 2.5 offers the perturbation theory and discusses the
accuracy of the obtained eigenvalues.

2.1 Basic notations and matrix operations
Before we define the basic mathematical objects, we introduce a term: field. A field is a
set of elements that satisfies the field axioms, associativity, commutativity, distributivity,
identity, and inverse, for both addition and multiplication. An element of the field is
called scalar and represents the most basic object in linear algebra. The most commonly
used fields are the field of real numbers (R) and complex numbers (C), but this work
will consider objects over the field of real numbers only. In general, scalars of the field R
will be denoted with lowercase Greek letters (α,β, . . .). A vector is defined as an element
of the finite n-dimensional space Rn and will be denoted with a lowercase Roman letter
(x,y,a,b, . . .),

x=


x1
...
xn

 ,
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where xi ∈ R is the i-th component of the vector x. The standard way of presenting
vectors are as column-vectors in which R is identified with Rn×1. On the other hand, the
elements of the vector space R1×n are row-vectors, x = [x1, . . . ,xn]T . The vectors of the
canonical basis of vectors space Rn×1 are denoted as e1, e2, . . . , en, where each ei has all
elements zero except the i-th element which is equal to 1.

The vector space denoted by Rm×n represents the set of all real matrices with m rows
and n columns. Matrices will be denoted with uppercase Latin letters (A,B, . . .), and their
elements with the corresponding double-indexed lowercase Latin letter, e.g. (aij) denotes
the element of matrix A positioned in the i-th row and the j-th column. Moreover, the
element at position (i, j) is usually denoted as A(i, j) as well. In summary,

A ∈ Rm×n, A=


a11 · · · a1n
... . . . ...

am1 · · · amn

 , with aij ∈ R.

The submatrix A(ri : ri+k, cj : cj+z) is defined as the matrix starting at position A(ri, cj)
with k rows and z columns.

Matrices are one of the main objects in the linear algebra. Different practical problems
can be represented in matrix form; for example, any system of linear equations can be
represented as a matrix. Matrices have many features that can be exploited during the
computations like special structure or properties. The exploitation of the matrix structure,
as will be demonstrated in the forthcoming sections, can significantly reduce the number
of flops and decrease the execution time. Furthermore, a special property of the matrix
(e.g., symmetry) can significantly influence the decision, at which method is the best to
apply to a specific eigenvalue problem.

Basic matrix forms

A matrix is said to be square if m = n and rectangular if m 6= n. Two basic types of
square matrices are the identity matrix, denoted by I, and the diagonal matrix, denoted
byD. The diagonal matrix has the off-diagonal equal to zero, while the identity matrix is a
special case of diagonal matrix with all diagonal entities equal to 1. The standard notation
is D = diag(d1,d2, . . . ,dn) with di a diagonal element. For the solution of eigenvalue
problem it is important to define some other matrix structures, called canonical forms:
• A tridiagonal matrix is a matrix with entries aij = 0 when |j− i|> 1.
• A band matrix is a matrix with entries aij = 0 when |j− i| > w, where w ≤ n is

denoted as the band size.
• An upper (lower) triangular matrix has all its elements below (above) the main

diagonal equal to zero.
• An upper (lower) Hessenberg matrix is an upper (lower) triangular matrix plus at

most one non-zero subdiagonal (superdiagonal).
Matrices have also some interesting properties that can be exploited as well. An

invertible or non-singular matrix is a square matrix A for which there exists a unique
matrix B such that:

AB =BA= I. (2.1)
Then B is called the inverse of the matrix A and is denoted by A−1. If the matrix A is
not invertible then it is called singular.

A real square matrix is symmetric if it satisfies:

A= AT ,
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where AT stands for transpose. Thus, for each i and j, aij = aji. In other words, a matrix
is symmetric if the matrix with exchanged rows and columns is the same as the original
matrix. The matrix is antisymmetric if A=−AT .

A matrix A is orthogonal if:

AAT = ATA= I.

From AAT = ATA follows that A is also square. Furthermore, the orthogonal matrix A
is always invertible since AT = A−1.

Matrix norms

Matrix norms are frequently used in the analysis of the algorithms operating with matrices.
In many cases it is important to quantify the “size” of a matrix or the “distance” between
two matrices that is not necessarily related to their number of columns/rows. For example,
in the error analysis of matrix decomposition, the quality of the computed solution is
computed by determining how far it is from the exact solution.

Most of the matrix norms are defined in terms of vector norms. The most frequently-
used vector norms are p-norms, defined as

‖x‖p := (|x1|p+ |x2|p+ · · ·+ |xn|p)
1
p ,

where x is a vector and p ≥ 1. The most commonly-used p-norms are the 1, 2 and ∞
norms, defined as:

‖x‖1 = |x1|+ · · ·+ |xn|, (2.2)
‖x‖2 = (|x1|2 + · · ·+ |xn|2)

1
2 ,and (2.3)

‖x‖∞ = max
1≤i≤n

|xi|. (2.4)

A vector x for which ‖x‖= 1 holds is called a unit vector.
The linear operator f : Rm×n 7→ R is called a matrix norm if the following properties

hold:

f(A) ≥ 0, A ∈ Rm×n,
f(A) > 0, forA 6= 0,

f(A+B) ≤ f(A) +f(B), A,B ∈ Rm×n,
f(αA) = |α|f(A), α ∈ R,A ∈ Rm×n,

and is denoted as f(A) = ‖A‖.
The most frequently-used matrix norms in linear algebra are:
• Frobenius norm:

‖A‖F :=
√√√√ n∑
i=1

n∑
j=1
|aij |2,

• p-norm:
‖A‖p := sup

6=0

‖Ax‖p
‖x‖p
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where p is 1≤ p≤∞. Note that the p-norms are defined in terms of vector norms. The
proof that both the Frobenius and p-norms satisfy the norm properties is trivial. Similar
to the vector norms, the three special p-norms, apart from the Frobenius norm, that are
most frequently-used in matrix analysis are the 1, 2 and ∞ norms. From (2.1) we can
deduce that Frobenius norm is easy to compute. However some other norms are not. The
Frobenius norm and p-norm satisfy some inequalities that are important in the analysis
of matrix computations. For A ∈ Rm×n, the following properties are defined:

‖A‖2 ≤ ‖A‖F ≤
√
n‖A‖2,

max
i,j
|aij | ≤ ‖A‖2 ≤

√
mn,

‖A‖1 = max
1≤j≤n

m∑
i=1
|aij |,

‖A‖∞ = max
1≤i≤m

n∑
j=1
|aij |,

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞,

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1.

The 1,∞ and Frobenius norm are mostly used since they have nice properties and they
are easy to compute. The 2-norm can be roughly estimated in terms of other norms, but
is considerably more complicated to compute. For more details, the readers are referred
to Golub and van Loan’s book [20].

Basic matrix operations

On vector space Rm×n, the basic matrix computations defined next are used as building
blocks for more advanced matrix operations. The basic matrix operations are:
• Transposition of matrix A ∈ Rm×n into matrix C ∈ Rn×m

C = AT ⇒ cij = aji.

• Addition of two matrices A,B ∈ Rm×n

C = A+B⇒ cij = aij + bij .

• Scalar-matrix multiplication with α ∈ R and A,C ∈ Rm×n

C = αA⇒ cij = αaij .

• Matrix-matrix multiplication with matrices A ∈ Rm×k, B ∈ Rk×n and C ∈ Rm×n

C = A ·B⇒ cij =
k∑
p=1

aipbpj .

In basic matrix operations we can also include two operations that are very commonly
used in different matrix analysis: trace and determinant. The trace of a matrix A ∈Rn×n
is defined as the sum of all diagonal elements:

tr(A) =
n∑
i=1

aii.
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The determinant of the square matrix A is a real number denoted by det(A) or ‖A‖
and it is computed through the process called “Laplacian expansion“

det(A) =
n∑
i=1

(−1)i+jaijMij ,

where Mij is the minor of A formed by eliminating row i and column j. The determinant
of a 1×1 matrix A= (a) is defined as the scalar a. Although this technique is efficient for
small matrices, other approaches such as Gaussian elimination, are much more efficient
when the matrix size becomes large.

The basic properties of determinants for square matrices A,B ∈ Rn×n and a scalar c
are:

det(AB) = det(A)det(B),
det(AT ) = det(A),
det(cA) = cndet(A).
det(A) 6= 0⇔ A is nonsingular,

det(A−1) = 1
det(A) = det(A)−1.

Although computing the determinant via Gaussian eliminations or directly via Lapla-
cian expansion is complex, for some simple matrix forms, the determinant is quite easy
to obtain. The determinant of the identity matrix I ∈ Rn×n equals 1 and this property
can be easily proven by applying the basic properties of determinants. If we choose any
nonsigular matrix A, such that I = AA−1, then:

det(I) = det(AA−1) = det(A)det(A−1) = det(A)det(A)−1 = det(A) 1
det(A) = 1.

Furthermore, if matrix A is diagonal or upper/lower triangular, its determinant is the
product of diagonal elements, i.e. det(A) = a11a22 · · ·ann.

2.2 Eigenvalues and eigenvectors
Definition (Eigenvalues and eigenvectors): A real number λ ∈R is an eigenvalue of
the matrix A ∈ Rn×n if there exists a non-zero vector x ∈ Rn such that:

Ax= λx. (2.5)

The vector x is called the right eigenvector associated with the eigenvalue λ and (λ,x) is
called an eigenpair of matrix A. The set of all eigenvalues of a given matrix A is called
the spectrum and is denoted as σ(A).

Definition An eigenspace associated to the eigenvalue λ is defined as

Pλ = {u ∈ Rn : Au= λu}.

In other words, the eigenspace Pλ contains all the eigenvectors associated with the
eigenvalue λ. An alternative definition is that the eigenvalues of a matrix A ∈ Rn×n are
the roots of its characteristic polynomial:

p(λ) = det(A−λI) = 0.
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The characteristic polynomial is an n-th order polynomial equation with the n solutions,
i.e. eigenvalues. The spectrum is usually represented by a diagonal matrix Λ(A) with the
eigenvalues λi on its diagonal. A shorter notation Λ can be also used if it is clear to which
matrix the spectrum corresponds to.

Note also that all the eigenvalues of a matrix are not necessarily real numbers. For
example, observe a real matrix:

A=
[
3 −2
4 −1

]
,

whose characteristic polynomial is det(A−λI) =
∣∣∣∣∣3−λ −2

4 −1−λ

∣∣∣∣∣= λ2−2λ+5 = 0. Since

the eigenvalues are roots of the characteristic polynomial, for A those are λ1 = 1+2i and
λ2 = 1−2i. However, if A is real and symmetric, then the symmetry guarantees that all
eigenvalues are real and that there exists an orthonormal basis of eigenvectors.

A more convenient way of representing the eigenvalues and the corresponding eigen-
vectors from Equation (2.5) is by using the matrix representation. If the matrix X is
constructed such that its columns are eigenvectors xi of A, then the Equation (2.5) can
be reformulated as:

AX =XΛ, (2.6)

where the diagonal elements of matrix Λ are the eigenvalues and the columns of X are
the unknown eigenvectors associated with Λ.

The trivial cases are identity and diagonal matrices whose eigenvalues are their diag-
onal elements. The proof for the identity matrix is trivial since this matrix maps each
vector x to itself, i.e. Ix = x. Thus, the eigenvalues are all equal to 1. To prove the
statement for the diagonal matrix, let’s observe the eigenvalue definition via the charac-
teristic polynomial: λ is eigenvalue only if it is a root of the polynomial det(D−xI) = 0.
Furthermore, the determinant is equal to zero only if the matrix is singular. From that,
it is obvious that λ = di, for each i = 1, . . . ,n, is a root of the characteristic polynomial
since matrix D−diI is singular because i-th row and column are equal to zero. The same
holds for the upper (lower) triangular matrices whose eigenvalues are also their diagonal
elements.

The property of diagonal matrices to allow “reading-off” the eigenvalues from the
diagonal presents the basic idea in the solution of symmetric eigenvalue problems.

Computing the eigenvalues directly from a square matrix via the Equation (2.5) or
the characteristic polynomial is impractical and slow when the dimension of the matrix is
large and when all eigenvalues are required. Many approaches are based on the reduction
of the matrix into simpler forms, such as diagonal or tridiagonal form, with the property
that the eigenvalues are simply “read-off” from the diagonal. Before we start with the
eigenvalue decomposition, we introduce similarity transformations that will define connec-
tion between the eigenvalues and eigenvectors of a square matrix and a diagonal matrix
similar to it.

Definition (Similarity transformation): A square matrix B ∈ Rn×n is said to be
similar to A ∈ Rn×n if there exists a non-singular matrix X ∈ Rn×n such that:

B =X−1AX.

The mapping A 7−→B is called a similarity transformation.
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The definition holds for other direction as well. If B is similar to A, then A is similar
to B because of A = XBX−1, since X is invertible (non-singular). The similarity is
necessary in solving the eigenproblems since it preserves some useful properties of the
matrices. Two similar matrices A and B share the following properties:
• Λ(A) = Λ(B).
• AT 7−→BT , A−1 7−→B−1.
• det(A) = det(B), tr(A) = tr(B).
• pA(x) = pB(x).

If we observe the characteristic polynomial of B, then we can see that:

det(B−λI) = det(X−1AX−λX−1X)
= det(X−1(A−λI)X)
= det(X−1)det(A−λI)det(X)
= det(A−λI),

so A and B have the same characteristic polynomial and hence the same eigenvalues.
However, the similarity transformation changes eigenvectors such that if v is an eigenvector
of B then Xv is the eigenvectors of A and vice versa, for each eigenvector z of A, X−1z
is the eigenvector of B. From the similarity of A and B follows that exists X such that
A=XBX−1. Suppose that (λ,z) is an eigenpair of A, then:

Az = λz,

XBX−1z = λz,

B(X−1z) = λ(X−1z),
Bv = λv.

The eigenvalue of B is equal to λ and v = X−1z is the corresponding eigenvector. The
idea behind the similarity is to make matrix A as simple as possible while preserving
its essential properties, such as the spectrum. This property is applied in the eigenvalue
decompositions such as the Schur decomposition, for general square matrices, or spectral
decomposition, in the case the matrix is symmetric.

Symmetric eigenvalue decomposition

For general square matrices, the Schur decomposition [20] (Theorem 7.1.3) states that
for every square matrix there exists a similar orthogonal upper triangular matrix. The
special case of the Schur decomposition, when the matrix is symmetric, is called symmetric
Schur decomposition, or spectral decomposition and implies that the matrix is similar to
a diagonal matrix. The following theorem describes the spectral decomposition.

Theorem 2.2.1 (Spectral decomposition) If A ∈ Rn×n is symmetric, then there ex-
ists an orthogonal matrix Q ∈ Rn×n such that

QTAQ=D. (2.7)

where D = diag(λ1,λ2, . . . ,λn) is a diagonal matrix.

Proof: The proof can be found in [20], Theorem 8.1.1.
The diagonal elements ofD are the eigenvalues and the columns ofQ are the associated

eigenvectors. The matrix is diagonalizable if it is similar to a diagonal matrix. The
eigenvalues of a symmetric matrix satisfy the following property.
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Theorem 2.2.2 (Courant-Fisher) If A ∈ Rn×n is symmetric with eigenvalues λ1 <
λ2 < .. . < λn, then

λk = max
dim(X)=k

min
0 6=y∈X

yTAy

yT y
, k = 1, . . . ,n (2.8)

Proof: The proof can be found in [20], Theorem 8.1.2.
If matrix A is positive definite, i.e. xTAx > 0 for all x 6= 0, then the fraction in (2.8)

is strictly positive and all eigenvalues λk are greater than zero.

2.3 Invariant subspaces
Definition (Invariant subspace): The subspace S ⊆ Rn is said to be invariant for A
if AS ⊆ S. In precise mathematical notation, S is A-invariant if

∀x ∈ S ⇒ Ax ∈ S.

The most trivial examples of invariant subspaces are the zero-space 0 and Rn, which
are always A-invariant. Note that the space X = span{v1,v2, . . . ,vn}, spanned by the
eigenvectors of A, is also A-invariant. For every x∈X there exist coefficients α1,α2, . . . ,αn
such that x = α1v1 +α2v2 + · · ·+αnvn, i.e. x is a non-trivial linear combination of vi. If
we recall that each vi is an eigenvector of A, then:

Ax= A(α1v1 +α2v2 + · · ·+αnvn)
= α1Av1 +α2Av2 + · · ·+αnAvn← vi is eigenvector
= α1λ1v1 +α2λ2v2 + · · ·+αnλnvn.

Thus, for each x ∈ X , the resulting vector Ax is the linear combination of vectors vi with
coefficients αiλi.

In addition, each eigenspace Pλ is A-invariant as for ∀u ∈ Pλ is Au= λu ∈ Pλ. Let X
be A-invariant subspace that is spanned with the columns of matrix X. Then, a unique
matrix B exists such that AX = XB. Due to this similarity with the one-dimensional
case, we refer to (B,X) as an eigenpair of A. Furthermore, for each eigenpair (λ,y),
By = λy implies that A(Xy) = λ(Xy) and (λ,Xy) is the eigenpair of A. Thus, if X
has a full column rank then AX = XB implies that Λ(B) ⊆ Λ(A). Additionally, if X is
square and non-singular, then Λ(A) = Λ(B) and A and B = X−1AX are similar. The
following lemma describes the decoupling of the spectrum of a given matrix into smaller
eigenproblems.

Theorem 2.3.1 Suppose that A,Q ∈ Rn×n, A is symmetric, and Q orthogonal matrix
partitioned as Q= [Q1Q2] with Q1 ∈Rn×r. If span(Q1) is an A-invariant subspace, then

QTAQ=D =
[
D1 0
0 D2

]
,

with D1 ∈ Rr×r and D2 ∈ R(n−r)×(n−r) and Λ(A) = Λ(D1)∪Λ(D1)

Proof: The proof can be found in [20] Lemma 8.1.9.
The theorem states that any given symmetric matrix A can be decoupled by applying

orthogonal transformations into smaller subproblems and that the spectrum of A is equal
to the union of the their spectra. The next lemma connects the invariant subspaces and
the eigenvalue decoupling.
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Lemma 2.3.2 If A ∈ Rn×n, B ∈ Rp×p, and X ∈ Rn×p satisfy

AX =XB, rank(X) = p, (2.9)

then there exists an orthogonal matrix Q ∈ Rn×n such that

QTAQ= T =
[
T11 T12
0 T22

]
, (2.10)

where T11 ∈ Rp×p and Λ(T11) = Λ(A)∩Λ(B).

Proof: The proof can be found in [20], Lemma 7.1.2.
The conclusion of Lemma 2.3.2 is that if we have an orthonormal basisX of A-invariant

subspace X then we can reduce matrix A to a block triangular form by using similarity
transformations. If X is an A-invariant subspace then Equation (2.9) is satisfied and
matrix Y is chosen such that Q= [X, Y ] is orthogonal.

2.4 Krylov subspaces
An important class of methods for solving the eigenvalue problems are based on Krylov
subspaces. Today, these methods are mainly used when only a few eigenvalues of large
sparse matrices are required or in the solution of large systems of linear equations. Gen-
erally, the methods start with an arbitrary vector b and compute vector Ab in the first
step. In the following steps, the resulting vector is consecutively multiplied with A from
the left, producing a sequence of vectors {b,Ab,A2 b, . . .}. All methods that use that same
simple principle are referred to as the Krylov subspace methods.

A Krylov subspace is defined as follows.

Definition (Krylov subspace): Let A ∈ Rn×n and u ∈ Rn with u 6= 0, then

Km(A,u) = [u Au A2u · · · Am−1u]

is the mth Krylov matrix associated with A and u. The corresponding subspace

Km(A,u)≡ span{u,Au,A2u, . . . ,Am−1u}

is the mth Krylov subspace associated with A and u. If it is clear which matrix is
concerned, we can omit the matrix name and write Km(u).

Before we start with the properties of the Krylov subspaces, let’s recall that the
polynomial p applied on vector with respect to a matrix A is

p(A)u= (α0I+α1A+α2A
2 + . . .+αk−1A

k−1)u,

where k is the degree of the polynomial. Furthermore, the minimal polynomial of vector
u with respect to A is a nonzero monic polynomial p of the lowest degree such that
p(A)u= 0.

The following lemmas present some basic properties of Krylov subspaces. The proofs
are skipped as some of them are trivial while the more complex ones can be found in
Saad’s book [39].
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Lemma 2.4.1 Let A ∈ Rn×n and u ∈ Rn and u 6= 0, then
1. The Krylov subspace Kk(u) is the subspace of all vectors x ∈ Rn which can be ex-

pressed as x= p(A)u, where p is a polynomial of degree not exceeding k−1.
2. Kk(u)⊆Kk+1(u), for any polynomial of degree k.
3. AKk(u)⊆Kk+1(u).
4. Kl(u) =Kl+1(u), implies that Kl(u) =Kk(u) for all k ≥ l.

The last statement in Lemma 2.4.1 implies, because of the AKk(u) ⊆ Kk+1(u), that
Kk(u) is invariant subspace of A. If µ is the degree of minimal polynomial of u, then Kµ
is A-invariant and Kk =Kµ for all k ≥ µ.

Lemma 2.4.2 The Krylov subspace Km is of dimension m if and only if the degree of
minimal polynomial of u with respect to A is larger than m−1.

2.5 Overview of perturbation theory
Most of the eigenproblems come from real applications that arise from different domains
in which data are collected and generated before some computation is applied. During
the process of collecting, storing, and computing with the experimental data various
errors are introduced at different stages of the research process. Generally, we can divide
errors in three categories based on how and where they occurred. In the first group
are those errors introduced in the measurement and data generation process with the
input data collected and generated with different imprecise instruments. The errors of
the second group are introduced during the computational process due to inaccurate
algorithms. The errors from the last group occur when storing the data as floating-point
numbers on computer storage which introduces truncation and rounding errors due to the
finite arithmetic precision. Therefore, the question we ask ourselves is how accurate is
the solution obtained from our experiments, or in other words, how good is the solution
compared to exact one. To answer that question we give a short overview of error analysis.

Assume that ŷ is an approximated solution of y = f(x) computed in finite-precision
arithmetic with precision ε, where f is a function and x an input data. The distance
between the computed and the exact solution, ∆y = y− ŷ, is called the forward error.
However, the forward error is hard to estimate due to the inability to have an exact
solution and because it usually leads to overestimate errors. Instead of focusing on errors
in ŷ we can analyze for which problem x̂, ŷ = f(x̂) is the exact solution. In other words,
for what small perturbation ∆x we have ŷ = f(x+∆x). The quantity ∆x= x− x̂ is called
the backward error. Figure 2.1 illustrates this concept.

exact

exact

computed

forward error
backward error

Figure 2.1: Backward and forward errors for y = f(x).
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Based on the error analysis, the stability of algorithm is defined as follows. An algo-
rithm is said to be forward stable if:

‖y− ŷ‖
‖y‖

≤ cε,

for some small constants c, where y and ŷ are the exact and computed solutions, respec-
tively. The algorithm is backward stable if:

‖x− x̂‖
‖x‖

≤ kε,

for some small constant k, where x is the original problem and x̂ perturbed problem. The
difference between forward and backward error analysis is in the focus. While forward
analysis is concerned with the quality of the method output, backward analysis looks at
the problem being solved. For example, if a certain problem is unstable, the forward error
analysis will blame the method itself since it produces inaccurate results. On the other
hand, the backward analysis says that the instability occurs due to the error (∆x) in the
input data.

To demonstrate the influence of small perturbation in the matrix entries to the quality
of the final solution, let’s observe this simple example:

Example Let the matrix A and E be as follows:

A=


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , E =


0 0 0 0
0 0 0 0
0 0 0 0
ε 0 0 0

 ,

where A is the exact matrix and E represents a small perturbation (error) matrix intro-
duced into matrix A. The matrix A+E is called perturbed matrix. We can set ε= 10−16

to the machine precision which is the usual size of an error introduced when storing data
using a finite-precision arithmetic. Matrix A has four eigenvalues all equal to zero, while
the perturbed matrix A+E has four different eigenvalues. Thus, we can conclude that the
perturbation of size ‖E‖= ε introduced an error of size ε1/4 that is 12 orders of magnitude
greater than the exact solutions. Furthermore, in this example, the introduced error even
changed the properties of the matrix such that A+E has become diagonalizable.

Definition (Closed disc): For a square complex matrix A, a closed discDi⊆R centered
at the element aii is defined as

Di = {z ∈ Rn : |z−aii| ≤ di}

where
di =

n∑
j=1,j 6=i

|aij |,

is the sum of absolute values of non-diagonal elements of the i-th row. The closed disc
Di is called Gershgorin disc.
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Theorem 2.5.1 (Gershgorin) Let A ∈ Rn×n, then all eigenvalues of A are located in
the union of n Gershgorin discs

σ(A)⊆
n⋃
i=1

Di, (2.11)

where Di is the closed disc centered at the element Aii.
Furthermore, if a union of k discs, with k < n, forms a connected region that is disjoint

from all the remaining n−k discs, then there are precisely k eigenvalues of A in this region.

Proof: The proof can be found in [40], Theorem 6.1.1.
From the theorem it is clear that every eigenvalue of A lies within at least one Ger-

shgorin disc. The consequence is that each eigenvalue is bounded and can be roughly
approximated. For example, matrix

A=
[
1 1
1 −2

]

has eigenvalues {−2.3028,1.3028} and the Gershgorin’s discs are [−3,−1] and [0,2]. The
Gershgorin theorems gives very rough estimations of eigenvalues.

On the other hand, if we apply the theorem on a matrix whose off-diagonal entries have
small norms, then each radius di around diagonal element would be small and the bounds
would be much closer to the eigenvalue. Since matrix S−1AS is similar to A, whenever
S is invertible, we can apply Gershgorin theorem on the matrix S−1AS. Because of
the similarity, matrices S−1AS and A have the same eigenvalues. Furthermore, S can
be chosen so that off-diagonal entries have small norms. In the spectral decomposition,
Theorem (2.2.1), if we set S =Q then the off-diagonal entries become zero.

The algorithms, like Jacobi [41], proposed by Veselić, apply a sequence of similarity
transformation to reduce a given matrix to diagonal form by annihilating the off-diagonal
entries. The iterative process stops when the bounds (di) are smaller than a given value
(e.g. machine precision). At the end of the reduction process the eigenvalue approxi-
mations appear on the diagonal and all off-diagonal entries are close to zero (machine
precision).

For the next theorem we need to define normal matrices. A matrix A∈Cn×n is normal
if AA∗ = A∗A, where A∗ denotes the conjugate-transpose. In the real case, A ∈ Rn×n is
normal if AAT = ATA. This definition is analogous to state that there exists a unitary
(orthogonal) matrix U (Q) such that UAU∗ (QAQT ) is diagonal.

Corollary 2.5.2 Matrix A ∈ Rn×n is normal if and only if every matrix orthogonally
similar to A is normal.

Proof: Suppose A is normal and B =QAQT where Q is orthogonal. Then

BBT =QTAQQTATQ=QTAATQ,

and since A is normal

BBT =QTATAQ=QTATQQTAQ=BTB.

On the other side, if B is normal then BBT = BTB gives QTAATQ = QTATAQ. By
multiplying with Q−1 from the left and Q−1 from the right, we obtain that AAT =ATA.

�
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The corollary states that every normal matrix A is diagonalizable, i.e. there exists
an orthogonal matrix Q such that D = QAQT where D is diagonal. Furthermore, every
symmetric and every orthogonal matrix is also normal. However, other direction is not
applied since not all normal matrices are symmetric or orthogonal. The following theorem
gives a rough approximation of the eigenvalues of the perturbed matrix A+E if A and
E are normal.

Theorem 2.5.3 (Wielandt-Hoffman) Let A,E ∈Rn×n, A and A+E normal, and let
λ1,λ2, . . . ,λn denote the eigenvalues of A and λ̂1, λ̂2, . . . , λ̂n the eigenvalues of A+E in
any given order. Then there exists a permutation σ such that

n∑
i=1

(λ̂σ(i)−λi)2 ≤ ‖E‖2F . (2.12)

Proof: The proof can be found in [42].
This theorem does not specify which permutation σ will satisfy the inequality nor

how to choose this permutation. Not every permutation will fulfill the inequality. If the
matrices are symmetric then the inequality holds for the natural (decreasing or increasing)
order of eigenvalues.

Corollary 2.5.4 If A,E ∈Rn×n, A symmetric and A+E normal with λ1≤ λ2≤ . . .≤ λn
eigenvalues of A, and λ̂1 ≤ λ̂2 ≤ . . .≤ λ̂n eigenvalues of A+E then

n∑
i=1

(λ̂i−λi)2 ≤ ‖E‖22. (2.13)

This corollary states that if a symmetric matrix A is perturbed by a symmetric matrix
E then its eigenvalues do not change by more than ‖E‖.

The following two corollaries define the maximum possible difference between the
computed (approximate) eigenvalues of perturbed problem A+E and the exact solution
of A.

Corollary 2.5.5 If A,E ∈ Rn×n are symmetric, then

λk(A) +λn(E)≤ λk(A+E)≤ λk(A) +λ1(E),

for k = 1, . . . ,n.

The corollary states that the obtained eigenvalue λk(A+E) of the perturbed matrix
A+E differ from the λk(A) for no more than λ1(E)−λn(E). The next corollary defines
the upper bound of the absolute error.

Corollary 2.5.6 If A,E ∈ Rn×n are symmetric, then

‖λk(A+E)−λk(A)‖ ≤ ‖E‖2

for k = 1, . . . ,n.
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Chapter 3

GPU-based Hybrid Computing
Architectures

The idea to design hybrid architectures came from the need to fulfill the growing demands
of modern scientific problems that generate enormous amounts of data, for which large
processing power is required. The traditional computing architectures that consist of
only one type of processing units, e.g. multi-core CPU-based system, are usually not best
suited for all types of high demanding applications. Therefore, various computational
units are joined into one system forming a hybrid architecture that can take advantage of
all its computational units.

One of the hottest topic in high-performance computing are GPU-based hybrid systems
which are usually made of one or more traditional multi-core processors and at least one
general-purpose GPU device. In such architectures, the GPU devices are utilized as co-
processors or accelerators for processing the compute-bounded applications because of
their unique architecture. The popularity of GPU-based hybrid systems started with the
release of the NVIDIA Compute Unified Device Architecture (CUDA) and the extensions
of industry-standard programming languages, such as C, C++ and Fortran, which made
the GPUs easier to program, allowing developers to exploit the computational power of
modern GPU devices.

The chapter is structured as follows. The evolution of hybrid architectures is discussed
in Section 3.1 from the first computing systems till the most recent computing architec-
tures. In addition, this section explains the different levels of parallelism and memory
hierarchy and how they are exploited for high performance of hybrid architectures. Sec-
tion 3.2 gives an overview of GPU architectures as well as the GPGPU programming
model. Finally, Section 3.3 details the architecture design and the memory hierarchy of
GPU-based hybrid systems.

3.1 Hybrid architectures

3.1.1 The evolution of computing architectures
The breakthrough of the modern science was always limited by the availability of the
computational power. The first problem that was solved, on what we now regard as mod-
ern computer, was computing artillery firing tables for the U.S. Army. The calculation
was done on the first digital computer finished in 1946, ENIAC. Although the first digital
computer was the Atanasoff-Berry [43] computer, constructed in 1942, this was never fully
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operational. The first computers were designed to use thousands of vacuum tubes and
relays, occupied a lot of space and had a very modest performance, almost five orders
of magnitude slower than the average modern computing system. The first major break-
through in computer science happened in 1947, with the invention of digital transistor
for which the inventors Bardeen, Brattain and Shockley were awarded the Nobel prize in
physics in 1957. This invention drastically reduced space requirements and increased the
speed of logic gates, making computers smaller and more energy efficient. The invention
of the integrated circuit in 1958 revolutionized the world of electronics as this further
reduced space and power requirements. It also provides the proportional growth of the
computational power. The integrated circuit or, as currently referred to chip, is today
used in almost all electronic equipments and presents the base for modern processing
computing units (CPUs).

Following these developments, Gordon Moore postulated his famous law [44] in 1965.
He predicted that the number of transistors that can be placed on a single chip with
an affordable cost would double every two years. This trend is still valid and the law is
applicable on modern processors. Since then, the performance of processors was increased
by adding more transistors on a single chip that resulted in proportional growth of the
processor clock speed (frequency), illustrated in Figure 3.1. In the following decades,
especially during 1990s, performance improvement was tightly connected to the increase
of processor frequency. The application execution time decreased with each new version
of processor and no modifications of the code were required.
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Figure 3.1: Growth in clock rate of microprocessors since 1978.∗

The trend of scaling the single CPU performance reached its peak in 2004 and since
then it is almost flat due to the technological physical constraints. The key constraint
was power density or as more often referred to the power wall [45]. The power wall is
reaching the maximum power dissipation of air-cooled chips that prevents adding more
transistors on a chip. That results in stopping or even reversing the increase of the
processor performance.

