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Guanidiniocarbonyl-pyrrole-aryl derivatives: structure tuning for 
spectrophotometric recognition of specific DNA and RNA sequences  

and antiproliferative activity. 

Laura Hernandez-Folgado,[a,b] Domagoj Baretić,[c] Ivo Piantanida,*[c] Marko Marjanović,[d] 
Marijeta Kralj,[d] Thomas Rehm[a] and Carsten Schmuck*[a] 

Dedication ((optional)) 

Abstract: We present here a systematic 
study of different guanidiniocarbonyl-
pyrrole-aryl derivatives designed to 
interact with DNA or RNA both by 
intercalation of an aromatic moiety into 
the base stack of the nucleotide as well 
as groove binding of a guanidinio-
carbonyl pyrrole cation. We varied 1.) 
the size of the aromatic ring (benzene, 
naphthalene, pyrene and acridine), 2.) 
the length and flexibility of the linker 
connecting the two binding groups, as 
well as 3.) the total number of positive 

charges present at different pH values. 
The compounds and their interaction 
with DNA and RNA were studied by 
UV/Vis-, fluorescence and CD 
spectroscopy. Also the antiproliferative 
activity against human tumour cell lines 
was determined. Our studies show that 
efficient interaction with e.g. DNA 
requires a significantly large aromatic 
ring (pyrene) connected via a flexible 
linker to the pyrrole moiety. However, 
a positive charge as in 12 is also needed. 
Compound 12 allows for a base pair 

selective recognition of ds-DNA at 
physiological pH. The antiproliferative 
activity correlates with the binding 
affinity of these compounds towards 
DNA suggesting that the biological 
effect is most likely due to DNA 
binding.  
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intercalation • molecular 
recognition • antiproliferation 

 

Introduction 

The search for molecules that specifically interact with DNA 

and RNA is of current interest for the development of sensors and 

new drug candidates.1 A variety of biologically active compounds 

acts by interacting with DNA/RNA; e.g. netropsin, a potent antiviral 

and antitumor agent and DAPI, a fluorescent indicator with 

pronounced antitrypanosomal activity. Such compounds often owe 

their biological activity to the binding into the DNA minor groove 

by multiple interactions of cationic functional groups (e.g. 

guanidinium or amidinium groups) with DNA basepairs, and/or 

phosphate backbone. However, a strong DNA selectivity of minor 

groove binders is disadvantageous in cases of RNA targeting. 

Another common binding mode is intercalation (e.g. echinomycin, 

anthracyclines), which is the insertion of large aromatic moieties 

into the base stack of the nucleic acid, characterized by similar 

affinity toward DNA and RNA. Some compounds actually exhibit a 

binding mode switch (e.g. intercalation into G-C sequences and 

groove binding into A-T sequences). 2  The combination of two 

aromatic units of different but specific spectroscopic properties 

allows achieving specific spectroscopic responses upon interaction 

with DNA and/or RNA.3 However, it was noticed that in many cases 

very strong binding to DNA (e.g. intercalation of large fused 

aromatic systems or bis-intercalators) severely limits the 

extravascular distributive properties of such compounds hampering 

their potential use as drugs, most likely due to the limited solubility 

of large aromatic groups in aqueous solvents. Therefore, one aim of 

research in this area is the development of minimal DNA 

intercalators. 4  Another option is to combine intercalation with 

groove binding, one area of research that we are currently interested 

in. Moreover, a recent report on a bis-guanidinium derivative of 

ethidium which is highly selective for AT-Rich DNA regions 

demonstrates the potential of hybrid compounds containing both an 

intercalator and a positively charged group like a guanidinium 

cation.5 In addition one such compound was shown to have distinct 

TAR RNA of HIV-1 antiviral activity.6 

We recently reported a first example of a guanidiniocarbonyl 

pyrrole-pyrene hybrid molecule 1, which contains both an 

intercalator (the pyrene unit) and a cationic group, capable of groove 

binding (the guanidiniocarbonyl pyrrole cation).7 Pyrene is a well 

known polarity-sensitive probe and its fluorescence is extensively 

employed to characterize microheterogeneous systems. 8  A long 

lifetime of the excited state and the possibility of easy excimer 

formation9  are distinctive features of the pyrene fluorophore that 

allow its application for detection of nucleic acid interactions both 

as a single label10 and in excimer-forming pairs or as multipyrene 

probes.11 Moreover, the flat aromatic structure of the pyrene residue 

facilitates its stacking with nucleobases.12 The guanidiniocarbonyl 

pyrrole cation was expected to undergo multiple non-covalent 
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interactions (hydrogen bonds and ion pairs) with DNA and RNA. In 

addition, electrostatic interactions are tuneable by external stimuli 

since protonation of the acyl guanidinium (pKa ca. 6-7) is directly 

correlated to the pH of the aqueous solution.  
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Most interestingly, compound 1 exhibited a very unique and 

distinctly different spectroscopic interaction with either DNA or 

RNA. With ds-DNA a strong induced CD signal at about  = 300 

nm was observed, while under the same conditions a new 

fluorescence maximum at  = 480 nm appeared exclusively upon 

the addition of RNA. This different behaviour could be explained by 

a switch in binding mode. Whereas 1 intercalates its pyrene moiety 

into ds-DNA while the guanidiniocarbonyl pyrrole cation is binding 

into the minor groove (giving rise to the ICD signal), with ds-RNA 

two or more molecules of 1 form a -stacked excimer most likely 

binding into the major groove of ds-RNA which gives rise to the 

strong excimer fluorescence at  = 480 nm.  

We now report on a systematic study of a series of related 

hybrid molecules, in which we varied the aromatic unit, the length 

and rigidity of the linker in between the aromatic and cationic 

groups or the number of charges present at different pH values. The 

driving force for the DNA/RNA binding of these compounds in 

analogy to the results obtained for 1 is assumed to consist of two 

parts: (1) hydrophobic/dispersive interactions associated with 

intercalative stacking of the aromatic ring system with the base pairs 

and (2) the interaction of the guanidiniocarbonyl pyrrole cation 

within one of the DNA/RNA grooves. While the former part is of 

predominantly attractive nature, the latter involves both attractive 

electrostatic interactions, including hydrogen bonding, as well as 

steric repulsion. In total we examined 13 compounds. We describe 

here their syntheses and study of interactions with DNA and RNA 

determined by UV/Vis-, fluorescence and CD spectroscopy as well 

as some first results on their antiproliferative activities against 

tumour cell lines. The experimental data clearly indicate a 

possibility of the fine tuning of small molecule-DNA or RNA 

interactions and indicate a correlation between the affinity of these 

small molecules toward DNA and the observed antiproliferative 

activity. 

Results and Discussion 

Design of the compounds: First, within the series 2 - 5 we 

directly connected an aromatic unit of increasing size to the 

guanidiniocarbonyl pyrrole cation.  
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Compounds 6, 7 and 8 all contain a naphthalene unit similar to 4 

but with an additional linker in-between the naphthyl-moiety and the 

guanidiniocarbonyl pyrrole cation to ease structural accommodation 

of the molecule within the double stranded helix of the 

polynucleotide. We varied the rigidity and polarity of the linker 

(flexible and non-polar in 6 and more rigid and polar in 7 and 8) and 

the number of positive charges (8 has one positive charge more than 

the other two compounds). The linkers in 7 and 8 are dipeptides, 

Gly-Ser for 7 and Lys-Ser for 8, respectively. The amino acids were 

chosen to provide additional sites for potential interactions with the 

nucleic acids (by H-bonds to the amide groups e.g.) as well as to 

increase the solubility (serine, lysine) of the compounds. 
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Furthermore, five compounds with either a pyrene or acridine 

moiety were synthesized in order to increase their affinity toward 

DNA/RNA (relative to the naphthalene based compounds) and to 

also take advantage of their superior fluorescent properties, whereby 

a pyrene moiety was chosen due to its strong fluorescence which 

could allow a selective and highly sensitive recognition of specific 

DNA/RNA structures. 
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9 and 10 are derived from amino pyrene and as a linker contain 

either serine or the dipeptide Gly-Ser. 11 is the acridine analogue of 

1, whereas 12 is again a pyrene derivative with a semi flexible linker 

and one additional positive charge (due to the lysine). 13 was 

designed as potential bis-intercalator. 

Synthesis of the compounds: The synthesis of 17 and 813 were 

previously reported. Compounds 2-5 were synthesized according to 

scheme 1. Due to their low nucleophilicity the aryl amines used 

were coupled via the acid chloride to the starting compound 14. 

After hydrogenolysis of the benzyl ester in 15a-d with palladium on 

charcoal the free acid was activated with either PyBOP 

[(benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophos-

phate]  (16a-c) or HCTU [O-(6-chlorobenzotriazol-1-yl)-N,N,N’,N’-

tetramethyluronium hexafluorophosphate] (16d) and reacted with N-

Boc-protected guanidine yielding the protected compounds 17a-d. 

Finally, trifluoroacetic acid (TFA) was used for the deprotection of 

the acylguanidines. After lyophilization from methanol and 

hydrochloric acid the compounds 2-5 could be obtained as chloride 

salts. 

The syntheses of the new guanidiniocarbonyl-pyrrole-aryl 

hybrid compounds 6 - 12 were achieved by two different procedures 

described in Schemes 2 and 3. The procedure starting from aryl 

amines (considering (L)-N-2-naphthyl-serinamide also as an aryl 

amine) is shown in scheme 2: 1-naphthylamine and 1-pyrenyl-amine 

were coupled to 5-[(tert-butoxycarbonyl)amino]-pentanoic acid 14 

and (L)-N-(tert-butoxycarbonyl)serine respectively, using isobutyl 

chloroformiate as acid activator. 18c was prepared from (L)-N-2-

naphthylserinamide, commercially available, with PyBOP as 

coupling reagent. Then, the Boc-protecting groups in 18a-c were 

removed quantitatively with TFA. The resulting free amines were 

reacted without further purification with N-Boc-5-guanidino-

carbonylpyrrole-2-carboxylate (19), prepared according to literature 

procedures.15 Final Boc-deprotection of 20a-c was carried out again 

with TFA, providing the guanidiniocarbonyl-pyrrole-aryl derivatives 

6, 7 and 9 in high yields as trifluoroacetate salts. The resulting free 

amine from 18b was also coupled first to N-(tert-

butoxycarbonyl)glycine (87% yield) and then to 19 (78% yield). 

Afterwards, the Boc-deprotection of 22 under acidic conditions led 

to the guanidiniocarbonyl-pyrrole-pyrenyl derivative 10.  

 

Scheme 1. Synthesis of the 1st intercalator generation 2-5. 

Preparation of compounds 11 and 12 is outlined in scheme 3. In 

this case starting materials were aryl acids (1-pyrenecarboxylic acid 

and 9-acridinecarboxylic acid), which were coupled to Boc-

monoprotected alkyl diamines16 by PyBOP activation. Afterwards 

23a-b were the subject of amine deprotection and consecutive 

amide-bond formation using PyBOP standard coupling conditions in 

a similar way as it was described above. Intermediates 24-26 were 

thus obtained in good yields. 24 was easily deprotected, affording 11 

with high yield. However, deprotection of 26 was not so trivial. A 

mixture of 0.1% of trifluoromethanesulfonic acid (TFMSA) in TFA 

was used for the deprotection of both the Cbz-protected amine and 

the Boc-protected guanidine simultaneously, following our own 

previously reported results.7 This procedure gave 12 in moderate 

yields of 57%, requiring RP18-chromatography to purify it from 

decomposition byproducts. 

Synthesis of guanidiniocarbonyl-pyrrole-diaryl derivative 13 

was achieved by a convergent procedure according to scheme 4. 

Preparation of intermediate 29 was performed in moderate yield by 

PyBOP activation couplings and acid Boc-deprotection. 1-

pyrenecarboxylic acid, N-(tert-butoxycarbonyl)glycine and the 

arginine analogue 2817 were used as starting materials. Afterwards 

the methyl ester in 29 was deprotected quantitatively by basic 

hydrolysis. Then, the free acid was coupled to the free amine of 23a, 

affording the diaryl Boc-protected intermediate 30 in moderate yield. 

Final deprotection led to 13 in 43% yield after reverse phase 

chromatographic purification. 
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Scheme 2. Synthesis of 6,7, 9 and 10  

Physico-chemical properties of the compounds in aqueous 

solution: Compounds 2 - 5 have only a limited solubility in water, 

namely 2 - 4 could be dissolved at c  3-4  10-4 mol dm-3, and a 

stock solution of 5 was prepared in DMSO (c = 0.01 mol dm-3 ) and 

then diluted in water or buffer up to c(5) 1  10-5 mol dm-3. 

Introduction of a spacer significantly improved the water solubility 

of pyrene and acridine derivatives 1, 6, 7, 11 and 13 ( 10-4 mol 

dm-3 range), 8 and 12 (up to c=1.0 10-3 mol dm-3). Compounds 4, 9 

and 10 decomposed after few hours in aqueous solution at room 

temperature or upon heating at 90 0C for several minutes as 

indicated by changes in the UV spectra, which excluded them from 

further studies. Aqueous solutions of all other compounds were 

stable, not showing any sign for decomposition upon standing for 

several days at room temperature or upon heating to 90 °C for at 

least 1 hour. The insufficient stability of aqueous solutions of 9 and 

10 compared e.g. to 12 or 13 is most likely due to the fact that 

amino pyrene is a rather good leaving group in nucleophilic 

displacement reactions. Furthermore, the nearby serine OH group 

can intramolecularly assist in the cleavage via the intermediate 

formation of a -lactone. In 12 or 13, derived from pyrene 

carboxylic acid, the direction of the amide bond is reversed and thus 

the compound is much more stable.  

 

Scheme 3. Synthesis of 11 and 12 

 

Scheme 4. Synthesis of bis-pyrene derivative 13. 
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UV-Spectroscopy: Absorbencies of aqueous solutions of all 

compounds are proportional to their concentrations up to c = 5  

10-5 mol dm-3 (1  10-5 mol dm-3 for 5 due to its limited solubility). 

Hence, in the concentration range needed for the following 

spectroscopic studies no significant intermolecular aggregation of 

the compounds occurred, which should give rise to hypochromicity 

effects. Absorption maxima and the corresponding molar extinction 

coefficients () are given in Table 1. 