In 2004, all major processor vendors decided to abandon further development of single-
core high-performance CPUs and turned towards on the development of multi-core CPU.
The main difference from the previous architecture design was the integration of two or

∗The figure is taken from [46], Chapter 1

22



GPU-based Hybrid Computing Architectures

more independent computational units, called cores, on the same die (chip), each capable
of performing different task simultaneously. The multi-core architecture launched a new
era in which the increase of performance lies in exploiting the parallelism of independent
computational units rather than CPU frequency. Because of the new processor design, the
existing sequential applications were not capable of exploiting the parallelism in multi-
core processors without changing the application structure. That started the evolution of
parallel programming models (e.g. OpenMP) and called for the re-implementation of the
existing programs and computational libraries (e.g. LAPACK) to exploit the parallelism
and increase performance in novel architectures.

The latest step in the evolution of computing architectures are hybrid architectures.
The idea for the hybrid architectures came as a response to overcome limitations in high-
performance computing of traditional multi-core CPU-based architectures. The multi-
core CPUs are designed to efficiently operate with the complex program flows resulting in
spending most of their clocks (computational power) on performing non-computational
tasks. In addition, because of the CPU memory design, they are not highly efficient
for applications that require high memory throughput. Hybrid or heterogeneous systems
refer to computing systems that comprise different types of computational units, joined
together to maximize the performance. The term heterogeneous refers to various compu-
tational systems, such as distributed systems, that consist of non-uniform (heterogeneous)
computing nodes connected through a network (e.g. grid and cluster systems) as well as
single machines that encompass different computational units connected via a system bus.

A single-node or single hybrid system encompasses general-purpose processors, usually
one or more classic CPU processors like Intel Xeon or AMD Opteron, special-purpose pro-
cessors (i.e. digital signal processor or graphics processing unit) that serve as co-processors
and/or accelerators (e.g. field-programmable gateway arrays). The hybrid architecture,
assembled of different computational units, has changed the traditional processor design
path and encouraged the evolution of new programming models and paradigms thus open-
ing new challenges and opportunities in high-performance computing. One of the hottest
topics in HPC computing are the GPU-based hybrid architectures that deliver very high
performance by putting together general-purpose multi-core CPUs and specific-purpose
GPU processors for computationally and data-throughput intensive applications.

3.1.2 Parallel architectures and parallelism
Nowadays, parallelism is ubiquitous in computing systems. It is exploited at different lev-
els and is the main driving force when seeking for computational performance. Basically,
parallelism can be divided into two main types:
• Data-Level parallelism (DLP) that deals with a large amount of data that can be

operated in the same time,
• Task-Level parallelism (TLP) exploits independent tasks that can be executed in

parallel.
Parallel architectures such as vector processors (superscalar processors) or general-purpose
GPUs, usually called the data-parallel architectures, are designed so that they can effi-
ciently exploit the parallelism that appears in data processing. On the other hand, multi-
core processors are more efficient in processing task-parallel applications. The way how
the computing architectures support these two types of parallelism was first observed in
1966 by Michael Flynn [47]. He found a simple classification of computer systems based
upon the number of concurrent instructions and how they operate on data, presented in
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Table 3.1.

Stream type Single instruction Multiple instruction
Single data SISD MISD

Multiple data SIMD MIMD

Table 3.1: Flynn’s taxonomy.

Traditional sequential processors, capable of performing a single instruction on a single
data at the time, are considered a SISD architecture. The main characteristic of SIMD
architectures is that they can perform one instruction on many data at the same time
and are referred as data-parallel architectures. Two examples of SIMD architectures are
vector and array processors. Most general-purpose parallel computers, such as distributed
and shared memory systems (e.g. clusters, MPPs and data centers) as well as traditional
multi-core processors, are MIMD architectures capable of performing multiple tasks on
many data in parallel. Finally, the MISD type architecture does not exist but rounds up
the classification.

Today, Flynn’s taxonomy is considered obsolete because the majority of modern com-
puting architectures are a mix of different architectures and it is hard to make a clear
distinction between them. Although Flynn’s taxonomy is depreciated nowadays, it is still
used as a basic architecture classification.

A more recent approach in the classification of computational hardware, on the proces-
sors level, is based on the number and the capability of computational units. Therefore,
we can distinguish two types: multi-core processors and many-core processors. Recent
multi-core processors, such as Intel Xeon “Ivy-Bridge” or i7 processor families, consist of
up to 8 independent computational units that can perform multiple tasks in parallel on
multiple data (MIMD type of architecture). Multi-core processors are usually referred to
as tasks-parallel architectures because they are more efficient in exploiting the parallelism
between the tasks than between the data. Many-core processors are the processors that
consist of many light-weight processors (usually more than several dozens) and are ca-
pable of working together on the same tasks or instruction set on many data in parallel.
However, light-weight processors are usually not capable of performing different tasks in
parallel. The examples of many-core processors are general-purpose GPUs and Intel Xeon
Phi co-processors. Further discussion on parallelism of GPUs, as the main example of the
many-core architectures, is given in Section 3.2.

The parallelism on multi-core processors can be exploited at different hardware levels.
The top-most is a chip or processor, that refers to a single physical package. A chip
contains one or more cores that denote physical processing cores. Parallelism can be
further exploited in a system that has two or more processors or on a core level by
using multiple hardware threads and concurrent instructions. In this thesis, the research
was done on single computing node, thus only the node-level parallelism will be presented
next. The parallelism on single computing node can be exploited at the following hardware
levels:
• Multi-processor (chip).
• Multi-core.
• Thread.
• Instruction.
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A Multi-processor system or symmetric multi-processor system is a single computer
with several homogeneous physical processors (chips), centralized shared memory called
the main memory, and an operating system (OS). A closely related term is symmetric
multiprocessing (SMP) that refers to the parallelism where two or more homogeneous
processors share the main memory, controlled by a single OS, working on different pro-
grams/tasks and different data concurrently. In SMP systems, each processor can execute
any task, no matter where in memory data are located. The workload efficiency can be
improved by easily moving tasks between the processors. Figure 3.2(a) illustrates the
common SMP system where the processors share a system bus.
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(a) Dual-socket Intel Core2 architecture
(UMA).
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(b) Dual-socket Intel Westmere archi-
tecture (NUMA).

Figure 3.2: Example of two types of SMP architectures. A uniform memory architecture where
all processors share the common resources (i.e. main memory) uniformly (a) and a non-uniform
memory architecture where each processor has its local main memory (b).

Traditionally, the SMP is usually referred to as Uniform Memory Access (UMA) archi-
tecture because all the processors share the physical memory uniformly. The advantages
are the common memory address space and memory location access time that is inde-
pendent of which processor makes the request. To reduce the system bus traffic, each
processor has an associated cache memory that reduces the number of data accesses to
the main memory. However, the cache is usually very small and the shared system bus
remains the main bottleneck.

An alternative is the Non-Uniform Memory Access (NUMA) architecture; see Fig-
ure 3.2(b). In a NUMA architecture the memory is physically divided between processors
and the access time depends on data location. The access time for each processor to its
local memory is faster than to the memory of other processors. With this architecture,
the memory throughput can be significantly improved as long as data are kept in the
processor’s local memory.

At the multi-core level parallelism is exploited on a single processor/chip within the
computational cores. The communication between cores is less expensive than between
processors as the cores share common resources such as on-chip cache memory; Figure 3.3.
Each core executes its own instructions (add/move data, processing, and branching) in-
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dependently of the other cores in the same processor enabling concurrent execution of
different programs/tasks or parallel applications.

The performance gain of parallel algorithms on multi-core processors mostly depends
on the algorithms and their implementation. The implementation of such algorithms
depends on the processor architecture, specifically on the amount cache memory and if
the cache (e.g. L2) is private (Figure 3.3, left) or shared between cores (Figure 3.3, right).
If the required data is found in cache, the access time is faster due to the lower cache
latency. On the other hand, if the data are not found in given cache level, e.g. L1, they
are fetched from the first lower memory level, L2, resulting in the core waiting for data.
The access time is even worse if data are fetched from the off-chip memory (e.g. the main
memory). Thus, the best performance is achieved for applications whose data can fit into
the cache and for so-called embarrassingly parallel applications (applications that can be
naturally split into a number of independent tasks).
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Figure 3.3: The architecture of multi-core processor, left) separate L2 cache, right) shared L2
cache.

The parallelism at thread level or multi-threading is a model of parallelism where
multiple threads are executed on a single core. The aim of multi-threading is to increase
the utilization of a single core. If a thread experiences a lot of cache misses and is waiting
for data to be fetched from off-chip memory, other threads can take advantage of the
unused core which results in faster overall execution and decreases idle time. There are
several types of multi-threading concepts such as block multi-threading, interleaved, and
simultaneous multi-threading that applies to superscalar processors. More information
on thread-level parallelism can be found in [46].

The instruction level parallelism (ILP) is an ability to overlap the execution of mul-
tiple instructions of the same computational unit. The ILP tries to improve parallelism
between the instructions. A good example is within instructions in the loop. The depen-
dences between instructions are examined and the independent instructions are processed
in parallel. ILP parallelism is usually exploited within superscalar processors.

3.1.3 Memory hierarchy
Memory hierarchy has one of the most important roles in the overall computer perfor-
mance. Peak performance of modern processors is worthless if the data are not available
to the processing units. In such case, the processing is paused resulting in processor idling
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while waiting for data to be transferred from the memory. Because of memory latency,
hundreds of computing cycles can be wasted in waiting for data and not performing any
useful operation. This huge gap in the performance between the memory and the CPU
occurred because the improvements of processor performance were much faster than the
improvements in memory performance. This was the result of the archaic approach from
the early days of computing, in which floating-point operations were considered expensive
and retrieving data almost free. To mid 1990s the gap between processor and memory
performance grew up to 50% [48] per year. In most recent systems, processor bandwidth
is much higher than memory bandwidth, for example, the bandwidth of Intel i7 proces-
sors is up to 409.6 GB/s, compared to only 25 GB/s main memory bandwidth. In such
systems the CPU idle time can easily be up to a few thousand CPU cycles.

To overcome the memory bottleneck, different memory levels were introduced between
the CPU and the main memory to address both the bandwidth and the latency problem.
The idea is to keep the requested data in fast, low latency memories as long as possible
and thus exploiting data locality. The locality rapidly increases the access to recently
used data and keeps the processing units busy. The ultimate solution would be that all
memory is made as fast as possible, but due to technological and commercial constraints,
faster memories are more expensive to produce, this is not feasible. The rule of thumb is,
the faster the memory is, the smaller capacity it has. Therefore, memory is organized in
a hierarchy as illustrated in Figure 3.4.

Registers

L1 cache

L2 cache

L3 cache

Main memory

Hard drive

Faster,
smaller capacity

Slower,
larger capacity

Figure 3.4: Memory hierarchy of standard single-node computing system. The most recent
processors have additional L4 cache level.

The memory hierarchy is organized in a way that faster and smaller memories are
placed closer to the computational units, while slower and larger memories are in the
lower memory levels, farther from the computational units. With such organization of
memory levels it is possible to alleviate the influence of the memory latency by keeping
and working on data in the top-most memory levels while transferring other data from
lower levels. Table 3.2 shows typical capacities and access times for different memory
levels. Note that the access time changes from picoseconds for registers to milliseconds
for hard drive, that is an increase by a factor of 109! Similarly the capacity ranges from
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1 KB for registers to a few TB for hard drives. For example, on a high-end multi-core
processors, like the Intel Xeon E5-2470, the L3 cache capacity is up to 25 MB.

Mem. level Access time Capacity
Registers 300 ps 1 KB

L1 1-2 ns 64 KB
L2 3-10 ns 256 KB
L3 10-20 ns 2-4 MB

Main Memory 50-100 ns 4-16 GB
Hard drive 5-10 ms 1-16 TB

Table 3.2: Typical capacities and access time for different memory levels (per core).

Two terms are closely connected to memory performance, bandwidth and latency.
Memory bandwidth or throughput is the total amount of bytes per second transferred
between two memory levels. Latency or response time is the time for a single access. In
other words, memory latency is the delay time between the moment the request for a
particular memory module (data) is sent and the moment the transfer is started.

The memory hierarchy is organized as follows. The computing core can operate only
with the data that are in the top-most memory level, the registers. Without lose of
generality we will assume that the top-most level is L1 cache. If data requested by the
processors is not found in the L1 cache, it must be fetched from the first lower level in
the hierarchy. If the data are also not there they are fetched from the next lower level
and so on till the data are found. The total time needed to fetch the data is called cache
access time, and if data are not in the top-most cache, a miss. If data are missed a miss
penalty is paid, the extra time needed to fetch the data from the lower memory levels.
The opposite of a cache miss is a cache hit, i.e. if the data are found in the cache. The
total number of cache misses per application is called miss rate. The cache miss and hit
rates depend on the implementation but also on how the cache organizes and stores data.
Detailed information on cache organization can be found in [46], chapter 2.

To measure the cache performance, the average memory access time (Accessavg) is
computed as:

Accessavg =Hit time+Miss rate×Miss penalty.

If the miss rate is large, the total access time is bounded by the time required for miss
penalty. With multiple cache levels it is possible to reduce miss penalties. For example,
if two cache levels are present in the system, L1 and L2, then the average memory access
time is calculated as follows:

Accessavg =Hit timeL1 +Miss rateL1× (Hit timeL2 +Miss rateL2×Miss penaltyL2).

The idea is that the L1 cache is small but fast enough to keep the pace with the processor
clock cycle time, while the L2 (or even L3) cache is large enough to keep more data, and
to decrease the number of access that would go to the main memory.

3.2 General–purpose GPU computing
In the last few years general-purpose GPU computing has become one of the hottest
topics in high performance computing. That is because of the low-cost and very-high per-
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formance of the modern GPU cards compared to traditional CPUs. Indeed GPUs have
become so popular that the second fastest supercomputer on Top500 [49] list, Novem-
ber 2013, is based on NVIDIA GPUs. Moreover, the top 10 supercomputers on the
Green500 [50] list (the most energy efficient supercomputers) are based on GPUs. Nowa-
days, GPUs offer not only high-performance but are also more energy efficient than tra-
ditional processors. GPUs are SIMD architectures that can efficiently exploit data-level
parallelism. The performance of GPUs comes from their unique hardware design that is
equipped with a few thousand light-weight computational units.

Without loss of generality, this section gives a brief description of NVIDIA GPU archi-
tecture and the CUDA (Compute Unified Device Architecture) programming model [51]
as well as reviews the features of modern graphic processors. The reason we do not in-
clude other GPU vendors is because NVIDIA technology is the most mature and provides
various computing libraries that make programming much easier. For that reason, all
the research in this thesis is conducted on NVIDIA graphic cards and by utilizing the
CUDA-based computational libraries.

3.2.1 Architecture of modern GPUs
Traditionally, the main purpose of GPUs was to render computer graphics and the GPU
architecture was adjusted to solve that specific type of problem. The work was done
in a pipeline that consisted of four strictly pre-defined stages. The input for each stage
was the output from the previous stage and, because of these dependencies, the stages
were executed in sequential order. The four main stages were vertex transformation,
primitive assembly and rasterisation, fragment color and texture, and the final stage raster
operations. The older versions of GPUs had specialized execution units (shaders) for each
stage while, in more recent GPUs, each stage can be executed by any execution unit. The
most important computational units were vertex and pixel shaders. These traditional
GPUs were very hard or even impossible to program due to the fixed design of the stages
which prevented any modifications.

The first graphic cards that allowed some level of modification were released in 2001
by NVIDIA. These cards were the first that allowed the programmers to modify the stages
of the pipeline. The programmable stages were the first step in what we know now as the
GPU kernels, i.e. functions or parts of code executed on a GPU device. The revolution
started in 2006 with the release of an NVIDIA GPU that had unified vertex and pixel
processors (shaders) and in which all stages were performed by that unified processing
unit. That novelty soon become obvious for general-purpose computing by offering a
large number of computational units capable of solving computational-intensive problems
in parallel.

An overview of GPU architecture

The graphics processing unit (GPU) is defined as a multi-threaded multi-processor com-
posed of an array of simple computational cores with very high memory bandwidth. These
features give GPUs a remarkable advantage in solving computational and data intensive
applications over standard multi-core processors. As presented in Figure 3.5 a modern
GPU device consists of a large number of light-weight computational units and small
cache and control units. On the other hand, standard multi-core processors have a few
computational units or cores (8–16 in the most recent processors) capable of solving com-
plex tasks because of their large cache and control unit. Thus, the multi-core processor
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spends most of its transistors on flow and execution control as well as cache memory while
the GPU is more oriented toward vast computation.

ALUALUALU ALU

Control

Cache

CPU GPU

Figure 3.5: Conceptual difference between traditional multi-core processor and general-purpose
graphic processor.

The elementary GPU computational unit is called Streaming Processor (SP) and it
is capable of running a single thread. A set of SPs are grouped into a Streaming Mul-
tiprocessor (SM) which presents the main computational unit of the GPU. Each SM is
responsible for the creation, execution, and destruction of threads assigned to its SPs.
Figure 3.6 illustrates the NVIDIA Fermi architecture which consists of 14 to 16 streaming
multiprocessors. Each Fermi SM has 32 SPs sharing the common on-the-SM memory that
is also used as L1 cache memory. In the latest NVIDIA GPUs architecture (e.g. Kepler)
the SMs are organized into groups of four in a so-called graphic processor cluster (GPC),
each totaling 192 SPs.

As a main computational unit, the SM is responsible for managing the thread execu-
tion on its SPs. In order to manage a large number of threads, the SM employs Single-
Instruction Multiple-Thread (SIMT) architecture that applies one instruction across mul-
tiple threads in parallel. Each SM manages threads divided into special groups called
warps. A warp is a group of 32 threads that concurrently execute the same instruction
on multiple data. In other words, each SM executes one instruction across a warp (32
threads) at the time.

For example, NVIDIA Tesla C2050 consists of 448 SPs divided into 14 SMs. Each
SM has two additional SFUs (Special Functional Unit - for transcendental functions such
as sine and cosine), instruction and constant caches, and 48 Kbytes of on-chip shared
memory. On a single SM, up to 1536 concurrent threads can be run (organized into
warps) with practically no scheduling overhead. The scheduling overhead is negligible
because all threads share the SM’s local memory that is equally shared among all threads.
Furthermore, the SM’s instruction fetch and issue unit is also shared across threads and
to start a new set of threads (a warp) on a SM no additional copying to instruction and
memory registers is required. This architectural design reduces the unnecessary overhead
that appears due to the expensive thread context switch that is applied in the traditional
processors.

The streaming processors (SMs) are light-weight computational units or cores with
both integer and floating-point arithmetic units. Each SP is capable of running multiple
threads simultaneously, which share the common SM’s register file. To fully utilize all the
available cores on each SM, a fine-grained parallelism is required with a very large number
of threads. The number of threads usually goes far beyond the number of physical cores
on all SMs. With the GPU design that relies on a large number of concurrent threads,
it is possible to maximally alleviate the GPU memory latency. Thus, while one warp is
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Figure 3.6: NVIDIA Fermi architecture

executed, a second one is prepared, i.e. memory transfers are performed in the background.
Modern GPUs are not only characterized by their vast multi-threaded parallelism but

also by their specific memory hierarchy and very high memory bandwidth between the
memory and the processing units. Modern graphics cards consist of three memory levels.
The fastest but the smallest memories are the 32-bit registers dedicated to each SP. The
registers of one SP are divided among the active threads executed on that SP. The second
level encompasses the shared memory, constant cache, and the texture memory placed
on the SMs. The shared memory is accessible to all threads of the same SM. The cache
and texture memories are read-only memory and used mostly for graphic computations.
The last level is global or device memory. It is available to all threads that participate in
the computation on all SMs. For example, the TESLA C2050 graphic card has 3 GB of
global memory. Each SM has 48 Kbyte of shared memory and 32768 registers, resulting
in 1024 registers attached to each SP. Furthermore, C2050 has 384-bit memory bus width
providing very high data throughput.

3.2.2 NVIDIA programming model
With the release of the first general-purpose GPU card in 2006, NVIDIA introduced
CUDA (Compute Unified Device Architecture) [52], a general-purpose parallel computing
programming model and platform. CUDA allows developers to use GPUs as general-
purpose processing units. It provides CUDA-accelerated libraries, compiler directives,
and extension for standard programming languages C, C++, and Fortran.

Without loss of generality, the NVIDIA CUDA terminology will be used in the follow-
ing text. The GPU device attached to a traditional multi-core system as a co-processor
(accelerator) is called device, while the multi-core system is called host. The host and
device have their own separate memory spaces, the main memory and the GPU mem-
ory (DRAM memory), called host memory and device memory, respectively. For more
detailed information on the CUDA programming model, the readers are encouraged to
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consult the "CUDA C Programming Guide" [53].
Figure 3.7 illustrates a typical CUDA execution flow. The main program is run on

the host system that also controls the parts of code to be executed on the device as well
as data management. The function called from the host that is executed on the device
is called kernel. Moreover, because of separate memory spaces, explicit device memory
allocation and deallocation as well as data transfers between host and device have to be
performed, illustrated in Figure 3.7 with yellow boxes.

CPU GPU
Main program

Serial/parallel code

Prepare device data

Return data from device

Call Kernel 1

Serial/parallel code

Serial/parallel code

Prepare device data

Call Kernel 2

Serial/parallel code

Return data from device

Serial/parallel code

Kernel 1

Kernel 2

T
im

e

Figure 3.7: The program work-flow in the host-device programming model

The kernel call can also be made asynchronously, i.e. the program control is imme-
diately returned to the host, thus allowing concurrent execution. In Figure 3.7, the red
boxes illustrate the parts of the host code that can be run in parallel with the GPU execu-
tion. In addition, starting with the NVIDIA Fermi architecture, two or more kernels can
be executed concurrently on the same device but on different streaming multiprocessors
thus increasing the utilization of the GPU device. This ability adds more parallelism and
improves the utilization of GPU device.

The kernel is executed in parallel by a number of CUDA threads defined by program-
mer as a kernel input parameter. All threads engaged in the kernel are divided into blocks,
called thread blocks. Each thread block is scheduled, in random order, to any streaming
multiprocessor given the kernel execution to be independent on the architecture of a spe-
cific device, i.e. independent on a number of SMs. If a kernel is executed on the GPU
with less streaming multiprocessors it will simply be executed in more time, or in less
time if the GPU has more multiprocessors. The benefit of this approach is that the GPU
kernels are extremely scalable to different GPU architectures, and they will automatically
benefit from GPUs with a larger number of multiprocessors.

The organization of kernel execution into blocks of threads allows a problem to be
divided into sub-problems where each sub-problem is processed by one thread block.
Therefore, problems that can be sub-divided in this way, for example data-parallel ap-
plications such as linear algebra operations, can perfectly suit the GPU programming
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model.
A thread block can be one-dimensional, two-dimensional, or three-dimensional. Each

thread in the block is identified by its unique one-, two- or three-dimensional thread index
by which, each thread within block can be accessed uniformly. This presents a natural
way to describe the computation on elements such as vector, matrix or volume.

The number of threads per block is limited by the design of the GPU multiprocessor
and its limited memory resources that are shared among all cores. In modern GPUs, the
maximum number of threads per block is 1024. Blocks are organized into a one-, two-, or
three-dimensional grid of blocks, as in Figure 3.8. Usually, the size of the problem being
processed on the GPU determines the number of blocks in a grid.
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Figure 3.8: The organization of threads into blocks and grids and the memory hierarchy.

Each thread has its private memory; see Figure 3.8. The number of threads per block
is limited by the number of registers per multiprocessor which are equally divided among
all the threads of the block. Furthermore, all threads of the same block have access to
the shared memory through which they can communicate and exchange data. The device
global memory is visible to all the threads of the same kernel (all thread blocks). Through
the global memory, threads from different blocks can communicate. Nevertheless, access
time is proportional to the distance between the thread and the data. Therefore, the
fastest read/write is to the own thread’s local memory, then to the shared memory of the
SM, and finally, the slowest is to the global memory. The best programming practice is
to keep the local data required by each block of thread into the SM’s shared memory and
decrease the number of calls to global memory. For more information refer to "CUDA C
Best Practices Guide" [51].
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3.3 A GPU-based hybrid system
Hybrid systems based on the GPUs are among the most popular hybrid architectures.
This is because of the GPU extreme performance that largely over paces the performance
of recent multi-core processors. A GPU hybrid system is made of a traditional CPU-based
system with one or more GPUs attached. In such system each GPU card is managed and
operated by the host system. The host system (CPU) runs the operating system and
manages data transfers between the system components. The GPU, in hybrid systems,
works in conjunction with other components such as the CPU, chipset, system memory
as well as other GPUs. This type of hybrid system will be referred as CPU-GPU hybrid
system. An example of CPU-GPU hybrid system, based on an Intel platform, is illustrated
in Figure 3.9.

Current CPU-GPU hybrid systems usually consist of one or more multi-core processors
and one or more separated GPU devices connected to the host through a high speed bus,
the PCIExpress (PCIe) bus. The PCIe, as shown later, has become the main bottleneck in
achieving the maximum performance of GPU devices. The future trends aim at integrating
the traditional processors with the graphic processors on the same die (chip), such as the
Intel Haswell and the AMD Richland architectures. The goal is to override the bandwidth
and latency bottleneck caused by PCIe, thus achieving faster communication between
CPU and GPU processing units.

Main memoryGPU memory

Stream 
processors

CPU

PCIe
8 GB/s

100-200 GB/s

North Bridge

South Bridge

Chipset FSB

Figure 3.9: An overview of computational units, memories and interconnections in modern
CPU-GPU hybrid system.

The GPU is connected directly to the host chipset (i.e. North Bridge memory con-
troller) through PCIExpress bus, Figure 3.9, that provides the peak performance of 8
GB/s in both directions (for PCIx 2.0 standard). The most recent GPUs, such as NVIDIA
GeForce TITAN, support the PCIExpress 3.0 standard, allowing up to 15.75 GB/s in both
directions. If more than one GPUs is attached, the PCIe bus is shared between them re-
sulting in a possible communication bottleneck. The GPU memory is GDDR5 (Graphics
Double Data Rate, version 5) and its size varies between 3 and 6 GBytes. The total
memory bandwidth of the top-most high-performance GPUs, such as the NVIDIA Tesla
K40, is up to 288 GB/s. In contrast, the bandwidth of the main memory is an order of
magnitude less than those of GPUs and varies between 8 and 15 GB/s. Because of very
high GDDR5 memory bandwidth, the applications that require high bandwidth, such as
graphic rendering and high-performance computations (e.g. dense linear algebra routines),

34



GPU-based Hybrid Computing Architectures

are perfectly suitable for GPU devices.
As illustrated in Figure 3.9, the PCIe bus bandwidth is relatively small compared

with GPU memory bandwidth and, as will be shown later, is proved to be a significant
bottleneck for certain applications. In all GPU-based hybrid systems, the main issue is
managing the data transfers between the main memory and the GPU memory. Trans-
ferring data from one device to another takes additional time and has to be reduced.
Although GPUs allow asynchronous data copying and execution, this is not always pos-
sible to achieve. In that case, the transfer time can easily overpower the GPU execution
time or force GPU streaming processors to idle while waiting for data.

The total transfer time is made of two components, latency and bandwidth, and is
computed as follows:

Tt = TL+TB, (3.1)
where TL is the latency time and TB is the time to transfer data. The latency time (TL) is
constant and does not depend on the amount of transferred data. On the other hand, TB
depends on the bandwidth (B) and data transferred (T ), and is computed as TB = T/B.
It is obvious from (3.1) that the total transfer time can be reduced by sending a smaller
number of larger blocks of data. For example, if a payload of n data is divided into four
blocks and sent through PCIe to GPU memory, the total time is 4TL compared with 1TL
if only one transfer is run.

The transfer time becomes even a larger problem if the amount of data increases. That
especially comes to the fore when solving large-scale problem and/or problems when the
amount of data exceeds the capacity of the GPU memory. This problem is similar to the
cache miss problem, described in Section 3.1.3, when the cache is too small to store all
the required data. If the data are not found in the memory, i.e. the cache miss occurred,
the data are fetched from the first lower memory level. In the CPU-GPU communication,
fetching the data is not managed by the system automatically but an explicit transfer
has to be introduced in the code. As is the case with the cache memory, preserving
data locality in the GPU memory increases the performance by reducing the number of
transfers.

The memory hierarchy of a standard GPU-based hybrid system is illustrated in Fig-
ure 3.10. The hierarchy consists of the traditional memory levels, such as hard drive,
main memory, and cache and the memory system of the attached GPUs. The lowest two
levels, the hard drive and the main memory are shared by both CPU and GPU. Then the
memory hierarchy splits into two directions, one towards the CPU and the other towards
the GPU. A CPU has one, two, three or even four levels of cache memories and registers
that are on-chip, while the GPU has global memory, shared memory/L1 cache, for each
streaming multiprocessor (SM), and registers that are shared between all cores of the SM.

Taking into account that the GPU global memory has a huge bandwidth and small
latency, the GPU memory can be looked at as a "cache" level memory. The idea is the
same as with the traditional cache levels: preserve data locality and hide latency. In
that context, the GPU memory serves as a component that reduces the cache misses and
decreases the number of data accesses to the main memory. The term cache miss then
refers to a moment when certain data, not stored in the GPU memory, are required; and
data access is the time required to transfer the data from the main memory to the GPU.
The main difference is that the GPU memory management is not done by the operating
system, as for the traditional cache, but it is performed in the application run-time by
explicitly invoking the data transfers at the certain point of the code.
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Figure 3.10: Multilevel memory hierarchy of a standard CPU-GPU hybrid architecture.
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Chapter 4

Dense Symmetric Eigensolvers

The dense symmetric eigensolvers are algorithms that aim to compute the eigenvalues and
corresponding eigenvectors of dense symmetric eigenproblems, i.e. the problems whose
given matrix is symmetric and dense. However, in many cases, the eigenproblems ap-
pear in a form different from the standard eigenproblem presented in Equation (2.5) as,
e.g., occurs with the generalized eigenproblem form. Dense generalized eigenproblems
arise in many fields of science, such as macromolecular motion or dense functional theory.

In this thesis, we focus on the special case where the generalized eigenproblem is
dense and symmetric. The solution of the generalized case can be directly obtained
by computing the so-called generalized eigenvalues and the corresponding generalized
eigenvectors but, in the case the problem is symmetric, other approaches can be used.

In particular, instead of computing the eigenvalues/eigenvectors of a given dense sym-
metric generalized eigenproblem, the solution of the corresponding standard eigenproblem
is computed. The method of transforming from generalized to standard eigenproblem is
described in Section 4.1. Since the transform is composed of the Cholesky factorization
and matrix multiplication whose implementations, even for the out-of-core problems, at-
tain very high performance on almost all computing architectures, this stage will not be
covered in this thesis. Instead, the methods for the solution of the corresponding standard
dense symmetric eigenproblem will be considered, since they are computationally more
expensive and widely unexplored from the out-of-core perspective.

For the purpose of this thesis, the eigensolvers are divided into three groups: di-
rect, Krylov-based and spectral divide–and–conquer. Although the traditional division of
eigensolvers [54] is into direct and iterative eigensolvers, this partition is made for sim-
plicity and to enable easier understanding of the novel GPU-based eigensolvers that are
introduced in Chapter 5.

The eigenvalue algorithms can be roughly divided into 3 categories based on the size
of the problem:
• Algorithms for small matrices,
• Algorithms for medium matrices,
• Algorithms for large matrices.
The categorization based on the matrix size mostly depends on the available computing

architecture. Small matrices are those that fit into the main memory of the computing
system; on the other hand, the medium and large matrices refer to those that require a
large amount of memory (storage) that, sometimes, can even exceed the available system
memory.

Traditionally, the algorithms for small matrices aim at computing all the eigenvalues
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by applying orthogonal similarity transformations in order to reduce the matrix to diag-
onal form. These algorithms target matrices that are dense (full) and unstructured as
they cannot exploit the sparsity or any other special matrix structure. The most popular
algorithms in this group are the QR algorithm [55, 56, 57] for general and Hermitian ma-
trices, the Jacobi algorithm [58, 59], and the divide–and–conquer approach [23]. However,
during the last decades, the Jacobi algorithm [60, 61, 62, 63] has become competitive even
for medium size matrices, especially with the maturity of the GPU cards [64].

The algorithms for medium matrices focus on matrices that are too large to be ef-
ficiently diagonalized by applying orthogonal similarity transformations, but are small
enough to use approximate solutions of the linear systems for computing the eigenpairs.
Opposite to the algorithms for small matrices, these algorithms aim at computing only a
subset of all eigenvalues. The computations are based on matrix–vector operations that
can be efficiently performed if the sparsity and the structure of matrices are exploited.
An example is the Jacobi–Davidson algorithm [65].

The last group consists of the algorithms that are applied on large matrices. These are
matrices that require huge memory space and the operations on them exhibit extremely
high computational cost (O(n3)). Therefore, these algorithms rely mostly on matrix-
vector computations that are less computationally intensive (complexity O(n2)). The
Krylov subspace based algorithms, such as Arnoldi-type algorithms [39], are an example
for large eigenproblem solvers.

This chapter is structured as follows. Section 4.1 introduces the method and the ker-
nels for the reduction of a dense generalized eigenproblem to its corresponding standard
form. Two direct algorithms, based on one-stage and multi-stage reductions, are presented
in Section 4.2. Section 4.3 describes the Krylov subspace-based algorithm for efficient so-
lution of a subset of eigenvalues for large matrices. Finally, Section 4.4 shows an algorithm
based on the spectral divide–and–conquer method that can be entirely performed in terms
of level-3 BLAS kernels.

4.1 Dense generalized eigenproblem
The generalized eigenproblem is defined as:

AX =BXΛ, (4.1)

where A,B ∈ Rn×n are given, Λ ∈ Rs×s is a diagonal matrix with the s sought-after
eigenvalues on the diagonal, and the columns of X ∈ Rn×s contain the corresponding
eigenvectors. In case matrices A and B are symmetric, the problem (4.1) is referred to
as a symmetric generalized eigenproblem. Instead of computing the eigenvalues of the
generalized eigenproblem, the eigenvalues of the corresponding standard eigenproblem
are computed. If the eigenvectors are aslo required, then a simple back-transformation is
applied on the obtained eigenvectors of standard eigenproblem.

The reduction to a standard symmetric eigenproblem is performed as follows. First,
consider the Cholesky factorization of B given by

B = UTU, (4.2)

where U ∈Rn×n is upper triangular [20]; then the generalized problem can be transformed
into the standard one

CY = Y Λ, (4.3)
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by exchanging B with UTU in (4.1) and some manipulation:

AX = UTUXΛ (4.4)
U−TAX = UXΛ (4.5)

U−TAU−1 UX = UXΛ, (4.6)

where C = U−TAU−1 ∈ Rn×n is symmetric, and Y = UX contains the eigenvectors as-
sociated with the standard problem. While the eigenvalues of the generalized eigenprob-
lem (4.1) and the standard one (4.3) are the same, the eigenvectors X of generalized
problem can be easily recovered from the eigenvectors Y of the standard problem by
solving the upper triangular linear system:

X := U−1Y. (4.7)

Once the generalized eigenproblem is reduced into the standard form (4.3), the sought-
after eigenvalues and the corresponding eigenvectors can be computed directly by applying
any standard eigensolver. The transformation to standard form exhibits a computational
cost of O(n3) flops and can be completely performed in terms of Cholesky factorization
and triangular solvers, which attain very high performance on a number of computing
architectures. In particular, various implementations of the Cholesky factorization [20]
efficiently exploit the maximum performance of different computing platforms, such as the
out-of-core implementation for CPU-only systems [34], hybrid CPU-GPU based systems
for the in-core and the out-of-core problems [8, 66, 67], and the approaches targeting
distributed GPU-based systems [29, 68].

4.2 Direct eigensolvers
The direct eigensolvers compute the eigenvalues/eigenvectors based on the orthogonal
decomposition. Traditionally, the direct eigensolvers were used when all eigenvalues and
the corresponding eigenvectors were required. In the general case, when the matrix is
real, the direct eigensolvers compute the Schur decomposition ( [20], Theorem 7.1.3), and
in case the matrix is symmetric, the spectral decomposition (Section 2.2, Theorem 2.2.1):

QTAQ=D, (4.8)

whereQ is orthogonal andD is a diagonal matrix with the eigenvalues of A on the diagonal
from which the eigenvalues can be directly read off. A simple backward substitution can be
used to compute the eigenvectors of the matrix A by applying the orthogonal transforms
in Q [20].

The state-of-the-art algorithms do not directly decompose the matrix to the diago-
nal form, but instead first reduce the matrix to tridiagonal form. This is done because
computing the eigenvalues of a tridiagonal matrix is fast and can be done in O(n2) flops.
The eigensolver based on tridiagonalization comprises the three stages, described in Al-
gorithm 4.1. In the first stage (line 1), the symmetric matrix A is reduced to a symmetric
tridiagonal matrix T

QTAQ= T, (4.9)
by a sequence of orthogonal similarity transforms Q. In the second step (line 2), a
tridiagonal eigensolver, such as MRRR [25, 69], Bisection/Inverse Iteration, Divide–and–
Conquer or QR iteration [18], is applied to compute the eigenvalues and, if required,
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the associated eigenvectors of the tridiagonal matrix T . Finally, if the eigenvectors of
A are required, the back-transformation (line 3) is applied to the eigenvectors of T . In
particular, if TXT = XTΛ, with the matrix XT representing the eigenvectors of T , then
X =QXT are the eigenvectors of A. Since matrices T and A are similar, the eigenvalues
of A equal those of T .

Algorithm 4.1 Direct eigensolver for standard eigenproblem
Input: Dense symmetric matrix A
Output: Eigenvalues Λ and the corresponding eigenvectors X of A
1: Reduce A to tridiagonal matrix T
2: Compute the eigenvalues (and eigenvectors) of T
3: Compute the eigenvectors of A (back-transformation)

The first and the last step of the Algorithm 4.1 require O(n3) flops and are the
main computational bottlenecks. The cost of the second stage is negligible and requires
only O(n2) flops. The third stage can be performed in terms of matrix–matrix (gemm)
multiplications which is of the most studied operations in the linear algebra. The gemm
routine achieves very high computational performance, especially when executed on the
general-purpose GPUs [70]. From the computational point of view, the first step, i.e. the
reduction to tridiagonal form is considerably more expensive. The reduction of a dense
symmetric matrix to tridiagonal form can be performed via two approaches, the one–stage
approach and the multi–stage approach.

The one–stage approach computes a sequence of n− 2 Householder transforms [20]
that annihilate all entries below the first subdiagonal of the matrix A. The algorithm
requires 4n3/3 flops, half of which can be performed in terms of call to level-3 BLAS
routines. The remaining 2n3/3 flops are performed in terms of level-2 BLAS routines,
which achieve poor performance due to the low data locality of level-2 BLAS routines.
This one–stage approach is implemented in the routine sytrd that is part of the LAPACK
computational library [10, 71].

In contrast to the one–stage approach, the multi–stage approach first reduces the
matrix A into the intermediate band matrix B and then subsequently transforms the
matrix B into a sequence of narrower band matrices. Finally, the small band matrix is
reduced to tridiagonal form. The advantage of this approach is that the first step can be
performed completely in terms of level-3 BLAS routines while the cost of the successive
reduction to narrower band form is negligible if moderate bandwidths are chosen.

The following sections describe the one–stage and multi–stage approaches as imple-
mented in the LAPACK library and the SBR Toolbox [72], respectively.

4.2.1 One–stage approach
The one–stage approach was the first direct method to tridiagonalize real symmetric
matrices and the easiest to implement. The most popular implementation, that presents a
base for all other implementations, is LAPACK sytrd kernel for multi-core architectures.
The idea of the one–stage approach is to annihilate all the entries of the symmetric matrix
A that are below the first subdiagonal and right of the first super-diagonal. The reduction
is done column by column (or by row, because of symmetry) until only those entries on
diagonal and the first super- and subdiagonal remain as non-zeros.
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Concretely, the tridiagonalization of matrix A is computed by a series of House-
holder reflectors H1,H2, . . . ,Hn−2. Each reflector is an orthogonal matrix of the form
Hj = I−βjujuTj , where βj ∈R, uj ∈Rn, with the first j entries equal to zero, and where
I denotes the square identity matrix. The purpose of each Householder reflector Hj is
to annihilate the entries below the subdiagonal in the jth column of sub-matrix Aj−1,
where Aj−1 = HT

j−1 · · ·HT
2 H

T
1 AH1H2 · · ·Hj−1 is obtained by applying all previous reflec-

tors H1,H2, . . . ,Hj−1 on A from both sides.
The method described next is a blocked algorithm or algorithm-by-blocks [73], in which

Householder reflectors are computed and applied for a block (panel) of columns instead
for a single column. By improving data locality, this approach significantly increases the
performance of the reduction [74] due to less cache-misses. Let b be the algorithmic block
size and assume that the first j−1 columns of T , Equation (4.9), are already computed,
i.e. the entities below the subdiagonal in the first j−1 columns are already annihilated.
Consider the following partition

HT
j−1 · · ·HT

2 H
T
1 AH1H2 · · ·Hj−1 = Aj−1 =

 T00 T T10 0
T10 A11 AT21
0 A21 A22

 ,
where T00 ∈ R(j−1)×(j−1) is tridiagonal and A11 ∈ Rb×b. With this partitioning, all

entries of T10 are zero except for its top-right corner. The following steps are computed
during the reduction of the current panel

(
A11
A21

)
to tridiagonal form.

1. The panel
(
A11
A21

)
is reduced to tridiagonal form by a sequence of b orthogonal trans-

forms Hj ,Hj+1, . . . ,Hj+b−1 such that

HT
j+b−1 · · ·HT

j+1H
T
j

 T00 T T10 0
T10 A11 AT21
0 A21 A22

HjHj+1 · · ·Hj+b−1

=

 T00 T T10 0
T10 T11 T T21
0 T21 A22−UW T −WUT


where T11 is tridiagonal and all entries of T21, except its top-right corner, are zero.
Matrices U ,W ∈ Rn−j−b+1×b, required in the next step, are built concurrently with
the reduction of the panel.

2. The submatrix A22 is updated as A22 := A22−UW T −WUT , where, in order to
exploit symmetry, only the lower (or the upper) half of the matrix A22 is updated.

The computation of U and W , which are defined by Householder reflectors, along
with the reduction in Step 1 are required in Step 2 of the unreduced part of the matrix
Aj−1. The columns of matrix U are the vectors uj ,uj+1, . . . ,uj+b−1 of the Householder
reflectors Hj ,Hj+1, . . . ,Hj+b−1. Much more work is done in the construction of matrix
W . For each reduced column in the panel, a new column ofW is generated. This requires
four panel-vector multiplications and one symmetric matrix-vector multiplication with the
submatrix A22 as the operand. The latter operation, computed with the level-2 BLAS
routine symv, is the most expensive one, requiring roughly 2(n− j)2b flops. Step 2 also
requires 2(n− j)2b flops, but is entirely performed by the level-3 BLAS kernel syr2k for
the symmetric rank-2b update. The overall cost of sytrd is 4n3/3 flops provided b� n.

Note that there is no need to construct the orthogonal factor Q = H1H2 · · ·Hn−2
explicitly. Therefore, the vectors uj defining the Householder reflectorsHj can be stored in
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the annihilated entries of A and no additional workspace is required. However, additional
workspace is needed to store the scalars βj , but this requires only O(n) entries and is
thus negligible. If the eigenvectors are requested, the back-transform QXT is computed
with an additional cost of 2n3 flops. If Q is applied via the WY representation [75], the
back–transformation can be performed almost entirely in terms of calls to BLAS-3 kernels.

The LAPACK one–stage implementation is characterized by two successive compu-
tational steps: the panel factorization (step 1) and the update of the trailing submatrix
(Step 2). The panel factorization computes Householder reflectors almost entirely in
terms of calls to level-2 BLAS kernels and accumulates them so that they can be applied
onto the trailing submatrix using level-3 BLAS kernels. The parallelism in LAPACK re-
sides within the multi-threaded BLAS library, such as GotoBLAS [76] or the most recent
OpenBLAS [77] library, which follow the expensive fork and join model. This produces
unnecessary synchronization points between the panel factorization and the trailing sub-
matrix update phases. The serious coarse granularity is also a significant drawback and
prevents from attaining a higher degree of parallelism [17].

4.2.2 Multi–stage approach
Despite the performance improvement of the one–stage approach obtained with the recent
MAGMA library, a main drawback remains in that the number of computations performed
as level-2 BLAS kernels is roughly 50%. This drawback is diminished with the multi-stage
approach [72] but in exchange for an increment in the computational cost. The algorithm
based on two-stage approach (a special case of multi-stage approach) achieves higher
performance that the one–stage approach on the multi-threaded architectures [78] as well
as GPU-based architectures [79].

In particular, instead of directly computing tridiagonal form, the algorithms based on
multi–stage approach first reduce matrix to band form

QT1 AQ1→ Aw1 , (4.10)

where Aw1 ∈Rn×n is a matrix of bandwidth w1 and Q1 ∈Rn×n collects the corresponding
orthogonal transforms [20]. In the two-stage variant, this band matrix is then reduced to
tridiagonal form

QT2 Aw1Q2→ T, (4.11)
so that Q = Q1Q2 ∈ Rn×n yields the reduction/orthogonal transform in (4.9). A truly
multi-stage algorithm can be employed to successively transform A into a series of matrices
of narrower band, w1 > w2 > w3 . . . > wr, as in

QT1 AQ1→Aw1 , QT2 Aw1Q2→Aw2 , QT3 Aw2Q3→Aw3 , . . . , Q
T
r Awr−1Qr→Awr , (4.12)

followed with the reduction of the band matrix Awr to tridiagonal form

QTt AwrQt = T, (4.13)

yielding the desired tridiagonal matrix T and the orthogonal transforms accumulated in
Q=Q1Q2 · · ·QrQt.

The eigensolver based on the multi–stage reduction approach is described in Algo-
rithm 4.2. In the first step (1), as defined with Equation (4.10), the dense symmetric
matrix is reduced to the band matrix form. Thereafter, the given band form is succes-
sively reduced to narrower band forms (2) and, in case the eigenvectors are required, the
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orthogonal transforms are accumulated (4). The narrower band form, obtained from the
previous reductions, is finally reduced to tridiagonal form (6). Note that, if the eigen-
vectors are required, the orthogonal transforms are accumulated explicitly (4), adding
n2b− 2nb2i flops in each iteration. The last two steps are the same as in the one–stage
reduction, where eigenvalues and the corresponding eigenvectors of the given tridiagonal
matrix are directly computed with minimal computational cost by utilizing tridiagonal
eigensolvers. The last step (8), the back–transformation, is performed only if eigenvectors
are required.

Algorithm 4.2 Multi–stage eigensolver
Input: Dense symmetric matrix A
Output: Eigenvalues Λ and the corresponding eigenvectors X
1: Reduce A to Aw1 (QT1 AQ1 = Aw1 , Q :=Q1)
2: for i= 2 : r do
3: Reduce Awi−1 to Awi ( QTi Awi−1Qi = Awi)
4: Accumulate transforms (Q=QQi)
5: end for
6: Reduce from band to tridiagonal form (QTt AwrQt = T , Q=QQt)
7: Compute eigenpairs of T → Λ, Xt

8: Back-transformation (X :=QXt)

Although the multi–stage reduction can be performed via LAPACK kernels, the im-
plementation from the Successive Band Reduction (SBR) toolbox [80] is better suited for
large-scale problems. Thus, the SBR will serve as a base for the multi–stage eigensolver
for the out-of-core problems on GPU.

The SBR toolbox

The Successive Band Reduction (SBR) [72, 80] is a software package for symmetric band
reduction via orthogonal transforms. The toolbox includes routines for the reduction of
dense symmetric matrices to band form (syrdb), and the reduction of band matrices to
narrower band form (sbrdb) or tridiagonal form (sbrdt). Since the symmetric matrices
in band form have all entries below the band equal to zero, it is possible to store a band
matrix in more economical way. Thus, the SBR provides two routines for repacking a
symmetric band matrix from conventional storage to the LAPACK lower band storage
scheme [10]. The benefit of repacking is not only in decreasing the workspace but also
in faster access to consecutive column elements that are stored in column-major format
(e.g. in FORTRAN).

Reduction to band form. Consider that the first j− 1 columns of the matrix A
have been already reduced to band form with bandwidth w. Let b denote the algorithmic
block size, and assume for simplicity that j+w+b−1≤ n, and n, w are integer multiples
of w, b, respectively; see Figure 4.1. Then, during the current iteration of routine syrdb,
b new columns of the band matrix are computed as follows:

1. Compute the QR factorization of A0 ∈ Rk×b, k = n− (j+w) + 1:

A0 =Q0R0, (4.14)
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Figure 4.1: Partitioning of the matrix during one iteration of routine syrdb for the reduction
to band form.

where R0 ∈Rb×b is upper triangular and the orthogonal factor Q0 is implicitly stored
as a sequence of b Householder vectors. The cost of this first step is 2b2(k− b/3)
flops.

2. Construct the factors W and Y of the WY representation [81] of the orthogonal
matrix Q0 = Ik +WY T , with W,Y ∈ Rk×b. The cost of this step is kb2 flops.

3. Apply the orthogonal matrix to A1 ∈ Rk×w−b from the left:

A1 :=QT0 A1 = (Ik +WY T )TA1 = A1 +Y (W TA1). (4.15)

By performing the operations in the order specified in the rightmost expression
of (4.15), the cost of this step becomes 4kb(w− b) flops. In case the bandwidth
equals the block size (w = b), A1 comprises no columns and, therefore, no operation
is performed in this step.

4. Apply the orthogonal matrix to A2 ∈ Rk×k from both the left and right:

A2 := QT0 A2Q0 = (Ik +WY T )TA2(I+WY T )
= A2 +YW TA2 +A2WY T +YW TA2WY T .

(4.16)

In particular, during this step only the lower (or the upper) triangular part of A2 is
updated. In order to do this, (4.16) is computed as the following sequence of level-3
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BLAS operations:

(symm) X1 := A2W, (4.17)

(gemm) X2 := 1
2X

T
1 W, (4.18)

(gemm) X3 := X1 +Y X2, (4.19)
(syr2k) A2 := A2 +X3Y

T +Y XT
3 . (4.20)

The major computational cost of the fourth step is in the computation of the sym-
metric matrix product (4.17) and the symmetric rank-2k update (4.20), each with
a cost of 2k2b flops. The matrix products (4.18) and (4.19) require 2kb2 flops each.
The overall cost of this step is 4k2b+ 4kb2 flops, which is higher than the cost of
the remaining Steps 1, 2 and 3 which require O(kb2), O(kb2), O(max(kb2,kbw)),
respectively.

In summary, provided that b and w are both small compared to n, the global cost of
the reduction of a full matrix to band form is 4n3/3 flops. Furthermore, the bulk of the
computation is performed in terms of the level-3 BLAS kernels symm and syr2k in (4.17)
and (4.20), so that high performance can be expected in case a tuned BLAS is used.

The orthogonal matrix Q1 ∈Rn×n that reduces A to the band matrix Aw1 (4.10), can
be explicitly constructed by accumulating the involved Householder reflectors at a cost
of an additional 2n3− 2n2w1 flops. Once again, the compact WY representation helps
in casting this computation almost entirely in terms of calls to level-3 BLAS. The SBR
toolbox implements this functionality in routine sygtr.

The accumulation of the Householder reflectors can be performed completely in terms
of matrix-matrix multiplication. The performance of the routine can be increased by
applying the multi-threaded implementations from OpenBLAS and LAPACK libraries.
Furthermore, the reduction to band form performs more floating-point operations than
the one–stage approach, especially when Q1 is required, but outperforms the one–stage
approach [78] as most of operations are performed as BLAS-3 operations.

Reduction from band to narrower band form. The reduction from band to
narrower band form (4.11) is implemented in the SBR routine sbrdb. The idea of this
algorithm is to repeatedly remove sets of outmost sub–diagonals from the symmetric band
matrix Aw1 , obtained in the first step of the multi–stage algorithm (4.10).

A symmetric n×n band matrix Aw1 with the band width w1 is reduced to the band
matrix with bandwidth w2 = w1−d, with 1 ≤ d < n. The parameter d is the number of
sub(super)–diagonals that are to be peeled off from the band. Because of the symmetry,
only the lower triangle of the symmetric band matrix and the corresponding sub–diagonals
are observed.

The algorithm is based on an annihilate–and–chase strategy, similar to the algorithms
proposed by Rutishauser [82], Schwartz [83], Murata and Horikoshi [84], and Lang [85].
Householder transforms are used to annihilate the d outmost sub–diagonals, and in case
w2 > 1, the WY or compact WY representation of the transforms can be used to improve
the data locality. Basically, two annihilate and strategy algorithms are recognized; the
first algorithm removes a subset of sub–diagonals from a band matrix and is called the
one-step algorithm because sub–diagonals are peeled off in one pass (step). The second
algorithm is called the multi-step algorithm that successively reduces the starting band
matrix to the final narrower band form (4.12). One can also envisage the multi-step
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Figure 4.2: Annihilation of the outmost sub–diagonals of the first nb columns of the band
matrix and updating the rest of the matrix (a). Bulge chasing of the fill-in block (b) and (c)

algorithm as the one-step algorithm called successively on intermediate band matrices
until the final band matrix is attained.

In the one step algorithm, each reduction sweep has two parts:
• Annihilation of several columns to reduce to a narrower band form
• Bulge-chasing to restore the band form from the trailing matrix.
Assume that w2 > 1 and nb ≤ w2. First, the d outmost sub–diagonals from the first

nb columns of Aw1 are annihilated. This can be done via the QR factorization of an
h×nb upper trapezoidal block ”QR” where h= d+nb, (Algorithm 4.3, line 4). Then, the
WY representation of the block Q = I +WY T is generated. To complete the similarity
transforms, the block Q is applied from the left and from the right to Aw1 . This requires
applying Q from the left to the h× (d−nb) block ”Pre” (line 5), from both sides to the
h×h lower triangular block ”Sym” (line 6), and from the right to the w1×h block ”Post”
(line 7). A graphical illustration of how the similarity transforms Q are applied to the
blocks “Pre”, “Sym” and “Post” is given in Figure 4.2 (a).

Algorithm 4.3 Reduction from band to narrower band form, toBand(A,n,w1,d,nb)
Input: Symmetric band matrix A ∈Rn×n with bandwidth w1, 1<w1 < n, d the number

of sub–diagonals to eliminate and nb the block size, 1≤ nb ≤ w1−d
Output: Symmetric band matrix with the bandwidth w2 = w1−d
1: for j = 1 : n−w2−1 : nb do
2: j1 = j, j2 = j1 +nb−1, i1 = j+w2, i2 = min(j+w1 +nb−1,n)
3: while i1 < n do
4: Perform QR on the block B ≡ A(i1 : i2, j1 : j2) in place (QR)
5: Replace the block B ≡ A(i1 : i2, j2 + 1: i1−1) by QTB (Pre)
6: Replace the block B ≡ A(i1 : i2, i1 : i2) by QTBQ (Sym)
7: Replace the block B ≡ A(i2 + 1: min(i2 +w1,n), i1 : i2) by BQ (Post)
8: end while
9: end for

The application of the transforms on block ”Post” fill-ins d diagonals below the band;
see Figure 4.2 (a), the light grey area below diagonal of “Pre” block. During the ap-
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plication to ”Post”, the d diagonals below the band are filled-in with non–zero values,
deforming the band structure. Therefore, the first nb columns of the fill-in are removed
by another QR factorization (Figure 4.2 (b)), followed by the corresponding application
to ”Pre”, ”Sym” and ”Post”. The process is repeated for the first nb columns of the newly
generated fill-in that was generated in the previous ”Post” block (Figure 4.2 (c)), and so
on. The process is repeated along the diagonal until the filled-in block is pushed off the
matrix and the band form with bandwidth w1 is restored. Then, the new annihilate–and–
chase sweep can start.

Figure 4.3 shows the matrix after the first sweep. In the first nb columns the d outmost
diagonals are removed and the upper left sub-matrix is in the final narrower band form
with bandwidth w2. The rest of the matrix is block tridiagonal with diagonal blocks,
except for the last one, of order b and with the off–diagonal blocks whose first nb columns
of each fill-in block (positions of the Post blocks in the Figure 4.2) are restored to the
band form (w1). The rest of the non–zero entries below the band in the fill-in blocks
are left and are not chased down the diagonal as these positions will be filled-in with
non–zero entries in the next sweeps and annihilated. Therefore, in each sweep, only the
fill-in columns that will be accessed by the QR in the next sweep are restored to the band
form w1.

Figure 4.3: Band matrix form with the first nb columns reduced to the narrower band form.

After describing the one step algorithm for the reduction from band to narrower band
form we next proceed with the multi-step algorithm that peels off chunks of sub–diagonals.
The multi-step reduction to narrower band form is described in Algorithm 4.4. The input
for the algorithm is a sequence of k positive integers d(i), d=∑k

i=1 d
(i) < w1, the number

of the sub–diagonals to be eliminated in each step and a sequence of k integers n(i)
b .

In practice, the multi-step algorithm can be applied on a matrix that is not in tridiag-
onal form. One can see that, for d(k) = b(k−1), the band matrix is reduced to tridiagonal
matrix because all sub–diagonals, except the first one, are annihilated. Moreover, if
w1 = n− 1 and d = w1− 1, the algorithm performs the one–stage reduction of a dense
matrix to tridiagonal form. However, by choosing different values for d(i) and b(i) one can
expect to achieve some good algorithmic properties such as a better exploitation of the
level-3 BLAS kernels. For example, for large d, i.e. when the difference between w1 and
w2 is considerable, the block QR, Figure 4.2 (a), becomes tall and data locality is poorly
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Algorithm 4.4 Multi-step reduction from band to narrower band matrix
Input: A symmetric band matrix A∈Rn×n with the bandwidth w1, a sequence of positive

integers d(1),d(2), . . . ,d(k) and a sequence n(1)
b ,n

(2)
b , . . . ,n

(k)
b

Output: A symmetric band matrix with the bandwidth w2
1: b(1) = w1
2: for i= 1 : k do
3: Call toBand(A,n,b(i),d(i),n

(i)
b )

4: b(i+1) = b(i)−d(i)

5: end for

exploited because the block size nb is small (d < w1−d). On the other hand, if d is small,
the data locality is better exploited but the algorithmic complexity is increased as more
steps are needed to reduce the band matrix to tridiagonal form. Thus, the parameters
b(i) and d(i) have significant influence on performance of the algorithm for the reduction
from band to narrower band form.

Reduction to tridiagonal form. Routine sbrdt in the SBR toolbox implements
the reduction of a band matrix Awr to a tridiagonal form, Algorithm 4.2 (line (6)). Let
Qt denote the orthogonal transforms which yield this reduction, that is QTt AwrQt = T ,
Equation (4.13). On exit, the routine returns the tridiagonal matrix T and, upon re-
quest, accumulates these transforms, forming the matrix Q = QbQt ∈ Rn×n, where Qb =
Q1Q2 · · ·Qr is the accumulation of orthogonal transforms from all the previous steps, so
that QTAQ=QTt (QTb AQb)Qt =QTt AwrQt = T .

Matrix T is constructed in routine sbrdt one column at a time: at each iteration
the elements below the first subdiagonal of the current column are annihilated using a
Householder reflector; the reflector is then applied to both sides of the matrix, resulting
in a bulge which has to be chased down along the band. The computation is cast in terms
of level 2 BLAS operations at best (symv and syr2 for two-sided updates, and gemv
and ger for one-sided updates) and the total cost is 6n2w+ 8nw2 flops.

If the eigenvectors are desired, the orthogonal transforms computed in the reduction
the reduction to tridiagonal form are accumulated from the left to the matrix Qb obtained
from the first two steps (reduction from full to band form and successively to narrower
band form) such that Q=QbQt. These accumulations require O(n3) flops and can be cast
almost entirely in terms of calls to level-3 BLAS kernels, even though this reformulation
is less trivial than that involved in the first step [72]. Furthermore, the accumulated
orthogonal transforms Q are used and applied in the back-transform stage, to obtain the
eigenvectors of A, X :=QXt, adding 2n3 flops to the overall computational cost.

Some recent researches address communication-avoiding successive band reduction to
tridiagonal form. These researches aim at reducing the communication (i.e. data move-
ment) by chasing the multiple bulges at the time and achieve 2 to 6× [86] speedup
compared to the state-of-the-art implementation [72].

4.3 Krylov subspace based approaches
The second large group of methods are the iterative eigensolvers. Unlike the direct solvers,
the iterative solvers iteratively approximate the eigenvalues and the associated eigenvec-
tors. Traditionally, these methods have been used to find eigenpairs of sparse matrices
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and/or when only a subset of eigen–spectrum is required. However, there is a very thin
line between direct and iterative solvers. In fact, each direct eigensolver has an iterative
part. For example, the direct solvers based on the reduction to tridiagonal form itera-
tively compute the eigenvalues and the associated eigenvectors of the tridiagonal form.
The methods to compute eigenpairs of the tridiagonal form (e.g. MRRR and bisection al-
gorithms) are iterative algorithms. Generally, we can say that the direct solvers are those
that solve problems in a finite sequence of iterations while the iterative solvers produce a
sequence that converges to the eigenvalues and the corresponding eigenvectors.

The algorithms described in the Section 4.2 are based on orthogonal transforms and
are very efficient for small to medium-sized eigenproblems. In case the matrix size is too
large, the direct eigensolvers become impractical because of their expensive QR factoriza-
tion that is applied on a large dense matrix. Opposite to the direct methods, Krylov-based
methods avoid the computationally intensive matrix-matrix operations and rather rely on
matrix-vector operations that perform in O(n2) flops. Due to a low ratio between the
number of flops performed and the amount of data transfered (O(n2)), Krylov-based algo-
rithms are regarded as memory-bounded algorithms, i.e. algorithms whose performance is
constrained by the data transfers. Although the algorithms based on Krylov subspace are
memory-bounded, they can be highly competitive as they exhibit much lower arithmetic
cost compared to compute-bound direct eigensolvers.

This section is focused on two Krylov-based algorithms, the Arnoldi and Lanczos meth-
ods. These algorithms have low computational cost and very fast convergence when only
a small subset of eigenvalues/eigenvectors is required. This kind of problems are typically
coming from molecular dynamics simulation problems and dense functional theory.

The Arnoldi method

The Arnoldi method belongs to the class of methods based on the idea of Krylov subspaces.
It was first introduced in 1951 by Arnoldi [87] to reduce a dense matrix to Hessenberg form.
Arnoldi expected that this method could give a good approximation of some eigenvalues
but it later showed out that this method yields a good technique for finding eigenvalues
of general large sparse matrices.

The idea for the Arnoldi method came up after trying to solve some drawback of the
power method [20, 39]. The power method calculates the sequence Au,A2u,A3u, . . . iter-
atively, storing the result in u on every turn. This sequence converges to the eigenvector
corresponding to the largest eigenvalue, and most computations are spent in forming the
final result An−1u. One of the solutions for this drawback is to use Krylov matrix instead:

Kk(A,u) = [u,Au,A2u, . . . ,Ak−1u].

When k increases, the vectors Aku converge to an eigenvector corresponding to the largest
eigenvalue as in power method. To avoid the columns of Krylov matrix become linearly
dependent, an orthogonal basis for a Krylov subspace is chosen via Gram-Schmidt or-
thogonalization. The orthogonalization is done as follows.

Suppose that the set {u1,u2, . . . ,uj} is an orthonormal basis for the Krylov subspace
Kj(u). The extension of the basis with the vector uj+1 is done by first orthogonalizing
the Aju against u1, . . . ,uj ,

yj := Aju−
j∑
i=1

uiu
T
i A

ju, (4.21)
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and then normalizing the vector

uj+1 = yj/‖yj‖.

The set {u1, . . . ,uj ,uj+1} is an orthonormal basis for Kj+1(u) and is called the Arnoldi
basis. In case A is symmetric, it is called the Lanczos basis. The vectors ui for the
orthonormal basis are called Arnoldi or Lanczos vectors.

The computation of vector uj+1 is computationally intensive because of the expensive
product Ajx. Instead of Ajx, we can compute uj+1 by orthogonalizing Aqj against
u1, . . . ,uj , and (4.21) then becomes:

wj := Auj−
j∑
i=1

uj(uTi Auj). (4.22)

If wj is null vector, we have found an invariant subspace spanned by the vectors {u1, . . . ,uj+1}.
The orthogonalization can be done explicitly or implicitly. In the explicit Gram-

Schmidt orthogonalization, the constructed basis Kk(A,u) often suffers from inaccuracy
and loss of orthogonality because of finite-precision arithmetic. A more numerically sta-
ble approach is to implicitly construct the orthogonal basis for Krylov subspace. Theo-
rem 4.3.1 provides the basic idea for this approach.