Table 1. Electronic absorption maxima and corresponding molar 

extinction coefficients in aqueous medum,a fluorescence emission 

maxima and corresponding relative quantum yields (Q).b 

 UV/Vis Fluorescence emission 

 
max / nm (   103 /dm3 mol-1 

cm-1) 

max / nm bQ 

pH 5  pH 7 

2 308 (20.6)  0 0 

3 301 (30.2)  0 0 

5 
231 (20.1); 284 (18.4); 343 

(10.0) 

 >0.01 >0.01 

6 294 (21.0)  >0.01 >0.01 

7 243 (30.6); 295 (24.4)  >0.01 >0.01 

8 243 (27.4); 295 (22.7) 
 >0.01 >0.01 

1 
242 (24.2); 276 (38.1); 303 

(28.1); 342 (20.4) 

382 0.03 0.04 

11 250 (88.3); 300 (25); 360 (8.4) 425 0.06 0.04 

12 

231 (58.17); 242 (48.2); 276 

(33.7); 307 (28.6); 344 (18.2); 

377 (1.8) 

387 0.01 0.02 

13c 278 (26.2); 345 (19.3) 401 0.04 0.07 

a Buffer pH = 7 (sodium cacodylate buffer, I = 0.05 mol dm-3). 
bRelative quantum yield (Q) was determined with respect to 

standard N-acetyl-L-tryptophanamide (NATA) Q = 0.14, excitation 

wavelength was underlined in the UV/Vis data.; cDetermined at pH 

5 (sodium citrate buffer, I = 0.03 mol dm-3). 

The guanidiniocarbonyl pyrrole moiety in all compounds 

absorbs at  = 284 – 308 nm. It is interesting to note that the 

absorption maxima of the aryl-moieties (benzene, naphthalene, 

pyrene, acridine) and the absorption maximum of the pyrrole are 

overlapping for 2, 3, 6 and 5 but are well separated for 1, 7, 8, 11 

and 12, most likely due to the pronounced conjugation of both 

groups in the former compounds, which is prevented by the 

additional linker in latter structures. Interestingly, for 13 the 

absorption maxima of the pyrene and the guanidiniocarbonyl pyrrole 

moieties are also overlapping despite the long linker. Furthermore, 

although 13 contains two pyrene subunits the  value at the pyrene 

maximum ( = 345 nm) is similar to the values of 1 and 12 which 

contain only one pyrene. Both observations strongly suggest an 

intramolecular aromatic stacking interaction between the two pyrene 

units of 13.  

For all compounds except 11 the UV/Vis spectra in buffer at pH 

7 and pH 5 were the same as in pure water. This was unexpected 

since the protonation state of the guanidiniocarbonyl pyrrole moiety 

was expected to be different at pH 5 and pH 7. However, the pyrrole 

unit shows only a very weak absorbance, the main absorbance is due 

to the naphthalene or pyrene units, which are not affected by the 

protonation of the guanidine. Furthermore, weak pH dependent 

changes in the UV/Vis spectrum of 11 within the range attributed to 

the acridine moiety allowed estimation of a pKa < 6 for protonation 

of the acridine.  

Fluorescence spectra: The naphthalene derivatives (6, 7, 8) 

exhibited only very weak fluorescence in aqueous media. In contrast, 

pyrene and acridine derivatives, 1, 11, 12 and 13 showed strong 

fluorescence emission, linearly dependent on the concentration of 

the compound in water up to c = 5.0  10-6 mol dm-3 (5 was not 

studied due to its low solubility). At higher concentrations the 

increase of fluorescence emission became non-proportional due to 

inner filter effects. For the bis-pyrene compound 13 the fluorescence 

emission is significantly stronger in comparison to the emission 

intensity of the mono-pyrene derivative 12 multiplied by two 

(Figure 1), which again confirms an intramolecular aromatic 

stacking interaction between the two pyrene units as was already 

suggested based on the differences in the UV/Vis spectra.  
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Figure 1. Fluorescence emission spectra of 11 (exc=360 nm), 12 (exc=344 nm), 13 

(exc=345 nm) collected under the same instrument setup, at pH 5 (sodium citrate buffer, 

I = 0.03 mol dm-3). 

Protonation state: The fluorescence of 11, 12 and 13 was found to 

be weakly pH dependent in the range pH = 5-8, which was 

attributed to protonation of the guanidine group, and allowed an 

estimation of the pKa  5.5 - 6. The fluorescence of acridine of 11 

cnage considerably between pH=3-5 (pKa = 4.1), thus 11 is neutral 

at pH 5. Hence, at pH 7 the guanidine moiety is not yet protonated 

so that all compounds except 8 and 12 are present in their neutral 

form whereas they are expected to be positively charged at pH 5. 

Compounds 8 and 12 possess an additional amino group in the side 

chain with pKa  8, and therefore at pH 7 have already one positive 

charge. 

Interactions with polynucleotides in aqueous medium 

Thermal denaturation of ds-DNA and ds-RNA: The experiments 

were performed at pH 7 and pH 5 since it was expected that the 

different protonation state of the compounds could have a 

significant impact on their interactions with DNA and RNA. At pH 

7 (buffer Na cacodylate, I = 0.05 mol dm-3) most of the compounds 

at ratio r[compound] / [polynucleotide] = 0.3 or even higher (r2 or 3 = 1) did not 

show any influence on the Tm value of the ct-DNA (calf thymus 

DNA). The only exception is a weak stabilisation (Tm = 0.8 °C at r 

= 0.3) of ct-DNA by 12, which is the only compound positively 

charged also at pH 7 and possessing a large aromatic moiety 

(pyrene). 

However, at pH 5 all compounds are positively charged due to 

protonation of the guanidine moiety and consequently the results 
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were significantly different (Figure 2). Compounds with small 

aromatic moieties (benzene, naphthalene) connected via short and 

rigid linkers to the guanidiniocarbonyl pyrrole (2, 3) did not 

stabilize ds-DNA and ds-RNA at all. Due to the larger aromatic 

moiety (pyrene) 5 weakly stabilized ct-DNA (Tm = 1.0 °C at r = 

0.3), while the introduction of a longer and more flexible linker 

between the guanidiniocarbonyl pyrrole and the pyrene (1, 12) 

additionally increased stabilization of ds-DNA (Table 2). The 

highest Tm value was obtained for 12 (Tm = 9.7 °C), which 

showed that the additional positive charge of 12 (which 1 does not 

have) increased the affinity for ds-DNA. Most surprisingly, the bis-

pyrene compound 13 also did not stabilize any of the 

polynucleotides studied, most likely because the intramolecular 

stacking of the two pyrene rings prevented the intercalation of 13 

into the polynucleotide. The acridine derivative (11) stabilized ct-

DNA less than the analogous pyrene compound 1 in agreement with 

the smaller aromatic surface of the former compound. Interestingly, 

even the naphthalene derivative 8 stabilized ct-DNA more 

efficiently than 11, but this again most likely reflects the one 

additional positive charge present only in 8. A more detailed 

analysis of those compounds which show significant stabilisation of 

ds-DNA revealed a strongly non-linear relation between Tm values 

and ratio r = [compound] / [ds-DNA], pointing toward saturation of 

binding sites at about r = 0.2-0.3. The stabilisation effect of 11 and 

12 on poly dA-poly dT was even more pronounced than for ct-DNA, 

most likely due to stronger interactions of the compounds within the 

narrower and deeper minor groove of the former polynucleotide.19 

However, the effect of the compounds studied on ds-RNA (poly A – 

poly U) was much weaker. Only 8 led to stabilization whereas 7 and 

1 actually weakly destabilized RNA. This observation suggests that 

most of the compounds do not intercalate into ds-RNA. 

 

Figure 2. Thermal denaturation curves of ct-DNA (c=210-5 mol dm-3) at pH 5 (sodium 

citrate buffer, I=0.03 M) upon addition of 1, 8, 11, 12. For measuring conditions, see 

Table 2 and the Experimental Section. 

Table 2. Tm valuesa (°C) of various ds- polynucleotides upon 
addition of studied compounds at ratio br = 0.3,  pH = 5.0 (sodium 
citrate buffer, I = 0.03 mol dm-3). 

 7 e1 8 11 12 13 

ct-DNA 0 +7.2 +3.4 +2.2 +9.7 0 

poly dA-poly dT d d d +4.0 +11.7 0 

c poly A-  poly U -1.0 -1.5 +3.9 <1.0 <1.0 0 

 a Error in Tm :  0.5°C; b r = [compound] / [polynucleotide]. cBiphasic transitions: the 

first transition at Tm = 30.3 °C is attributed to denaturation of poly A-poly U and the 

second transition at Tm = 85.8 °C is attributed to denaturation of poly AH+-poly AH+ 

since poly A at pH = 5.0 is mostly protonated and forms ds-polynucleotide.18,19 For all 

compounds second transition stabilisation was 0.  dNot determined. e Previous results.7 

Fluorimetric titrations: At this point we have focused for all 

further studies on those compounds (8, 11, 12) which showed 

measurable thermal stabilisation effect (Table 2), or at least 

acceptable solubility and promising structure in respect to single 

stranded polynucleotides (13). Although all compounds possess 

UV/Vis bands at  > 300 nm, UV/Vis titrations were not applicable 

to study their interactions with ds-polynucleotides as for example 

the addition of ct-DNA yielded only very small changes in their 

UV/Vis spectra, hampering accurate quantitative analysis. Except 

for 8 all other compounds showed strong fluorescence which 

allowed titration studies at low concentrations. The fluorescence 

changes were remarkably dependent on the type of polynucleotide 

added as well as on the pH of the solution (Table 3).  

Table 3. The spectroscopic propertiesa of complexes of studied 
compounds with ds-polynucleotides observed in fluorimetric 
titrations at pH = 5 (sodium citrate buffer, I = 0.03 mol dm-3) and 
pH = 7 (sodium cacodylate buffer, I = 0.05 mol dm-3). 

 ct-DNA poly dAdT- 

poly dAdT 

poly dGdC- 

poly dGdC 

poly dA –  

poly dT 

poly A –  

poly U 

 pH5 pH7 pH5 pH7 pH5 pH7 pH5 pH7 pH5 pH7 

11 b0.5 b0.6 b0.5 c0.8 b0.5 c0.7 b0.7 c0.7 b0.8 b0.6 

12 b0.7 b0.7 b8.9 b6.3 b0.3 b0.5 b8.8 c0.8 b3.4 c0.8 

13 c0.9 - b0.7 - b0.7 - 1 - c0.9 - 

aEmission change; I = I(complex) / I(compd).; b I(complex) obtained from Scatchard 

analysis of titration data for correlation coeff. r<0.999 (error of I value <1%); c 

I(complex) estimated from titration data since Scatchard analysis was not possible due 

to small changes, changes in opposite directions or linear change abruptly ends at  

defined intensity; consequently error of I value 5-10%. 

At pH 7, only 11 and 12 did not precipitate upon addition of DNA 

and/or RNA. Whereas the fluorescence of the acridine derivative 11 

was quenched by the addition of any of ds-DNA and ds-RNA, the 

emission of 12 was strongly quenched by ds-DNAs containing G-C 

base pairs, while addition of alternating poly dAdT - poly dAdT 

resulted in a strong fluorescence increase. Most intriguingly, 

addition of the homo-polynucleotide poly dA- poly dT as well as a 

RNA analogue (poly A – poly U) induced weak fluorescence 

quenching of 12. 

At pH 5 results of the fluorimetric titrations were significantly 

different from those at pH 7. For compound 1 we previously found7 

that at pH 5 first agglomeration along the DNA takes place (r > 

0.14) which leads to quenching of fluorescence, followed by 

intercalation of the pyrene into ds-DNA (r < 0.1) accompanied by 

strong fluorescence increase. However, upon addition of ds-RNA 

compound 1 revealed a new, specific emission maximum at 480 nm 

(Figure 3 top), attributed to pyrene excimer formation within the 

major groove of the RNA.7 Compound 11, which is the acridine 

analogue of 1, showed only a strong, non-selective quenching upon 

addition of any ds-DNA or ds-RNA (Figure 3 bottom), confirming 

that the electronic properties of the pyrene moiety are responsible 

for the specific dual fluorimetric response of 1 towards ds-DNA and 

ds-RNA.  

The specific fluorimetric response of 1 upon addition to ds-RNA 

(new maximum at 480 nm)7 was not observed for its analogue 12. 

However, compound 12 came up with a new feature (fluorimetric 

differentiation between basepair composition of polynucleotides), 

which was not observed for 1. Namely, at pH 5 the fluorescence of 

12 was strongly quenched by any G-C base pair containing 

polynucleotide, while polynucleotides with only A-T or A-U base 
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pairs induced a strong fluorescence increase (Table 3, Figure 4). 

Such a fluorimetric sensing was previously reported for proflavine20 

and some 4,9-diazapyrenium cations21 and it was attributed to the 

guanine-induced fluorescence quenching, because guanine is more 

easily oxidised than any other nucleobase and can thus efficiently 

quench the fluorescence of an electron-accepting fluorophore. This 

quenching can occur either by direct aromatic stacking interactions 

with guanine or by remote G sites via electron-transfer through the 

-stacked DNA helix. 22  Both quenching modes require that the 

fluorophore is efficiently stacked within the DNA double helix. 

Since the pyrene moiety of 1 and 12 is intercalated into DNA it 

seems that basepair differentiation by 12 but not 1 is the 

consequence of different orientation of the pyrene within the DNA 

double helix most likely due to a steric influence of the bulky linker 

with its positively charged side arm in 12. 
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Figure 3. Fluorimetric titration with poly A-poly U at pH 5 (sodium citrate buffer, 

I=0.03 M):  Top) 1 (c=3.310-6 mol dm-3, exc= 320 nm); Bottom) 11 c=2.010-6 mol 

dm-3, exc= 320 nm). 

The fluorescence of the bis-pyrenyl-derivative 13 was also 

quenched by any G-C base pair containing polynucleotide, and 

increased by alternating poly dAdT - poly dAdT. However, 

negligible fluorescence changes were observed upon addition of 

homo-polynucleotides (poly dA – poly dT or poly A – poly U). 

Such a sensitivity of fluorescence response can be attributed to the 

specific properties of polynucleotide secondary structure. Namely, 

alternating polynucleotides adopt a B-helical structure19 and most 

likely bulky compound 13 fits tightly within the minor groove. 

However, poly dA – poly dT is characterized by a peculiar twisted 

structure possessing a very narrow minor groove,23 while poly A – 

poly U forms a A-form double helix, characterized by a shallow and 

broad minor groove19 – in both cases it seems that binding of 13 was 

not supported.  

All titrations with fluorescence changes above  10% were 

processed by means of the Scatchard equation 24  to obtain the 

binding constants and ratio n[bound compound] / [polynucleotide] (Table 4). At 

pH 7 due to small changes or precipitation only few titration 

experiments were applicable for processing, thus no comparison of 

the results for the various compounds was possible. However, at pH 

5 for most of the titrations binding constants could be calculated and 

the obtained values of logKs=5 – 6 reveal similar affinity of all 

compounds toward all studied polynucleotides. However, in some 

cases (e.g. 13/ poly dGdC- poly dGdC complex) the high value of 

ratio n>0.5 strongly supports agglomeration of molecules along 

DNA or RNA double helix, thus the corresponding logKs values 

should be considered as a cumulative affinity resulting from more 

than one binding mode. 
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Figure 4. Fluorimetric titration of 12 at pH 5 (sodium citrate buffer, I=0.03 M): Top) 

poly dGdC-poly dGdC (c(12)=5.010-6 mol dm-3, exc= 350 nm); Bottom) poly dAdT - 

poly dAdT (c(12)=1.010-6 mol dm-3, exc= 350 nm). 