Theorem 4.3.1 Let the columns of

Uk+1 = [u1,u2, . . . ,uk+1] ∈ Rn×(k+1)

form an orthonormal basis for Kk+1(A,u1). Then, there exists a (k+ 1)× k unreduced
upper Hessenberg matrix Hk so that

A Uk = Uk+1 Hk.

Conversely, a matrix Uk+1 with orthonormal columns satisfies a relation of the above form
only if the columns of Uk+1 form a basis for Kk+1(A,u1).

From Theorem 4.3.1 we can define the Arnoldi decomposition that will directly lead
to the construction of the basic Arnoldi method.

Definition (Arnoldi decomposition): Let the columns of Uk+1 = [Uk,uk+1]∈Rn×(k+1)

form an orthonormal basis. If there exists an (unreduced) Hessenberg matrix Hk ∈
R(k+1)×k so that

AUk = Uk+1Hk (4.23)
then Equation (4.23) is an (unreduced) Arnoldi decomposition of order k.

Following Theorem 4.3.1 and the definition of the Arnoldi decomposition, we can
provide the basic Arnoldi algorithm (Algorithm 4.5) for computing an orthonormal basis
of a Krylov subspace. The cost of the algorithm is dominated by the matrix-vector
multiplication (3), which is the main and only computational bottleneck of the algorithm.
The required storage space is n× (k+1) for storing the columns of Uk+1. The iteration is
stopped when Uj spans an invariant subspace, i.e. when hj+1,j = 0 (null vector) (10). The
eigenvalues of Hj are the approximations of those of A. If the obtained approximations of
eigenvalues are not good, the iteration is restarted with a random unit vector orthogonal
to Uj .
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Algorithm 4.5 Basic Arnoldi algorithm
Input: Matrix A ∈ Rn×n, vector u1 ∈ Rn, such that ‖u1‖2 = 1, and integer k ≤ n
Output: A matrix Uk+1 = [u1 . . .uk+1]∈Rn×(k+1) with orthonormal columns and the up-

per Hessenberg matrixHk = (hij)∈R(k+1)×k defining an Arnoldi decomposition (4.23)
of kth order

1: U1 = [u1]
2: for j = 1 : k do
3: w = Auj
4: for i= 1 : j do
5: (Gram-Schmidt orthogonalization)
6: hi,j = uTi w
7: w := w−uihi,j
8: end for
9: hj+1,j = ‖w‖2
10: if hj+1,j == 0 then
11: Uj is A-invariant, exit
12: end if
13: uj+1 = w/hj+1,j
14: Uj+1 = [Uj uj+1]
15: end for

The Lanczos method

The Lanczos method [88, 89] is a version of the Arnoldi method for the case when matrix
is symmetric. The symmetry of the matrix gives some additional properties that cause
the Lanczos method to be simpler than Arnoldi’s. If the basic Arnoldi algorithm is
applied on a symmetric matrix A, then the Hessenberg matrix Hk is real, tridiagonal,
and symmetric. This is proved by the fact that the Hessenberg matrix is formed by
applying the orthogonal transform to A such that Hk = UTk AUk which yields that Hk is
also symmetric (because of the similarity with the symmetric matrix A). Furthermore, by
the definition, the Hessenberg matrix has all entries below the first subdiagonal equal to
zero, and because it is also symmetric, all the entries above the first superdiagonal have
to be zero as well.

For simplicity we will use different notation for the elements of the matrix Hk so that
αj = hj,j for the diagonal elements and βj = hj−1,j for the subdiagonal elements. The
Lanczos method is described in Algorithm 4.6.

From the computational and storage points of view, the Lanczos algorithm requires
less storage space compared with the Arnoldi method, because only three vectors are
stored. Furthermore, because of the tridiagonal symmetric matrix, the Gram-Schmidt
orthogonalization process requires less flops (lines 5 and 6), only 2 inner products instead
of O(n) as in the case in the Arnoldi method.

Restarting the Arnoldi algorithm

One of the main drawbacks of the Arnoldi method, presented in Algorithm 4.5, is that
the number of the iterations k required to converge to the sough-after eigenvalues, is
unknown at the beginning of the algorithm. Furthermore, if the eigenvectors are required,
then the storage space, Uk+1, required for storing vectors of Arnoldi basis, ui, is unknown
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Algorithm 4.6 Basic Lanczos algorithm
Input: A symmetric A ∈ Rn×n, vector u1 ∈ Rn, such that ‖u1‖2 = 1, and integer k ≤ n
Output: A matrix Uk+1 = [u1 . . .uk+1] ∈Rn×(k+1) with orthonormal columns and α,β ∈

R
1: β0 = 0
2: U1 = [u1]
3: for j = 1 : k do
4: w = Auj
5: αj = uTj w
6: w := w−βj−1uj−1−αjuj
7: βj = ‖w‖2
8: if βj == 0 then
9: Uj is A-invariant, exit

10: end if
11: uj+1 = w/βj
12: Uj+1 = [Uj uj+1]
13: end for

and increases with the number of iterations performed. The size of the matrix Uk+1 is
n× (k+1) and depends on the number of iterations k. Thus, the size of matrix Uk+1 may
exceed the available system memory long before the desired eigenvalues are approximated
well enough. As a result, a large eigenvalue subproblem represented with the Hessenberg
matrix Hk is solved at the cost of O(n3) flops. A similar approach is applied in the
Lanczos method, but with Hk ∈ R(k+1)×k symmetric.

Suppose that n iterations of the basic algorithm are completed and that the approx-
imated eigenvalues/eigenvectors are obtained. Based on the known eigenvector approxi-
mations, a new initial vector u1, orthogonal to the obtained eigenvectors, is chosen and the
basic Arnoldi algorithm is re-run for the next n steps. If the new eigenpairs are not well
approximated, the process is repeated till the desired accuracy is attained. This version is
called the Restarted Arnoldi algorithm [39]. The restarting technique plays a significant
role in speeding up the convergence of the Arnoldi-based algorithms. Two approaches for
restarting are the implicitly and explicitly restarted Arnoldi/Lanczos method [54, 90].

The explicit restarting was proposed by Saad [91] and is based on the polynomial
acceleration scheme for the iterative solution of linear systems. The process includes
the so-called filter polynomial p based on the information of the eigenvalues of Hk. The
Arnoldi method is restarted with the new initial vector u1 = p(A)u1/‖p(A)u1‖2. With an
increasing number of Arnoldi steps k, the number of eigenvalue approximations (eigen-
values of Hk) gets larger and larger, and many of them are useless as approximations of
the sought-after eigenvalues. Thus, the purpose of the polynomial p is to remove those
unwanted approximations and decrease the number of the performed floating-point oper-
ations. Further details on the restarted Arnoldi algorithm can be found in [90].

The implicitly restarted method [92] is more efficient and numerically stable than the
explicitly restarted variant. It is a method that combines the implicitly shifted QR mech-
anism with a k-step Arnoldi/Lanczos method to obtain a truncated form of the implicitly
shifted QR-iteration. With this algorithm it is possible to compute a few eigenvalues
(largest/smallest, or in some range). For more details on the implicitly restarted Arnoldi
algorithm, refer to [92]. One of the major practical implementation of these methods
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was done with the Implicitly Restarted Arnoldi Method (IRAM) [93] available in the
ARPACK [94] library.

The Implicitly restarted Arnold method (IRAM) and Implicitly restarted Lanczos
method (IRLM) are implemented in the ARnoldi PACKage (ARPACK) library [94, 95]
for the solution of non-symmetric and symmetric eigenvalue problems, respectively. The
IRAM and IRLM methods achieve high performance when only a small subset of eigenval-
ues/eigenvectors are required because of the fast convergence and the fact that the com-
putation is based on the computationally cheap matrix-vector product (e.g. LAPACK’s
xSymv routine). Traditionally, these methods were applied to the solutions of large and
structured eigenvalue problems in which the matrix structure can be exploited to further
decrease the computational cost of the matrix-vector product.

ARPACK exploits the parallelism of the traditional multi-core processors by utilizing
the underlying internal BLAS parallelism based on multi-threading. The distributed-
memory PARPACK [96] library is an extension of ARPACK based for message passing
systems. It supports BLACS [97] and the MPI [98] communication layers.

One of the main features of the ARPACK library is the reverse communication [99].
This is a technique by which the implementation details and various operations can be
hidden from the implementation of the iterative method itself. In the Arnoldi/Lanczos
method, the matrix-vector multiplication is hidden from the method’s implementation
giving the user the possibility to choose any convenient data structure for the matrix rep-
resentation or to choose any available subroutine to perform the matrix-vector multipli-
cation. Therefore, any architecture specific implementation of the matrix-vector product
can be used depending the problem requirements. That gives ARPACK the robustness to
exploit the parallelism of different computing architectures. For example, in case a very
large scale eigenproblem is solved on a distributed-memory system, PLAPACK [100] or
ScaLAPACK [101] library implementations of matrix-vector multiplication can be used.

4.4 Spectral divide-and-conquer based algorithms
The direct algorithms in Section 4.2 are very efficient in terms of number of floating-point
operations per second, especially the multi-stage approach, but are impractical when only
a small subset of eigenvalues/eigenvectors is required. For these methods, the difference
in the arithmetic cost and the overall execution time of computing the full set or a subset
of eigenvalues/eigenvectors is negligible. The efficiency of the direct algorithms comes
from the fact that most of the computations can be performed in terms of level-3 BLAS
operations. On the other hand, the Krylov-based eigensolvers are the algorithms of choice
when only a small subset of the eigenvalues is required. The main drawback of Krylov-
based algorithms is that they are completely performed in terms of level-2 BLAS kernels
which have very low computational intensity. This particularly comes to fore when solving
large-scale eigenproblems that are out-of-core for the GPU or even the main memory, and
thus, a big penalty has to be paid to transfer the data resulting in a transfer time that
can easily overcome the computational time.

In contrast to the previously described eigensolvers, the spectral divide-and conquer
algorithm tries to overcome some of these problems by relying on a divide and conquer
design pattern. The main idea of the spectral divide and conquer approach is to divide
a problem into two subproblems by computing the invariant subspace for a subset of the
eigenvalues. The algorithm is recursively applied on the two subproblems until they are
simple enough to be solved directly by applying any traditional direct eigensolver. At the

53



Dense Symmetric Eigensolvers

A1

A2

A11
A12

A21
A22

A

Figure 4.4: A schematic preview of the spectral divide and conquer algorithm

end of the recursion process, the solution of the subproblems are then combined into the
final solution of the problem.

The first divide and conquer algorithm used the matrix sign function to split the
spectrum of shifted matrices about the imaginary axis [102] but showed to be numerically
instable for certain matrix types. The numerical stability was improved with the algorithm
by Lin and Zmijewski [103] that employs the orthogonal basis. The major improvement in
the algorithm construction was done with the inverse-free algorithm based only on rank
revealing QR factorization and matrix multiplication [104] that is especially suited for
generalized eigenvalue problems.

The parallel spectral divide and conquer algorithms for symmetric matrices were devel-
oped in the PRISM project [105]. In [106] the authors proposed a new parallel algorithm
for computing the invariant subspaces of Hermitian matrices using only matrix-matrix
multiplications and the QR factorization.

In general, the divide-and-conquer eigensolvers present a significantly higher arith-
metic cost than the direct eigensolvers based on the reduction to condensed form. Fur-
thermore, none of the algorithms have been proven to be backward stable. Recently,
a divide-and-conquer algorithm based on the polar decomposition [107] was published,
which has been proved to be backward stable. This method, called the spectral divide–
and–conquer (SD&C) algorithm, can be implemented almost entirely in terms of matrix-
matrix kernels and the QR factorization thus exhibiting very high performance.

Algorithm description

The main idea of the SD&C algorithm is described in the Figure 4.4 and is similar to the
previously described divide–and–conquer ideas. Matrix A is split into two subproblems,
A1 and A2, by computing invariant subspaces via the polar factor for a user-defined
splitting point. The process is then recursively applied on each subproblem, with new
splitting points, until the submatrix Ai is diagonal or small enough to directly compute
the eigenvalues.

The polar factor is computed via the QDWH (QR-based dynamically weighted Halley)
algorithm [108]. This is an algorithm based on QR factorization, which computes the
polar decomposition and will be presented later. The positive and the negative invariant
subspaces, that correspond to A1 and A2, are computed via a polar factor obtained from
QDWH. The key point is that the invariant subspaces can be efficiently computed via the
polar factor. Algorithm 4.7 shows the QDWH-based SD&C algorithm.

The algorithm starts with choosing the splitting point σ (1). The aim of the splitting
point is to make A1 and A2 of similar dimension in order to provide the recursion balanced.
Therefore, σ is a point that splits the spectrum in two parts, the left side with the
eigenvalues smaller, and the right side with the eigenvalues that are larger than the
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splitting point. If all the eigenvalues of A are computed, the optimal splitting point would
be the median of the spectrum. Instead of computing the median of the eigenvalues of
A, which is very costly, the median of diag(A) can be used as a good estimate. Also,
other σ strategies can be used, like the median of the eigenvalues of the tridiagonal part
of A, or the center of the interval containing the eigenvalues. The QDWH algorithm is
employed to compute the orthogonal polar factor Up of the matrix A shifted by the σ
factor (2). In the steps (3)-(4) of the algorithm, the subspace iteration is used to compute
the orthogonal matrix V , which is then applied from the left and the right to compute
A1 and A2 such that: [

V T
1
V T

2

]
A [V1V2] =

(
A1 ET

E A2

)
,

where ‖E‖F ≈ u, the machine unit roundoff. In the last step (5), the SD&C algorithm is
recursively called on submatrices A1 and A2. The recursion is stopped once the diagonal
blocks (submatrices) are small enough so that any standard eigensolver can be invoked
to compute the eigenpairs. However, the recursion can be run till the diagonal blocks
are scalars. In the practical implementation, the computational time for the final stages
of the algorithm, when the recursion is run to the scalar level, is negligible [107] and is
comparable to a method when the standard eigensolvers are invoked on small-size diagonal
blocks.

Algorithm 4.7 QDWH based spectral D&C algorithm
Input: Symmetric dense matrix A ∈ Rn×n
Output: Spectral decomposition of A= V DV T

1: Choose σ
2: Compute polar factor Up of A−σI
3: Compute orthogonal matrix V = [V1V2] such that 1

2(Up+ I) = V1V T
1

4: Compute A1 = V T
1 AV1 and A2 = V T

2 AV2
5: Repeat steps (1)-(4) for A1 and A2

The QDWH-based SD&C algorithm is the first algorithm for which backward sta-
bility has been proven. The proof can be found in [107](Theorem 3.1). Furthermore,
the algorithm has low communication costs and the main computational routines are
matrix-matrix operations and the QR factorization that can achieve high computational
performance on the modern memory hierarchy architectures.

Polar decomposition

For any rectangular matrix A ∈ Rm×n there exists a polar decomposition

A= UpH, (4.24)

where Up has orthonormal columns and H is symmetric positive semidefinite. The matrix
Up is called a polar factor of the matrix A. The decomposition is unique if A has full
column rank [109].

In the SD&C algorithm the polar decomposition is computed via the QDWH algorithm
described by Nakatsukasa [108]. The QDWH algorithm iteratively computes the sequence
of iterations:

Xk+1 =Xk(akI+ bkX
T
k Xk)(I+ ckX

T
k Xk)−1, X0 = A/α, (4.25)
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where the limit of the sequence Xk is the polar factor Up.
The factor α is an estimate of ‖A‖2 such that α& ‖A‖2. Setting ak = 3, bk = 1, ck = 3

gives the Halley iteration. It is proven that the sequence Xk converges globally to the
polar factor and that the convergence rate is cubic [110, 111].

The parameters ak, bk, ck are dynamically chosen in each iteration to speed up the
convergence such that

ak = h(lk), (4.26)
bk = (ak−1)2/4, (4.27)
ck = ak + bk−1, (4.28)

where h(l) =
√

(1 + γ) + 1
2(8− 4γ+ 8(2− l2)/()l2

√
1 +γ) with γ = (4(1− l2/l4))1/3. The

parameter lk is computed from the recurrence:

lk = lk−1(ak−1 + bk−1l
2
k−1)/(1 + ck−1l

2
k−1), (4.29)

for k ≥ 1. The parameter lk is a lower bound for the smallest singular value of Xk. The
computation cost of the parameters ak, bk, ck is negligible and does not require any matrix
computation. From the description of lk, the starting value l0 is chosen to be the lower
bound for the smallest singular value of X0 and can be obtained via a condition number
estimator. With the parameters defined as above, at most 6 iterations are needed to
converge to Up with the tolerance close to the unit roundoff for IEEE double-precision
arithmetic.

The QDWH iteration (4.25) has a practical form that is based on the QR factorization
and is more eligible for the implementation:

X0 = A/α, (4.30)[ √
cjXj

In

]
=
[
Q1
Q2

]
R, Xk+1 = bk

ck
Xk + 1

√
ck

(
ak−

bk
ck

)
Q1Q

T
2 (4.31)

The main cost in the (4.31) is the QR factorization of the (m+n)×n matrix on the
left hand side. Note that the matrix is symmetric and that the lower half of the matrix
is equal to the identity matrix.

Invariant subspace

The invariant subspace of a symmetric matrix, corresponding to the positive (or negative)
eigenvalues, is computed using the polar decomposition obtained in the QDWH algorithm.
Therefore, it is necessary to establish the connection between the polar decomposition
and the spectral decomposition of the symmetric matrix A. First, assume that A is
nonsingular. In case A is singular, the subspace iteration finds an invariant subspace V1
that corresponds to the eigenvalues equal or larger than zero [107] (subsection 5.4.).

Let A=UpH be the polar decomposition and A=V ΛV T be an spectral decomposition.
Furthermore, Λ is divided as Λ = diag(Λ+,Λ−) where the matrices Λ+ and Λ− contain
the positive and negative eigenvalues of A, respectively. If we assume that there are k
positive eigenvalues then

A = V diag(Λ+,Λ−)V T

A = V diag(Ik,−In−k)V T ×V diag(Λ+, |Λ−|)V T

≡ UpH
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If we consider that the Up is computed by invoking the QDWH algorithm (subsec-
tion 4.4) and that V = [V1,V2] is partitioned as Λ, then

Up+ I = [V1V2]
[
Ik 0
0 −In−k

]
[V1V2]T + I = [V1V2]

[
2Ik 0
0 0

]
[V1V2]T = 2V1V

T
1 , (4.32)

where the symmetric matrix C = 1
2(Up + I) = V1V T

1 is an orthogonal projector onto the
subspace spanned by the columns of V1 and that is the invariant subspace corresponding
to the positive eigenvalues. The matrix V1 can be computed as an orthogonal basis for the
column space of C and the subspace iteration algorithm [19] is applied. The pseudo-code
for subspace iteration is given in Algorithm 4.8. The matrix C = V1V T

1 is the orthogonal
projection onto an invariant subspace of A and k is the number of positive eigenvalues.

Algorithm 4.8 Subspace iteration algorithm
Input: Symmetric matrices A ∈ Rn×n and C = 1

2(Up+ I) ∈ Rn×n, k = ‖C‖2F
Output: V1 ∈ Rn×k
1: Choose initial matrix X ∈ Rn×k

2: Compute QR factorization X = [V1V2]
[
R
0

]
3: Form E = V T

2 AV1
4: If ‖E‖F /‖A‖F = ε, stop
5: X := CV1, go to (2)

The number of eigenvalues k = ‖C‖2F is an integer since the eigenvalues of C are
either 0 or 1. The algorithm converges with the convergence rate |λr+1|/|λk| for the kth
eigenvalue. As all eigenvalues are either 0 or 1, a single iteration is required. In practice,
due to roundoff errors, a few iterations are required to converge. The initial matrix X is
chosen as the first k columns of C with the largest norms. The subspace iterations stops
if the norm of the off–diagonal block is close to the machine unit roundoff or some user
defined precision ε.

In the SD&C algorithm only two computationally intensive kernels are used, one for
the QR factorization and a second for matrix multiplication. Since these two kernels
asymptotically minimize both bandwidth and latency costs [112], i.e. communication, the
SD&C algorithm minimizes the communication as well. By choosing the splitting points
with care, so that at each iteration of the recursive procedure subproblems A1 and A2
are approximately of the same size, the computational cost rapidly decreases with the
iteration count. In such case, even if the recursion is applied till scalar level, the average
cost of the full solution of the eigenproblem requires about 27n3 flops. The flop count of
each QDWH iteration (4.31) is 26/3n3, considering all matrices are dense and symmetric.
However, if the symmetry of the matrices Xk+1 and the product of Q1QT2 is exploited as
well as the sparsity structure in the QR factorization of 2n×n matrix, the flops count
drops to only 5n3 flops.
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Chapter 5

Dense Eigensolvers for Hybrid
Architectures

Large-scale dense eigenvalue problems are in the focus of this research because of their
extremely high computational cost and vast amount of memory required for their efficient
solution. The solution of such eigenproblems asks for systems with very high compu-
tational performance, capable of tackling such high demanding problems. Traditionally,
distributed-memory systems and supercomputers were used to solve large-scale eigenvalue
problems. Such systems are equipped with a large number of computational units that
can deliver the computational power needed for the solution of these problems. How-
ever, such systems are expensive to acquire and maintain, especially in terms of energy
consumption.

A cheaper and eligible alternative to large expensive systems are CPU-GPU hybrid
architectures, which have recently evolved into powerful computing systems. These sys-
tems, equipped with one or two multi-core processors and one or more general-purpose
GPUs accelerators, have a very high theoretical peak performance that can even overcome
the performance of some moderate-scale systems. Because of their high performance, a
considerable research effort has been already put in the development of solvers for dense
symmetric eigenproblems and the kernels needed for their execution. However, the main
disadvantage of all these efforts is that they cannot solve problems that require an amount
of memory exceeding the available GPU memory. Therefore, although the GPU-based
hybrid platform can deliver enough performance, these large-scale problems cannot be
solved by using the GPU accelerators.

The goal of this research is to develop novel high performance algorithms that can
efficiently solve large-scale eigenproblems on GPU-based hybrid platforms, even if the
problem data are too large to entirely fit into the GPU memory, i.e. are out-of-core from
the perspective of the GPU memory. The novel algorithms presented here are based on
the three specific methods presented in Chapter 4: multi-stage reduction to tridiagonal
form, the Krylov-subspace method, and the spectral divide–and–conquer algorithm.

The chapter is organized as follows. Section 5.1 describes the new GPU out-of-core
algorithm based on the multi-stage reduction to tridiagonal form. Section 5.2 shows
the two versions of modified Arnoldi-type algorithms that off-load the computationally-
intensive matrix-vector multiplications on the GPU. Finally, Section 5.3 introduces the
out-of-core spectral divide–and–conquer algorithm.
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5.1 Multi-stage reduction to tridiagonal form
The direct eigensolvers, namely, one–stage and multi–stage reduction, are mostly used
for small problems and when all eigenvalues and eigenvectors are computed. However,
when solving large-scale eigenvalue problems, their performance drastically drops with
the increase of problem size, due to the high arithmetic cost of those methods (O(n3))
as well as large storage requirements. One advantage of the eigensolvers based on the
reduction to tridiagonal form is that the obtained tridiagonal matrix is negligible in terms
of storage requirements (3n compared to n2 needed for a full dense matrix). Furthermore,
instead of the costly computation of the eigenvalues of a dense matrix, the eigenvalues of
tridiagonal matrix are computed by applying fast specialized solvers, e.g. MRRR. This
feature yields a huge benefit when solving large dense eigenproblems that can not fit into
the GPU memory and whose performance is bounded by the memory transfers between
the main memory and GPU memory. Thus, the reduction to tridiagonal form remains
an out-of-core problem for the GPU, while finding the eigenvalues of tridiagonal matrix,
because of the low memory requirements, is a standard in-core problem. Therefore, the
main computational bottleneck is not the computation of the eigenpairs but the reduction
from dense to tridiagonal form.

Two approaches for the reduction to tridiagonal form were presented in Section 4.2.
The first approach is the one-stage reduction and requires 4/3n3 flops, half of which
can be cast in terms of communication efficient level-3 BLAS operations [112]. The re-
maining 2/3n3 flops are spent on symmetric matrix-vector product, a memory-bound
operation that renders the global algorithm quite inefficient on current general-purpose
architectures. The memory bottleneck is partially alleviated in MAGMA [8] project, by
off-loading the level-2&3 BLAS operations on the GPU while at the same time partially
overlapping the memory transfer with the GPU execution. Although the GPU implemen-
tation attains much higher performance than the multi-core implementation, the main
drawback remains as half of the operations are still performed in terms of level-2 BLAS
operations. Furthermore, the existing MAGMA implementations cannot solve problems
whose problem size exceeds GPU memory.

The second approach is the multi-stage reduction to tridiagonal form described in
Section 4.2.2. This approach is almost entirely cast in terms of level-3 BLAS operations
that better preserve data locality and therefore decrease the number of memory transfers
between the local and global memories of the systems. For the out-of-core GPU algorithms
that implies less memory transfers between the main memory and GPU memory resulting
in a better utilization of the GPU. The multi-stage reduction algorithm consists of three
main steps: the reduction of the dense matrix to band form, successive reduction to
narrower band form, and the reduction of band matrix to tridiagonal form. The first
two steps are rich in level-3 BLAS routines, while the third step is strictly sequential
and level-2 BLAS oriented. The first stage, as the most computationally-intensive part
of the reduction, can be easily off-loaded to the GPU [16]. In this GPU implementation,
the two-sided update of the trailing submatrix, step 4.16 (Subsection 4.2.2), is performed
on the GPU while the other steps are executed on the multi-core CPU. However, this
approach can not deal with the out-of-core problems, from the point of view of GPU, as it
considers that the problem can fit into the GPU memory. Highly optimized GPU kernels
for basic operations such as matrix multiplication, QR factorization and 2-sided update
can be found in MAGMA and CUBLAS [113] libraries.

The multi-stage eigensolver for the OOC problems from the GPU perspective is similar
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to Algorithm 4.2. There, steps 1, 2 (for-loop) and 6 have to be redesigned so that they
can handle out-of-core problems on GPUs. Generally, an out-of-core algorithm cannot
attain better performance that its in-core counterpart. Therefore, the idea is to transform
the out-of-core problem into the in-core as soon as possible. In the multi-stage reduction
the first step, i.e. the reduction to band form, is always performed out-of-core; however,
the subsequent steps, successive reductions or direct reduction to tridiagonal form, can
be made in-core by carefully deciding on the output bandwidth for the last stage so that
the obtained matrix in the band form can always fit into GPU memory.

Finally, the last step, i.e. the reduction from band to tridiagonal form, is rich in
memory-bounded level-2 BLAS operations that exhibit very low operational intensity. In
such operations, the communication between the CPU and GPU can not be efficiently
overlapped by applying any out-of-core technique since the main bottleneck is memory
bandwidth, not the latency. Thus, the reduction from band to tridiagonal matrix form is
performed entirely on the CPU. However, in the case the eigenvectors are required, the ac-
cumulation of the orthogonal factor produced by this step can be postponed, and applied
by blocks in order to increase the operational intensity. Therefore, the accumulations can
be entirely cast in terms of matrix-matrix multiplications and can be performed by apply-
ing any of the highly-tuned implementations from CUBLAS or MAGMA computational
libraries.

5.1.1 Reduction to band form
The algorithm for the reduction of dense symmetric matrix to band form for problems
that exceed the GPU memory, presented in [36], is based on the SBR toolbox routine
syrdb, as presented in Subsection 4.2.2 and illustrated in Figure 4.1. In order to decrease
the number of memory transfers, and to increase data locality in the GPU memory, the
algorithmic block size is set to be large enough so that the GPU memory is kept full and
the GPU stream processors are busy. However, the algorithmic block size can not be
larger than the required bandwidth w. Therefore the algorithmic block size is set to be
equal to w. That results in the sub-matrix A1 as in Figure 4.1 being void so that only
the sub-matrix A2 has to be updated. The algorithm is composed of two main steps, the
QR factorization of slab A0 and the two-sided update of A2, as illustrated in Figure 5.1.

Algorithm 5.1 illustrates the basic reduction of a dense symmetric matrix to tridiagonal
form. Matrix A is divided into slab A0, with w columns, and sub-matrix A2, where w
denotes the algorithmic block size as well as the targeted bandwidth. For each slab A0, the
QR decomposition is computed and the factors W and Y of the WY -representation (2)
constructed. The upper triangle of A0 is non-zero (factor R) while all other entires are
zeroed, bringing the first w columns of A into the required band form. The sub-matrix
A2 =A(j+w : n,j+w : n) that is to the right of the current slab A0 is updated from both
sides by the orthogonal matrix Q= I+WY T such that A2 :=QTA2Q.

Algorithm 5.1 OOC reduction to band form
Input: Real symmetric matrix A ∈ Rn×n, bandwidth w
Output: Matrix A is overwritten with the resulting band-matrix
1: for j = 1 : n−1 : w do
2: QR decomposition of A0 = A(j+w : n,j : j+w−1)→W,Y
3: Two-sided update: A2 := (I+WY T )TA2 (I+WY T )
4: end for

60



Dense Eigensolvers for Hybrid Architectures

A0 A20

w

j

j

k

b = w k=n-(j+w)+1

Figure 5.1: OOC reduction of dense symmetric matrix to band form.

The dimension of the panel A0 is chosen so that it can fit into the GPU memory while
the trailing sub-matrix A2 exceeds the capacity of the GPU memory. While advancing
through the matrix column-blocks (slabs), the size of the submatrix A2 decreases and the
problem eventually becomes in-core. As mentioned before, by choosing the slab-width
to be equal to the band, the update of slab A1 performed in the original SBR algorithm
is omitted. This trick increases the size of the factors W and Y and assures better
computational intensity that finally yields better performance for the overall algorithm.

Furthermore, as discussed before, it is always more efficient to solve problem in-core
than out-of-core because an out-of-core algorithm will never attain higher performance
than its in-core counterpart. Thus, in the reduction to band form, the bandwidth w can
be chosen such that the following steps (e.g. reduction from band to narrower band form)
can be completely performed as in-core problems. This can be achieved if the matrix is
re-arranged in to the band storage representation that requires only n×w memory spaces
instead of relying on standard storage representation requiring n2 memory spaces.

The algorithm is dominated by two computational routines: the QR decomposition (2)
and the two-sided updated (3). The QR decomposition operates on a large slab that fits
into the GPU while at the same time it constructs factorsW and Y on the GPU requiring
two additional storage spaces that can not fit the GPU. A novel hybrid slab-oriented QR
decomposition is presented next.

Hybrid (in-core) QR decomposition

Let us consider the QR factorization of the k×w matrix A0 and the construction of the
corresponding factors W and Y of the same dimension; see Figure 5.1. For clarity, in
the following discussion Wi stands for W (i : k, i : i+ b̃−1), Yi for Y (i : k, i : i+ b̃−1) and
A0i for A0(i : k, i : i+ b̃−1), where b̃ is the algorithmic block dimension and k number of
rows of A0. The prefix “d” identifies matrices that are stored in the GPU memory; all
operations on these matrices imply the execution on the GPU without further explicit
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mention of it. For simplicity, we also assume that w is an exact multiple of b̃.
Our implementation of the hybrid QR decomposition is illustrated in Algorithm 5.2.

The procedure operates on column blocks of width b̃, and at the beginning, A0 resides
in both main and GPU memory (dA). Let’s consider that the first i− 1 columns of the
(rectangular) matrix A0 have already been factorized. At the beginning of each iteration,
the columns dA(1 : k, i : i+ b̃) are copied back to CPU (3). Then, the QR factorization on
the panel A0i is performed (4) (factor R in stored in the upper triangle of A0i) and the
factors Wi and Yi generated (5) on the CPU. The entries of W (1 : i−1; i : i+ b̃−1) and
Y (1 : i−1, i : i+ b̃−1) are set to zero (6) as the current factors do not change these upper
positions. Then, Wi and Yi are transferred to the GPU (7) to update from the left the
submatrix dA(i : k, i+ b̃ : k) (8). Finally, the matrix Y is simply updated by appending the
obtained columns of Yi and dWi is updated by applying all the previous factors stored in
dW (9) and then appended to dW . The total cost of the algorithm is 4(k2w−kw2 +w3/3)
flops. At the end of the for-loop (2) the updated A0 and Y reside on both CPU and GPU,
while the factor dW is stored on the GPU and has to be transferred back to the CPU
once the algorithm is finished (11).

Algorithm 5.2 Hybrid QR decomposition
Input: Real matrix A0 ∈ Rk×w, algorithmic block size b̃
Output: Matrix A0 overwritten with factor R. Factors W,Y ∈ Rk×w of the WY -

representation
1: copy A0→ dA
2: for i= 1 : w : b̃ do
3: copy dA(i : k, i : i+ b̃−1)→ A0i

4: compute QR factorization of block A0i (xGEQRL)
5: construct Wi and Yi (xGEWYG)
6: W (1 : i−1, i : i+ b̃−1) := 0, Y (1 : i−1, i : i+ b̃−1) := 0
7: copy Wi→ dWi, and Yi→ dYi
8: dA(i : k, i+ b̃ : w) := (I+dWidY

T
i )TdA(i : k, i+ b̃ : w)

9: two-sided update: dWi := dWi+dW (i : k,1: i−1)dY (i : k,1: i−1)TdWi

10: end for
11: copy dW →W

The QR decomposition in Algorithm 5.2 illustrates the hybrid CPU-GPU algorithm
that off-loads arithmetically-expensive tasks, such as the update of dA and dW that are
based on matrix multiplications, on the GPU, while low operationally-intensive, i.e. those
with a small ratio between flops and data transferred, are performed on the CPU. Two
versions of the hybrid QR factorizations are developed depending on the number of data
transfers and the amount of the workspace required in the GPU memory.

Variant QR-1

This version requires memory space on the GPU to hold two matrices, dA and dW , of
size k×w (with k ≤ n), and an additional workspace dZ of size w×w. At each iteration
of Algorithm 5.2, the factor dYi is actually stored overwriting the entries of dAi since,
once dAi is copied to A0i it is not referenced anymore. The updated matrix A0i is now
stored on the CPU so that the associated space on the GPU can be reused for dYi. The
update of the rest of dA (8) is split into two parts, with each being performed via a single
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invocation of the gemm kernel. Specifically, dZ is used as workspace for the first matrix
product dZ := dW T

i dA(i : k, i+ b̃ : w) while, in the second product, dA(i : k, i+ b̃ : w) :=
dA(i : k, i+ b̃ : w)+dY dZ. The application of the previous transforms to the slab Wi can
also be divided into two parts, performed by two calls of the gemm kernel on GPU such
that dW (i : k,1: i−1) and dY (i : k,1: i−1).

The advantage of this version is that it performs a reduced number of data transfers
to/from the GPU. However, it requires that both matrices dA and dW fit into the GPU
memory. As the matrix dimension n grows, the bandwidth w has to be reduced so that
the slab A0 fits into the GPU memory. For very large matrices, this results in operating
with tall column blocks of A0 as well as narrow factors Wi and Yi, which eventually
decreases the ratio between computation and data transfers performed, and impairs the
overall performance. Since the leading dimension of A0 depends on the dimension k, the
limiting factor is the amount of the GPU memory.

Variant QR-2

This version requires less storage space on the GPU: a workspace of size k×w for dA, a
panel dY of size k× b̃ for a single column block of Yi, and an additional workspace dZ of
size w×w. The factor dWi is now stored overwriting dA once the entries of this panel
have been copied to A0i (in the previous version we did this for dYi).

The update of the rest of the matrix dA, Algorithm 5.2 step (8), is performed in the
same way as in the Variant QR-1 using dZ as a temporary workspace. As the matrix Y
is not stored in the GPU memory, the application of the previous transforms to the slab
Wi differs from that of the previous version. In particular, this computation is split into
the following two parts:

dZ := dY (i : k,1: i−1)T dWi, (5.1)
dWi := dWi+dW (i : k,1: i−1)dZ, (5.2)

where dW is stored in dA(1 : k,1: i+ b̃− 1). The update (5.1) is performed by copying
the column blocks Y (i : k,p : p+ b̃−1) to dY and then computing:

dZ(p : p+ b̃−1, : ) := dY T dWi,

for p= 1, b̃+1,2b̃+1, . . . , i− b̃. Once all blocks of Y have been processed and dZ has been
computed, the update in (5.2) can be performed by invoking a single call of to gemm on
GPU.

The advantage of this approach is that it requires less memory space on the GPU
than Variant QR-1, enabling the use of a larger bandwidth w. However, the workspace
on the GPU is still proportional to the number of rows k and, as the problem size grows,
the bandwidth w has to be reduced as well. Compared with the previous version, the
drawback of Variant QR-2 is that it requires more transfers to/from the GPU as, for each
p, one panel of size (k− i)× b̃ is copied to the GPU, which results in additional overhead.
Still, this version is expected to exhibit an acceptable computation/transfer ratio as long
as the bandwidth remains large.

OOC two-sided update of the symmetric matrix

The second computational routine of the out-of-core reduction of a dense symmetric
matrix to band form is the two-sided update of the k× k symmetric trailing submatrix
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A2 = A(i+w : n,i+w : n), Algorithm 5.1 step (3). The update A2 = (I+WY T )TA2(I+
WY T ) can be performed in 4 steps:

(symm) X1 := A2W, (5.3)

(gemm) X2 := 1
2X

T
1 W, (5.4)

(gemm) X3 := X1 +Y X2, (5.5)
(syr2k) A2 := A2 +X3Y

T +Y XT
3 . (5.6)

Consider a partitioning of matrix A2 in Figure 5.1 into square blocks of size b̂× b̂, with
the algorithmic block size b̂ being fixed so that a “few” of these blocks fit into the GPU
memory (the number of blocks will be discussed later). Moreover, the size b̂ depends
only on the available GPU memory and is independent of the dimension of the problem
A2. That feature gives the algorithm the advantage to scale regardless of the matrix
dimension. Theoretically, the only limiting factor is the capacity of the main memory in
which the problem originally resides.

For simplicity, let’s denote blocks A2(i : i+ b̂− 1, j : j+ b̂− 1) with A2ij , W (i : i+ b̂−
1,1: w) and Y (i : i+ b̂− 1,1: w) with Wi and Yi, respectively, and X(i : i+ b̂− 1,1: w)
with Xi. In the following text, two variants of the out-of-core GPU-accelerated two-sided
updates are presented. These variants differ in the GPU storage requirements and the
amount of data transferred between the main and GPU memory, which has direct impact
on the performance.

Variant Update-1

The first variant of the two-sided update aims at decreasing the number of memory
transfers between CPU and GPU by keeping one of the factors,W or Y , and the workspace
matrix on the GPU. Since the factors W and Y are required in all four steps and are
relatively small when the bandwidth is small, it is cheaper to keep them in the GPU
memory and thus reduce unnecessary copying of small memory chunks to/from the GPU.
The drawback of this variant becomes obvious with the increase of the dimension k,
resulting in large tall factors W and Y kept in GPU memory which decrease the block
size of A2. The smaller block size results in more memory transfers and lower ratio
between flops performed and data copied on the GPU. The workspace requirements on
GPU are two panels of size k×w for keeping W/Y and the workspace matrix of b̂× b̂.

Consider first the computation ofX1 in Equation (5.3). This step operates with factors
W and Y in the GPU memory and the out-of-core A2 divided into square blocks of order
b̂. The implementation is given in Algorithm 5.3 where, for simplicity, X1 is denoted as
an X. Note that A2 is symmetric and only the lower triangle is referenced. Furthermore,
once the block A2ji is copied to the GPU, we can update blocks Xi and Xj (8)-(9) of
X because blocks A2ji and A2ij , i.e AT2ji

, respectively, participate in their update. The
diagonal blocks are updated in advance (3). Thus, to update X1 the lower block triangle
of A2 and factor W have to be transferred only once to the GPU.

After the first step, both matrices W and X1 are stored in the GPU memory, while
A2 is unchanged. The next two steps, corresponding to Equations (5.4) and (5.5), can be
performed completely as in-core GPU problems via two calls to the gemm routine. No
additional copy is required in step (5.4) since X1 and W are already on the GPU and the
intermediate matrix X2 (of dimension w×w) is stored in the workspace dA. The block
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Algorithm 5.3 OOC variant 1: X1 := A2W

Input: Real symmetric matrix A2 ∈ Rk×k, factor W ∈ Rk×w
Output: Real matrix X1 ∈ Rk×w
1: for i= 1 : n : b̂ do
2: Copy A2ii → dA
3: dXi := dAdWi

4: end for
5: for i= 1 : n : b̂ do
6: for j = i+ b̂ : n : b̂ do
7: Copy A2ji → dA

8: dXi := dXi+dAT dWj

9: dXj := dXj +dA dWi

10: end for
11: end for

size b̂ is chosen so that w <= b̂. In step (5.5) the workspace dW is re-used for keeping Y
and the resulting X3 is written into dX requiring not additional workspace on the GPU.

The last step (5.6) is tackled out-of-core by dividing A2 into blocks and updating them
on the GPU as follows:

A2ij := A2ij +X3iY
T
j +YiX

T
3j
. (5.7)

Because of the symmetry of A2 only the lower block triangular has to be copied to
the GPU. Since only one block of A2 can fit into the GPU memory, after each update
the block is returned to the main memory and the next block transferred to GPU and
updated.

The advantage of this version is that we keep W/Y and one of X1, X2 or X3 in
the GPU memory, and only one block Aij is copied to/from the GPU. This significantly
reduces the number of memory transfers and enables data reuse once it resides on the
GPU. However, with the increase of w, the block size is reduced which leads to a loss of
efficiency as the number of copy transfers grows and the algorithm operates on smaller
blocks.

Variant Update-2

The second variant tries to overcome the scalability limitations of variant Update-1 that
occur with the increasing dimension k. The main limitation of the previous variant is that
full-size auxiliary matrices X1 and X3 are kept in the GPU memory. That is partially
alleviated by dividing X1/X3 into blocks and keeping only one of them in the GPU
memory at the time, but with the cost of increased number of data transfers. Hopefully,
the memory transfers can be overlapped with the computation as the block size remains
large enough.

This version requires one block of size b̂× b̂ to keep block A2ij , one slab of size k×w,
and one additional slab of size b̂×w. Therefore, this variant requires less storage than
the previous one, concretely (k− b̂)×w less data, thus the block size b̂ can be larger.
The drawback of the new variant is in increased number of memory transfers because full
slabs W/Y are not kept permanently in GPU memory while X1 and X3 are transferred
by blocks.
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In step (5.3) of Variant Update-2 only one block (b̂×w) of X1 is stored on GPU at
the time. Thus, the advantage of updating two blocks of X1 with the current A2ij block
in the GPU memory is not possible anymore. The new variant of the algorithm is listed
in Algorithm 5.4. Each block A2ip is transferred to the GPU (not only the diagonal and
lower triangle blocks). That results in twice as much copying than in Variant Update-1.
In each pass of i-loop a block of b̂ rows of X1, stored in positions dX, is updated (8).
When this update is completed, block X1i , is returned to the main memory. In order to
store the updated X1 an additional workspace of size k×w is required. At the end of
these steps, matrix W is stored on the GPU while X1 and A2 reside in the main memory.

Algorithm 5.4 OOC variant 2: X1 := A2W

Input: Real symmetric matrix A2 ∈ Rk×k, factor W ∈ Rk×w
Output: Real matrix X1 ∈ Rk×w
1: Copy W → dW
2: for i= 1 : n : b̂ do
3: Copy A2ii → dA
4: dX := dA dWi

5: for j = 1 : n : b̂ do
6: if j 6= i then
7: Copy A2ji → dA
8: dX := dX+dA dWi

9: end if
10: end for
11: Copy dX →X1(i : i+ b̂−1, : )
12: end for

In step (5.4) X2 is updated as:

X2 :=X2 + 1
2 dX

T
1i
dWi.

where i= 1, b̂+1,2b̂+1, . . . ,k− b̂ is the number of blocks X1 is divided into. Factor W is
already on GPU and X1 is transferred by blocks. As in the previous variant, dA is used
to keep X2 and no additional workspace is required. The only requirement is that b̂≥ w,
so that dA is large enough to keep matrix X2.

Step (5.5) is also performed out-of-core since matrices X1 and X3 do not fit into the
GPU memory. Matrix X1 is brought into the GPU memory (dX) by blocks X1(i : i+ b̂−
1,1: w) while Y is copied once into the storage space dW . Matrix X2 is already stored
in dA from the last step. The update of the block X3i =X3(i : i+ b̂−1,1: w) is listed in
Algorithm 5.5.

Algorithm 5.5 OOC variant 2: X3 =X1 +Y X2

1: Copy Y → dW
2: for i= 1 : k− b̂ : b̂ do
3: dX := dX+dWi dA
4: Copy dX →X3i

5: end for
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At the end of each iteration (4), the computed block X3(i : i+ b̂− 1,1: w) stored in
dX is returned to the main memory. X3 is then transferred into the same workspace as
X1 (as this block is not required anymore).

In the last step (5.6), blocks Xi =X3(i : i+ b̂−1,1: w) and Xj =X3(j : j+ b̂−1,1: w)
are required to update each block A2ij . Once the block is updated it is returned to the
main memory. Thus, three memory transfers to and one transfer from the GPU memory
are required to update one block A2ij . Algorithm 5.6 illustrates the update of one block
A2ij . Note that Y that is already stored in dW from the previous step can be re-used
with no additional copying.

Algorithm 5.6 OOC variant 2: Symmetric 2k update
1: Copy A2ij → dA
2: Copy Xi→ dX
3: dA := dA+dX dW T

j

4: Copy Xj → dX
5: dA := dA+dWi dX

T

6: Copy dA→ A2ij

5.1.2 Reduction to narrower band form
The second stage of the multi-stage approach is also the computationally-intensive phase
of the reduction rich in level-2 operations that can efficiently exploit the GPU. Since the
width of the band is chosen in the previous stage to be small enough so that the band ma-
trix fits into the GPU memory, the problem becomes in-core regarding the GPU. Although
the reduction to narrower band form is now GPU in-core, it is still expensive, especially
when the eigenvectors are required, because of the arithmetically-intensive bulge-chasing
phase that is used in the reduction. The algorithm is based on the SBR routine sbrdb
that reduces a band matrix to narrower band form.

The algorithm operates on the band matrix B, with bandwidth w1, stored in the band
storage representation that requires w1×n storage spaces and is much lower than in the
standard representation if w1 � n. In the band storage format, the main diagonal is
placed in the first row, and the following subdiagonals are stored in successive rows of
this matrix. In other words, if B̂ is a band storage representation of the band matrix B,
then element B(i, j) is saved in the position B̂(1 + i− j,j).

Assume that we want to reduce a band matrix Bw1 of bandwidth w1, into a band
matrix Bw2 , with bandwidth w2 <w1. The goal is to annihilate d=w1−w2 subdiagonals
of Bw1 , i.e. subdiagonals from w2 to w1. The procedure is based on the “annihilate-and-
chase” strategy and employs Householder transforms for this purpose. The reduction
is done by blocks, annihilating one block of subdiagonals at a time as illustrated in
Figure 5.2. The idea of the out-of-core multi-stage reduction was to perform the reduction
from dense to band form out-of-core, while the following steps are performed as in-core
GPU problems. Therefore, the bandwidth w1 was chosen such that the matrix B̂ in band
storage representation can fit into the GPU memory.

At the beginning of the reduction, matrix B̂ is stored in both the main and GPU
memory. The first d outermost subdiagonals from the first nb columns, block designated as
“QR” in Figure 5.2 (left), are annihilated on the CPU by performing the QR factorization
and the transformation Q = I +WY T in the WY -representation generated (2). The
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Figure 5.2: Left: Annihilation of the outermost sub–diagonals and updating the rest of the
matrix, Right: bulge chasing part of the first fill-in block

transforms are then transferred to the GPU and applied from the left to block “PRE” (3).
Furthermore, the transforms are applied from both sides to the symmetric block “SYM”
(note that only the lower triangular is updated), and from the right to block “POST” (5)
on the GPU.

Algorithm 5.7 In-core GPU reduction to narrower band form
Input: Band matrix Bw1 ∈ Rw1×n

Output: Matrix Bw2
1: Copy block “QR” GPU → CPU
2: Compute QR on the block “QR” and generate factors W and Y (in-core CPU)
3: Copy W,Y CPU → GPU, update block “PRE”(in-core GPU)
4: for k = i+w2 : n : w1 do
5: Update blocks “SYM” and “POST” (in-core GPU)
6: Copy fill-in block “QR” GPU → CPU
7: Compute QR and generate associated W,Y (in-core GPU)
8: Copy W,Y CPU → GPU, update block “PRE” (in-core GPU)
9: end for

The first nb columns are brought to band form with bandwidth w2. However, note
that in the block “POST” the first d subdiagonals below the band (i.e. subdiagonal w1)
are filled-in with non-zero elements. At this stage, the first nb annihilated columns are
located on the CPU, while the rest of the updated matrix B̂ are on the GPU. To restore
the B̂ to band form, the annihilation and chase step is performed to remove these non-
zero elements below the band. The bulge-chasing step is illustrated in Figure 5.2 (right).
First, the nb updated columns, block “QR”, is returned from the GPU to CPU (6). Then,
the QR decomposition is applied on “QR” to annihilate the fill-ins of the d subdiagonals
below the band and the corresponding transforms generated (7) and Figure 5.2 (right)
on CPU. Then the current transforms are copied to the GPU and applied to the blocks
marked with “PRE” (8), “SYM”, and “POST” (5). This generates new fill-ins below
the second “POST” block, Figure 5.2 (right), and the process is repeated, chasing down
the fill-ins until they are pushed off the matrix. Upon completion of the bulge-chasing
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phase, a new block of nb columns is reduced to band form w2 and the process starts with
retrieving the updated block “QR” to the main memory (1). Upon completion, the band
matrix Bw2 is stored in the main memory. Additional storage is required in the GPU to
keep the W and Y factors as well as a b1×n workspace for the fill-ins generated during
the successive annihilate-and-chase steps.

5.2 The Krylov subspace method
The Krylov subspace approach was traditionally used when only a subset of the eigen-
values and eigenvectors was required, or in case the problem was structured or sparse.
This approach is particularly efficient for the solution of large sparse eigenproblems in
which the sparsity structure of the matrix can be exploited and the arithmetic complexity
decreased.

For the solution of symmetric eigenproblems, the Krylov subspace method employs
a Lanczos-based method [20] to iteratively construct an orthogonal basis of the Krylov
subspace. Upon convergence, the eigenvalues of a resulting tridiagonal matrix Hk, Algo-
rithm 4.6, of reduced dimension k≥ 2s (with s being the number of sought-after eigenval-
ues), approximate certain eigenvalues of A. Computing the eigenvalues and eigenvectors
from Hk adds little cost to the computations since in practice the number of sought-after
eigenvalues is much smaller than n. For symmetric matrices, this method exhibits fast
convergence, low computational cost (O(n2) flops per iteration) and requires minor ad-
ditional storage space. The in-core implementation of Lanczos method [94] on multi-core
systems outperforms the multi-stage approaches even for dense eigenproblems especially
when hardware accelerators, such as GPUs, are used [37].

The Krylov subspace-based methods are completely cast in terms of level-2 BLAS
operations thus exhibiting low computational cost compared to the direct eigensolvers.
However, when solving large-scale eigenproblems, the main drawback of the Krylov sub-
space based methods (e.g. Lanczos) is that a significant part of their computations is
spent in terms of memory-bounded matrix-vector product. For a matrix of size n×n,
this kernel roughly performs 2n2 flops on n2 data, i.e. the ratio between flops performed
and data transfers is O(1). When operating with out-of-core data, these methods are
limited by data movement and therefore attain very low performance. Thus, even if their
computation is accelerated by exploiting a GPU better performance will not be achieved
as the method is bounded by data movements over a relatively slow PCIe bus.

Although level-2 BLAS routines are memory-bound, and cannot improve the per-
formance if data are out-of-core from the GPU perspective, they outperform multi-core
implementations by an order of magnitude if data are in-core. Because the majority of
computations in Lanczos methods are cast in terms of symmetric matrix-vector prod-
ucts, they can greatly benefit from using the GPUs as long as data are in-core from the
viewpoint of the GPU. The GPU-based Lanczos algorithm has been proved not only to
be faster than its multi-core variants but also to be competitive with GPU-based direct
eigensolvers even for dense symmetric problems when a small subset of eigenvalues is
required [37].

5.2.1 Introduction to the algorithm
The Krylov subspace methods described in Section 4.3 with aim to solve the standard
eigenproblem. However, this thesis is focused in the solution of generalized symmetric
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eigenvalues problems for very large-scale instances. Although the ARPACK package
provides routines for the solution of generalized eigenproblems, these cannot exploit the
GPU performance and, moreover, cannot take advantage of different approaches that can
ultimately transform the Krylov subspace method into an efficient algorithm even for the
solution of dense generalized eigenproblems.

In the direct solvers based on the multi-stage reduction to tridiagonal form, the gener-
alized eigenproblem AX =BXΛ was explicitly transformed into the standard eigenprob-
lem CY = Y Λ, where C = U−TAU−1 and U is obtained from Cholesky factorization of
B = UTU . A similar approach can be applied to Krylov subspace-based approach. How-
ever, an explicit reduction to a standard eigenproblem is expensive, especially for very
large problems, since it requires 7/3n3 flops. As the computational cost of the Krylov
subspace methods is O(n2) flops, this explicit transformation could easily overpace the
iterative phase of the Lanczos procedure and become the most expensive part.

In the reduction to standard eigenproblem, the Cholesky factorization is initial step
that can not be skipped. Fortunately, this stage is known to deliver very high performance
on a large variety of HPC architectures, including multi-core processors and GPUs, and its
functionality is covered by current numerical libraries (e.g., LAPACK, libflame, ScaLA-
PACK, PLAPACK, etc.) including some OOC extensions (SOLAR, POOCLAPACK).
The construction of C can be performed via two calls to the triangular systems solve
(trsm routine) but the construction can be avoided during Lanczos iterations. This ap-
proach removes part of the arithmetic complexity from the first stage of the algorithm,
but introduces additional flops into the Lanczos iteration. Depending on whether C is
constructed explicitly at the beginning of the method or used implicitly within the Lanc-
zos iterations, two GPU-based in-core Krylov subspace methods are developed in this
dissertation: the Explicit Krylov subspace (ke) and Implicit Krylov subspace algorithms
(ki).

Both algorithms consist of three parts: transformation from a generalized to standard
eigenvalue problem, Krylov subspace based procedure, and back-transformation that re-
covers the eigenvectors of the generalized eigenproblem from those of the standard eigen-
problem. The first two stages are described in the following subsection as part of two
variants of algorithm while the back-reduction is skipped, since it can be performed via a
single call to a matrix-matrix multiplication.

5.2.2 Explicit Krylov subspace algorithm (ke)
This variant of the algorithm strictly follows the transformation to the standard eigen-
problem and explicitly builds matrix C, as illustrated in Equation (4.3) and presented in
Algorithm 5.8. The algorithm starts with the transformation to the standard eigenprob-
lem by computing the Cholesky factorization of B (1) and explicit construction of C (2)
as in Equation (4.6). The construction can be performed by two calls to the level-3 BLAS
kernel trsm

A := AU−1 (5.8)
C := U−TA, (5.9)

with the arithmetic cost of 2n3 flops. Because of the symmetry of C, only the lower or
upper triangle is stored in the storage space ofA that is not used in the subsequent steps. A
Lanczos procedure is then applied, Algorithm 5.8 (4) and (5), that returns the eigenvalues
and eigenvectors of the standard eigenproblem CY = Y Λ. The stopping criterion for
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the Lanczos iterations is the relative accuracy of the Ritz values that approximate the
eigenvalues of the standard eigenproblem and is provided at the beginning of the iteration
process.

Algorithm 5.8 Explicit Krylov subspace algorithm
Input: Input matrices A,B ∈ Rn×n
Output: k eigenvalues and associated eigenvectors
1: B = UT U
2: C = U−TA U−1

3: while not stop criterion do
4: call saupd(. . .)
5: wk+1 = Cuk
6: end while
7: Solve eigenproblem T
8: Compute eigenvectors of generalized problem (back-transformation)

ARPACK leverages reverse communication where the Lanczos step is performed by
ARPACK routine saupd (4) while the symmetric matrix-vector multiplications is done
by a separate call (5). At each iteration, the vector uk (as in Algorithm 4.6 (4)) generated
by the saupd routine is multiplied by C (5) in 2n2 flops. The resulting vector wk+1
is forwarded to the next call of the saupd routine and a new iteration starts. The
saupd routine implements the Lanczos iteration that is described in the for loop of
Algorithm 4.6.

The total computational cost of saupd is negligible compared with other parts of the
algorithm. The computation of uk+1 from wk+1, which is required for the next step, only
requires a few operations of linear cost in n. The re-orthogonalization (in case it is needed)
can be done in O(n) to O(mn) flops, for the best and worst case, respectively and can
potentially contribute substantially to the total computational time for moderate values of
m, where m is the number of sought-after eigenvalues. In case implicit restarts are needed
after the Lanczos augmentation step, an additional cost of O(nm2) flops per restart is
required, as each restart involves the application of the QR iteration to the tridiagonal
subproblem T . After the stopping criterion is reached, the converged eigenvalues and the
corresponding eigenvectors are returned (7) and the back-transform (8) is performed to
obtain the eigenvectors of the starting generalized eigenproblem, Equation (4.7), with an
additional cost of n3 flops.

The memory requirements of the Explicit Krylov approach is 2n2 elements for storing
both matrices A and B, although after a careful design and re-implementation of some
BLAS routines used in this algorithm, only n2 memory entries are required. After the
Cholesky factorization, only the lower or upper triangular matrix is stored instead of full
matrix B. Furthermore, the matrix A is symmetric so only half of the matrix needs to be
stored. The memory needed to store the eigenvectors is O(nm) and is negligible as long
as the number of sought-after eigenvalues m is small.

5.2.3 Implicit Krylov subspace algorithm (ki)
This variant of the algorithm is similar to the explicit one except that the matrix C is not
formed explicitly but is constructed during Lanczos iterations. The complete method is
described in Algorithm 5.9. The main difference with the previous variant is that, within
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each Lanczos iteration, matrix C is implicitly “applied”, as illustrated in Algorithm 5.9 (4).
This construction can be performed by the following three operations:

(trsv) y := U−1uk (5.10)
(symv) y := Ay (5.11)
(trsv) wk+1 := U−T y. (5.12)

The first and the third steps can be performed by invoking the BLAS kernel trsv and
the second step by a single call to the symv routine.

In the Implicit Krylov subspace approach no initial cost is payed for the explicit con-
struction of C at the beginning. However, the cost per iteration for computing vector
wk+1 doubles with respect to the previous case, from 2n2 to 4n2 flops. Computing the
vector uk+1 from wk+1 at each Lanczos step (saupd) requires O(n) flops, and the afore-
mentioned re-orthogonalization costsO(nm) flops; in addition, each of the restarting steps
performs O(nm2) flops. The stopping criterion for the variant ki is the same as for the
explicit variant.

Algorithm 5.9 Implicit Krylov subspace algorithm
1: B = UT U (Cholesky factorization of the matrix B)
2: while not stop criterion do
3: call saupd(. . .) (Implicitly restarted Lanczos algorithms)
4: wk+1 = (U−T (A(U−1uk))), (implicitly construction of C)
5: end while
6: Calculate eigenvalues and eigenvectors
7: Calculate eigenvectors of the generalized problem (back transformation)

The memory requirements are the same as in the case of the explicit variant ke and
the amount of 2n2 elements. Likewise, the memory requirements can be decreased to n2

if the symmetry of A and upper/lower triangular form B, are exploited. If we compare
the total flops performed by these two variants of the Krylov subspace algorithms, one
can notice that the total flops for the explicit variant is 7/3n3 +k×2n2 and for implicit
is 1/3n3 +k× 4n2. If we remove from the calculation the parts of the code that are the
same for both cases: Cholesky, back transform, and Lanczos steps (saupd routine), the
number of flops becomes k× 2n2 + 2n3 for ke and k× 4n2 for ki, where k is the total
number of Lanczos iterations performed. The performance of the algorithm depends on
the number of iterations k. If the k� n then ki performs less flops; in the case k= n both
versions perform 4n3 flops; and in the case k ≥ n the ke becomes the algorithm of choice.
The last case may occur if a large number of eigenvalues is required or the convergence is
slow due to the matrix condition.

5.2.4 Algorithm improvements
The Krylov subspace algorithms based on Lanczos procedures are mostly composed of the
memory-bound symmetric matrix-vector products that attain very low performance for
large size problems stored in the main memory. The Krylov subspace methods, applied to
OOC problems, cannot improve their performance by exploiting the GPU since the bot-
tleneck is not in the number of operations performed but in the communication overhead.
However, even memory-bound algorithms can significantly increase their performance by
exploiting GPU if their data fits fits into the GPU memory.
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In the Krylov subspace method, the straight-forward approach is to exchange all
level-2&3 BLAS routines, such as Cholesky, trsm, trsv and symv, with the calls to
the corresponding CUBLAS and MAGMA routines. However, as mentioned before, all
CUBLAS and MAGMA routines, expect of a few, cannot solve problems whose required
storage space exceeds the GPU memory. Despite these constraints, large-scale eigenprob-
lems can be solved by the GPU-based version of Krylov subspace on GPU. All parts
of the Lanczos-based method, except the symmetric matrix-vector multiplication, can
efficiently exploit a GPU even if data are out-of-core. Namely, the first step in both
Krylov subspace algorithms, explicit ke and implicit ki, is a compute-bound Cholesky
factorization. The out-of-core implementations from MAGMA library and some inde-
pendent research [35] showed that memory transfers can be efficiently overlapped with
computations and deliver very high performance on GPUs for this operation. Further-
more, in the explicit Krylov subspace algorithm, matrix C, Equation (5.9) is explicitly
constructed via a communication-efficient trsm routine. This routine can be efficiently
implemented to achieve very high performance even if C is out-of-core for the GPU. The
construction of C can be easily implemented by applying blocked algorithms that divide
matrices C, U and A into square blocks that are processed one at the time on the GPU
while minimizing the communication between the main and GPU memories. However, a
highly efficient out-of-core general matrix-matrix multiplication on GPU, developed for
spectral divide–and–conquer algorithm, Section 5.3, can be used as well but at the cost
of a higher arithmetic cost. The computation of eigenvectors of generalized eigenproblem
(back-transformations) can also be computed via out-of-core implementations of general
matrix-matrix multiplication.

The only memory-bound part that cannot be efficiently processed on GPU, if the data
is OOC from the GPU perspective, is the symmetric matrix-vector multiplication. How-
ever, the Krylov-subspace algorithms exhibit very fast convergence and low computational
cost (2n2 flops per iteration) when only a small subset of the spectrum is required. In
particular, if the ke variant is applied for the solution of a large-scale eigenproblem, the
total computational time for the iterative part, Algorithm 5.8 (3)–(6), becomes negligible
compared with the explicit construction of C. The construction, as presented earlier, can
be cast in terms of highly-tunned Cholesky and matrix-matrix multiplication kernels that
attain very high performance on the GPU even when C cannot entirely fit into the GPU
memory.

5.3 Spectral divide-and-conquer based on QDWH
The state-of-the-art spectral divide–and–conquer (D&C) algorithm solves a symmetric
eigenproblem by recursively decoupling it into subproblems using successive invariant
subspaces for a subset of spectrum. The development of this algorithm is justified be-
cause of its parallelism and reduced communication cost. However, the spectral D&C
presents significantly higher arithmetic cost than the direct and Krylov subspace-based
eigensolvers. The arithmetic cost of SD&C was drastically reduced by the recent spec-
tral divide–and–conquer algorithm based on QR-based dynamically weighted Halley al-
gorithm (QDWH) [107]. Furthermore, this algorithm achieves lower bounds on commu-
nication cost since most of its operations can be cast in terms of level-3 BLAS oper-
ations. The QDWH algorithm, which computes the polar decomposition, is based on
the QR factorization and matrix-matrix operations that can be efficiently implemented
in a communication-optimal manner [112, 114]. Compared it with the iterative Krylov
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subspace-based approach, the SD&C algorithm based on QDWH is a compute-bound
eigensolver and therefore could attain very high performance on GPU even when the
problem is out-of-core from the GPU viewpoint [115].