Since the UV/Vis and fluorimetric titrations were not applicable 

to study the interaction of 8 with polynucleotides, as an alternative 

method for estimation of affinity we have performed an ethidium 

bromide (EB) displacement assays. This allows at least comparing 

the ability of 8 to compete for binding with a classical intercalator 

already bound to DNA. It should be taken into account that the 

applied ratios r[8]/[polynucleotide] and the concentration range of 8 and 

polynucleotides used in this displacement assay are comparable with 

those of the thermal denaturation experiments in which 8 showed a 
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distinct stabilization of both ds-DNA and ds-RNA (Table 2). We 

have also performed experiments with poly dA – poly dT and poly 

G – poly C but partial precipitation in the course of titration 

hampered accurate processing of the results. However, the obtained 

IC50 values show that a significantly higher concentration of 8 

compared to c(EB) was needed to displace 50% of EB from both ct-

DNA and poly A – poly U. From these results an estimate for the 

affinity of 8 could be derived using equation 1, by using the logKs 

(EB) value determined previously under the same experimental 

conditions.25 

logKs (8) = logKs (EB)  IC50 value   Eq. 1 

Thus, binding constants of 8 toward ct-DNA and poly A - poly 

U are estimated to be about logKs  5. 

Table 4. Binding constants (logKs), (in parentheses ratios n[bound 

compound]/[polynucleotide]) of studied compounds with ds-polynucleotides 
calculated from fluorimetric titrations at pH = 5 (sodium citrate 
buffer, I = 0.03 mol dm-3) and pH = 7 (sodium cacodylate buffer, I = 
0.05 mol dm-3).a 

logKs (n) 

 ctDNA 
poly dAdT- 

poly dAdT 

poly dGdC- 

poly dGdC 

poly dA - 

poly dT 

poly A –  

poly U 

 pH5 pH7 pH5 pH7 pH5 pH7 pH5 pH7 pH5 pH7 

17 

d5.9 

(0.1) 

e 6.0 

(0.5) 
- - - - 

d6.8 

(0.1) 

e 5.1 

(0.8) 

d6.3 

(0.1) 

e 5.1 

(3.6) 

11 
6.2 

(0.2) 

4.4 

(0.2) 
>6b c 

5.9 

(0.2) 
>6b 

5.9 

(0.2) 
>6b 

e6.5 

(0.5) 

e 6.5 

(1) 

12 

e 6.1 

(0.5) 

e 6.8 

(1.7) 

6.5 

(0.3) 

6.6 

(0.2) 

6.3 

(0.2) 

5.7 

(0.2) 
c c 

5.4 

(0.2) 
c 

13 c - 
6.5 

(0.2) 
- 

e5.3 

(0.5) 
- c - c - 

a Titration data were processed using Scatchard equation,24 accuracy of obtained n  10 

- 30 %, consequently log Ks values vary in the same order of magnitude; b Linear 

change abruptly ends at  r = 0.3 - 0.1, suggesting logKs>6; c Too small changes or 

accurate calculation; d Data calculated by Scatchard equation from the second part of 

titration experiment with polynucleotide in which fluorescence of primarily formed 

complex 1/polynucleotide was enhanced by formation of secondary complex.; e Too 

high n value suggests agglomeration. 

Fluorimetric titrations of 11, 12 and 13 with single stranded (ss-) 

polynucleotides: The fluorescence emissions of 12 and 13 were 

highly sensitive to the base pair composition of the ds-

polynucleotide (Table 3). To study in more detail the role of each 

nucleobase on the fluorescence of these two compounds (and of the 

acridine derivative 11 as a reference), we performed a series of 

titrations with single stranded homo-polynucleotides. The 

fluorescence of 13 was not changed significantly by any studied ss-

polynucleotide, while 11 and 12 revealed quite specific fluorimetric 

responses to some polynucleotides. At pH 5, most intriguingly, only 

addition of poly A yielded a strong increase of fluorescence of 12 

(Figure 5), while other polynucleotides either completely (poly G) 

or partially (poly U, poly C) quenched the emission. However, at pH 

7 no fluorescence change was observed for 12 upon addition of any 

polynucleotide. It should be stressed that only at pH 5 (not at pH 7) 

poly A is protonated and readily forms a double stranded helix of 

poly AH+ - poly AH+,19 thus, the observed fluorescence specificity 

is actually related to interaction of 12 with a protonated adenine – 

adenine double strand. Since 12 did not stabilize poly AH+ - poly 

AH+ in thermal denaturation experiments (second transition of poly 

A – poly U in Table 2), intercalation of the pyrene subunit most 

likely can be excluded. Therefore, the observed fluorescence 

specificity could be attributed to the specific orientation of 12 within 

poly AH+ - poly AH+ grooves (hence the different binding compared 

to poly G, poly U, poly C), which allowed non-covalent contacts of 

12 with the polynucleotide and/or interactions between the pyrene 

subunits of two or more molecules of 12.  

Furthermore, the fluorescence of the acridine derivative 11 was 

quenched by addition of any ss-polynucleotide studied. This absence 

of selectivity again stresses the importance of pyrene as a polarity 

sensitive fluorescence probe. Due to the small emission changes 

only a few fluorimetric titrations of 11 and 12 resulted in emission 

changes suitable for processing by means of the Scatchard 

equation24 and obtained logKs values (for pH 5 logKs  = 5 - 6, for pH 

7 logKs  = 4 - 6). Hence, the affinity of these compounds to towards 

ss-polynucleotides is rather high. 
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Figure 5. Fluorimetric titration of 12 with poly AH+-poly AH+ at pH 519 (c(12)=5.0  

10-6 mol dm-3, exc= 350 nm, sodium citrate buffer, I=0.03 M). 

CD spectroscopy: To obtain some more information on the binding 

mode and the structure of the complexes formed, we have chosen 

CD spectroscopy as a highly sensitive method to assess 

conformational changes in the secondary structure of 

polynucleotides. 26  In addition, achiral small molecules can show 

induced CD signals (ICD) upon binding to polynucleotides, which 

gives useful information about the modes of interaction.7,26,27 For 

example, sign and magnitude of the ICD band can depend on the 

binding geometry: ligand-ligand stacking is expected to give strong 

bisignate exciton CD, minor groove binding to ds-DNA orientates 

the ligand approximately at 45° in respect to the DNA chiral axis 

thus giving a strong positive ICD band, while intercalation brings 

the aromatic moiety of the ligand in a co-planar arrangement with 

the base pairs giving only a weak ICD band (not always but in most 

cases of negative sign due to parallel orientation of the transition 

vector of the ligand and the longer axis of the surrounding base 

pairs).28,29  

It should be noted that 1, 11 and 13 do not exhibit any 

significant intrinsic CD spectrum on their own under the 

experimental conditions used, while 8 and 12 posses CD spectra 

(Figure 6). The intrinsic CD spectrum of 8 revealed two strong 

negative maxima, whereby according to the maxima in the UV/Vis 

spectrum (Table 1) the band at  = 243 nm can be attributed to the 

naphthyl-moiety, while the band  = 298 nm corresponds to the 

guanidiniocarbonyl pyrrole group. Intriguingly, CD bands of 12 at  
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= 243 nm and at  = 290-305 nm are of opposite (strongly positive) 

sign in respect to corresponding band of 8. The additional, negative 

band of 12 at =330-343 nm can be attributed to the pyrene. 

 

Figure 6. CD spectra of 8 (▬) and 12 (▬) at pH 5 (sodium citrate buffer, I = 0.03 mol 

dm-3). 

 

 

Figure 7. CD titration of ct-DNA (c =3.0  10-5 mol dm-3) with 12 at: Top) pH 5, r[12] / [ct-

DNA] = 0; 0.1; 0.2; 0.26; 0.50, (sodium citrate buffer, I = 0.03 mol dm-3); Bottom) pH 7, 

r[12]  / [ct-DNA] =0; 0.1; 0.2; 0.5; (sodium cacodylate buffer, I = 0.05 mol dm-3). 

Interactions with ds-DNA: The previously reported specific 

recognition of ds-DNA by 1 (ICD band at 310 nm), which was not 

observed for ds-RNA, was attributed to the positioning of the 

guanidiniocarbonyl pyrrole moiety exclusively in the minor groove.7 

However, 1 showed that specificity only at weakly acidic conditions 

(pH 5), at which the guanidine was protonated. Compound 11 (the 

acridine analogue of 1) gave rise to similar ICD band again (=300 

nm corresponds nicely to the electronic absorption maximum given 

in Table 1), but again only at pH 5 (results not shown), confirming 

that interactions of the protonated guanidiniocarbonyl pyrrole 

moiety within the DNA minor groove are essential for that ICD 

band. Upon mixing with ct-DNA at pH 5, also 12 revealed a similar 

ICD band at  = 305-315 nm (Figure 7, Top), again in good 

accordance with the corresponding electronic absorption maximum 

given in Table 1. 

 

Figure 8. Titrations of alternating (top) and homo-(bottom) dAdT polynucleotides with 

12 at pH 5 (sodium cacodylate buffer, I = 0.05 mol dm-3), r= [12]  / [polynucleotide]. 

However, in contrast to 1 or 11, the ICD band of 12 was 

observed also at pH 7 (Figure 7, Bottom). A strong intensity 

decrease of the intrinsic negative CD band of 12 at  = 330 – 343 

nm upon mixing with ct-DNA (Figure 7, insets) suggests also 

intercalation of the pyrene moiety into the DNA double helix. More 

detailed studies revealed highly selective changes of the CD 
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spectrum of 12 in respect to a) pH of the solution and b) different 

base pair composition of ds-DNA (Figure 8). By far the strongest 

positive ICD band at  = 310 nm was obtained for poly dGdC- poly 

dGdC, but only at pH 5, which underlines again the essential role of 

the protonated guanidiniocarbonyl pyrrole cation on the positioning 

of 12 in the minor groove of poly dGdC - poly dGdC. The neutral 

guanidine at pH 7 interacts only weakly with ds-DNA. It probably 

flanks out of the DNA minor groove resulting in the absence of a 

ICD band at  = 310 nm. Furthermore, addition of 12 to A-T 

containing polynucleotides induced significantly smaller changes in 

the CD spectra compared to G-C containing polynucleotides, 

whereby the absence of a ICD band at  = 310 nm A-T containing 

polynucleotides is the most prominent difference (Figure 8). It 

seems that specific substituents of the G-C base pair (like e.g. the 

amino group of guanidine which is exposed in the DNA minor 

groove) are responsible for the uniform orientation of the 

guanidiniocarbonyl pyrrole moiety of 12 in the minor groove. Hence, 

12 shows a base pair selective recognition of ds-DNA at pH 5. 

Addition of 8 (naphthyl-analogue of 12) caused a strong 

increase of both, negative and positive CD bands of the ds-DNA 

polynucleotides (Figure 9). A distinct deviation from the isoelliptic 

points is pointing to the presence of several different 8/DNA 

complexes. The increase of the positive DNA band ( = 280 nm) 

can only be the consequence of changes in the secondary structure 

of the DNA double helix as 8 does not have a CD signal in this 

region (Figure 6). Also, the strong negative CD band (290 – 320 

nm) in the CD spectrum of the 8/DNA complexes (Fig 9a inset) is 

red shifted in respect to free 8 and free DNA, which can be 

attributed to the interactions of the chromophore of 8 with the ds-

helix of polynucleotides. Most interestingly, in contrast to 1, 11, 12, 

no positive ICD band at  = 310 nm was observed for 8/DNA 

complexes, probably due to the significantly smaller aromatic 

surface of naphthalene (8) in respect to pyrene or acridine, which 

does not lead to intercalation. Consequently, the guanidiniocarbonyl 

pyrrole part of 8 is not uniformly oriented within the DNA minor 

groove. 

 

Figure 9. CD titration of ct-DNA (c = 3.0  10-5 mol dm-3) with 8 at pH 5 (sodium 

citrate buffer, I = 0.03 mol dm-3); r[8] / [ct-DNA]=0; 0.17; 0.33; 0.50; 0.66; 0.83; 0.99; 1.16. 

Inset: comparison of the spectra of complex with the spectra of free 8 and free ct-DNA. 

Addition of 13 did not yield any significant changes in the CD 

spectra of most ds-DNAs studied. The only exceptions are two weak 

but negligible positive ICD bands at  = 295 nm and  = 354 nm 

obtained for poly dAdT - poly dAdT and a moderate increase of the 

CD band at  = 282 nm for poly dGdC- poly dGdC. Such minor 

changes point toward negligible structural changes of the 

polynucleotides upon mixing with 13, due to agglomeration of 13 

along the polynucleotide surface rather than specific binding. 

Interactions with ds-RNA and ss-RNA: Opposite to ds-DNA, the 

addition of any compound led to a decrease of the positive CD 

bands of ds-RNA polynucleotides. For ds-RNA polynucleotides it is 

characteristic that changes in the CD spectra are almost proportional 

to the ratio r[compd] / [RNA], thus showing no saturation of binding sites 

even at excess of ligand over ds-RNA, which clearly shows that the 

compounds studied here interact significantly different with ds-

DNA and ds-RNA. Accordingly, the CD spectra of ss-RNAs were 

only slightly changed upon the addition of any compound studied 

here, suggesting that upon binding the secondary structure of the 

polynucleotides was mainly preserved. 

Discussion of the spectroscopic results 

Our structure tuning of guanidiniocarbonyl-pyrrole-aryl hybrid 

probes aiming toward spectrophotometric recognition of specific 

DNA and RNA sequences started with benzene and naphthalene 

moieties attached to a guanidiniocarbonyl-pyrrole moiety by short 

and rigid linkers (2 – 3). These compounds did not show significant 

interactions with DNA/RNA. Enlarging the aromatic moiety by 

attaching pyrene instead of naphthalene (5), again by a short and 

rigid linker, resulted in a minimal stabilisation of ds-DNA (as seen 

in the thermal denaturation studies; Tm = 1.0 °C at r = 0.3) but only 

at pH 5 when the guanidine was protonated. However, by 

introducing more flexibility in the linker between the pyrene and the 

guanidiniocarbonyl-pyrrole moiety and in combination with an 

additional positive charge (as in 1 at pH 5 or in 12 also at pH 7) the 

affinity was large enough to cause a measurable stabilization of the 

polynucleotides. Moreover, combining two positive charges and a 

longer and flexible linker in 8 allowed also a naphthyl-moiety to 

interact significantly with ds-DNA (logKs  5, thermal stabilisation, 

CD spectrum change). However, the comparison of the CD titrations 

of ds-DNA with either 8 (no positive ICD band at  >300 nm) or 1, 

11, 12 (strong positive ICD band at  = 310 nm) revealed the 

importance of the intercalative unit (pyrene in 12) for the uniform 

orientation of guanidiniocarbonyl-pyrrole moiety within the DNA 

minor groove. 

A pyrene connected by a flexible aliphatic linker to a positively 

charged guanidiniocarbonyl-pyrrole yielded compound 1 which, as 

recently published by us,7 interacts with both ds-DNA and ds-RNA 

but differently giving rise to distinct and unique features – emission 

of a specific fluorescence signal for ds-RNA and a specific induced 

CD band for ds-DNA. However, the need for a positive charge 

restricted the use of 1 as a polynucleotide specific spectroscopic 

probe to pH 5. The newly prepared acridine analogue 11 stabilized 

ds-DNA to a lesser extent than 1, underlining the importance of the 

size of aromatic surface for efficient intercalation into the DNA 

double helix. Furthermore, 11 yielded strong positive ICD band at  

= 310 nm upon binding to ds-DNA similar to 1, but in contrast to 1 

gave no specific fluorescence signal for any ds-DNA or ds-RNA 

studied, although acridine and pyrene in general exhibit similar 

fluorescence spectra. That observation stresses the sensitivity of the 

pyrene fluorescence on the microenvironment. Moreover, the 

affinity of acridine derivative 11 toward DNA/RNA (Table 4) is 
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comparable to affinities of some most intensively studied simple 

acridines as e.g. AMSA ((N-[4-(9-acridinylamino)-3-

methoxyphenyl]methanesulphonanilide) and DACA (acridine-4- 

carboxamide); however the affinity and thermal stabilisation effect 

were significantly lower in respect to 9-amino-acridine derivatives 

with unsubstituted amino group (Chapter 18 in ref 4). 

Compound 13, the bis-pyrene analogue of 1, was prepared with 

the expectation that the two pyrenes will form an intramolecular 

excimer (characterised by specific fluorescence response) which can 

then specifically interact with some polynucleotides depending on 

their secondary structure (e.g. only with ds-RNA but not ds-DNA). 

Indeed, fluorimetric and UV/Vis properties of free 13 point toward 

intramolecular aromatic stacking interactions. However, 13 was 

rather weakly soluble in water and did not show any thermal 

stabilisation of any ds-DNA or ds-RNA. Moreover, additional 

spectroscopic studies suggested only weak interaction of 13 with 

DNA or RNA, most likely based on the agglomeration of molecules 

along the polynucleotide surface. Thus, intramolecular stacking 

interactions of 13 are obviously not disturbed by DNA or RNA and 

therefore 13 does not show any significant interaction with 

polynucleotides. 

In order to keep the polynucleotide specific spectroscopic 

features of 1 but shift its applicability to physiological conditions 

(pH 7), compound 12 was prepared, characterised by an additional 

positive charge even at pH 7. Indeed, the thermal denaturation effect 

of 12 on ds-DNA increased in comparison with 1, and in addition, 

12 gave a strong positive ICD band at  = 310 nm upon binding to 

ct-DNA even at pH 7, which was not observed for 1. However, 12 

did not show any fluorimetric response specific for ds-RNA (as 

emission of 1 at 500 nm)7, most likely because steric hindrance 

and/or charge repulsion prevented dimer formation of 12 within the 

ds-RNA major groove. On the other hand, in contrast to 1 the 

fluorescence of 12 proved to be highly sensitive to the base pair 

composition of ds-DNA, especially at pH 5. Namely, at pH 5 

addition of any A-T base pair polynucleotide to 12 resulted in a 

strong increase of its fluorescence, while G-C containing 

polynucleotides (even mixed base pair ct-DNA) strongly quenched 

its fluorescence. Similar specificity for the base pair composition 

was also seen in the CD spectra, pointing toward specific interaction 

of the positively charged guanidiniocarbonyl-pyrrole moiety with G-

C base pairs within the DNA minor groove.  

To study the role of each nucleobase on the fluorescence of 12 

in more detail, we performed series of titrations of 12 with single 

stranded homo-polynucleotides. At pH 7 no significant interactions 

were observed at biologically relevant conditions, most likely due to 

a) the low affinity of the intercalative unit alone (pyrene, acridine) 

toward ss-sequences, b) the absence of any well defined groove 

necessary for accommodation of the guanidiniocarbonyl-pyrrole 

moiety as well as c) the presence of only one positive charge in 12. 

However, at pH 5 the guanidiniocarbonyl-pyrrole moiety is also 

protonated, and in addition poly A and poly C are protonated as well 

and readily form double stranded helices with more or less well 

defined grooves.19 Most intriguingly, at pH 5 only the addition of 

poly AH+ - poly AH+ yielded a strong increase of 12 fluorescence, 

while other polynucleotides either completely (poly G) or partially 

(poly U, poly CH+ - poly CH+) quenched the emission of 12. 

Fluorescence quenching by poly G is in line with previous 

observations for proflavine and diazapyrenes, because guanine is 

much more easily oxidised than any other nucleobase and can thus 

efficiently quench the fluorescence of an electron-accepting 

fluorophore.20,21,22 Fluorescence increase can be correlated to the 

more efficient aromatic stacking (intercalation) of pyrene in poly 

AH+ - poly AH+, which is characterized by significantly larger 

aromatic basepair surface in respect to poly U and poly CH+ - poly 

CH+.  

Biological Results and Discussion 

Compounds 1, 7, 8, 11, 12 and 13 were screened for their 

potential antiproliferative effects on a panel of 5 human cell lines, 

which were derived from different cancer types including HeLa 

(cervical carcinoma), MCF-7 (breast carcinoma), SW620 (colon 

carcinoma), MiaPaCa-2 (pancreatic carcinoma), and H460 (lung 

carcinoma) (Table 6).  

Table 6. In vitro inhibition of compounds 7, 8, 1, 11−13 on the 

growth of tumour cells. 

 

Compd 
IC50 (μM)a 

HeLa MiaPaCa-2 SW 620 MCF-7 H 460 

7 30 ± 8 53 ± 8 63 ± 37 21 ± 7 >100 

8 30 ± 0.2 >100 >100 >100 >100 

1 9 ± 5 4 ± 1.4 10 ± 0.5 8 ± 9 16 ± 1 

11 47 ± 18 50 ± 6 57 ± 30 ≥ 100 > 100 

12 15 ± 2 14 ± 0.02 92 ± 1 25 ± 1 52 ± 47 

13 >10b >10 > 10 > 10 > 10 

a IC50; concentration that causes a 50% reduction of cell growth. 

b The maximal tested concentration was c = 10 μM. 

Compounds 7, 8, 11, and 13 exhibited only moderate 

antiproliferative activity (IC50 values in the upper to middle M 

range), while 1 and 12 showed activity in the lower M range but 

with some interesting exceptions depending on the cell line. The 

high DNA affinity of 8, 1, 11 and 12 strongly suggests that cellular 

DNA is the main target, whereby intercalation of the pyrene seems 

to have the most pronounced effect. This can be seen from the 

significantly stronger biological activity of the two pyrene 

derivatives 1 and 12 in comparison to their naphthalene (8) and 

acridine (11) analogues. Bis-pyrene derivative 13, in which the two 

pyrene subunits strongly interact intramolecularly and do not 

intercalate into isolated DNA in vitro and accordingly cannot 

interact significantly with cellular DNA, has only a negligible 

antiproliferative activity compared to 1. Thus the biological results 

nicely correlate with the results from the spectroscopic studies. 

However, although 1 revealed the highest but a non-selective 

biological activity, its close analogue 12 (which is nearly as active 

as 1) is also characterized by pronounced selectivity toward HeLa, 

MCF-7 and MiaPaCa-2 cell lines with only a very weak 

antiproliferative effect on SW 620 and H 460 cells. Such an 

intriguing impact of only one additional positive charge present in 

12 but not in 1 cannot be explained within the presented 

experimental data but however strongly supports additional 

biological studies. 
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Conclusion 

Systematic structure-activity relationship (SAR) study of 

interactions of guanidiniocarbonyl-pyrrole-aryl derivatives with 

various DNA and RNA polynucleotides revealed several critical 

factors, which control affinity and spectroscopic sensing of 

particular secondary structure or basepair composition of the 

polynucleotide. To start with, for efficient binding the linker 

between the aryl moiety and the guanidiniocarbonyl-pyrrole should 

be flexible enough to allow efficient accommodation within the 

groove of the polynucleotide. Furthermore, the acridine analogue 

(11) showed to be the minimal aromatic surface able to intercalate 

into DNA/RNA. Neutral molecules (1, 13, 5 at pH 7) showed 

significantly stronger interactions with DNA/RNA when they are 

protonated at the guanidine (pH 5), which is in accord with previous 

studies.4 Intercalation of the aryl subunit within DNA invariably led 

to the uniform positioning of the protonated guanidiniocarbonyl-

pyrrole within the DNA minor groove, yielding a characteristic ICD 

signal. Furthermore, pyrene analogues revealed specific 

fluorescence changes either due to the different binding mode 

(compound 1, intercalation in ds-DNA, dimer formation in ds-RNA) 

or signalling base pair composition (guanine quenched and adenine 

increased fluorescence). To some extent the affinity of the 

guanidinio-carbonyl-pyrrole-aryl conjugate toward DNA/RNA 

could be increased by addition of another positive charge. The 

number of positive charges and the size of the aromatic surface also 

seem to control the antiproliferative activity of these compounds. It 

should be stressed that most tumour cells in solid tumours 

consistently have lower extracellular pH levels than normal tissues 

because of the inefficient clearance of metabolic acids from 

chronically hypoxic cells. 30  Tumours of the bladder, kidney and 

gastrointestinal system in particular are exposed to extremely low 

pH values. Therefore, an uptake of weakly ionizing drugs by 

tumours is greatly influenced by the interstitial and intracellular pH, 

and the ionization properties of the compound. Consequently 

strategies for enhancing and exploiting pH gradients to drive the 

uptake of molecules into tumours are under investigation.31 In this 

respect the compounds we studied here are interesting model 

systems for such studies in living cells due to the aforementioned 

specific fluorimetric properties. 

 

Experimental Section 

General remarks. Reaction solvents were dried and distilled 

under argon before use. All other reagents were used as obtained 

from BAChem, Aldrich, Acros, Novabiochem, GL Biochem and 

Lancaster. Flash column chromatographies were run on ICN Silica 

(0.032-0.063 nm) from Biomedicals GmbH or on medium pressure 

flash system (MPLC, CombiFlash®, CompanionTM, Isco Inc.) with 

prepacked silica gel cartridge (RP-18 Reverse Phase 4.3 g from 

RediSep). Melting points were measured in open end glass capillary 

tubes and are uncorrected. 1H and 13C NMR were recorded on a 

Bruker Avance 400 MHz spectrometer. The chemical shifts are 

reported relative to the deuterated solvents. Peaks assignment is 

based on DEPT studies and comparison with literature data. ESI- 

and HR-mass spectra were recorded on a micrOTOF from Bruker 

Daltonik. Analytical HPLC was run on a Supelcosil LC18 (Supelco) 

5 m, (25 cm x 4.6 mm) column. Gua = guanidiniocarbonylpyrrole. 

General procedure for the coupling with oxalyl chloride: 

A solution of the free acid 14 (1 eq) was dissolved in dry DCM 

(15 ml per eq) and catalytic amounts of dry DMF. After addition of 

oxalyl chloride (3 eq) the solution was refluxed for two hours. 

Subsequently to the removal of the solvent and residual oxalyl 

chloride the resulting brown solid was redissolved in dry DCM (20 

ml) and cooled to 0 °C. After addition of the appropriate arylamine 

(3 eq) the solution was stirred for one hour at 0 °C and one more 

hour at room temperature. The reaction solution was washed then 

with hydrochloric acid (5%, 3 x 50 ml). After phase separation the 

organic phase was dried over magnesium sulphate and the solvent 

was removed in vacuo. The resulting solid was purified by column 

chromatography. 

15a was prepared from free acid 14 (500 mg, 2.04 mmol), 

oxalyl chloride (524 μl, 6.12 mmol) and aniline (559 μl, 6.12 mmol), 

obtaining a brown solid (480 mg, 74%); Rf = 0.54 (SiO2, 

cyclohexane/ethyl acetate 6/4 + 1 vol% NEt3); mp: 170 °C; 1H-

NMR ([D6]DMSO, 400 MHz)  = 12.43 (s, 1H, pyrrole-NH), 10.06 

(s, 1H, CONH), 7.73-7.70 (m, 2H, Ph-CH), 7.49-7.46 (m, 2H, Ph-

CH), 7.43-7.34 (m, 5H, Ph-CH), 7.12-7.08 (m, 1H, Ph-CH), 7.01-

6.99 (m, 1H, pyrrole-CH), 6.91-6.90 (m, 1H, pyrrole-CH), 5.33 (s, 

2H, O-CH2-Ph); 13C-NMR ([D6]DMSO, 100 MHz)  = 159.9 (Cq), 

157.8 (Cq), 138.7 (Cq), 136.2 (Cq), 131.1 (Cq), 128.7 (CH), 128.5 

(CH), 128.1 (Cq), 127.9 (CH), 119.6 (Cq), 115.5 (pyrrole-CH), 

113.5 (pyrrole-CH), 65.6 (CH2); HR-MS (ESI+) m/z = 321.1234 

(calculated for C19H16N2O3 + H+: 312.1234); m/z = 343.1053 

(calculated for C19H16N2O3 + Na+: 343.1053); m/z = 663.2265 

(calculated for 2M + Na+: 663.2214). 

15b was prepared from free acid 14 (500 mg, 2.04 mmol), 

oxalyl chloride (524 μl, 6.12 mmol) and 1-naphthylamine (876 mg, 

6.12 mmol) obtaining a brown solid (550 mg, 75%);  Rf = 0.46 

(SiO2, cyclohexane/ethyl acetate 6/4 + 1 vol% NEt3); mp: 155 °C; 
1H-NMR ([D6]DMSO, 400 MHz)  = 12.52 (s, 1H, pyrrole-NH), 

10.26 (s, 1H, CONH), 8.02-7.97 (m, 2H, naphthyl-CH), 7.86-7.84 

(m, 1H, naphthyl-CH), 7.65-7.63 (m, 1H, naphthyl-CH), 7.58-7.53 

(m, 3H, naphthyl-CH), 7.49-7.48 (m, 2H, Ph-CH), 7.43-7.35 (m, 3H, 

Ph-CH), 7.10-7.09 (m, 1H, pyrrole-CH), 6.96-6.95 (m, 1H, pyrrole-

CH), 5.35 (s, 2H, O-CH2-Ph); 13C-NMR ([D6]DMSO, 100 MHz)  = 

159.9 (Cq), 158.7 (Cq), 136.2 (Cq), 133.8 (Cq), 133.0 (Cq), 131.0 

(Cq), 128.7 (Cq), 128.5 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 

126.1 (CH), 126.0 (CH), 125.5 (CH), 124.8 (Cq), 123.4 (CH), 123.1 

(CH), 115.6 (pyrrole-CH), 113.6 (pyrrole-CH), 65.5 (CH2); HR-MS 

(ESI+) m/z = 371.1390 (calculated for C23H18N2O3 + H+: 371.1390); 

m/z = 393.1210 (calculated for C23H18N2O3 + Na+: 393.1210); m/z = 

763.2569 (calculated for 2M + Na+: 763.2533). 