The out-of-core SD&C eigensolver is based on the algorithm presented in Section 4.4
and published in [107] that compute all eigenvalues and the corresponding eigenvectors.
If only a subset of all eigenvalues is required, certain modifications are required. The
original algorithm recursively reduces the subproblems till scalar level or a pre-defined
subproblem size. In the latter case, a standard eigensolver (e.g. one-stage eigensolver) is
next applied to obtain the eigenvalues. In other words, the algorithm is called recursively
till the matrix becomes diagonal (scalar level) or nearly diagonal (small-size subproblem).
Note that if only a subset of eigenvalues is required, then there is no need to go down with
the full diagonalization but only one subproblem has to be diagonalized thus reducing the
arithmetic cost.

5.3.1 Out-of-core spectral D&C algorithm
The out-of-core spectral D&C algorithm described next is applied when only a small
subset of the eigenvalues is required; however, it can be used when all eigenvalues are
computed but at increased arithmetic cost. The main idea when tackling an out-of-core
problem is to reduce it to an in-core problem as soon as possible and thus to remove
the expensive data transfers. The same idea is applied to our novel out-of-core spectral
D&C algorithm that decouples problem into subproblems, such that they fit into the GPU
memory.

By using the SD&C approach, the problem can be decoupled such that all required
eigenvalues, the smallest or largest s, are a subset of the eigenvalues of one of the sub-
problems. The idea underlying of our out-of-core SD&C is to decouple the out-of-core
problem into two subproblems, one of which is small enough to fit into the GPU memory
but big enough to superset all the required eigenvalues. Then any eigensolver, direct,
iterative or even SD&C can be applied to compute the sought-after eigenvalues in-core.

The main problem is to find a good splitting point σ that divides the original prob-
lem into two subproblems, A1 or A2, such that one of them contains a superset of the
sought-after eigenvalues. Since σ splits the spectrum into two parts, one containing the
eigenvalues that are smaller than σ and the other with those that are larger, in order to
compute the s largest eigenvalues, σ should be smaller than the s-th largest eigenvalue
and larger than s-th smallest eigenvalue if the s smallest eigenvalues is required.

The idea of choosing σ to be a close bound of the s-th eigenvalue gives a subproblem
of dimension k×k, where, if the smallest eigenvalues are desired, k = dσe ≥ λs (s smallest
eigenvalues). If the number of sought-after eigenvalues s is also small, i.e. s� n, then the
subproblem is small and the out-of-core recursion can be stopped.

Algorithm 5.10 illustrates the out-of-core spectral D&C algorithm based on the QDWH
and presented in [115] that computes the smallest s eigenpairs. The algorithm computes
partial spectral decomposition of A = VsDsV

T
s where Ds and Vs are the sought-after

eigenvalues and eigenvectors, respectively, computed directly from the obtained subprob-
lem A1. Opposite to the algorithm described in Section 4.4, only one recursion step is
performed corresponding to the out-of-core decoupling of matrix A. The splitting point
σ is chosen (1) so that matrix A1 contains a superset of sought-after eigenvalues. Then,
the polar factor Up of the matrix A−σI is computed via the QDWH algorithm (2). In
case A cannot fit into the GPU memory, QDWH is executed on the GPU. If a good σ is
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chosen, the computation of the subspace A1 can be performed entirely in-core. That in-
cludes computing only the orthogonal matrix V1 (3) and the construction of A1 (4). If the
dimension k of subproblem A1, i.e. number of columns of V1, is smaller than the number
of required eigenvalues s, the algorithm has to be repeated with a larger σ. Given that
s� n, a good selection of σ that provides small k, ensures that A1 can computed in-core.
Therefore, if k is larger than s, any standard eigensolver can be applied to compute the
s smallest eigenpairs of the subproblem A1 (6), for example, the dsyevr routine from
LAPACK. If the eigenvectors are required, they can be computed from those of A1 by
applying a matrix-matrix multiplication (7). The computational cost for steps (6) and (7)
becomes negligible provided s is small.

Algorithm 5.10 QDWH based OOC spectral D&C algorithm
Input: Symmetric dense matrix A ∈ Rn×n, s number of sought-after eigenpairs
Output: Partial spectral decomposition of A= VsDsV

T
s

1: Choose σ
2: Compute polar factor Up of A−σI via QDWH (OOC GPU)
3: Compute orthogonal matrix V = [V1V2] such that 1

2(Up+ I) = V1V T
1 (in-core GPU)

4: Compute A1 = V T
1 AV1 (OOC GPU)

5: if k ≥ s then
6: Compute eigenpairs of A1 (in-core CPU)
7: Compute eigenvectors of A from those of A1 (back-transformation) (in-core GPU)
8: else
9: Go to the step (1) and choose larger σ

10: end if

As illustrated in Algorithm 5.10, the only computationally-intensive part is the polar
decomposition via the QDWH algorithm (2). This operates on matrix A of dimension
n×n. From Equation (4.31), the computationally-intensive part is the QR factorization
of a 2n×n matrix. In the following subsections we describe the implementation of the
OOC QDWH algorithm on the GPU. Furthermore, the arithmetic and communication
cost can be significantly reduced by exploiting the special structure of the 2n×n matrix.

5.3.2 OOC QDWH algorithm
In the out-of-core spectral D&C eigensolver, the QDWH algorithm for computing polar
decomposition remains the main computational bottleneck. The algorithm operates on
problems for which matrix A or an auxiliary matrix of dimension 2n× n, required in
the QDWH iteration, do not fit into the GPU memory. The pseudo-code is given in
Algorithm 5.11.

As discussed in Section 4.4, the QDWH iteration is run until the difference between
two steps is smaller than the user-defined tolerance “tol” (7) or if the maximum number
of iterations, “maxIter“, is reached. If we analyze the algorithm, the QR factorization of
X̂i (5) and update of Xi+1 (6) are the only computationally-intensive parts of the QDWH
algorithm. For n large enough, the QR factorization becomes an out-of-core problem for
the GPU. In the matrix one can notice that the upper n×n part of X̂i is symmetric
and the lower n×n part is the identity matrix. While there exist QR implementations
that can deliver very high performance on GPUs [8], they lack specialized kernels that
can exploit such matrix structure and therefore perform additional flops. By applying
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Algorithm 5.11 QDWH algorithm for polar decomposition
Input: Symmetric dense matrix A ∈ Rn×n
Output: Polar factor Up
1: X0 = A/α
2: for i= 0 :maxIter do
3: Calculate factors γ, ai, bi and ci
4: Set matrix X̂i =

[ √
ciXi

In

]

5: X̂i
QR−−→

[
Q1
Q2

]
R

6: Xi+1 = bk
ck
Xi+ 1√

ck
(ak− bk

ck
)Q1QT2

7: if ‖Xi+1−Xi‖F < tol then
8: break
9: end if
10: end for
11: Up =Xi+1

the routines from traditional computational libraries, the QR factorization of a 2n×n
matrix costs 10

3 n
3 flops. If the eigenvectors are required then an additional 10

3 n
3 flops are

required to explicitly construct factor Q.
The second arithmetically expensive part is the matrix-matrix multiplication (6) per-

formed in the update of Xi+1. Taking into account that Xi+1 is symmetric, we can exploit
this structure to develop a new out-of-core symmetric matrix-matrix multiplication (based
on LAPACK’s routine gemm):

C = αABT +βC.

This routine is similar to the corresponding routine from BLAS but with C symmetric.
By employing the square block strategy, it is possible to further reduce both the commu-
nication and algorithmic costs by referencing only the lower or upper triangular part of
C and thus reduce volume of data copied to and from GPU memory.

The total cost of one QDWH iteration, with all improvements applied, is roughly 5n3

per iteration and includes 4n3 flops for the QR factorization and generating Q= [Q1Q2],
and 2/3n3 + bn2 flops for the symmetric matrix-matrix multiplication, where b is the
algorithmic block size. The memory requirements are n2 elements for storing matrices
A/Xi (both are symmetric and can be stored into one storage space by keeping only
the upper/lower triangle of each and the diagonal of one of them in an additional array
with the dimension n), the additional workspace of size 3n2 for storing X̂i (2n2) and a
few auxiliary arrays (n2). In the following we offer a detailed description of a novel out-
of-core QR factorization for structured matrices and the OOC symmetric matrix-matrix
multiplication.

OOC-GPU QR factorization

The OOC-GPU algorithm for the QR factorization encodes a left-looking, slab-oriented
approach [33] that transfers data by column blocks (slabs) of width k, and operates on
blocks of width b� k. This approach is implemented as an blocked algorithm consisting
of two-levels, in which the first block-level, operating on slabs of width k, optimizes
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the transfers to/from the GPU memory and improves the utilization of GPU. The second
level, or cache-level blocking, optimizes the execution on the multi-core CPU by improving
cache data locality.

Let us denote the 2n×n matrix X̂i in Algorithm 5.11 as D, and consider a partitioning
of this matrix into blocks of dimension s× s each, where Dij denotes the (i, j)-th block
and, for simplicity, we assume that n is an integer multiple of k. Here, the parameter k is
chosen so that a slab of size (n+k)×k fits into the GPU memory. Routine QR_OOC in
Algorithm 5.12 and Figure 5.3 describe how to leverage the upper triangular structure of
the bottom n×n half of D during the computation of the QR factorization of this matrix
using our OOC-GPU algorithm.

Algorithm 5.12 QR_OOC(n, k, b, D)
1: r = n/k
2: for i= 1 : r do
3: Copy D(1 : r+ i, i) to GPU
4: for j = 1 : i−1 do
5: D(j : r+ j, i) = Update_OOC(n,k,b,D(j : r+ j,j),D(j : r+ j, i))
6: end for
7: D(i : r+ i, i) = QR_Hybrid(n,k,b,D(i : r+ i, i))
8: Copy D(i : r+ i, i) to main memory
9: end for

n+s

n+s

s s

D( j : r+j, j )

D( j : r+j, k )

D( k : r+k, k )

Figure 5.3: Illustration of the QR_OOC factorization on GPU.

At each iteration of loop (2), a slab D(1 : r+ i, i) of size (n+k)×k is updated. The
update starts with a copy of the slab to the GPU memory and the application of all the
previous transformations, loop (4), to the left of the slab (left-oriented QR factorization).
The previous transforms are divided into slabs of width k and applied to the corresponding
fraction of the slab D(:, i) from the left, invoking routine Update_OOC (5) for that
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purpose. As the whole set of previous transfers to not fit into the GPU memory they
are divided into slabs that can fit the GPU memory and applied one at a time. When
the update is done, the slab D(i : r+ i, i) is factorized (7) by invoking the QR_Hybrid
routine. Note that the QR factorization can be performed completely in-core since the
working slab fits into the GPU memory. Upon the completion, the slab D(i : r+ i, i) is
copied back to main memory (8).

The algorithm requires an n+ k× k memory space to store the working slab D(j :
r+ j, i) and an n+k× b space for a slab of the previous transformations. Therefore, the
update of the current slab is performed out-of-core while the QR factorization can be
performed as a hybrid in-core GPU problem.

The bottom sparse structure of matrix D partially exploited by dividing it into large
slabs of width k that fits the GPU memory. In Algorithm 5.13, Algorithm 5.14, and
Figure 5.4 we present routines Update_OOC and QR_Hybrid. These algorithms
further exploit the zero-structure of the bottom half of D by introducing a second level of
the blocking. In these routines, matrices E and F are partitioned into blocks of size b×b,
where Eij , Fij stand for the (i, j)-th blocks of the corresponding matrix. For simplicity, we
assume that s is an integer multiple of b. The Update_OOC routine operates on slab F
(slabD(j : r+j, i) from Algorithm 5.12) which is stored in GPU memory, streaming blocks
of E; i.e. previous transforms (D(j : r+ j,j) from Algorithm 5.12) from main memory to
the GPU and updating F from the left. The QR_Hybrid routine computes a QR
factorization of E (slab D(i : r+ i, i), stored in the GPU), using a conventional blocked
left-looking procedure with block size b, so that the block factorizations and orthogonal
transforms are computed in the CPU (4), while the update of the trailing submatrix is
performed in the GPU (6).

Algorithm 5.13 Update_OOC(n, k, b, E, F)
1: r = n/b; t= k/b
2: for i= 1 : t do
3: Copy E[i : r+ i, i], containing Qk, to main memory
4: F [i : r+ i, :] =QTi F [i : r+ i, :] (in-core GPU)
5: end for

Algorithm 5.14 QR_Hybrid( n, k, b, E );
1: r = n/b; t= k/b
2: for i= 1 : t do
3: Copy E[i : r+ i, i] to main memory
4: E[i : r+ i, i] =Ri/Qi =QR(E[i : r+ i, i]) (in-core CPU)
5: Copy E[i : r+ i, i], containing Qi, CPU → GPU
6: E[i : r+ i, i+ 1 : r] =QTi E[i : r+ i, i+ 1 : r] (in-core GPU)
7: end for

Improvements in QR_OOC

While performing the QR factorization of D, only the orthogonal matrix Q is stored
while the upper triangular factor R is not needed and thus is not stored. The QR_OOC
algorithm is a left-looking variant that applies all previous transforms to the current slab,
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Figure 5.4: Illustration of the kernels UPDATE_OOC and QR_Hybrid

in contrast with the traditional right-looking approach that immediately propagates the
transforms to the right of the current slab. Left-looking OOC variants in general obtains
a smaller number of transfers [33]. When operating on the OOC data, the traditional
right-looking approach requires copying all the slabs that are to the right of the current
slab, to the GPU, update and move them back to the main memory, which requires two
additional transfers. Despite the increased number of memory transfers, the traditional
right-looking approach performs a large number of copying from GPU memory to the main
memory which is slower than the copying in opposite direction (up to 2×). Therefore,
copying from the GPU to the main memory should be avoided as much as possible. In
our approach, the number of data transfers between main memory and GPU memory is
reduced by a factor of 2 if the left-looking approach is applied.

The data locality can be preserved by exploiting the special structure of the slab D(:, i)
(Figure 5.3) and thus decrease even further the number of transfers. Concretely, at each
step of the inner loop of routine QR_OOC, the slab D(j : r+ j, i) is stored in the GPU
memory, and for the next iteration of the j-loop (Algorithm 5.12) the additional block
D(r+ j+1, i) of size k×k is required while the top-most block D(j, i) of the current slab
D(j : r+j, i) is not needed. Therefore, instead of returning the updated slab D(j : r+j, i)
to the main memory and copying back slab D(j+ 1, r+ j+ 1, i) to the GPU, the upper
block D(j, i) is removed from the GPU and the new block D(r+ j+ 1, i) is copied there.
With this approach, at each update step, only one block of size k×k is sent to the GPU,
instead of the whole slab of size (n+ k)× k, resulting in a significant reduction of data
transfers. Furthermore, one transfer back to the main memory is spared as the block
D(j, i) is not needed in any subsequent computation.

Improvements in QR_Hybrid

This routine computes the QR factorization of a large slab D(k : r+ k,k), that can fit
into the GPU memory, with the collaboration of both CPU and GPU. The slab is divided
into smaller slabs (E(:,k)) of width b, Figure 5.4 (left). At each iteration of routine
QR_Hybrid, Algorithm 5.14, the orthogonal factor of the slab E(k : r+k,k) is computed
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Figure 5.5: Illustration of modified gemm where C is symmetric and A upper triangular
matrix.

on the CPU, transferred to the GPU, and finally submatrix E[k : r+ k,k] is updated
from the right on the GPU. The update can be performed with only one call to routine
gemm since the current slab D(k : r+ k,k) is already in the GPU memory. Following
this approach, the strictly lower triangle of E, with all zeros entries, can be efficiently
exploited with little overhead. The overhead depends on the ratio between b and k (in
practice, b≤ 128� k), getting smaller as the difference between b and k grows.

OOC update of QDWH iteration

After the QR factorization of the large 2n×n matrix, the second most expensive part of
the QDWH algorithm is the update of Xi+1, Algorithm 5.11 (6). To update Xi+1 the
following matrix-matrix operation has to be performed:

C = βC+αBAT , (5.13)

where the right-hand side C is symmetric, A is an upper triangular matrix, and the
memory space required for C, A and B oversize the GPU memory. The update can
be computed with a single call to the LAPACK/MAGMA routine gemm or symm, and
matrix-matrix addition. However, the state-of-the-art MAGMA implementation cannot
deal with problems whose size exceeds the available GPU memory. To overcome this
limitation, a new matrix-matrix multiplication algorithm based on gemm routine is de-
veloped. The algorithm exploits the symmetry and upper triangular structure of the
matrices in a communication-optimal manner, as illustrated in Figure 5.5

The matrices are divided into b× b blocks where dim = n/b denotes the dimension
of block-matrix. Blocks Aij ,Bij ,Cij stand for the (i, j)-th block of the corresponding
matrices. Each block Ci,j is computed as the product of the i-th row of B and the
j-th column of AT . Since C is symmetric, only the lower (or upper) block-triangle is
updated. Furthermore, because A is upper triangular, only the blocks Bi,j , . . . ,Bi,n/b and
ATj,j , . . . ,A

T
j,dim take part in the update of Ci,j .

The pseudo–code of our OOC matrix-matrix multiplication is given in Algorithm 5.15.
The notation dA,dB and dC is used to point to the storage spaces of the corresponding
matrices in the GPU memory.

The lower triangle of matrix C is divided into dim×dim blocks of size b× b that are
processed by rows (1)-(2). The update of each block starts by copying blocks Cij ,Bij and
Aij to the GPU, steps (3)-(7), and updating block dC with a single call to the MAGMA
routine gemm (8) performed in the GPU. The block size b is chosen so that 3 blocks of
size b×b fit into the GPU memory. In order to decrease the number of memory transfers,
the order of the following updates (9) is reversed, so that, at the end of loop, block Bij+1,
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Algorithm 5.15 OOC C = αBAT +βC

Input: A ∈ Rn×n upper triangular, B ∈ Rm×n, b block size, factors α,β
Output: Symmetric matrix C
1: for i= 1 : dim do
2: for j = 1 : i do
3: Copy Cij → dC
4: if j == 1 then
5: Copy Bij → dB
6: end if
7: Copy Aij → dA
8: dC = βdC+αdBdAT (in-core GPU)
9: for k = dim : j+ 1 :−1 do
10: Copy Bik→ dB
11: Copy Ajk[→ dA
12: dC = dC+αdBdAT (in-core GPU)
13: end for
14: Copy dC→ Cij
15: end for
16: end for

required in the next j-loop iteration, is already in the GPU memory. Thus, block Bij is
copied explicitly (5) to the GPU only once at the beginning of j-loop (i.e. when j = 1).
At each pass of i-loop (i.e. for each computed block-row) i−1 copies of block Bij to the
GPU are spared.

5.3.3 Subspace iteration
In this section we describe an out-of-core algorithm that computes the orthogonal matrix
V , Algorithm 5.10 (3) and constructions subproblem A1 (4) (if the smallest eigenvalues are
required). As discussed earlier, the subspace iteration can be performed entirely in-core
if the splitting point σ is carefully chosen.

As illustrated in Algorithm 4.8, Section 4.4, the most expensive parts are the QR
factorization of matrix n×k and the matrix-matrix multiplication of dimension n×n and
n×k. Given that k� n V can be computed entirely in-core in the GPU. However, if k
gets larger or n is extremely large, some parts of the subspace iteration algorithm might
become out-of-core problems for the GPU. In the following discussion we will refer to our
algorithm as an out-of-core algorithm although some or all parts of the algorithm might
be inherently in-core for GPU.

Algorithm 5.16 illustrates the out-of-core subspace iteration algorithm for the orthog-
onal matrix V . The routine computes the orthogonal matrix V from the polar factor
C obtained from the QDWH algorithm. The algorithm operates on the polar factor C
obtained from the OOC QDWH algorithm described in Subsection 5.3.2. The dimension
k of the subproblem A1, is obtained as the sum of the square of the Frobenious norm of
A and a small constant k̂ that is used as a safeguard (1). If k is less than the number
of sought-after eigenvalues s (2), i.e. all sought-after eigenvalues are not in the spectrum
of subspace A1, the algorithm is stopped and the polar decomposition (OOC QDWH
algorithm) is run again with a larger σ.
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Algorithm 5.16 Out-of-core subspace iteration algorithm
Input: Symmetric matrices A ∈ Rn×n and C = 1

2(Up+ I) ∈ Rn×n, s
Output: Orthogonal matrix X := V = [V1V2]
1: Compute k = ‖C‖2F + k̂
2: if (k < s) then
3: exit algorithm
4: end if
5: Choose initial matrix X ∈ Rn×k
6: while (true) do
7: Compute QR factorization of X (in-core GPU)
8: Construct V = [V1V2] (OOC GPU)
9: Form error matrix E = V T

2 AV1 (OOC GPU)
10: if (‖E‖F /‖A‖F < tol) then
11: stop
12: end if
13: X := CV1, go to (7) (OOC GPU)
14: end while

The iterations starts with the construction of an initial matrix X (5). A good choice
for X is one whose columns lie near to the column space of C. Thus, in the algorithm
the columns of X are set to be the first k columns of C. In the original algorithm [107],
X is set to the first k columns with the largest norm. However, the simplest approach
is to generate a random X and form X := CX (X has to lie in the column space of
C) but introduces matrix-matrix operations the exhibit additional 2n2k flops. The QR
factorization (7) is performed by calling the geqrf routine from the LAPACK, CUBLAS
or MAGMA libraries. In case the matrix X cannot fit into the GPU memory, the out-
of-core MAGMA implementation (magma_dgeqrf_ooc kernel) can be applied. In
recent GPU cards the QR factorization will always be performed in-core as far as a good
splitting point is chosen and the number of eigenvalues is small. However, in older GPU
cards or those with fewer memory, the QR factorization can easily become an out-of-core
problem and then the out-of-core MAGMA implementation has to be used.

The orthogonal matrix V is explicitly constructed by applying routine orgqr(8) to
construct it from the elementary reflectors stored in lower triangle of X obtained in (7).
The dimension of V is n×n and, therefore, this is an out-of-core problem. However, recent
linear algebra libraries do not provide any routine capable of explicitly constructing the
orthogonal V from the Householder reflectors if the data are out-of-core. A straight-
forward out-of-core implementation of orgqr routine is done. This algorithm is similar
to the QR_OOC factorization, Algorithm 5.12, describing the two-level blocked algorithm
implementation, but with the difference that the algorithm is started from the rightmost
panel and moves to the left and that V is square matrix.

Once the QR factorization and construction of orthogonal matrix V are finished the

backward error is checked (10). Note that V = [V1V2] and V TAV =
[
A1 ET

E A2

]
, where

E should be a zero-matrix. Thus, we can check the accuracy of the orthogonal matrix
V by checking if ‖E‖F /‖A‖F = ε. Instead of using the machine roundoff error, we use
a user-defined tolerance, step (10). Typically, the subspace iteration algorithm converges
in just one iteration but in finite-precision arithmetic, it usually requires more iterations.
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The construction of the backward error E (9) can be done in two steps, X = AV1
and E = V T

2 X, by calling routines symm for the first and gemm for the second. Both
functions potentially operate on matrices that do not fit into the GPU memory. For the
first operation, the required memory space is n2 +nk+nk for A, V1 and X; while the
second equation requires n(n− k) +nk+ (n− k)k for V2, X and E. Even if k is small,
each operation requires more than n2 storage entries (if k is small then n−k is close to
n) and they are both out-of-core problems for large n.

If the stopping criteria is not matched, X is constructed in (13) by multiplying C from
the right with V1. The construction can be done via a single call to the MAGMA in-core
routine symm or out-of-core implementation if A is too large to fit into GPU memory.
In case the algorithm converges to invariant subspace, the subspace A1 is computed such
that A1 := V T

1 AV1. For the construction of A1 only one call to symm is required since
the product Xt := AV1 is already performed and stored when the error matrix E was
constructed (9), therefore, only A1 := V T

1 Xt has to be computed. By performing only
one matrix product instead of two the arithmetic cost is decreased by n3 flops. That
significantly reduces the execution time when A is out-of-core, since only one out-of-core
matrix computation is performed instead of two.

The original CPU-based algorithm presented in Algorithm 4.8 is almost unchanged.
The main difference is that standard multi-core LAPACK routines, such as the QR factor-
ization, are replaced with their GPU-based out-of-core or in-core routines form MAGMA
or CUBLAS computational libraries. However, other routines, like matrix computations
(e.g. gemm and symm) and the routine that generates orthogonal matrix from the House-
holder reflectors (e.g. orgqr), which standard GPU computational libraries do not im-
plement, were implemented from the scratch in order to efficiently solve the out-of-core
problem from the GPU viewpoint.

If a very small number of eigenvalues is required and the given eigenproblem exceeds
the GPU memory, the computational cost of our GPU-based algorithm for the invariant
subspace A1 becomes negligible compared to the QDWH part of the spectral D&C algo-
rithm. Despite some parts of the subspace iteration are still out-of-core, the number of
flops are much lower compared to the polar decomposition (computed via QDWH algo-
rithm). The only computational intensive part of the subspace iteration is in the while
loop. At each pass of the loop, the QR factorization exploits 2nk2 flops, the explicit
construction of V costs 4n2k flops, computing E costs 4n2k−2nk2 flops for both matrix
computations, and 2n2k flops are required to update X. The total cost for one iteration
is therefore 10n2k flops and since usually no more than two iterations are required to
converge, the average flops for the subspace iteration is ∼ 20n2k (the final computing of
the subspaceA1 is negligible and requires only 2nk2 flops).
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Chapter 6

Numerical Experiments

In this chapter we will analyze the performance for our three GPU out-of-core eigensolvers
(OOC-GPU) that are based on the multi-stage reduction to tridiagonal form (Section 5.1),
the Krylov-subspace eigensolvers (Section 5.2), and the spectral divide–and–conquer based
on QDWH algorithm for computing polar decomposition (Section 5.3).

The performance and scalability of OOC-GPU algorithms will be demonstrated us-
ing problems arising in the simulation of molecular motions. The problems arising in
this application are very large and computationally demanding with the solution of the
generalized dense symmetric eigenproblem as their central computational bottleneck. We
will show that, by employing our OOC-GPU eigensolvers, the execution time of tradi-
tional eigensolvers used for the solution of larger dense symmetric eigenproblem can be
significantly reduced. Furthermore, by exploiting the power of GPU devices, even large
problems can be solved while preserving very high performance even if the problem does
not fit into the GPU memory.

This chapter is organized as follows. Section 6.1 gives a short introduction into macro-
molecular motion and the basic tools and methods, such as Normal Mode Analysis, that
captures the collective motions at the molecular level. The molecular dynamics problems
that will serve as test cases for OOC-GPU eigensolvers and the decription of the testing
computing system, are presented in Section 6.2. Sections 6.3, 6.4 and 6.5 analyze the per-
formance of each of the three OOC-GPU eigensolvers, respectively, eigensolver based on
multi-stage reduction, Krylov-subspace based eigensolver and SD&C eigensolver. Finally,
Section 6.6 offers the side-by-side comparison of three OOC-GPU eigensolvers applied to
macromolecular test cases, and gives some concluding remarks of the overall performance
of the algorithms.

6.1 Macromolecular motions
Macromolecular motions are very important to understand the biological processes and
functions. A macromolecule is an assemble of proteins and nucleic acids that are formed
in long unbranched chains of amino acids and nucleotides. These macromolecules support
the main biological functions, for example, the ribosomal machinery produces new proteins
according to the genetic code; the chaperonin proteins assist the folding process of the
newly constructed proteins; and tubulin and actin filaments support the cellular shape.
The biological activities of these components can be studied by analyzing their dynamics
and interactions at molecular level.

A traditional way to predict conformational changes is by direct experimentation of
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the functional motions but this approach showed to be quite complex. Instead of direct
experimentation, Molecular Dynamic (MD) simulations are more often used. MD is a
computer simulation of physical movement of atoms and molecules at a given period of
time, during which the atoms and molecules interact between themselves. MD provides
information of fluctuations and conformational changes by using 3D atomic structures.
However, the large size of macromolecules, i.e. the large number of atoms they are as-
sembled of, and the long time scales of their motions makes MD simulations too costly or
even impossible.

In order to decrease the cost of MD simulations, coarse-grained (CG) models are
used. In CG models, instead of explicitly representing every atom of the systems, atoms
are grouped into simplified entities or pseudo-atoms that results in a reduced number
of variables and significant computational savings. In recent years, CG model merged
with normal mode analysis (NMA) [116] has become a powerful and popular approach
to simulate collective motions of macromolecules at extended time scales [117]. CG-
NMA simulation has been successfully applied to calculate different bio-molecular simu-
lations [118, 119, 120] and it has been proved, in practice, to be a powerful alternative to
perform costly simulations using all atoms.

For large molecular systems, the main bottleneck of NMA approach is the diagonal-
ization step. To reduce the diagonalization, an internal coordinate (IC) method is used
instead of Cartesian coordinates [121]. IC method requires at least one-third less degrees
of freedom (DoF) and thus reduces both computational time and memory usage. Al-
though IC methods reduce the number of DoF, the diagonalization step remains a major
computational problem for large macromolecular simulations.

6.1.1 IC-NMA method
IC-NMA method describes collective motions by approximating the potential (Hessian)
and kinetic energies as quadratic functions of the atomic positions and velocities. This
approach allows the decomposition of motions into a series of vectors which encode the
deformation or potential displacement of atoms. These vectors, or modes, are obtained by
diagonalizing the second derivate matrices of both potential and kinetic energies. The re-
sulting eigenvectors present the modes and the eigenvalues the corresponding frequencies.
The modes with high frequencies represent localized dislocation, whereas low-frequency
modes correspond to collective conformational changes.

In the IC-NMA model, the molecular system is a set of pseudo-atoms interconnected
by harmonic springs. The motion of the system can be described as a combination of n
normal modes obtained by solving the generalized eigenproblem:

HX = TXΛ, (6.1)

where the eigenvectors X = (x1,x2, . . . ,xn) represent normal modes and are associated
with the eigenvalues Λ = (λ1,λ2, . . . ,λn). Each eigenvalue is related to the frequency νk
by λk = (2πνk)2. The matrices H and T represent the potential and kinetic energies,
respectively. The potential energy of the systems is formulated as:

V =
∑
i<j

Fij(rtij− r0
ij)2, (6.2)

where Fij is the spring stiffness matrix, rij is the distance between pseudo-atoms i and j,
and super-indices t and 0 are current and equilibrium conformations, respectively. The
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potential energy expressed in n internal coordinates (ICs) is given by

V = 1
2qHqT , (6.3)

where vector q represents the coordinate displacements from the equilibrium conformation
at a given energy minimum q0, q = qα− q0

α, α= 1, . . . ,n and H. The Hessian matrix H is
defined as:

H = ∂2V

∂qα∂qβ
, (6.4)

where α and β represent any internal coordinate indices. In a similar way, the kinetic
energy is expressed as:

T = 1
2 q̇Tq̇

T , (6.5)

where the time differentiation is indicated with the dot operator and the matrix T repre-
senting the kinetic energy of the system is computed as:

T =
∑
i

mi
∂ri
∂qα

∂ri
∂qβ

. (6.6)

The parameter mi indicates the mass of the i-th atom and ri is the corresponding
Cartesian coordinate. The diagonalization of Lagrange’s Equations (6.1) yields solutions
of the form:

qtk = q0
k +

n∑
k=1

akxk cos(2πνkt+ δk), (6.7)

where ak and δk depend on the initial conditions and νk is angular frequency associated
with the normal mode xk. The direct computation of matrices H and T using Equa-
tions (6.3) and (6.5) requires O(n4) and O(n3) floating-point operations, respectively. If
the multipurpose tool chest iMod [121] is used, the computational cost can be reduced to
only O(n2) flops. In consequence, the solution of the generalized eigenproblem (6.1) be-
comes the main computational bottleneck. Furthermore, not all eigenvalues are required
since the functional motions are only encoded in the lowest frequency part, i.e. only a
set of the smallest eigenvalues (frequencies) and the corresponding eigenvectors (normal
modes) are to be computed.

6.2 Benchmarks
The key numerical problem in the analysis of the macromolecular functional motions via
IC-NMA method is the solution of a generalized eigenproblem of the form

AX =BXΛ,

where A,B ∈ Rn×n correspond to Hessian and kinetic matrices, Λ ∈ Rs×s is a diagonal
matrix with s sought-after eigenvalues corresponding to frequencies, and X ∈ Rn×s con-
tains unknown eigenvectors (i.e. normal modes). Furthermore, in IC-NMA, matrices A
and B and dense and symmetric positive definite (SPD). Since functional motions are
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presented with the lowest frequencies, only the smallest eigenpairs are required (≈ 1%)
for large macromolecules (n > 10,000).