 

15c was prepared from free acid 14 (143 mg, 0.58 mmol), oxalyl 

chloride (150 μl, 1.75 mmol) and 2-naphthylamine (250 mg, 1.75 

mmol), obtaining a slightly brown solid (170 mg, 82%);  Rf = 0.58 

(SiO2, cyclohexane/ethyl acetate 6/4 + 1 vol% NEt3); mp: 185 °C; 
1H-NMR ([D6]DMSO, 400 MHz)  = 12.49 (s, 1H, pyrrole-NH), 

10.27 (s, 1H, CONH) , 7.38-7.37 (m, 1H, naphthyl-CH), 7.92-7.90 

(m, 1H, naphthyl-CH), 7.87-7.84 (m, 2H, naphthyl-CH), 7.79-7.76 

(m, 1H, naphthyl-CH), 7.52-7.33 (m, 5H, Ph-CH; m, 2H, naphtyl-

CH), 6.94-6.93 (m, 1H, pyrrole-CH), 7.16-7.05 (m, 1H, pyrrole-CH), 

5.35 (s, 2H, O-CH2-Ph); 13C-NMR ([D6]DMSO, 100 MHz)  = 

159.9 (Cq), 158.0 (Cq), 136.4 (Cq), 136.2 (Cq), 133.1 (Cq), 129.9 
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(Cq), 128.5 (CH), 128.3 (CH), 128.1 (CH), 128.0 (CH), 127.5 (CH), 

127.3 (CH), 126.4 (CH), 124.9 (Cq), 124.8 (CH), 120.5 (CH), 116.1 

(CH), 115.5 (pyrrole-CH), 113.6 (pyrrole-CH), 65.6 (CH2); HR-MS 

(ESI+) m/z = 371.1390 (calculated for C23H18N2O3 + H+: 371.1390); 

m/z = 393.1210 (calculated for C23H18N2O3 + Na+: 393.1210); m/z = 

763.2554 (calculated for 2M + Na+: 763.2533). 

 

15d was prepared from free acid 14 (250 mg, 1.02 mmol), 

oxalyl chloride (259 μl, 3.06 mmol) and 1-aminopyrene (651 mg, 

3.06 mmol), obtaining a slightly brown solid (105 mg, 23%);  Rf = 

0.89 (SiO2, cyclohexane/ethyl acetate/isopropanol 4/4/1 + 1 vol% 

NEt3); mp: 228 °C; 1H-NMR ([D6]DMSO, 400 MHz)  = 12.61 (s, 

1H, pyrrole-NH), 10.64 (s, 1H, CONH), 8.35-8.08 (m, 9H, pyrenyl-

CH), 7.51-7.34 (m, 5H, Ph-CH), 7.18-7.17 (m, 1H, pyrrole-CH),  

6.99-7.00 (m, 1H, pyrrole-CH), 5.37 (s, 2H, O-CH2-Ph); 13C-NMR 

([D6]DMSO, 100 MHz)  = 159.9 (Cq), 159.9 (Cq), 158.8 (Cq), 

136.2 (Cq), 131.1 (Cq), 130.0 (Cq), 130.5 (Cq), 128.8 (Cq), 128.5 

(CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.3 (CH), 127.2 (CH), 

126.9 (CH), 124.5 (CH), 125.4 (CH), 125.1 (CH), 124.9 (CH), 124.6 

(CH), 124.4 (Cq), 123.8 (Cq), 122.7 (CH), 115.6 (pyrrole-CH), 

111.1 (pyrrole-CH), 65.6 (CH2); HR-MS (ESI+) m/z = 445.1547 

(calculated for C29H20N2O3 + H+: 445.1547); m/z = 467.1366 

(calculated for C29H20N2O3 + Na+: 467.1366). 

General procedure for the hydrogenolysis of the benzyl ester 

A suspension of the appropriate benzyl ester and palladium on 

charcoal (10%) was stirred in MeOH under hydrogen atmosphere at 

40 °C until tlc indicates full conversion of the starting material. The 

reaction solution was filtrated over a celite pad which was washed 

several times with ethyl acetate. The resulting solution was dried 

over magnesium sulphate and the solvent evaporated in vacuo. 

16a was prepared from 15a (370 mg, 1.15 mmol) and Pd/C (74 

mg) in MeOH (50 ml), obtaining a colorless solid (265 mg, quant.); 

mp: 225 °C (decomp.); 1H-NMR ([D6]DMSO, 400 MHz)  = 12.82 

(br.s, 1H, COOH), 12.15 (s, 1H, pyrrole-NH), 10.04 (s, 1H, CONH), 

7.72-7.70 (m, 2H, Ph-CH), 7.37-7.33 (m, 2H, Ph-CH), 7.11-7.07 (m, 

1H, aryl-CH), 6.96-6.94 (m, 1H, pyrrole-CH), 6.80-6.79 (m, 1H, 

pyrrole-CH); 13C-NMR ([D6]DMSO, 100 MHz)  = 161.6 (Cq), 

157.8 (Cq), 138.8 (Cq), 130.1 (Cq), 128.7 (CH), 123.5 (CH), 119.8 

(CH), 114.7 (pyrrole-CH), 113.7 (pyrrole-CH); HR-MS (ESI+) m/z 

= 231.0764 (calculated for C12H10N2O3
 + H+: 231.0764); m/z = 

253.0584 (calculated for C12H10N2O3
 + Na+: 253.0584); m/z = 

483.1300 (calculated for 2M + Na+: 483.1275); m/z = 713.1994 

(calculated for 3M + Na+: 713.1966); m/z = 943.2685 (calculated for 

4M + Na+: 943.2658). 

 

16b was prepared from 15b (530 mg, 1.48 mmol) and Pd/C (106 

mg) in MeOH (50 ml), obtaining a slightly greenish solid (415 mg, 

quant.); mp: 173 °C; 1H-NMR ([D6]DMSO, 400 MHz)  = 12.25 (s, 

1H, pyrrole-NH), 10.22 (s, 1H, CONH), 8.06-8.03 (m, 1H, 

naphthyl-CH), 7.99-7.96 (m, 1H, naphthyl-CH), 7.85-7.83 (m, 1H, 

naphthyl-CH), 7.66-7.64 (m, 1H, naphthyl-CH), 7.60-7.53 (m, 3H, 

naphthyl-CH), 7.03-7.02 (m, 1H, pyrrole-CH), 6.83-6.82 (m, 1H, 

pyrrole-CH); 13C-NMR ([D6]DMSO, 100 MHz)  = 161.7 (Cq), 

158.7 (Cq), 133.8 (Cq), 133.1 (Cq), 128.7 (Cq), 128.1 (CH), 126.1 

(Cq), 125.9 (CH), 125.5 (CH), 123.2 (CH), 123.1 (CH), 114.7 

(pyrrole-CH), 113.7 (pyrrole-CH); HR-MS (ESI+) m/z = 281.0921 

(calculated for C16H12N2O3
 + H+: 281.0921); m/z = 303.074 

(calculated for C16H12N2O3
 + Na+: 303.074); m/z = 583.1606 

(calculated for 2M + Na+: 583.1588). 

16c was prepared from 15c (170 mg, 0.47 mmol) and Pd/C (34 

mg) in MeOH (40 ml), obtaining a grey solid (132 mg, quant.); mp: 

233 °C (decomp.); 1H-NMR ([D6]DMSO, 400 MHz)  = 12.22 (s, 

1H, pyrrole-NH), 10.28 (s, 1H, CONH), 8.40-8.39 (m, 1H, 

naphthyl-CH), 7.92-7.78 (m, 4H, naphthyl-CH), 7.51-7.40 (m, 2H, 

naphthyl-CH), 7.01-7.00 (m, 1H, pyrrole-CH), 6.81-6.80 (m, 1H, 

pyrrole-CH); 13C-NMR ([D6]DMSO, 100 MHz)  = 161.7 (Cq), 

158.0 (Cq), 150.9 (Cq), 138.2 (Cq), 136.5 (Cq), 133.4 (Cq), 129.9 

(Cq), 128.3 (CH), 127.5 (CH), 127.3 (CH), 126.4 (CH), 124.7 (CH), 

120.4 (CH), 116.0 (pyrrole-CH), 113.8 (pyrrole-CH); HR-MS 

(ESI+) m/z = 281.0921 (calculated for C16H12N2O3
 + H+: 281.0921); 

m/z = 303.074 (calculated for C16H12N2O3
 + Na+: 303.074). 

 

16d was prepared from 15d (105 mg, 0.24 mmol) and Pd/C (11 

mg) in MeOH (25 ml), obtaining a slightly yellow solid (84 mg, 

quant.); mp: 248 °C (decomp.); 1H-NMR ([D6]DMSO, 400 MHz)  

= 12.31 (s, 1H, pyrrole-NH), 10.63 (s, 1H, CONH), 8.34-8.07 (m, 

9H, pyrenyl-CH), 7.10-7.09 (m, 1H, pyrrole-CH), 6.84-6.83 (m, 1H, 

pyrrole-CH); 13C-NMR ([D6]DMSO, 100 MHz)  = 161.8 (Cq), 

158.9 (Cq), 131.2 (Cq), 130.8 (Cq), 130.5 (Cq), 129.6 (Cq), 128.7 

(Cq), 127.2 (CH), 127.2 (Cq), 126.8 (CH), 126.4 (Cq), 125.3 (CH), 

125.0 (CH), 124.9 (Cq), 124.9 (CH), 124.5 (CH), 124.4 (Cq), 123.8 

(Cq), 122.7 (Cq), 114.4 (pyrrole-CH), 114.0 (pyrrole-CH); HR-MS 

(ESI+) m/z = 355.1077 (calculated for C22H14N2O3
 + H+: 355.1077); 

m/z = 377.0897 (calculated for C22H14N2O3
 + Na+: 377.0897). 

General procedure for the synthesis of the Boc-protected 

intercalators 17a-d: 

A solution of the appropriate free acid (1 eq) was dissolved in 

dry DMF. The coupling reagent (1.1 eq) and NMM was added to the 

solution which was stirred for 30 minutes at room temperature. 

After addition of Boc-guanidine (1.1 eq) the solution was stirred for 

additional 24 hours at rt. The reaction solution was diluted into 

vigorously stirred water (100 ml) and extracted with ethyl acetate. 

After phase separation the organic phase was dried over magnesium 

sulphate and the solvent was evaporated in vacuo. The resulting oil 

was purified by column chromatography. 

 

17a was prepared from free acid 16a (260 mg, 1.13 mmol) in 

DMF (20 ml), NMM (2 ml), PyBOP (646 mg, 1.24 mmol) and Boc-

guanidine (198 mg, 1.24 mmol), obtaining a slightly yellow solid 

(380 mg, 90%); Rf = 0.40 (SiO2, cyclohexane/ethyl 

acetate/isopropanol 6/2/1 + 1 vol% NEt3); mp: 147 °C (decomp.); 
1H-NMR ([D6]DMSO, 400 MHz)  = 11.32 (br.s, 1H, pyrrole-NH), 

10.81 (br.s, 1H, NH), 10.07 (s, 1H, CONH), 9.37 (br.s, 1H, NH), 

8.56 (br.s, 1H, NH), 7.73-7.71 (m, 2H, Ph-CH), 7.37-7.33 (m, 2H, 

Ph-CH), 7.11-7.07 (m, 1H, Ph-CH), 7.01 (br.s, 1H, pyrrole-CH), 

6.85 (br.s, 1H, pyrrole-CH), 1.47 (s, 9H, tBu-CH3); 13C-NMR 

([D6]DMSO, 100 MHz)  = 158.7 (Cq), 138.9 (Cq), 128.7 (CH), 

123.5 (CH), 120.0 (CH), 113.2 (pyrrole-CH), 27.8 (tBu-CH3); HR-

MS (ESI+) m/z = 372.1666 (calculated for C18H21N5O4 + H+: 

372.1666); m/z = 394.1486 (calculated for C18H21N5O4 + Na+: 

394.1486). 

 

17b was prepared from free acid 16b (410 mg, 1.46 mmol) in 

DMF (30 ml), NMM (3 ml), PyBOP (837 mg, 1.61 mmol) and Boc-

guanidine (256 mg, 1.61 mmol), obtaining a colorless solid (450 mg, 

73%);  Rf = 0.62 (SiO2, ethyl acetate/cyclohexane 6/4 + 1 vol% 
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NEt3); mp: 189 °C (decomp.); 1H-NMR ([D6]DMSO, 400 MHz)  = 

11.54 (br.s, 1H, pyrrole-NH), 10.86 (br.s, 1H, NH), 10.28 (s, 1H, 

CONH), 9.37 (br.s, 1H, NH), 8.59 (br.s, 1H, NH), 8.02-7.96 (m, 2H, 

naphthyl-CH), 7.86-7.84 (m, 1H, naphthyl-CH), 7.63-7.62 (m, 1H, 

naphthyl-CH), 7.59-7.53 (m, 3H, naphthyl-CH), 7.59 (br.s, 1H, 

pyrrole-CH), 6.84 (br.s, 1H, pyrrole-CH), 1.47 (s, 9H, tBu-CH3); 
13C-NMR ([D6]DMSO, 100 MHz)  = 159.0 (Cq), 158.5 (Cq), 133.8 

(Cq), 133.1 (Cq), 128.9 (Cq), 128.1 (CH), 126.1 (CH), 125.7 (CH), 

125.6 (CH), 123.5 (CH), 123.2 (CH), 113.8 (pyrrole-CH), 113.2 

(pyrrole-CH), 81.0 (tBu-Cq), 27.8 (tBu-CH3); HR-MS (ESI+) m/z = 

322.1307 (calculated for C17H15N5O2 + H+: 322.1299); m/z = 

344.1123 (calculated for C17H15N5O2 + Na+: 344.1118); m/z = 

422.1823 (calculated for C22H23N5O4 + H+: 422.1823); m/z = 

444.1642 (calculated for C22H23N5O4 + Na+: 444.1642); m/z = 

843.3590 (calculated for 2M + H+: 843.3573). 

 

17c was prepared from free acid 16c (120 mg, 0.43 mmol) in 

DMF (15 ml), NMM (1.5 ml), PyBOP (245 mg, 0.47 mmol) and 

Boc-guanidine (75 mg, 0.47 mmol), obtaining a slightly brown solid 

(102 mg, 57%);  Rf = 0.62 (SiO2, ethyl acetate/cyclohexane 6/4 + 1 

vol% NEt3); mp: 149 °C (decomp.); 1H-NMR ([D6]DMSO, 400 

MHz)  = 11.44 (br.s, 1H, pyrrole-NH), 10.84 (br.s, 1H, NH), 10.28 

(s, 1H, CONH), 9.39 (br.s, 1H, NH), 8.59 (br.s, 1H, NH), 8.37 (s, 

1H, naphthyl-CH), 7.92-7.78 (m, 4H, naphthyl-CH), 7.51-7.41 (m, 

2H, naphthyl-CH), 7.07 (br.s, 1H, pyrrole-CH), 6.88 (br.s, 1H, 

pyrrole-CH), 1.48 (s, 9H, tBu-CH3); 13C-NMR ([D6]DMSO, 100 

MHz)  = 158.3 (Cq), 136.5 (Cq), 133.4 (Cq), 129.9 (Cq), 128.5 

(CH), 127.5 (CH), 127.3 (CH), 126.4 (CH), 124.8 (CH), 128.5 (CH), 

116.1 (pyrrole-CH), 113.3 (pyrrole-CH), 27.8 (tBu-CH3); HR-MS 

(ESI+) m/z = 422.1823 (calculated for C22H23N5O4 + H+: 422.1823); 

m/z = 444.1642 (calculated for C22H23N5O4 + Na+: 444.1642); m/z = 

843.3600 (calculated for 2M + H+: 843.3573). 

 

17d was prepared from free acid 16d (80 mg, 0.23 mmol) in 

DMF (20 ml), NMM (2 ml), HCTU (102 mg, 0.25 mmol) and Boc-

guanidine (40 mg, 0.25 mmol), obtaining a slightly brown solid (40 

mg, 36%);  Rf = 0.49 (SiO2, ethyl acetate/cyclohexane 1/1 + 1 vol% 

NEt3); mp: 224 °C (decomp.); 1H-NMR ([D6]DMSO, 400 MHz)  = 

11.40 (br.s, 1H, pyrrole-NH), 10.80 (br.s, 1H, NH), 10.65 (s, 1H, 

CONH), 9.44 (br.s, 1H, NH), 8.55 (br.s, 1H, NH), 8.54-8.35 (m, 8H, 

pyrenyl-CH), 8.11-8.08 (m, 1H, pyrenyl-CH), 7.20 (br.s, 1H, 

pyrrole-CH), 6.89 (br.s, 1H, pyrrole-CH), 1.47 (s, 9H, tBu-CH3); 
13C-NMR ([D6]DMSO, 100 MHz)  = 159.1 (Cq), 131.2 (Cq), 130.8 

(Cq), 130.5 (Cq), 128.2 (Cq), 127.2 (CH), 126.9 (CH), 126.5 (CH), 

125.4 (CH), 125.2 (Cq), 125.1 (CH), 124.9 (CH), 124.8 (CH), 124.4 

(Cq), 123.8 (Cq), 122.8 (Cq), 113.4 (pyrrole-CH), 27.8 (tBu-CH3); 

HR-MS (ESI+) m/z = 496.1979 (calculated for C28H25N5O4 + H+: 

496.1979); m/z = 518.1799 (calculated for C28H25N5O4 + Na+: 

518.1799). 

General procedure for the synthesis of the chloride salts of the 

intercalators 2-5: 

The appropriate Boc-protected compound was dissolved in 

mixture of DCM and TFA. The solution was stirred at rt until tlc 

control indicated no more starting material. The solvent and the 

TFA were evaporated in vacuo, the resulting brown oil was 

dissolved in MeOH (2-5 ml) and hydrochloric acid (5%, 5 ml) was 

added. Subsequently the resulting suspension was lyophilized 

obtaining the chloride salts of the deprotected intercalators. 

 

Chloride salt of 2-(N-Phenylcarboxamide)-5-

(guanidiniocarbonyl)-1H-pyrrole 

Chloride salt 2 was prepared from 17a (380 mg, 1.02 mmol) in 

DCM (10 ml) and TFA (6 ml), obtaining a slightly grey solid (228 

mg, 73%); mp: 290 °C; 1H-NMR ([D6]DMSO, 400 MHz)  = 12.61 

(s, 1H, pyrrole-NH), 11.89 (s, 1H, NH), 10.25 (s, 1H, CONH), 8.48 

(br.s, 4H, NH), 7.75-7.73 (m, 2H, Ph-CH), 7.50-7.49 (m, 1H, Ph-

CH), 7.39-7.35 (m, 2H, Ph-CH), 7.13-7.07 (m, 2H, pyrrole-CH); 
13C-NMR ([D6]DMSO, 100 MHz)  = 159.6 (Cq), 157.6 (Cq), 155.3 

(Cq), 138.6 (Cq), 132.5 (Cq), 128.8 (CH), 126.1 (Cq), 123.8 (CH), 

120.0 (CH), 115.8 (pyrrole-CH), 113.2 (pyrrole-CH); HR-MS 

(ESI+) m/z = 272.1142 (calculated for C13H13N5O2 + H+: 272.1142); 

m/z = 543.2224 (calculated for 2M + H+: 543.2211). 

 

Chloride salt of 2-(N-Naphthalene-1-ylcarboxamide)-5-

(guanidiniocarbonyl)-1H-pyrrole  

Chloride salt 3 was prepared from 17b (400 mg, 0.95 mmol) in 

DCM (15 ml) and TFA (8 ml), obtaining a slightly green solid (190 

mg, 56%); mp: 229 °C; 1H-NMR ([D6]DMSO, 400 MHz)  = 12.69 

(s, 1H, pyrrole-NH), 11.90 (s, 1H, NH), 10.42 (s, 1H, CONH), 8.52 

(br.s, 4H, NH), 8.05-7.96 (m, 2H, naphthyl-CH), 7.88-7.86 (m, 1H, 

naphthyl-CH), 7.65-7.63 (m, 1H, naphthyl-CH), 7.59-7.52 (m, 1H, 

pyrrole-CH; m, 3H, naphthyl-CH), 7.18-7.17 (m, 1H, pyrrole-CH); 
13C-NMR ([D6]DMSO, 100 MHz)  = 159.6 (Cq), 158.5 (Cq), 155.4 

(Cq), 133.8 (Cq), 132.9 (Cq), 132.4 (Cq), 128.8 (Cq), 128.1 (CH), 

126.3 (CH), 126.2 (CH), 126.0 (CH), 125.6 (CH), 123.5 (CH), 123.1 

(CH), 115.9 (pyrrole-CH), 113.6 (pyrrole-CH); HR-MS (ESI+) m/z 

= 322.1299 (calculated for C17H15N5O2 + H+: 322.1299); m/z = 

643.2545 (calculated for 2M + H+: 643.2524). 

 

Chloride salt of 2-(N-Naphthalene-2-ylcarboxamide)-5-

(guanidiniocarbonyl)-1H-pyrrole  

Chloride salt 4 was prepared from 17c (100 mg, 0.24 mmol) in 

DCM (10 ml) and TFA (5 ml), obtaining a slightly brown solid (75 

mg, 88%); mp: 290 °C; 1H-NMR ([D6]DMSO, 400 MHz)  = 12.67 

(s, 1H, pyrrole-NH), 11.91 (s, 1H, NH), 10.46 (s, 1H, CONH), 8.48 

(br.s, 4H, NH), 8.39 (s, 1H, naphthyl-CH), 7.93-7.79 (m, 4H, 

naphthyl-CH), 7.52-7.22 (m, 1H, pyrrole-CH; m, 2H, naphthyl-CH), 

7.15-7.13 (m, 1H, pyrrole-CH); 13C-NMR ([D6]DMSO, 100 MHz)  

= 159.6 (Cq), 157.8 (Cq), 155.3 (Cq), 136.2 (Cq), 133.3 (Cq), 132.5 

(Cq), 130.0 (Cq), 128.4 (CH), 127.5 (CH), 127.4 (CH), 126.5 (CH), 

126.2 (Cq), 124.9 (CH), 120.5 (CH), 116.3 (pyrrole-CH), 113.7 

(pyrrole-CH); HR-MS (ESI+) m/z = 322.1299 (calculated for 

C17H15N5O2 + H+: 322.1299); m/z = 643.2549 (calculated for 2M + 

H+: 643.2524). 

 

Chloride salt of 2-(N-Pyrene-1-ylcarboxamide)-5-

(guanidiniocarbonyl)-1H-pyrrole 

Chloride salt 5 was prepared from 17d (20 mg, 0.04 mmol) in DCM 

(8 ml) and TFA (4 ml), obtaining a yellow solid (17 mg, quant.); 

mp: 281 °C; 1H-NMR ([D6]DMSO, 400 MHz)  = 12.77 (s, 1H, 

pyrrole-NH), 11.70 (s, 1H, NH), 10.78 (s, 1H, CONH), 8.43 (br.s, 

4H, NH), 8.36-8.09 (m, 9H, pyrenyl-CH), 7.52-7.42 (m, 1H, 

pyrrole-CH), 7.48-7.47 (m, 1H, pyrrole-CH), 7.28-7.26 (m, 1H, 

pyrrole-CH); 13C-NMR ([D6]DMSO, 100 MHz)  = 159.7 (Cq), 

158.7 (Cq), 155.4 (Cq), 132.5 (Cq), 130.9 (Cq), 130.8 (Cq), 130.5 

(Cq), 128.9 (Cq), 127.3 (CH), 127.2 (CH), 127.0 (CH), 126.5 (CH), 

123.2 (Cq), 125.4 (CH), 125.2 (Cq), 125.2 (CH), 124.9 (CH), 124.7 

(CH), 123.8 (Cq),  122.7 (CH), 116.1 (pyrrole-CH), 113.8 (pyrrole-

CH); HR-MS (ESI+) m/z = 396.1455 (calculated for C23H17N5O2 + 

H+: 396.1455); m/z = 791.2888 (calculated for 2M + H+: 791.2837). 
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General procedure for the coupling with isobutyl chloroformiate 

A solution of free acid (1.5 eq) in dry THF (6 mL) was kept 

under N2 atm and cooled at -15 °C. Then N-methylmorpholine 

(NMM) (1.5 eq) and isobutyl chloroformiate (1 eq) were added. The 

white suspension was stirred at -15 °C for 20 min. Afterwards a 

solution of arylamine (1 eq) in dry DMF or dry THF (1-2 mL) was 

added. The mixture was stirred 10 min at -15C and at 0 °C 

overnight (allowing to warming to rt). The white solid was filtered 

and solvent was removed from the liquid layer. The residue was 

dissolved in EtOAc (25-50 mL), washed with H2O (2 x 50 mL), 5% 

HCl aq (6 x 50 mL) and brine (2 x 50 mL). The organic layer was 

dried over MgSO4 and solvent was removed in vacuo. The residue 

was purified by flash chromatography (SiO2, eluent: EtOAc/n-

hexane 1:1 for 18a and EtOAc/n-hexane 1:2 for 18b). 

5-[(tert-Butoxycarbonyl)amino-N-2-naphthylpentanamide 

18a was prepared from 5-[(tert-butoxycarbonyl)amino]pentanoic 

acid (300 mg, 1.38 mmol), isobutyl chloroformiate (0.12 mL, 0.92 

mmol), NMM (0.15 mL, 1.38 mmol) and 1-naphthylamine (132 mg, 

0.92 mmol), obtaining a white solid (189 mg, 60%); mp =129-

130 °C; 1H NMR (D6DMSO, 400 MHz): δ = 9.83 (s, 1H, 

naphNHCO); 8.06-8.04 (m, 1H, naphthyl H8); 7.94-7.92 (m, 1H, 

naphthyl H5); 7.75 (d, 1H, naphthyl H4, J = 8.2 Hz); 7.67 (d, 1H, 

naphthyl H2, J = 8.2  Hz); 7.57-7.51 (m, 2H, naphthyl H6,7); 7.47 (t, 

1H, naphthyl H3, J = 7.8 Hz); 6.82 (br s, 1H naphNHCOCH2CH2-

CH2CH2NHBoc); 2.97 (q, 2H, naphNHCOCH2CH2CH2CH2, J = 6.4 

Hz); 2.47 (m, 2H, naphNHCOCH2CH2CH2CH2); 1.53-1.46 (m, 2H, 

CH2);  1.68-1.61 (m, 2H, CH2); 1.53-1.46 (m, 2H, CH2);  1.38 (s, 9H, 

C(CH3)3); 13C-NMR (D6DMSO, 100 MHz)  = 171.3 

(naphNHCO); 155.1 (COOC(CH3)3); 133.2 (naphthyl Cq);  127.5 

(naphthyl CH); 127.3 (naphthyl Cq); 125.4 (naphthyl CH); 125.2 

(naphthyl CH); 125.0 (naphthyl CH and Cq); 124.5 (naphthyl CH); 

122.2 (naphthyl CH); 121.1 (naphthyl CH); 76.8 (C(CH3)3);  40.0 

(naphNHCOCH2CH2CH2CH2); 35.1 (naphNHCOCH2CH2CH2-

CH2); 28.7 (naphNHCOCH2-CH2CH2CH2); 27.7 (C(CH3)3); 22.3 

(naphNHCOCH2CH2CH2CH2); HR-MS (ESI+) m/z = 365.183 

0.005 (calculated for C20H26N2O3+Na+: 365.183). 

(L)-1-PyrenylSer(OtBu)NHBoc 18b was prepared from (L)-

BocSer(OtBu)OH.DCHA (300 mg, 0.68 mmol), isobutyl 

chloroformiate (58 L, 0.45 mmol), NMM (74 L, 0.68 mmol), and 

1-aminopyrene (98 mg, 0.45 mmol), obtaining a brown solid (207 

mg, quant); mp = 160-164C; 1H-NMR ([D6]DMSO, 400 MHz)  = 

10.31 (s, 1H, PyreneNH); 8.34-8.28 (m, 4H, Pyrene H); 8.19-8.06 

(m, 5H, Pyrene H); 6.86 (d, 1H, Ser NH, J = 4.9 Hz); 4.47-4.46 (m, 

1H, CH); 3.73-3.66 (m, 2H, CH2);  1.45 (s, 9H, C(CH3)3); 1.23 (s, 

9H, C(CH3)3); HR-MS (ESI+) m/z = 483.2270.005 (calculated for 

C28H32N2O4+Na+: 483.225). 

 

General procedure for the deprotection with TFA 

Boc-protected guanidine (1 eq), was dissolved in a mixture 1:1 

TFA/dry DCM (0.5-2 mL TFA, 0.5-2 mL dry DCM) and stirred at rt 

for 1-2 h. Solvent and excess of TFA were removed in vacuo, and 

the oily residue was lyophilized.  