In order to validate the novel GPU-based algorithms presented in this thesis we chose
a benchmark set of large macromolecules including filaments, compartamental or chaper-
onin macromolecules, and viral capsids; see Table 6.1. The maximum number of variables
(DoF - Degrees of Freedom) are chosen such that the examples can fit into the main
memory of the testing computing system. Although the coarse-grained (CG) approach is
used to reduce the number of variables (or pseudo-atoms), some examples still exceed the
available memory and thus the number of variables is randomly decreased in the problem
generation stage by applying iMOD. However, in the experiments we will use the same
examples but with less DoF giving problems of smaller size whose computation is cheaper
but provides a final conformation that is less accurate. Therefore, the final goal is to
obtain a more accurate solution by providing more DoF that control the directions to
inspect conformational changes.

Name Acronym PDB id DOF
Sus scrofa 1Tub utub10 29,622
Sus scrofa 1Tub utub20 31,178
Sus scrofa 1Tub utub40 34,297

Nudaurelia capensis omega virus NwV 1ohf 33,352
Hong Kong 97 virus Head II HK97 2ft1 31,858

Hepatitis B virus HBV 1qgt 30,785
Cowpea chlorotic mottle virus CCMV 1cwp 30,504

Table 6.1: Benchmark of large-scale macromolecules.

The main computational bottleneck in IC normal mode analysis is the generalized
eigenvalues problem. The computation starts with the reduction to a standard eigen-
value problem by applying the steps in Equation (4.2) - (4.6) and finishes with a back-
transformation of the eigenvectors of the generalized eigenproblem, Equation (4.7) in
Section 4.1. The first step of the reduction, the Cholesky factorization, is not the focus
of this research and will not be covered in the experiments. As the construction of C is
postponed in one version of the GPU-based Krylov subspace algorithm and performed
implicitly within Lanczos steps, for that particular example, the construction of C will be
tested and included in the final measurements.

Once the problem is reduced to standard form, any of the GPU-based eigensolvers
presented in Chapter 5 are applied to compute a subset of the smallest eigenpairs. Ta-
ble 6.2 presents the novel GPU-based algorithms and the acronyms that will be used in
further experimentations. Furthermore, the table also offers a total number of floating
point operations required by each algorithm. The Cholesky factorization is performed in
n3/3 flops and is not included in the total flop count.

The multi-stage reduction algorithm is a direct algorithm and, therefore, its total
flops count is constant and independent on the number of eigenpairs computed. The total
flops for the Krylov subspace-based algorithms ke and ki are based on the number of
iterations performed. The ke algorithm pays an initial cost of 2n3 flops for the explicit
construction of C while ki doubles the cost performed at each Lanczos iteration. The
flops for specdiv depends on the number of iterations k2 performed to compute a polar
factor, but in practice, the number of iterations is no more than 8, thus yielding 48n3
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Algorithm Acronym Type Flops
Multi-stage reduction multis Direct 14n3/3

Krylov-subspace implicit ki Iterative k1×4n2

Krylov-subspace explicit ke Iterative 2n3 +k1×2n2

Spectral D&C based on QDWH specdiv Divide-and-conquer k2×6n3

Table 6.2: The list of our GPU-based eigensolvers with average flops counts.

flops at worst. In all the experiments, both the eigenvalues and eigenvectors are computed
unless otherwise stated.

The target computational platform is a NUMA workstation with two Intel Xeon E5520
quad-core CPUs running at 2.27 GHz, with 48 GB of main memory, and a theoretical peak
performance of 74.6 GFLOPS in double-precision. The testing system is equipped with an
NVIDIA Tesla C2050 graphics processors consisting of 448 streaming processors running
at 1.15 GHz, with 2.8 GB on-board memory (ECC on), and a theoretical peak performance
of 515 GFLOPS in double-precision. The aggregated peak theoretical performance of the
workstation is 590 GFLOPS. The Intel chipset and the GPU board are connected via a
PCI-Express Gen2 interface with a peak bandwidth of 4.6 GB/second.

For the computations performed on the Intel cores, the GNU C compiler (gcc 4.1.2),
GotoBLAS2 and LAPACK (version 3.4.0) were employed. For the computations per-
formed on the Tesla GPU accelerator, the NVIDIA CUBLAS (version 5.5) and MAGMA
(version 1.2.1) libraries built on top of CUDA (version 5.5) were used. All tests were
performed in double precision arithmetic.

All experiments corresponding to the macromolecules listed in the Table 6.1 are out-
of-core for all the most recent GPUs and therefore our testing environment equipped with
Tesla C2050 GPU. The required memory space for a problem with ∼40,000 DoF is 12GB
just for keeping a single matrix (e.g. C) in double-precision arithmetic.

6.3 Multi-stage reduction
In the multi-stage reduction to tridiagonal form only the reduction from dense symmetric
matrix to tridiagonal form is considered. Table 6.3 lists the required routines/steps for
the multi-stage (tm) approach. For illustration, here we will present only the two-stage
and three-stage approaches; however, a general multi-stage approach can be leveraged as
well, with multiple calls to the tm2 step (reduction from band to narrower band form)
that gradually decreases the number of non-zero super/sub-diagonals of the band matrix
Wi, where i presents the number of non-zero super/sub-diagonals. The last two steps,
tm4 and tm5 are LAPACK routines applied to compute the eigenpairs of the tridiagonal
matrix T and the back-transform that obtains the eigenvectors of A from those of T ,
respectively. Although these two routines are not part of this research, for completeness,
their execution time and performance will be included in the final testings.

In Chapter 5 we have presented the multi-stage reduction approach. This algorithm
is designed so that the first phase, i.e. reduction form dense symmetric matrix to band
matrix, is performed completely out-of-core from the GPU viewpoint. The number of
non-zero sub-diagonals, or bandwidth w, is chosen so that the band matrix, of dimension
n×w, can entirely fit into the GPU memory and, thus, the reduction to narrower band
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Var. Operation Routine Library

td
td1 QTCQ=T dsytrd lapack
td2 TZ = ZΛ→ T,Z dstemr lapack
td3 Y :=QZ dormtr lapack

tm

tm1 QT
1 CQ1 =W1 ooc_gpu_dsyrdb –

tm2 QT
2 W1Q2 =W2 ooc_gpu_dsbrdb –

tm3 QT
3 W2Q3 = T gpu_dsbrdt –

tm4 TZ = ZΛ→ Λ,Z dstemr lapack
tm5 Y :=Q1Q2Q3Z ooc_gpu_dgemm –

Table 6.3: Routines required in reduction of dense symmetric matrix to tridiagonal form on
GPU. td: one-stage reduction, tm: multi-stage reduction.

form (tm2) can be performed in-core on GPU. By exploiting this strategy, it is possible
to avoid the overhead costs of memory transfers to and from GPU memory. Furthermore,
the main bottleneck of tm2 is the bulge chasing phase that introduces additional flops,
especially when the eigenvectors are required in which case the orthogonal transforms
have to be explicitly accumulated.

Let us start with the examination of step tm1, the OOC reduction of a dense symmetric
matrix to band form. In Section 5.1.1, we have distinguished two main parts, the QR
factorization that is applied to the panel/slabs currently computed and the two-sided
update of the rest of the matrix. Furthermore, for each of these two parts, we have
developed two variants that differ in the GPU memory requirements and the size of the
working arrays stored on the GPU. Table 6.4 lists the QR and two-sided update variants
with their total memory requirements and the number of data transferred in the worst
case. This case occurs at the beginning of the reduction when the first slab, that has
to be reduced to band form, is n−w×w. After that the algorithm proceeds with the
two-sided update of the (n−w)×(n−w) submatrix A2. In each following step, the height
of the slab and the dimension of the submatrix A2 are decreased by w. At a certain point,
the leading dimension of the working slab is small enough to that the QR and the OOC
two-sided update can be performed entirely in-core from the GPU perspective.

Function Variant Mem. req. Data transfered

QR. fact. qr-1 w2 + 2nw 4(n−w)w
qr-2 w2 +nw+ bw 5(n−w)w

Two-sided update update-1 b2 + 2(n−w)w 3/2n2 +n(3w+ 3/2b)
update-2 b2 + (b+n−w)w (3/2 + 3w/b)n2 +n(5w+ 3/2b)

Accumulation of Q1 acc 3b2 4n3/b+ 2nb

Table 6.4: The variants of QR factorization and two-sided update with their GPU memory
requirements and number of data transfered, where n is matrix dimension, w band size and b
algorithmic block size.

In the experiments, we consider two variants for the reduction from full symmetric
matrix to band form, syrdb-1, that employs variants qr-1 and Update-1, and variant
syrdb-2, that employs qr-2 and update-2. Although both variants exhibit the same
computational cost, syrdb-2 requires less storage space on the GPU than syrdb-1, at
the cost of an increased number of memory transfers to/from the GPU; see Table 6.4.
Moreover, in the hybrid QR factorization the in-core GPU problem is divided into smaller
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slabs that are factorized on the CPU. The width of these slabs is chosen in order to improve
the CPU execution. Our tests experimentally show that the optimal block size, on our
testing system, is 128.

The accumulation of orthogonal transforms acc, that is common to both syrdb vari-
ants, can be cast completely in terms of the level-3 BLAS kernels gemm and symm.
Our out-of-core acc is implemented as two calls of out-of-core gemm routine. The OOC
gemm routine operates on square blocks and requires three workspaces of size b× b on
GPU for keeping the multiplication factors Aij , Bij and Cij . The block size does not
depend on the problem dimension n and could be scaled to any problem size (eventu-
ally, the bottleneck would be the amount of main memory, not GPU memory, for very
large matrices). In comparison to a straight-forward out-of-core gemm implementation
that performs 3n3/b memory transfers, our implementation exploits better data locality
exhibiting only 2n3/b+nb data transfers. The data locality is preserved by implementing
the cyclic update of blocks Cij that re-uses the last block Bij from the update of the
previous block Ci−1j .

Figure 6.1 illustrates the performance of the two syrdb variants including the accu-
mulation of the orthogonal transforms in Q1. As expected, syrdb-1 achieves slightly
better performance than syrdb-2, Figure 6.1(a) and 6.1(b). This is because syrdb-2
exhibits nw−w2 more memory transfers from/to the GPU, at the same time, with the
larger operational block size b. For example, in our testing computing system, syrdb-2
achieves more than 182 GFLOPS (495 sec) for n = 35000 and w = 8192, while syrdb-1
achieves 160 GFLOPS but with the maximum band size of only w= 4400. In other words,
syrdb-2 variant can be used to reduce larger matrices with the same band size or the
same problem but with larger w.

The performance of the reduction also depends on the bandwidth w, Figure 6.1(c)
and 6.1(d). When the bandwidth grows, the performance increases as well. That is
because the number of sub-diagonals that have to be eliminated decreases as the band is
getting larger, resulting in less computations. In addition, the height, i.e the number of
rows of the working slab for the QR factorization and the dimension of the sub-matrix,
decreases as well. That introduce less memory transfers as more that more elements of
the working matrices are kept in the GPU memory.

The majority of the computational cost of both syrdb variants is spent in the ac-
cumulation of the orthogonal factors. The computational cost of the accumulation is
2n3− 2n2w flops and doubles the total cost of syrdb. Table 6.5 lists the performance
and the percentage of total execution time spent in the accumulation. The accumulation
weight in the total execution time slightly decreases with the band size due to the smaller
number of sub-diagonals that have to be annihilated. In that case, the entries of Q1, that
do not participate in the annihilation, are simply filled with zeros, thus decreasing the
portion of Q1 that has to be updated. Moreover, with an increase of the bandwidth w the
total execution time decreases while GFLOPS rate increases. Generally, the performance
of the reduction form dense symmetric matrix to band matrix W1 significantly improves
as the bandwidth grows.

The reduction from band to tridiagonal form, routine tm3, is an algorithm that does
not apply memory-aware blocked kernels. However, the accumulation of the orthogonal
transforms can be delayed and accumulated by blocks. The algorithmic block size nb
defines the size of the delay, i.e. the number of transforms accumulated in one turn. The
execution time drops with the enlargement of both band size and algorithmic block size
nb, Figure 6.2.
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(a) syrdb-1 variant time.
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(b) syrdb-2 variant time.
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Figure 6.1: Two syrdb variants for the reduction form dense to band form. (a) and (b) present
total execution time and (c) and (d) GFLOPS.

The best execution time was achieved for the band size w= 256 and a block dimension
nb = 256 (green). However, more than half of the total execution time is spent in the
accumulation of orthogonal transforms. For example, in case w= 256 and nb= 256, 508.16
seconds out of a total 865.39 are spent in the accumulation (58%). The contribution of the
accumulation to the total execution time decreases with the band size; e.g. for w = 512,
nb = 512 only 37% of total time is spent in the accumulation. When the band size is
larger, the accumulation operates with larger orthogonal factors thus achieving better
utilization of the GPU but the execution time for the annihilation step increases because
of a larger number of computations performed in terms of inefficient non-blocked level-2
BLAS routines. On the other hand, with smaller band, the annihilation phase is faster
due to a better utilization of small CPU cache memory but the accumulation is slower
because smaller updates are performed resulting in more memory transfers to/from GPU.
To achieve the best performance for the tm3 phase, the compromise between CPU and
GPU performance has to be investigated by carefully choosing the best match of band
size and size of delay.

The best performance for tm1 is achieved when the bandwidth is large, while tm3
benefits from a small bandwidth. To bridge that gap, the tm2 routine that reduces a
band matrix W1 to a narrower band matrix W2, is applied successively to reduce a large
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w
syrdb-1 syrdb-2

time GFLOPS % time GFLOPS %
512 674.88 125.20 0.56 653.92 129.21 0.54
1024 475.02 175.24 0.53 465.18 178.95 0.51
2048 374.79 215.40 0.51 370.73 217.77 0.48
4096 309.45 244.67 0.48 308.27 245.62 0.45

Table 6.5: The cost of accumulating the transformations in Q1 for n=35,000 and the percentage
of the total execution time of syrdb.
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Figure 6.2: Performance of the in-core GPU tm3 for 1cwp problem (n= 30504) with different
values for algorithmic block size nb.

band matrix obtained in tm1 to the small band matrix required by the tm3 routines.
The majority of computations in tm2 is performed within the bulge-chasing phase that
becomes very expensive, especially if the eigenvectors are required. In such case the
accumulation of orthogonal transforms in matrix Q2 costs an additional 2n3− 2n2w2
flops, with w2 the number of non-zero sub-diagonals in the narrower band matrix W2.
The accumulation is done by directly updating the transformation matrix Q1, obtained
in tm1, from the right, i.e. Q=Q1Q2.

To increase performance and reduce the number of memory transfers performed in the
bulge-chasing phase, tm2 is performed in-core. However, the accumulation of orthogonal
transforms is still performed out-of-core from the GPU viewpoint since Q1 is dense and
cannot entirely fit into the GPU memory. The band size in tm1 is chosen such that
a matrix W1, in band storage format, can fit into the GPU memory. For our testing
collection of MD matrices with maximum matrix size ∼30,000 and the Tesla C2050 GPU
equipped with 2.6 GB of memory, the maximum band size w1 is ∼3000. As expected, if
the starting band w1 is larger, the execution time increases because of a larger number of
sub-diagonals that have to be annihilated. If the GPU is employed for both reduction and
accumulation, Table 6.6, the execution time is greatly improved compared with the multi-
core SBR implementation. The same occurs when the narrower band w2 is increased as
well. The best performance for tm2 is achieved when the bandwidth w1 is large and w2
small. The larger band w1 introduces a negligible increase in the total execution time, if
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the computation is performed on the GPU.

w1
w2 = 256 w2 = 512

CPU GPU CPU GPU
1024 965.29 242.4 933.86 248.78
2048 1014.16 257.4 1012.34 303.9
3072 1074.75 273.38 1083.4 343.46

Table 6.6: Execution time of the in-core GPU implementation of tm2 for 1cwp problem (n=
30504) compared to SBR routine sbrdt employing 8 cores.

Let us analyze the performance of the overall multi-stage out-of-core eigensolvers. We
have tested two specific versions, the 2-stage and 3-stage out-of-core variants. The 2-stage
OOC algorithm consists of the tm1, tm3, tm4 and tm5 steps, listed in Table 6.3; while
the 3-stage OOC includes an additional step – tm2. The performance of the two OOC
multi-stage eigensolvers for the MD collection of matrices in Table 6.1 is presented in
Figure 6.3. In all testings, the CPU-only algorithms, 1-stage LAPACK algorithm and 2-
stage SBR algorithm, are executed on all 8 available cores of the target computing system
by employing a multi-threaded BLAS library. The total arithmetic costs for the OOC
2-stage and 3-stage eigensolvers are 8/3n3 and 14/3n3 flops, respectively, including the
accumulation of orthogonal transforms.
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Figure 6.3: Performance of the 2-stage and 3-stage GPU OOC eigensolvers for MD problems
Table 6.1. 100 smallest eigenpairs are computed.

The multicore 1-stage routine from the LAPACK library is used as the state-of-the-art
routine for the solution of large eigenproblems. Although the highly optimized MAGMA
or CUBLAS implementations of td1 can be used as well, this implementation cannot solve
problems whose size exceeds the total available GPU memory. In our testing computing
systems, the largest in-core problem that can be solved on GPU have n=18,000.

In the 3-stage OOC algorithm, tm2 acts like an intermediate step that enables larger
band to be used in the first step, reduction to band form, while providing a small band,
required for the reduction to tridiagonal form. Therefore, a 3-stage OOC attains much
higher performance than the 2-stage OOC variant, Figure 6.3(b). In the 2-stage OOC
variant, the best performance was attained for band size 512, while for the 3-stage OOC
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in all MD collections, the band w1 was set to maximum feasible size, w1 = 3072, and
w2 = 256. Thus, by enabling larger band size in the tm1, the 3-stage OOC exhibits
higher performance than the 2-stage OOC. As discussed above, the maximum feasible
size for w1 in the 3-stage OOC variant depends only on the amount of available GPU
memory. Therefore, on GPUs equipped with more memory, w1 can be made larger and
thus attain even higher performance.

Furthermore, by carefully orchestrating the computation and the number of data trans-
fers between the main memory and the GPU memory it is possible to efficiently overcome
the drawbacks of the increased number of data transfers when solving the out-of-core prob-
lems on GPU, Figure 6.4. Moreover, by applying OOC techniques, we not only efficiently
overlap data transfers, but also attain significantly higher performance and improve the
scalability of the algorithms with the increasing matrix dimension.
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Figure 6.4: Performance scaling of 3-stage (black) and 2-stage (green) OOC variants for dif-
ferent matrix sizes for 1cwp MD collection.

6.4 The Krylov subspace approach
In this section we present the experimental results of the Krylov-subspace approaches
applied on the collection of MD problems, Table 6.1. In Section 5.2 are presented two
versions of the Krylov subspace approach. The first approach, ke, explicitly constructs
matrix C := U−TAU−1 from the generalized eigenvalue problem, while the ki approach
implicitly operates with C within each Lanczos iteration. Note that the reduction from
generalized to standard eigenproblem is a part of the Krylov-subspace approaches and is
included in the experiments results. Table 6.7 lists all routines required for both Krylov
subspace approaches.

In NMA the main computational bottleneck is the computation of the s smallest eigen-
values, representing frequencies, and the corresponding eigenvectors or normal modes.
However, the Krylov-subspace approach, as an extension of power method, converges to-
wards the largest eigenvalue. Thus, in order to accelerate the convergence of the Lanczos
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iteration we compute the s largest eigenpairs of the inverse eigenproblem:

BX = AXΛ−1, (6.8)

where A and B correspond to the Hessian and kinetic matrices, respectively, and Λ
contains the eigenvalues of the generalized problem. In the following experiments, instead
of computing the smallest s eigenvalues of the original problem, we compute the largest
s eigenvalues of the inverse problem.

The routines required for the reduction to an standard eigenproblem, gs1 and gs2, as
well as the back-transform bt, are computationally-bound routines and thus appropriate
to be executed on the GPU even if matrices A and B exceed the total available GPU mem-
ory. Since the Cholesky factorization (gs1) is beyond the scope of this research, we use
a GPU out-of-core implementation of the MAGMA computational library. Although the
trsm routine required in steps gs2 and bt is highly appropriate for an out-of-core GPU
execution, the implementations from MAGMA and CUBLAS computational libraries can
only be applied if the required storage spaces of A and U do not exceed the total GPU
memory. Otherwise we use our own ooc_gpu_dtrsm routine for gs2 and bt that
efficiently operates even if the matrices cannot fit into the GPU memory.

Var. Operation Routine Library

gs gs1 B= UTU magma_dpotrf MAGMA
gs2 C := U−TAU−1 ooc_gpu_dtrsm –

ke
ke1 zk+1 := Cwk dsymv magma/cublas
ke2 zk+1→ wk+1 dsaupd arpack
ke3 Tm,Vm→ Λ,Y dseupd arpack

ki

ki1 w̄k := U−1 wk dtrsv lapack/magma/cublas
ki2 ŵk :=Aw̄k dsymv lapack/magma/cublas
ki3 zk+1 := U−T ŵk dtrsv lapack/magma/cublas
ki4 zk+1→ wk+1 dsaupd arpack
ki5 Tm,Vm→ Λ,Y dseupd arpack

bt bt X := U−1Y ooc_gpu_dtrsm –

Table 6.7: Routines required to build Krylov subspace approaches. gs: reduction to standard
eigenproblem, ke: explicit Krylov, ki: implicit Krylov, bt: back-transformation.

Note that all algorithms required by the ke and ki variants are memory-bound level-2
BLAS routines with ke1, ki1, ki2 and ki3 the most time consuming and computationally
costly parts. Nevertheless, the MAGMA and CUBLAS implementations of the routines
required in these steps can attain much higher performance than the LAPACK multi-core
CPU variants as far as the input matrix (C, U or A) can fit into the GPU memory; see
Figure 6.5. The maximum in-core GPU problem that can be solved by using conventional
GPU computational libraries, on our testing system, is n=13,000.

Figure 6.5 illustrates the potential of the GPU to accelerate the execution of both
Krylov-subspace variants. The major drawback of both Krylov-subspace variants is that
the main computational routines, trsv and symv, cannot achieve further improvement
in performance if the problem exceeds the total GPU memory. Moreover, the out-of-core
GPU implementations are an order of magnitude slower than the multi-core implementa-
tions due to the very poor ratio between data transferred and computations performed on
the GPU. Therefore, for the solution of large eigenproblems, our GPU Krylov-subspace
variants ke and ki use the traditional multi-core implementations fro trsv and symv
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Figure 6.5: Execution time of in-core GPU and multi-core versions of Krylov-subspace variants
ke and ki.

from LAPACK. On the other hand, the reduction of generalized to standard eigenvalue
form, which consists of compute-bound routines, can be efficiently accelerated even when
data are too large for the GPU memory. The total algorithmic cost for the ke and ki
variants are 7/3n3 +(2k+s)n2 and n3/3+(4k+s)n2, respectively, where s is the number
of sought-after eigenvalues, and k number of iterations.

Figure 6.6 illustrates the performance of our hybrid GPU Krylov-subspace variants in
which the traditional Cholesky (potrf) and trsm kernels are replaced with the MAGMA
out-of-core Cholesky implementation and our out-of-core ooc_gpu_dtrsm routine. Al-
though steps ke1 and ki1–3 are performed on the multi-core CPUs, the out-of-core Krylov
variants achieve much higher performance than the multi-core variants. The execution
time here includes the reduction of generalized to standard eigenproblem as well as the
data transfers to/from GPU.
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Figure 6.6: Execution time (left) and GFLOPS (right) of the two GPU out-of-core Krylov-
subspace variants. Only 100 largest eigenvalues are computed.

The significant speed-up of both OOC ke and ki variants is achieved because the
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computationally intensive gs1 and gs2 routines are performed on the GPU. The Krylov-
subspace kernels ke and ki are still performed completely on the multi-core CPU. Multi-
core and OOC variants of the ki approach deliver much lower performance, Figure 6.6(b),
than the ke variant since the majority of the computation is spent in the level-2 BLAS
kernels required in steps ki1–3. In the explicit Krylov subspace variant, the memory-
bound computations from steps ki1 and ki3 are performed in advance in step gs2 via
two calls to the compute bound level-3 BLAS kernel trsm; see Table 6.8. In the multi-
core implementation of ke most of the execution time is spent in steps gs1–2, and thus
this routine exhibits a significant speed-up if it is executed on GPU (3.7× speed-up for
n=40,314). In the ki variant, half of the execution time is spent in steps ki1 and ki3.
However, these two steps cannot benefit from the out-of-core GPU execution and remain
unchanged. ki outperforms ke on the multi-core but the ke variant outperforms ki if
GPU is employed for almost all cases. This is because the ki variant only benefits from
the out-of-core Cholesky factorization (gs1) on the GPU while the construction of C is
performed on the CPU during each Lanczos iteration.

CPU ki ke
dimension gs1 ke1+ke3 ki2 Total gs1 gs2 ke1 Total

2,055 0.06 1.43 0.24 2.01 0.06 0.36 0.22 0.84
4,998 0.77 6.81 1.1 9.44 0.79 5.17 1.09 7.67
10,884 8.52 28.45 4.93 42.98 8.52 35.38 4.94 50.06
20,694 62.62 110.57 17.69 194.34 62.63 246.67 17.65 330.32
30,504 207.48 218.32 38.52 470.89 207.51 790.59 38.87 1042.42
40,314 481.4 443.09 69.13 1002.64 481.42 1781.3 68.39 2339.69

OOC GPU ki ke
dimension gs1 ke1+ke3 ki2 Total gs1 gs2 ke1 Total

2,055 0.03 1.31 0.22 1.72 0.03 0.15 0.19 0.58
4,998 0.27 6.12 1.05 7.81 0.26 1.25 1.06 2.95
10,884 1.97 28.7 4.94 46.58 1.96 11.02 4.94 19.14
20,694 12.49 111.9 17.39 144.67 12.24 67.55 17.29 99.97
30,504 38.57 256.55 40.57 345.97 38.27 209.63 40.47 295.94
40,314 87.46 446.69 68.28 607.98 87.33 470.08 69.53 635.96

Table 6.8: Total time in seconds for the implicit (ki) and explicit (ke) Krylov subspace variants
on multi-core processors and GPU.

In molecular dynamics only the s smallest (in our case s largest of the inverse eigen-
problem) eigenvalues are required. However, for each MD collection, one can decide on
the number of DoF. With a larger freedom number, the collection problems become larger.
Nevertheless, in practice, only the 1% smallest eigenvalues are required. In all previous
tests we compute only the largest 100 eigenvalues; however, for specific MD problem,
with dimension over 30,000, more eigenvalues are required. Figure 6.7 presents the per-
formance of our OOC Krylov subspace variant when a different number of eigenvalues is
computed.

In Table 6.8 we showed that the OOC ke variant is faster than the ki variant for
problems of dimension up to 40,000 when only the 100 smallest eigenvalues are required.
However, if a larger number of eigenvalues is required (e.g. 500), then ke is faster. If
only 10 eigenvalues are required, ki is almost twice faster than ke. The fast increase
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Figure 6.7: Execution time and GFLOPS rate for ke (a),(c) and ki (b),(d) on GPU for MD
collection 1cwp with 10, 100 and 500 largest eigenvalues computed.

in execution time of the ki variant when a larger number of eigenvalues is required is
because of its slower convergence; i.e. a higher number of Lanczos iterations. For example,
if 10 eigenvalues are required, the average number of Lanczos iterations is 85; for 100
eigenvalues is between 250 and 325; and for 500 eigenvalues is 1250. Note that in the
ke variant, the gs2 step, explicit construction of C, is performed at the beginning and
does not depend on the number of eigenvalues required, i.e. the number of iterations
performed. However, in the ki variant the work performed in steps ki1 and ki3, which
cannot be accelerated with GPUs rapidly increases with the number of iterations resulting
in longer execution time.

Furthermore, the GFLOPS rates illustrated in Figure 6.7(c) show that we cannot ex-
pect any further raise in performance for the ke variant by working with larger problems.
However, the performance of the ki variant continues to grow with the problem dimen-
sion, Figure 6.7(d). This is because the performance of the ke variant is dominated by
the level-3 BLAS steps gs1 and gs2 which are independent of the number of iterations
while the performance of ki when only 10 eigenvalues are required, rapidly grows because
a small number of Lanczos iterations do not still dominate execution part, as is the case
when 500 eigenvalues are computed. The conclusion is that the ki GPU OOC variant is
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more efficient when a very small number of eigenvalues (no more than 100) is required
for very large matrices. On the other hand, the explicit Krylov-subspace approach is the
method of choice when a larger number of eigenvalues is required.

6.5 Spectral D&C approach
The last out-of-core GPU eigensolver is the spectral divide-and-conquer (D&C) QDWH
based algorithm. It belongs to a group of eigensolvers that implement divide-and-conquer
strategy. The division of the starting eigenproblem into subproblems is realized through
an iterative algorithm. Therefore, this algorithm can be also considered as an iterative
method. In contrast to Krylov subspace iterative eigensolvers, which are mostly composed
of memory inefficient level-2 BLAS routine, that achieve very poor performance when the
data are out-of-core for GPU, this approach can be cast completely in terms of level-
3 BLAS operations, Table 6.9. Thus, the SD&C algorithm can deliver a much higher
GFLOPS rate by employing a GPU than the Krylov-subspace approaches, but requires
significantly higher computational cost; see Table 6.2.

Executional step Operation Routine Library

qdwh
qdwh1 Xi→

[
Q1
Q2

]
R dgeqrf –

qdwh2 Construct Q dorgqr –
qdwh3 Xi+1 = αXi +βQ1Q

T
2 dgemm –

subs
subs1 X →QR dgeqrf magma
subs2 Construct Q dorgqr –
subs3 E = V T

2 AV1 dgemm/dsymm magma/cublas
subs4 X := CV1 dsymm magma/cublas
subs5 A1 := V T

1 AV1 dgemm/dsymm magma/cublas
eig eig A1→ Λ,Y dsyevr lapack

Table 6.9: Routines required to build spectral divide–and–conquer OOC-GPU eigensolver.

As discussed in Section 5.3, from the computationally point of view, most significant
part of the OOC-GPU SD&C eigensolver is the computation of polar factor via the
QDWH algorithm (qdwh step), Subsection 5.3.2, Algorithm 5.11. This step employs
three computational routines: QR factorization of a 2n× n matrix (qdwh1), explicit
construction of the orthogonal transforms Q (qdwh2), and update of Xi+1 (qdwh3),
with a computational complexity O(n3). The kernels required for qdwh3 were already
presented in the previous sections and they are proved to achieve very high performance
even when the data exceed GPU memory. An efficient kernel for the qdwh1 step, when
Xi cannot fit into the GPU memory, can be found in MAGMA. Although the MAGMA
kernel achieves a very high GFLOPS rate, the execution time is the main drawback, since
the step qdwh1 is repeated at each QDWH iteration.

As discussed in Subsection 5.3.2, the QR factorization can be improved by exploiting
the sparsity of Xi (note that, by construction, Xi(n+1 : 2n,1 : n) is the identity matrix).
For that reason we constructed a new left-looking, slab-oriented OOC-GPU QR factoriza-
tion whose performance is illustrated in Figure 6.8. If we compare our algorithm with the
OOC MAGMA implementation, the former exhibits a lower computational time, but a
higher GFLOPS rate. This proves that our QR factorization is scalable with the problem
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dimension and delivers more than 230 GFLOPS. Note that our approach requires only
2n3 flops compared to the 10/3n3 flops required by OOC MAGMA QR factorization.

The algorithmic cost is reduced by introducing the two-level blocked kernels that
operate only on non-zero entries of Xi, while the lower triangular is not referenced. The
first level of blocking, in which the panel width s is large enough (up to 12,000 on the
testing system) so that one panel can fit into the GPU memory, optimizes the data
transfers to/from GPU memory. The second level of blocking, with the panel width
b 6 128, improves the performance on the multi-core (QR factorization of small panels
and constructing Q). The size of the panels is chosen so that the lower triangle of Xi is
never referenced.
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Figure 6.8: Execution time (left) and Gflops rate (right) of improved OOC-GPU QR algorithm
compared to MAGMA OOC-GPU implementation.

Because the OOC QR algorithm exhibits less flops, the computational time is lower and
becomes more significant as the dimension increases, Figure 6.8(a). For large matrices the
computational time for MAGMA QR is almost twice slower than our approach. Although
MAGMA QR explicitly overlaps data transfers to GPU with execution (using CUDA
streams), our approach delivers higher performance, Figure 6.8(b). This is because in
our approach we compensate data transfers with better data re-use, once they are in the
GPU memory, and because of the reduced number of transfers required between the main
memory and GPU.