Trifluoroacetate of N-2-[(5-(naphthalen-2-ylamino)-5-

oxopentyl)carbamoyl]-1H-pyrrole-5-carbonylguanidinium 6 was 

prepared from 20a (70 mg, 0.13 mmol), obtaining a white solid (63 

mg, 88%); mp = 205 ºC (decomposition); 1H-NMR ([D6]DMSO, 

400 MHz)  = 12.33 (s, 1H, pyrrole NH); 11.31 (s, 1H, guanidinium 

NH); 9.87 (s, 1H, naphNHCO); 8.47 (t, 1H, 

naphNHCOCH2CH2CH2CH2NH, J = 5.2 Hz); 8.37 (br s, 4H, 

guanidinium (NH2)2); 8.06-8.04 (m, 1H, naphthyl H8); 7.95-7.91 (m, 

1H, naphthyl H5); 7.75 (d, 1H, naphthyl H4, J = 8.1 Hz); 7.67 (d, 1H, 

naphthyl H2, J = 7.1  Hz); 7.54-7.52 (m, 2H, naphthyl H6,7); 7.47 (t, 

1H, naphthyl H3, J = 7.7 Hz); 7.17 (m, 1H, pyrrole CH); 6.87 (m, 

1H, pyrrole CH); 3.35-3.32 (m, 2H, CH2); 2.54-2.52 (m, 2H, CH2); 

1.74-1.71 (m, 2H, CH2);  1.64-1.61 (m, 2H, CH2); 13C-NMR 

(CD3OD, 100 MHz)  = 174.7 (naphthylCONH); 161.3 (CONH or 

C(NH2)2); 161.0 (CONH or C(NH2)2); 156.7 (CONH or C(NH2)2); 

135.1 (naphthyl Cq);  133.7 (pyrrole Cq); 133.3 (naphthyl Cq); 

129.5 (naphthyl Cq); 128.7 (naphthyl CH); 126.9 (naphthyl CH); 

126.7 (naphthyl CH); 126.5 (naphthyl CH); 126.3 (pyrrole Cq); 

125.9 (naphthyl CH); 123.5 (naphthyl CH); 122.8 (naphthyl CH); 

115.6 (pyrrole CH); 112.3 (pyrrole CH); 40.2 

(naphNHCOCH2CH2CH2CH2); 36.3 (naphNHCOCH2CH2CH2-

CH2); 29.5 (naphNHCOCH2CH2CH2CH2); 23.8 (naphNHCOCH2-

CH2CH2CH2); HR-MS (ESI+) m/z = 421.1980.005 (calculated for 

C22H25N6O3
+: 421.198); HPLC tR = 4.77 min (96%); eluent: 80% 

MeOH + 0.1% TFA and 20% H2O + 0.1% TFA  100% MeOH + 

0.1% TFA, flow 1 mL/min,  = 300 nm. 

(L)-1-PyrenylSerGuaNH.CF3COOH 9 was prepared from 20b 

(20 mg, 3.4 x 10-5 mol), obtaining a brownish solid (18 mg, 90%); 

mp = 229 C (decomposition); 1H-NMR ([D6]DMSO, 400 MHz)  = 

12.71 (s, 1H, pyrrole NH); 11.47 (s, 1H, NHC(NH2)2); 10.51 (s, 1H, 

pyreneNH); 8.82 (d, 1H, Ser NH, J = 7.4 Hz); 8.36 (br s, 4H, 

(NH2)2); 8.33-8.28 (m, 4H, pyrene H); 8.22-8.16 (m, 4H, pyrene H); 

8.08 (t, 1H, pyrene H, J = 7.7 Hz); 7.30 (br s, 1H, pyrrole CH); 7.01 

(br s, 1H, pyrrole CH); 5.32 (br s, 1H, OH); 4.95 (q, 1H, CH, J =  

6.5 Hz); 3.96 (br s, 2H, CH2); 13C-NMR ([D6]DMSO, 100 MHz)  = 

169.9 (pyreneNHCO); 159.9 (pyrrole CONH); 159.3 (pyrrole 

CONH); 155.3 (C(NH2)2); 132.5 (pyrrole Cq); 131.5 (pyrene Cq); 

130.8 (pyrene Cq); 130.5 (pyrene Cq); 127.2 (pyrene CH);  127.1 

(pyrene CH);  126.7 (pyrene CH); 126.4 (pyrene CH); 125.7 

(pyrrole Cq);  125.3 (pyrene CH);  125.0 (pyrene CH);  124.9 

(pyrene CH);  124.6 (pyrene Cq); 124.3 (pyrene Cq); 123.9 (pyrene 

Cq); 123.8 (pyrene CH); 122.7 (pyrene CH); 115.1 (pyrrole CH); 

113.7 (pyrrole CH); 61.3 (CH2); 55.7 (CH); HR-MS (ESI+) m/z = 

483.1780.005 (calculated for C26H23N6O4
+: 483.177); HPLC tR = 

8.44 min (94%); eluent: 50% MeOH + 0.1% TFA and 50% H2O + 

0.1% TFA  100% MeOH + 0.1% TFA, flow 1 mL/min,  = 300 

nm. 

(L)-2-naphthylSerGlyGuaNH.CF3COOH 7 was prepared 

from 20c (30 mg, 5.3 x 10-5 mol), obtaining a white solid (31 mg, 

quant); mp  200 ºC; 1H-NMR ([D6]DMSO, 400 MHz)  = 12.48 

(br s, 1H, pyrrole NH); 11.13 (br s, 1H, guanidinium NH); 10.12  (s, 

1H, naphthylNHCO); 8.80 (t, 1H, Gly NH, J = 5.8 Hz); 8.31-8.23 

(m, 6H, naphthyl H1, Ser NH and guanidinium (NH2)2); 7.90-7.63 

(m, 3H, naphthyl H4,5,8); 7.51-7.38 (m, 1H, naphthyl H6 or H7); 7.09 

(br s, 1H, pyrrole CH); 6.93-6.92 (m, 1H, pyrrole CH); 4.54 (dd, 1H, 

Ser CH, J = 13.1 Hz, J = 7.6 Hz); 4.03 (d, 2H, Gly CH2, J = 5.8 Hz); 

3.72 (d, 2H, Ser CH2, J = 5.3 Hz); 13C-NMR ([D6]DMSO, 100 

MHz)  = 169.4 (CONH or C(NH2)2); 169.2 (CONH or C(NH2)2); 

160.3 (CONH or C(NH2)2); 135.9 (naphthyl Cq); 133.3 (pyrrole Cq 

and naphthyl Cq); 130.1 ((naphthyl Cq); 128.6 (naphthyl CH); 127.6 

(naphthyl CH); 127.4 (naphthyl CH); 126.8 (pyrrole Cq and 

naphthyl CH); 125.1 (naphthyl CH); 120.2 (naphthyl CH); 115.9 

(pyrrole CH and naphthyl CH); 112.9 (pyrrole CH); 61.5 (Ser CH2); 
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56.0 (Ser CH); 42.2 (Gly CH2); HR-MS (ESI+) m/z = 

466.1840.005 (calculated for C22H24N7O5
+: 466.183); HPLC tR = 

4.80 min (94%); eluent: 80% MeOH + 0.1% TFA and 20% H2O + 

0.1% TFA  100% MeOH + 0.1% TFA, flow 1 mL/min,  = 300 

nm. 

(L)-1-PyrenylSerGlyGuaNH.CF3COOH 10 was prepared 

from 22 (17 mg, 2.6 x 10-5 mol), obtaining a brownish solid (14 mg, 

82%); mp = 215 ºC (decomposition); 1H-NMR ([D6]DMSO, 400 

MHz)  = 12.47 (br s, 1H, pyrrole NH); 11.11 (s, 1H, NH); 10.33 (s, 

1H, pyreneNH); 8.83 (br t, 1H, Gly NH, J = 5.5 Hz); 8.34-8.27 (m, 

9H, pyrene H, (NH2)2 and Ser NH); 8.19-8.16 (m, 4H, pyrene H); 

8.08 (t, 1H, pyrene H); 7.08 (br s, 1H, pyrrole H); 6.93 (br s, 1H, 

pyrrole H); 5.25 (br s, 1H, OH); 4.77 (m, 1H, CH); 4.10-4.07 (m, 2H, 

Gly CH2); 3.90 (br s, 1H, Ser CH2); 3.84 (br s, 1H, Ser CH2); 13C-

NMR ([D6]DMSO, 100 MHz)  = 169.9 (CONH); 169.1 (CONH); 

159.5 (pyrroleCONH); 155.1 (C(NH2)2); 132.3 (pyrrole Cq); 131.4 

(pyrene Cq); 130.8 (pyrene Cq); 130.5 (pyrene Cq); 128.5 (pyrene 

Cq); 127.2 (pyrene CH);  127.1 (pyrene CH);  126.7 (pyrene CH); 

126.4 (pyrene CH); 125.2 (pyrene CH);  125.0 (pyrene CH);  124.9 

(pyrene CH);  124.4 (pyrene Cq); 123.7 (pyrene CH); 122.6 (pyrene 

CH); 115.3 (pyrrole CH); 112.8 (pyrrole CH); 61.9 (Ser CH2); 55.8 

(CH); 42.1 (Gly CH2); HR-MS (ESI+) m/z = 540.1990.005 

(calculated for C28H26N7O5
+: 540.199); HPLC tR = 8.46 min (97%); 

eluent: 50% MeOH + 0.1% TFA and 50% H2O + 0.1% TFA  

100% MeOH + 0.1% TFA, flow 1 mL/min,  = 300 nm. 

Trifluoroacetate of N-2-[(5-(acridin-2-ylamino)-5-oxopen-

tyl)carbamoyl]-1H-pyrrole-5-carbonylguanidinium 11 was pre-

pared from 24 (30 mg, 5.25 x 10-5 mol), obtaining a yellow solid (28 

mg, 91%); mp  230 ºC; 1H-NMR (D6DMSO, 400 MHz)  = 

12.37 (s, 1H,  pyrrole NH); 11.40 (s, 1H, NH); 9.07 (t, 1H, 

acridineCONH, J =  5.5 Hz); 8.52 (t, 1H, acridineCONHCH2CH2-

CH2CH2NH, J = 5.5  Hz); 8.37 (br s, 4H, (NH2)2); 8.21 (d, 2H, H1,8, 

J =  8.7  Hz); 8.00 (d, 2H, H4,5, J = 8.7 Hz); 7.93-7.7.89 (m, 2H, 

H3,6); 7.70-7.66 (m, 2H, H2,7); 7.23-7.22 (m, 1H, pyrrole CH); 6.90-

6.89 (m, 1H, pyrrole H); 3.57-3.52 (m, 2H, acridineCONHCH2CH2-

CH2CH2NH); 3.38-3.34 (m, 2H, acridineCONHCH2CH2CH2CH2-

NH); 1.72-1.69 (m, 4H, acridineCONHCH2CH2CH2CH2NH); 13C-

NMR (D6DMSO, 100 MHz)  = 165.1 (acridineCONH); 159.1 

(CONH or C(NH2)2); 158.5 (CONH or C(=NH)NH); 146.8 (C4a,10a); 

143.0 (C9); 132.4 (pyrrole Cq); 130.8 (CH3,6); 127.8 (CH4,5); 126.4 

(CH2,7); 125.2 (CH1,8); 124.8 (pyrrole Cq); 121.8 (C8a,9a); 115.1 

(pyrrole CH); 111.8 (pyrrole CH); 38.2 (acridineCONHCH2CH2-

CH2CH2NH); 38.0 (acridineCONHCH2CH2-CH2CH2NH); 26.3 

(acridineCONHCH2CH2CH2CH2NH); 26.1 (acridineCONHCH2-

CH2CH2CH2NH); HR-MS (ESI+) m/z = 472.2100.005 (calculated 

for C25H26N7O3+: 472.210). HPLC: tR = 5.57 min (95%); eluent: 

50% MeOH + 0.1% TFA and 50% H2O + 0.1% TFA  100% 

MeOH + 0.1% TFA, flow 1 mL/min,  = 300 nm. 

(L)-N-1-PyrenylGly-(1-pyrenoyldiaminoethane) Arg Analo-

gue NH.CF3COOH 13 was prepared from 30 (21 mg, 2.20 x 10-5 

mol). The residue was purified by MPLC (RP18, eluent: 20% 

MeOH + 0.1% TFA in H2O + 0.1% TFA  100% MeOH + 0.1% 

TFA) obtaining a pale brown solid (9 mg, 43%); 1H-NMR 

(D6DMSO, 400 MHz)  = 12.35 (s, 1H, pyrrole NH); 11.06 (s, 1H, 

pyrroleCONH); 8.95 (t, 1H, pyreneCONH, J = 5.7 Hz); 8.68 (t, 1H, 

pyreneCONH, J = 5.5 Hz); 8.61-8.56 (m, 2H, pyrene H and 

CONHCH2CH2); 8.48 (d, 1H, pyrene H, J = 9.2 Hz); 8.38 (d, 1H, 

Gly NH, J = 7.8 Hz); 8.34-8.07 (m, 21H, pyrene H, (NH2)2 and 

NH); 6.98 (br s, 1H, pyrrole H); 6.86-6.84 (m, 1H, pyrrole H); 4.59 

(q, 1H, CH, J = 6.8 Hz); 4.18-4.07 (m, 2H, Gly CH2); 3.77-3.42 (m, 

6H, 3CH2); 13C-NMR (D6DMSO, 100 MHz)  = 172.2 (CONH or 

C(NH2)2); 169.4 (CONH or C(NH2)2); 169.1 (CONH or C(NH2)2); 

168.7 (CONH or C(NH2)2); 168.6 (CONH or C(NH2)2); 159.3 

(CONH or C(NH2)2); 157.8 (q, 1C, CF3COO, JC-F = 31 Hz); 154.5 

(CONH or C(NH2)2); 131.9 (pyrrole Cq); 131.2 (2pyrene Cq); 131.1 

(pyrene Cq); 130.7 (pyrene Cq); 130.2 (2pyrene Cq); 129.7 (2pyrene 

Cq); 127.9 (pyrene CH); 127.8 (pyrene CH); 127.6 (pyrene CH); 

127.5 (pyrene CH); 127.4 (pyrene Cq); 127.3 (pyrene Cq); 126.7 

(pyrene CH); 126.6 (pyrene CH); 126.1 (2pyrene CH); 125.3 

(2pyrene CH); 125.1 (2pyrene CH); 125.0 (pyrrole Cq); 124.8 

(2pyrene CH); 124.3 (pyrene CH); 124.2 (pyrene CH); 123.8 

(2pyrene CH); 123.2 (2pyrene Cq); 123.1 (2pyrene Cq); 116.6 (q, 

1C, CF3COO, JC-F = 299 Hz); 114.7 (pyrrole CH); 112.3 (pyrrole 

CH); 52.7 (CH); 42.6 (Gly CH2); 40.3 (CH2); 38.4 (2CH2); HR-MS 

(ESI+) m/z = 838.3100.005 (calculated for C48H40N9O6
+: 838.309); 

HPLC: tR = 22.58 min (99%); eluent: 40% MeOH + 0.1% TFA and 

60% H2O + 0.1% TFA  100% MeOH + 0.1% TFA, flow 1 

mL/min,  = 300 nm. 