At the time of writing of this thesis, there is no GPU implementation of the dorgqr
routine, required by qdwh2. However, this kernel is mostly made of level-3 BLAS kernels
and thus can achieve very high performance even if the matrix exceeds the GPU memory.
Our OOC-GPU kernel is a left-looking, slab-oriented approach that incurs less memory
transfers and exhibits the same performance as our OOC-GPU QR factorization; see
Figure 6.9. All three kernels required by qdwh exhibit a very high GFLOPS rate. This is
because they are all cast completely in terms of compute bound level-3 BLAS operations
that successfully overcome the negative effect of data transfers, even if the data exceed
the available GPU memory.

The subspace iteration part (subs) requires the same routines as qdwh. However,
in this part all matrices are dense and symmetric; therefore the kernels from MAGMA
library can be employed, e.g. the MAGMA out-of-core QR factorization. If the splitting
point σ is chosen so that the number of columns of V1 is small, the subs part becomes an
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Figure 6.9: Performance of the qdwh1 (QR fact.), qdwh2 (construction of Q) and qdwh3
(update Xi+1) kernels.

in-core problem from the GPU viewpoint. In that case, MAGMA and CUBLAS kernels
are employed in all calculations, expect for the kernel subs2, whose GPU implementation
does not exist in any conventional GPU computational library.

The last executional part, eig, computes the eigenvalues and the corresponding eigen-
vectors of the subproblem A1. Since the number of eigenpairs required in normal mode
analysis simulations is small, this step is negligible and can be computed in-core on GPU
or via multi-core processor by employing standard LAPACK kernels.

Without loss of generality, in the following experiments we compute the largest s
eigenpairs of problem A. The main idea of the OOC-GPU algorithm lies in choosing a
splitting point σ that separates the problem A into subproblems in which subproblem
A1 contains a superset of the desired eigenvalues. With a small subproblem A1, finding
the sought-after eigenpairs from it becomes negligible even if traditional computational
libraries, such as LAPACK, are employed.

Thus, σ has to be chosen such that the sought-after eigenvalues are a subset of the
eigenvalues of A1; i.e. the dimension of A1 is slightly larger than s. The key is to select
the value of σ that will separate the spectrum of A into two subsets (sub–matrices) A1
and A2, with the dimension of A1 being equal to or only slightly larger than s. In [115]
the author of this thesis, together with other authors, presented three σ strategies for the
specific macromolecular problem:

sd&c-a. σ = mean(diag(A)), where mean(·) denotes the arithmetic average value
of its argument.

sd&c-b. σ = 4×mean(diag(A)).

sd&c-c. In this case, given a macromolecule, we use iMod to generate the Hessian
and kinetic matrices pair (A,B) for different values of n, with larger dimensions
offering much higher accuracy and reliability in the subsequent simulation. Con-
cretely, we generate a matrix pair (A,B) for a problem of much smaller dimension,
say m≈ 1,000, and use this to investigate the distribution of the eigenvalues of the
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problem by computing them. We choose σ as the (s ·m/n)-th largest eigenvalue of
the small problem, where s is the number of sought-after eigenvalues.

The third strategy allows us to use a conservative value of σ, which can then be
applied in the “extended” problem to split the eigenvalues at the appropriate point. In
the subspace iteration algorithm, the value k = 1

2‖Up + In‖2F indicates the number of
eigenvalues in A1. Therefore, in case k < s, the QDWH iterate has to be recomputed
with a larger value for σ, but in the practical MD problem this case never occurred.
After the first successful split, the eigenpairs of A1 are computed directly by employing
a direct in-core eigensolver based on the reduction to tridiagonal form with a negligible
cost compared with that of the initial stage.

The splitting points for different σ strategies are presented in the Table 6.10 for the MD
collection problems utub10, utub20 and utub40 with different values for the problem
dimension. The sd&c-a splitting, the strategy used in the original algorithm [107] when
all eigenvalues are required, aims at splitting the problem into two equal-size subproblems.
As expected, this strategy does not provide a good approximation of the splitting point
required by the OOC-GPU algorithm. For larger problem dimensions, the splitting point
approaches 10,000 giving a large dimension for subproblem A1. Therefore, to obtain a
better guess, we should move up, from the middle of the spectrum, to the left edge of
the spectrum if the smallest eigenvalues are required (e.g. by dividing by 4) and to the
right edge for largest eigenvalues (e.g. times 4) as in the sd&c-b strategy. For most
problems, this strategy gives the best splitting points. The sd&c-c strategy computes all
the eigenvalues of the smaller problems, with the size m = {2490,4050,7170}, and then
chooses σ to be the (s×m/n)-th smallest eigenvalue of the smaller problem. This strategy
gives good splitting points for small size matrices, but for larger matrices the splitting
point gets large. The reason is that the eigenvalues, for the particular MD collection, are
clustered around the smallest eigenvalue. As illustrated in Table 6.10, the sd&c-b and
sd&c-c strategies provide a good splitting point that keeps the dimension of obtained
subproblem A1 small enough so that the required eigenpairs can be computed directly
without performing any further splittings into smaller subproblems. By choosing these
two splitting strategies, the qdwh remains the only computationally-intensive part on
which more than 80% of the total SD&C execution time is spent.

Problem Splitting point k
dimension sd&c-a sd&c-b sd&c-c

2490 704 105 –
4050 1160 137 –
7170 2204 185 –
10910 3816 272 347
12469 4523 359 536
15588 4881 537 508
20266 7215 488 709
21822 7158 533 1322
24943 8678 712 1024
29622 9006 936 1409
31178 9288 815 2511

Table 6.10: Splitting points for σ strategies sd&c-a, sd&c-b and sd&c-c.
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In the second experiment we analyze the performance of the iterative QDWH algo-
rithm for the polar factor Up. The total executional time, proportional to the number of
iterations of qdwh, depends on the values of parameters α and l0, Section 4.4. These
values are chosen such that α& ‖A‖2 and l0 . σmin(A); i.e. l0 is smaller than the smallest
eigenvalue of the problem A. If an eigenvalue of A exists that is smaller than l0, then
more iterations are required to converge to Up, see Table 6.11.

The value for α can be easily approximated by computing the square of the product
of the 1-norm and infinity norm of matrix A. Approximating the parameter l0 is more
complicated. In matlab and octave it is computed by calling the condest function that
estimates the 1-norm condition number. In our experiments with sd&c-c approach, we
exploit the eigenvalues of the smaller problem of the same collection. The value for l0 is
set to be slightly smaller than the smallest eigenvalue of the same MD collection but with
smaller problem dimension, usually n < 1000. Therefore, we can guarantee that the value
for l0 will always be lower than the smallest eigenvalue, and that QDWH will perform no
more than 7 iterations [107].

Problem
dimension

Strategy
sd&c-a sd&c-b sd&c-c

#iter time #iter time #iter time
4050 7 17.06 7 17.11 – –
12469 7 335.48 7 336.84 6 283.55
21822 8 1834.80 7 1608.97 6 1414.34
31178 10 6218.09 7 4370.31 6 3967.78

Table 6.11: Number of iterations and execution time (in seconds) for QDWH algorithm applied
on MD collection utub20.

The number of iterations performed does not depend on the σ factor, as the strategy
names suggests. However, in the sd&c-c strategy, we exploited the eigenvalues from a
problem with a smaller dimension to make a better guess for parameter l0. Observe that
the sd&c-c strategy requires less iterations than other strategies. This is in-line with the
work of Nakatsukasa [107], in which a number of iterations is shown to be necessary less
than 7 for all practical cases, if l0 is strictly smaller than the smallest eigenvalues. That
implies that the guesses for l0 (we use l0 =

√
nε, ε with the machine roundoff error) in

strategies sd&c-a and sd&c-b are not always the best. Despite the better σ guess for
the sd&c-b strategy that delivers smaller subproblem A1, the sd&c-c strategy requires
less iterations to compute the polar factor and thus significantly outperforms the sd&c-b
strategy.

6.6 Comparison of OOC-GPU algorithms
In this section we give a side-by-side comparison of the three OOC-GPU eigensolvers
developed. The goal of this analysis is to present the performances and possibilities to
tackle large macromolecular problems on a modest computing infrastructure equipped
with one or two multi-core processors and one GPU computing device. The macromolec-
ular dynamics test cases, Table 6.1, are generated using iMod so that the test cases do
not fit into the GPU memory but are small enough for the main memory. Since our test-
ing system is equipped with 48 GB of the main memory, the largest MD problems range
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from 29,000 to 34,000 degrees of freedom (Table 6.1). Furthermore, since the functional
motions are described by the smallest frequencies, in practice, only 1% of the smallest
eigenvalues are required to describe the functional motions of macromolecules. Thus, in
our MD test cases, we compute ≈ 300 smallest eigenvalues.

In our analysis, we consider a multi-core implementation of the one-stage approach
(routine dsyevr from LAPACK library) as the state-of-the-art eigensolver. Although
different approaches and implementations that exploit GPU devices exist, none of them
is capable of solving problems whose storage space exceeds that of the GPU memory.
Therefore, the LAPACK implementation is the only one competitive eigensolver capable
of solving large eigenproblems (n >30,000) on one-node computing systems.

In the previous section we analyzed the OOC multi-stage eigensolver, the Krylov
subspace and the spectral divide–and–conquer based on the QDWH eigensolver. For
these experiments, we choose the version of each OOC-GPU eigensolver that requires the
lowest computational time; therefore, for the solution of the MD test cases we choose
OOC-GPU 3-stage eigensolver, explicit Krylov-subspace approach, ke and spectral D&C
with the sd&c-a strategy. Figure 6.10 shows the speed-up of our OOC-GPU eigensolvers
compared with the multi-core variant of the one-stage eigensolver ran on all 8 cores of
the testing system. The analysis of all three OOC-GPU eigensolvers includes the cost of
the reduction from generalized to standard form as well as the back-transform. The ex-
plicit Krylov-based eigensolver achieves almost a 10× speed-up compared with LAPACK,
for the largest test cases (utub40 n = 34297). In general all OOC-GPU eigensolvers
achieve significant speed-ups for the largest test cases because the execution time for the
1-stage eigensolver rapidly increases for the largest test cases; see Figure 6.3(a). When
the problem dimension increases, the 1-stage eigensolver pays a price due to the slow
memory-bound level-2 BLAS operations that also manifest in the decrease of GFLOPS
rate, Figures 6.3(b) and 6.11.
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Figure 6.10: Speedup of three OOC-GPU eigensolvers relative to 1-stage CPU eigensolver.
Only 1% smallest eigenvalues are computed.

On the other hand, the OOC-GPU eigensolvers maintain very high performance even
for the largest MD problems, Figure 6.11. At this point, it is worth noticing that the
higher GFLOPS ratio for SD&C does not imply a shorter execution time, Figure 6.10, as

104



Numerical Experiments

this method also exhibits a much higher flop cost (30n3 if only 6 iterations are performed
) than the 3-stage (14/3n3) and the Krylov subspace (7/3n3) alternatives. In any case,
the experiment serves its purpose, showing that the OOC-GPU multi-stage, Krylov and
SD&C eigensolvers deliver, respectively, sustained rates of 110, 200 and 210 GFLOPS
for the largest problem size. More importantly, the trends revealed by this experiment
indicate we can hardly expect a raise in the GFLOPS rate when working with larger
problems (even if they fit into the main memory) as the performance rates are quite flat
for the largest two problem sizes.
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Figure 6.11: GFLOPS rate of the OOC-GPU eigensolvers applied to MD problems. Only 1%
smallest eigenvalues are computed.

Although we stated that the Krylov subspace-based approaches cannot efficiently ex-
ploit the GPU performance when the data are out-of-core from the GPU viewpoint, ke
variant exhibits a very high GFLOPS rate. This is because the majority of the com-
putations in ke is performed in the reduction from generalized to standard form, by
employing highly optimized Cholesky and dtrsm routines that successfully overlap the
data transfers with computation. Moreover, the iteration step, which is exclusively level-2
BLAS oriented, does have a strong impact on the total execution time. Thus, the perfor-
mance of the ke variant is not limited with memory-bound but with the compute-bound
kernels. However, if the number of sought-after eigenvalues increases, the impact of the
memory-bound kernel (dsymv) becomes larger and performance is expected to drop.

The 3-stage OOC-GPU eigensolver does not achieve the best Gflops rate of all eigen-
solvers, as it was expected. This is mainly because of the last step, reduction from
narrower to tridiagonal form that, unlike reduction to band form, becomes the most time
consuming part of the algorithm. However, the 3-stage eigensolver demonstrates excel-
lent scalability with the problem dimension. The spectral divide-and-conquer eigensolver,
although exhibits much higher computational cost, attains the highest GFLOPS rate.
With some eventual development of the polar decomposition algorithm, it is expected
that this approach becomes competitive with the multi-stage and Krylov-subspace based
eigensolvers.

The conclusion is that the explicit Krylov-subspace approach is the best eigensolver
for the targeted MD problems and their dimension. However, its performance drops
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with the number of the eigenvalues because of computationally inefficient matrix-vector
product. On the other hand, if larger problems or more eigenvalues are required then the
OOC 3-stage eigensolver is a better solution. Furthermore, the 3-stage eigensolver has
a great potential of being extended to other computing platforms equipped with various
memory levels. In such systems, the block size can be fine-tuned to better exploit the
underlying computational infrastructure, for example in order to optimize the memory
transfers between disk and the main memory or between local and distributed memories,
by adjusting block sizes with respect to the memory capacity and bandwidth.
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Conclusion

Nowadays large dense symmetric eigenproblems are solved on various computing architec-
tures, ranging from scalable supercomputers to large computing clusters that consist of a
number of nodes equipped each with one or more multi-core processors. These large sys-
tems can provide enough computing power and the level of scalability to efficiently meet
the needs of large eigenvalue problems. Naturally, with the maturity of general-purpose
GPUs, these traditional computing systems were extended by adding GPU accelerators
to each computational node thus providing further speedup over CPU-only systems. A
key factor to exploit these systems, called hybrid systems, is to improve load balancing
among the different computational units, such as processing cores, multi-core processors,
GPUs and computational nodes.

The GPUs, because of their unique architecture, are especially suitable for vector
parallel, compute-bound operations, that a majority of the linear algebra operations
are composed of. Modern optimization approaches aim to improve the performance
of computationally-intensive parts by off-loading them to GPUs while performing less
computationally-intensive and memory-bound operations on more suitable multi-core pro-
cessors. Such approaches can attain very high performance, as far as the required data
are kept in the GPU memory. However, if the problem size exceeds the GPU memory,
the performance drastically drops due to the PCI-e latency and bandwidth constraints.

The keep the pace with the demands on high performance of GPUs even for problems
whose data are too large to fit the GPU memory, current efforts aim to improve the
hardware scalability, i.e. improve the algorithms that efficiently scale to a very large
number of GPU accelerators. Thus, it is expected that such algorithms will greatly benefit
by adding more GPU accelerators to the system. However, this approach has two main
drawbacks: procurement and maintenance costs and the limited amount of aggregated
memories of all attached GPUs. The latter is the cause of many problems connected with
the scalability and expensive memory transfers between the main memory and the GPU
memory. The consequence of this is that, the GPU accelerators cannot be applied to if
the problems are large enough, i.e. out-of-core for GPU.

7.1 General contributions
Opposite to modern approaches that mostly tend to improve the scalability and the per-
formance of the eigensolvers by improving the memory distributions, overlapping transfers
and executions on large computational resources this thesis proposes an alternative path
by revitalizing the out-of-core techniques applied to GPUs. Although out-of-core tech-
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niques are presently not mainstream in high performance computing they are becoming
more important. In particular, as the number of computational cores grows, the amount
of memory per core is decreasing. The memory bandwidth and latency thus become the
main bottlenecks since the computational units are waiting for data to be transferred
to the local memory (e.g. cache or GPU memory). In this research, the GPU memory
is considered as the local memory and utilized as a cache memory for GPU processors.
This concept is feasible since GPU memory has very low latency and exhibits very high
bandwidth providing very high performance for data already residing in the GPU memory.

This thesis is devoted to the solution of large dense symmetric eigenproblems on a
CPU-GPU hybrid system equipped with a single GPU. The main motivation of this
work is that recent dense symmetric eigensolvers, though attaining significant speedup
compared to the tuned versions for modern multi-core CPUs, cannot solve problems if
the required storage space exceeds the GPU memory. To address this obstacle, this
thesis aims to improve a set of advanced linear algebra routines by applying out-of-core
techniques from the perspective of the GPU. These developed out-of-core routines are
then applied to improve the existing dense symmetric eigensolvers for the GPU-based
hybrid systems. In addition, the out-of-core routines developed within this research, such
as matrix-matrix multiplications and QR factorization, can improve the performance of
other linear algebra problems that do fit into the GPU memory. However, to exploit the
potential of GPU accelerators to their maximum, additional improvements in eigensolvers
are necessary.

In this thesis we have demonstrated that real eigenproblems, for example those that
arise in molecular dynamics and were traditionally solved on clusters of multi-core pro-
cessors, can also be efficiently solved on a hybrid computing systems equipped with a
single GPU accelerator. The developed out-of-core algorithms exploit the performance of
the GPU accelerators even when the problem cannot entirely fit into the GPU memory.
Moreover, the obtained performances are comparable with those of the in-core GPU vari-
ants. The experimental evaluations show that the large eigenproblems can be solved even
on modest computational hardware with a minimal decrease in performance.

Specifically, this thesis addresses three symmetric dense eigensolvers: the eigensolver
based on the multi-stage reduction, the Krylov subspace-based method, and the spectral
divide–and–conquer algorithm. For two eigensolvers; the multi-stage reduction and the
spectral divide–and–conquer, it is shown that by careful orchestrating the transfers be-
tween the main and the GPU memory, very large eigenproblems can be efficiently solved
on a hybrid system equipped with a single GPU without significant drop in the overall
performance. Furthermore, the negative effects of data transfers between local memory
(i.e. GPU memory) and the main memory are efficiently overcome by carefully preserving
data locality. The three targeted out-of-core eigensolvers significantly outperform their
highly tuned multi-core counterpart versions even if the data is too large to fit into the
GPU memory. Furthermore, the peak performance of the out-of-core eigensolvers is com-
parable with those of the in-core GPU versions for problems that can fit into the GPU
memory.

The performance of the three out-of-core eigensolvers is demonstrated on real problems
that arise in the molecular dynamics. The eigenproblems to be solved in molecular dy-
namics experiments are dense and symmetric requiring only a small subset of eigenvalues
and the corresponding eigenvectors to be computed. Furthermore, the starting problem is
in generalized form and its reduction to standard eigenvalue problem exhibits extremely
high performance when executed as out-of-core. The developed out-of-core routines ap-
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plied to the reduction to standard eigenvalue form are perfectly scalable to any problem
dimension and deliver a constant GFLOPS rate, comparable to the in-core variants, for
large enough matrices.

A detailed comparison of the developed out-of-core eigensolvers with molecular dynam-
ics cases shows that the out-of-core Krylov-subspace eigensolver though a memory-bound
operation, is the fastest approach. However, as the number of the required eigenvalues and
eigenvectors increases, the execution time of the Krylov subspace eigensolver increases as
well due to an increased number of iterations. Generally, the out-of-core Krylov-subspace
method is the method of choice for any problem dimension if the number of sought-after
eigenvalues is small (experimentally, the best performance are achieved when at most 1%
eigenpairs are required). On the other hand, if all eigenvalues or a large subset of eigen-
pairs are required, then the multi-stage method is the best solution, since the time for the
reduction to tridiagonal form is constant and does not depend on the number of eigen-
pairs. The cost of finding eigenvalues and eigenvectors of tridiagonal form is negligible
compared to the rest of the algorithm.

In addition to the general contributions of the thesis, some specific contributions for
each eigensolver are presented in the following subsections.

7.1.1 OOC multi-stage reduction
Traditionally, direct eigensolvers, such as the multi-stage reduction, are applied to small
eigenproblems. The reason for that is in its high arithmetic cost (O(n3)) flops, espe-
cially when the eigenvectors are required as well, due to the explicit accumulation of the
Householder reflectors. The evaluation reveals that the most time consuming stages are
reduction from dense symmetric to band form and from band to narrower band form. By
off-loading these two stages to the GPU, a significant speedup is expected to be achieved.
However, for large enough problems, the straight-forward solutions, such as the solutions
that can be found in the MAGMA computational library, are not applicable since the
problem does not fit into the GPU memory.

To address this out-of-core scenario, a new reduction from dense symmetric to band
form was designed and implemented. The new reduction algorithm re-organizes the state-
of-the-art SBR toolbox routines for reduction to band matrix form. Specifically, a hybrid
CPU-GPU QR factorization of the leading panel and a two-sided updated of the trailing
matrix were designed. The second stage, the reduction from band to narrower band form,
though rich in BLAS-3 operations, has an expensive bulge-chasing phase, which requires
a lot for copying to and from the memory if the eigenvectors are required. Therefore,
to maximize the performance and decrease the number of memory transfers, this stage
was designed and implemented as an in-core GPU algorithm. In order to optimize the
execution of the second stage, the bandwidth has to be small enough so that the matrix,
stored in the band storage representation, entirely fits into the GPU memory.

The experiments demonstrated that the size of the band has a significant role in
the algorithm’s performance. In the 3-stage reduction, for all problem sizes, the best
performances are achieved for large values of the band size. This parameter is chosen to
be the maximum feasible so that the band matrix, involved in the second stage, fits into the
GPUmemory. This approach can be generalized to any two memory levels, e.g. distributed
memory of the cluster and the local (main) memory of one computing node, by choosing
the largest possible band size so that the band matrix fits into the smaller memory, thus
decreasing the number of memory transfers between the two memory levels with different
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bandwidths and latencies.
The multi-stage out-of-core eigensolver, in particular the 3-stage variant, although

exhibits more flops that the one-stage and Krylov subspace approaches, outperforms both
of them if all or a large subset of eigenvalues are required. Furthermore, the out-of-
core GPU multi-stage approach significantly outperforms the multi-core variants for large
enough eigenproblems.

7.1.2 OOC Krylov subspace-based method
The Krylov-subspace based methods are traditionally applied to the solution of sparse
eigenproblems and when only a small subset of eigenvalues and eigenvectors is required
because of their fast convergence and low computational cost, O(n2) flops. Moreover, the
Krylov methods are based on the memory-bound matrix-vector operations, rather that on
the compute-bounded matrix-matrix operations. Therefore, they are not considered as the
methods of choice for the solution of large dense eigenproblems because the operational
intensity of matrix-vector operations is O(1) and can not be efficiently implemented on
GPU when the matrix is too large to entirely fit into the GPU memory.

Nevertheless, in this thesis we demonstrated that the Krylov-subspace base eigen-
solvers can be very competitive to direct eigensolvers for molecular dynamics problems,
even for very large dense matrices. Note that the molecular dynamic problems are gen-
eralized eigenvalue problem which require a reduction to standard form. Opposite to
memory-bound matrix-vector operations, these operations are compute-bound and per-
fectly suitable for an out-of-core execution on the GPUs. With the explicit construction of
matrix C on the GPU, for very large matrices, the execution time of the Krylov-subspace
methods significantly decreases. Furthermore, if a small subset of eigenpairs is required,
the convergence is fast (i.e. number of iterations) and the standard multi-threaded matrix-
vector multiplication, from BLAS, provides fair speedup.

The experiments show that the execution time of the iterative stage of the Krylov
methods, due to matrix-vector multiplication, is negligible compared with the reduction
to standard eigenvalue form and back-transformation. Furthermore, the explicit, multi-
core construction of C for large matrices is the slowest method, while on the other hand
the GPU out-of-core variant proved to be the fastest method.

7.1.3 OOC spectral divide–and–conquer
The spectral divide–and–conquer QDWH-based algorithm is a novel highly accurate
method to compute the eigenvalues and the corresponding eigenvectors of a dense sym-
metric matrix. The algorithm is based on the polar decomposition and implements the
divide–and–conquer strategy by dividing the problem into smaller subproblems. The
divide–and–conquer approach can be very useful when dealing with a large problem since
it can be reduced to subproblems that can be efficiently solved in-core by applying state-
of-the-art solution from different computational libraries. The spectral D&C algorithm
exhibits a significantly higher computational cost than other eigensolvers. However, it
attains a very high GFLOPS rate since all operations can be cast in the terms of level-3
BLAS operations that are suitable for the out-of-core execution on the GPUs.

In our approach we modified the recent spectral D&C algorithm by choosing the
splitting point for spectral decomposition to be slightly larger than the largest sought-
after eigenvalue giving that the subspace iteration part is performed as in-core algorithm
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with problem dimension close to the number of the required eigenvalues. This turns the
polar decomposition as the only computationally-intensive part that has to be re-designed
to efficiently exploit a GPU, even if the problem exceeds the GPU memory and the time
for subspace iteration becomes negligible compared to the QDWH part.

The QDWH algorithm is an iterative algorithm with three computationally-intensive
parts: QR factorization of 2n×n matrix, explicit construction of Q, and updating for
the next iteration. Furthermore, the QR factorization operates on a tall matrix with all
entries in its lower triangle equal to zero. The sparsity of the matrix can be exploited
in order to decrease both computational cost and number of data transferred. Thus, we
designed an out-of-core, left-looking, slab-oriented QR factorization that requires less data
transfers than the right-looking variant. The computational cost is decreased by applying
a two-level blocked strategy. In the first level of blocking, the block size is chosen such
that one one slab can fit into the GPU memory. This is a coarse-grained blocking that
optimizes the number of data transfers between the main memory and the GPU memory.
The second level of blocking is used to eliminate nonzero entires in the lower triangle
the matrix and thus optimize the QR factorization of small slabs on the CPU. Instead of
working on tall slabs with zeros in the lower positions, the blocking allows us to operate
only on the non-zero entries, thus decreasing both the computational cost and the amount
of data transferred to the GPU. By exploiting the sparsity of the matrix, our out-of-core
QR factorization features lower computational cost, and achieves a higher GFLOPS rate
and significant speedup over the most recent out-of-core QR variant from the MAGMA
computational library.

In general, the spectral D&C algorithm, though exploits much larger computational
costs that the other two methods, exhibits higher GFLOPS rate. However, because of its
high cost, the execution time is not comparable with other two methods. However, this
method is perfectly scalable to the problem dimension and with some future research that
may lead towards the decrease in the algorithm complexity, can be competitive for the
solution of dense symmetric eigenproblems when a small subset of eigenpairs is required.

7.2 Future research
Out-of-core GPU computing is a relatively novel research line in the domain of high-
performance computing. This area is still largely unexploited and there are many open
questions that still wait to be answered. In this thesis we tackled one small segment in this
research line, dealing with the efficient solution of large dense symmetric eigenproblems.
The following list details some open questions that burst out from this thesis:
• Applying out-of-core techniques and routines to the solution of the generalized non-

symmetric eigenvalue problems. Specifically, the developed routines, such as QR
factorization, matrix-matrix multiplication, and the update of the trailing matrices
can be efficiently applied to the solution of large dense eigenvalue problems. Fur-
thermore, the blocked algorithms that improve the utilization of GPUs and decrease
the number of transfers can be used in more general cases.
• Extend the research to problems that are out-of-core from the main memory point

of view. Since the main memory is also a limiting factor, one of the possible im-
provement would be to examine if it is possible to overcome and hide the latency
of the hard disk for problems that do not fit into the main memory of the system.
Together with the existing GPU out-of-core execution, would it be desirable to com-
pute at the rate close to those of the GPU and store data on disc. This approach,

111



Conclusion

if possible, would completely hide the hard disc latency and enable the efficient
solution for any problem size.
• Overlapping data transfers and computation on the GPU. This open question is

closely related with the previous one. In this thesis we did not implement any explicit
overlapping between data transfers and computing on the GPU. Some routines such
as matrix-matrix multiplications, the QR factorization and Cholesky can greatly
benefit from explicit overlapping by introducing CUDA streams and asynchronous
kernel calls.
• Dynamic scheduling can be efficiently applied to in the bulge chasing phase in the

multi-stage reduction. The bulge chasing phase is very expensive, especially if eigen-
vectors are required. Future research may include fine-grain bulge-chasing, describ-
ing it as direct acyclic graph (DAG) that can be scheduled between CPUs and a
GPU or between multiple GPUs.
• Novel eigensolvers based on combinations of the iterative and direct eigensolvers.

This thesis showed that the multi-stage approach, though achieves a high GFLOPS
rate in the first stages, in the last stage, i.e. the reduction from the band to the
tridiagonal form, it exhibits very poor performance and becomes the most time
consuming part. An open research line is how accelerate this stage by applying the
Krylov subspace-based approach to compute the eigenvalues of a band matrix.
• An open research line is to exploit multi-GPU out-of-core solutions. This approach

will boost the performance by combining the power of the multiple GPUs on ex-
tremely large problems on systems equipped with more GPUs. An open question is
how to efficiently synchronize load balancing (by blocks) on multiple GPUs.
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A List of the BLAS Routines

The Basic Linear Algebra Subprograms (BLAS) are routines that perform the most com-
mon linear algebra problems such as the scalar product of two vectors, the solution of
triangular system, or the matrix-matrix multiplication. The BLAS subroutines are com-
monly used as basic building blocks for the development of complex dense linear algebra
routines as well as in a wide variety of applications in science and engineering. Since the
beginning of the development of the BLAS library in early 1970s, it has become de facto
a standard for the basic, low-level linear algebra libraries and routines. Numerous highly-
tuned, hardware-specific implementation of the BLAS library were developed on a top of
the original BLAS. All these implementations share the common application programming
interface (API) and the specification defined since the original BLAS definition [122].

The BLAS routines are divided into three levels depending on whether they operate
on vectors, matrices or both. The first level, referred to as Level-1 BLAS or BLAS-1,
encompasses the routines that implement basic operations on vectors such as copying,
scaling, vector scalar product, or computing the vector norms. In these routines, the
number of operations and the amount of data increase linearly with the problem size and
attain low operational intensity. Therefore, because their performance is dictated by the
memory bandwidth, these routines are referred as the memory-bounded routines.

The routines from the second level, known as Level-2 BLAS or BLAS-2, are those
that exhibit matrix-vector operations. These routines perform the quadratic order of
operations on the quadratic amount data. As in case of BLAS-1 routines, the operational
intensity is low and is of order of O(1). However, an efficient implementation can reduce
the number of memory accesses by improving the reuse of data stored in the memory,
e.g., registers or cache. The list of the BLAS-2 routines most commonly used in this
dissertation, is given in Table A.1.

BLAS-2
Routine Operation Comment flops
xgemv y := α op(A) x+β y op(A) = A,AT , A is m×n 2mn
xsymv y := α A x+β y A= AT 2n2

xtrmv x := op(A) x op(A) = A,AT , A upper/lower triangular n2

xtrsv op(A) x= b op(A) = A,AT , A upper/lower triangular n2

xsyr2 A := α x yT +α y xT +A A= AT 2n2 +n

Table A.1: Description and the number of the floating-point operation of the BLAS-2 routines
used in the dissertation.
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The main drawback of the BLAS-1 and the BLAS-2 routines is that their operational
intensity, i.e. the ratio between the number of floating-point operations and the number
of memory accesses, is low. As a result, their performance is limited by the speed at
which the data can be provided to the processing units. Therefore, the libraries build
on top of the BLAS-1 and BLAS-2 routines cannot attain high performance on modern
systems with a hierarchical organization of the system memory. In late 1980s the BLAS
specification proposed a set of new operations that exploit cubic number of floating-point
operations on a quadratic amount of data. These new routines are called Level-3 BLAS
or BLAS-3 routines and are oriented on matrix-matrix operations. With the unbalance
between the number of operations performed and memory accesses, these routines better
exploit the data locality in the architectures with the multiple memory levels. In practice,
this enable the development of algorithms-by-blocks to efficiently hide the memory latency
and thus exhibits much higher performance, usually very close to the peak performance
delivered by the processors. The BLAS-3 routines that are used in the dissertation are
listed in Table A.2.

BLAS-3
Routine Operation Comment flops
xgemm C := α op(A) op(B) +β C op(X) =X,XT , C is m×n 2mkn

xsymm C := α A B+β C
C is m×n, A= AT

2nm2

C := α B A+β C 2mn2

xtrmm C := op(A) C
C is m×n, op(A) = A,AT

nm2

C := C op(A) mn2

xtrsm op(A)X = α B
X,B is m×n, op(A) = A,AT

nm2

X op(A) = α B mn2

xsyr2k C := α A BT +α B AT +β C A,B in n×k, C = CT 2n2 +k
C := α AT B+α BT A+β C A,B in k×n, C = CT

Table A.2: Description and the number of the floating-point operation of the BLAS-3 routines
used in the dissertation.
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