General procedure for coupling with PyBOP 

A) A solution of acid (1 eq), PyBOP (1 eq) and NMM (3 eq) in 

dry DMF (3-7 mL) was stirred for 20 min at rt. Afterwards, amine 

(1 eq) was added and the solution was stirred at rt overnight. Then, 

it was poured onto water and the suspension was stirred at 0ºC for 2 

h. The precipitate was filtered off, washed several times with water 

and lyophilized. The residue was used in the next step without 

further purification (18c) or was purified by flash chromatography 

(SiO2) using the corresponding eluent (23a-b and 27). 

(L)-2-naphtylSerGlyNHBoc 18c was prepared from N-(tert-

butoxycarbonyl)glycine (152 mg, 0.87 mmol), PyBOP (452 mg, 

0.87 mmol), NMM (0.29 mL, 2.60 mmol) and (L)-N-2-

naphthylserinamide (200 mg, 0.87 mmol), obtaining a white solid 

(314 mg, 93%); mp = 98-100 ºC; 1H-NMR ([D6]DMSO, 400 MHz) 

 = 10.04 (s, 1H, naphthylNHCO); 8.29 (d, 1H, naphthyl H1); 7.96 

(d, 1H, Ser NH, J = 7.7 Hz); 7.87-7.79 (m, 3H, naphthyl H4,5,8); 7.67 

(d, 1H, naphthyl H3,  J =   8.8 Hz); 7.47 (m, 1H, naphthyl H6,7); 7.40 

(m, 1H, naphthyl H6,7); 7.06 (t, 1H, Gly NH, J = 5.4 Hz); 5.07 (t, 1H, 

OH, J = 5.4 Hz); 4.50 (q, 1H, Ser CH, J = 7.1 Hz);  3.74-3.63 (m, 

4H, Ser CH2 and Gly CH2); 1.39 (s, 9H, C(CH3)3); 13C-NMR 

([D6]DMSO, 100 MHz)  = 170.0 (CONH); 169.2 (CONH); 156.3 

(NHCOO); 135.9 (naphthyl Cq); 133.3 (naphthyl Cq); 130.0 

(naphthyl Cq); 128.5 (naphthyl CH); 127.6 (naphthyl CH); 127.3 

(naphthyl CH); 126.7 (naphthyl CH); 125.0 (naphthyl CH); 120.1 

(naphthyl CH); 115.9 (naphthyl CH); 79.0 (C(CH3)3); 61.4 (Ser 

CH2); 55.7 (Ser CH); 43.3 (Gly CH2); 28.2 (C(CH3)3); HR-MS 

(ESI+) m/z = 410.1690.005 (calculated for C20H25N3O5+Na+: 

410.169). 

5-[(tert-Butoxycarbonyl)amino-N-2-pyrenylpropanamide 

23a was prepared from 1-pyrenecarboxilic acid (200 mg, 0.81 

mmol), PyBOP (423 mg, 0.81 mmol), NMM (0.27 mL, 2.44 mmol) 

and tert-butyl (2-aminoethyl)carbamate (130 mg, 0.81 mmol). 

Eluent for flash chromatography: EtOAc/n-hexane 2:1  9:1. Yield 

260 mg (82%) of a white solid; mp = 196-198ºC; 1H-NMR 

(D6DMSO, 400 MHz)  = 8.66 (br t, 1H, pyreneCONH, J = 5.2 

Hz); 8.52 (d, 1H, pyrene H, J = 9.3 Hz); 8.36-8.33 (m, 3H, pyrene 

H); 8.31-8.21 (m, 3H, pyrene H); 8.18-8.10 (m, 2H, pyrene H);  6.97 

(br t, 1H, pyreneCONHCH2CH2NH, J = 5.4 Hz); 3.48-3.43 (m, 2H, 

pyreneCONHCH2CH2NH); 3.27-3.23 (m, 2H, pyreneCONH-
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CH2CH2NH); 1.41 (s, 9H, C(CH3)3); 13C-NMR (D6DMSO, 100 

MHz)  = 169.0 (pyreneCONH); 155.8 (COOtBu); 131.9 (pyrene 

Cq); 131.6 (pyrene Cq); 130.7 (pyrene Cq); 130.2 (pyrene Cq); 

128.2 (pyrene CH); 128.0 (pyrene CH); 127.8 (pyrene Cq); 127.2 

(pyrene CH); 126.5 (pyrene CH); 125.7 (pyrene CH); 125.6 (pyrene 

CH); 125.3 (pyrene CH); 124.8 (pyrene CH); 124.3 (pyrene CH); 

123.8 (pyrene Cq); 123.6 (pyrene Cq); 77.7 (C(CH3)3); 39.2 

(pyreneCONHCH2CH2NH); 28.3 (C(CH3)3); HR-MS (ESI+) m/z = 

411.1670.005 (calculated for C24H24N2O3+Na+: 411.167). 

5-[(tert-Butoxycarbonyl)amino-N-2-acridinylpentanamide 

23b was prepared from 9-acridinecarboxylic acid (200 mg, 0.89 

mmol), PyBOP (466 mg, 0.89 mmol) and NMM (0.29 mL, 0.92 

mmol), and tert-butyl (4-aminobutyl)carbamate (169 mg, 0.89 

mmol)5. Eluent for flash chromatography: EtOAc/n-hexane 7:1. 

Yield 242 mg (69%) of a yellow solid; mp = 153-155ºC; 1H-NMR 

(D6DMSO, 400 MHz)  = 9.01 (t, 1H, acridineCONH, J = 5.5 

Hz); 8.19 (d, 2H, H1,8, J = 8.70 Hz); 7.98 (d, 2H, H4,5, J = 8.7 Hz); 

7.90-7.86 (m, 2H, H3,6); 7.69-7.65 (m, 2H, H2,7); 6.86 (br s, 1H, 

BocNH); 3.49 (q, 2H, BocNHCH2CH2CH2CH2, J = 6.4 Hz); 3.01 (q, 

2H, BocNHCH2CH2CH2CH2, J = 6.4 Hz); 1.66-1.61 (m, 2H, 

BocNHCH2CH2CH2CH2); 1.57-1.51 (m, 2H, BocNHCH2CH2CH2-

CH2); 1.39 (s, 9H, C(CH3)3); 13C-NMR (D6DMSO, 100 MHz)  = 

165.9 (acridineCONH); 155.7 (COOtBu); 148.2 (C4a,10a); 142.5 (C9); 

130.6 (CH3,6); 129.3 (CH4,5); 126.7 (CH2,7); 125.6 (CH1,8); 121.8 

(C8a,9a); 77.4 (C(CH3)3); 39.3 (BocNHCH2CH2CH2CH2); 38.8 

(BocNHCH2CH2CH2CH2); 28.3 (C(CH3)3); 27.3 (BocNHCH2CH2-

CH2CH2); 26.5 (BocNHCH2CH2CH2CH2); HR-MS (ESI+) m/z = 

394.2120.005 (calculated for C23H28N3O3
+: 394.212). 

tert-Butyl N-1-pyrenoylglycinate 27 was prepared from 1-

pyrenecarboxilic acid (300 mg, 1.22 mmol), PyBOP (634 mg, 1.22 

mmol), NMM (0.40 mL, 3.65 mmol) and tert-butyl glycinate (204 

mg, 1.22 mmol). Eluent for flash chromatography: EtOAc/n-hexane 

1:2. Yield 281 mg (64%) of a brownish solid; mp = 129-132 ºC; 1H-

NMR (D6DMSO, 400 MHz)  = 9.05 (t, 1H, NH, J = 5.9 Hz); 8.62 

(d, 1H, pyrene H, J = 9.3 Hz); 8.38-8.34 (m, 3H, pyrene H); 8.29-

8.22 (m, 3H, pyrene H); 8.16-8.11 (m, 2H, pyrene H); 4.05 (d, 2H, 

CH2, J = 5.9 Hz); 1.52 (s, 9H, C(CH3)3); 13C-NMR (D6DMSO, 

100 MHz)  =  168.8 (CONH or COOtBu); 168.5 (CONH or 

COOtBu); 131.2 (pyrene Cq); 130.9 (pyrene Cq); 130.2 (pyrene 

Cq); 129.7 (pyrene Cq); 127.8 (pyrene CH); 127.6 (pyrene CH); 

127.3 (pyrene Cq); 126.6 (pyrene CH); 126.0 (pyrene CH); 125.3 

(pyrene CH); 125.1 (pyrene CH); 124.6 (pyrene CH); 124.2 (pyrene 

CH); 123.9 (pyrene CH); 123.2 (pyrene Cq); 123.1 (pyrene Cq); 

80.3 (C(CH3)3); 41.7 (CH2); 27.3 (C(CH3)3); HR-MS (ESI+) m/z = 

382.1410.005 (calculated for C23H21N1O3+Na+: 382.141). 

B) Boc-protected amine (1 eq) was dissolved in a mixture 1:1 

TFA/dry DCM (1-6 mL TFA, 1-6 mL dry DCM) and stirred at rt for 

30 min. Solvent and excess of TFA were removed in vacuo, and the 

oily residue was lyophilized. Free amine was used in the next step 

without further purification. A solution of acid (1 eq), PyBOP (1 eq) 

and NMM (3 eq) in dry DMF (2-6 mL) was stirred for 20 min at rt. 

Afterwards, the free amine (1 eq) was added and the solution was 

stirred at RT overnight. Then, it was poured onto water and the 

suspension was stirred at 0ºC for 2 h. The precipitate was filtered off, 

washed several times with water and lyophilized. The residue was 

purified by flash chromatography (SiO2) using the corresponding 

eluent, except 25, which was used in the next step without further 

purification. 

N-5-Boc N-2-[(5-(naphthalen-2-ylamino)-5-oxopentyl)carba-

moyl]-1H-pyrrole-5-carbonylguanidino 20a was prepared from 

triethylammonium N-Boc 5-guanidinocarbonylpyrrole-2-carboxy-

late 19 (178 mg, 0.45 mmol), PyBOP (234 mg, 0.45 mmol), NMM 

(0.15 mL, 1.35 mmol) and free amine (160 mg, 0.45 mmol, from 

Boc-deprotection of 18a, yield quant). Eluent for flash 

chromatography: EtOAc/n-hexane 4:1 → 9:1. Yield 112 mg (48%) 

of a white solid; mp = 127 ºC (decomposition); 1H-NMR 

([D6]DMSO, 400 MHz)  = 10.85 (br s, 1H, Guanidino NH); 9.86 (s, 

1H, naphNHCO); 9.31 (br s, 1H, Guanidino NH); 8.56 (br s, 1H, 

Guanidino NH); 8.36 (br s, 1H, naphNHCOCH2CH2CH2CH2NH); 

8.06-8.04 (m, 1H, naphthyl H8); 7.94-7.91 (m, 1H, naphthyl H5); 

7.75 (d, 1H, naphthyl H4, J = 8.1 Hz); 7.68 (d, 1H, naphthyl H2, J = 

7.3  Hz); 7.54-7.52 (m, 2H, naphthyl H6,7); 7.48 (t, 1H, naphthyl H3, 

J = 7.8 Hz); 6.80 (br s, 2H, pyrrole CH); 3.32-3.30 (m, 2H, 

naphNHCOCH2CH2CH2CH2); 2.53-2.49 (m, 2H, naphNHCOCH2-

CH2CH2CH2); 1.74-1.69 (m, 2H, CH2); 1.63-1.60 (m, 2H, CH2); 

1.46 (s, 9H, C(CH3)3); 13C-NMR ([D6]DMSO, 100 MHz)  = 171.8 

(CONH); 170.3 (CONH); 159.6 (CONH); 158.4 (CONH); 133.7 

(naphthyl Cq and pyrrole Cq);  129.2 (pyrrole Cq); 129.1 (naphthyl 

CH); 127.8 (naphthyl Cq); 125.9 (naphthyl CH); 125.7 (naphthyl 

CH); 125.5 (naphthyl CH and Cq); 125.1 (naphthyl CH); 122.7 

(naphthyl CH); 121.7 (naphthyl CH); 113.8 (pyrrole CH); 111.7 

(pyrrole CH); 38.5 (naphNHCOCH2CH2CH2CH2); 35.6 

(naphNHCOCH2CH2CH2CH2); 28.9 (naphNHCOCH2CH2CH2-

CH2); 27.8 (C(CH3)3); 23.0 (naphNHCOCH2CH2CH2CH2); HR-MS 

(ESI+) m/z = 521.2510.005 (calculated for C27H32N6O5+H+: 

521.250). 

(L)-1-PyrenylSerGuaNHBoc 20b was prepared from N-Boc 5-

guanidinocarbonylpy-rrole-2-carboxylic acid 19 (71 mg, 0.24 mmol), 

PyBOP (124 mg, 0.24 mmol), NMM (79 L, 0.71 mmol) and free 

amine (100 mg, 0.24 mmol, from Boc-deprotection of 18b, yield 

94%). Eluent for flash chromatography: EtOAc/n-hexane 5:1. Yield 

115 mg (83%) of a yellowish solid; mp  210 C; 1H-NMR 

([D6]DMSO, 400 MHz)  = 11.64 (br s, 1H, pyrrole NH); 10.85 (br 

s, 1H, NH); 10.47 (s, 1H, pyrene NH); 9.31 (br s, 1H, NH); 8.66 (br 

s, 1H, Ser NH); 8.52 (br s, 1H, NH); 8.33-8.28 (m, 4H, pyrene H); 

8.22-8.16 (m, 4H, pyrene H); 8.07 (t, 1H, pyrene H, J = 7.6 Hz);  

6.90 (br s, 1H, pyrrole H); 6.87 (br s, 1H, pyrrole H); 5.27 (br s, 1H, 

OH); 4.92 (m, 1H, CH); 3.95 (br s, 2H, CH2); 1.46 (s, 9H, C(CH3)3); 
13C-NMR ([D6]DMSO, 100 MHz)  = 169.5 (CONH); 131.1 

(pyrene Cq); 130.3 (pyrene Cq); 130.0 (pyrene Cq); 128.0 (pyrene 

Cq); 126.7 (pyrene CH);  126.6 (pyrene CH);  126.2 (pyrene CH); 

125.9 (pyrene CH);  124.7 (pyrene CH);  124.5 (pyrene CH);  124.4 

(pyrene CH);  124.0 (pyrene Cq); 123.8 (pyrene Cq); 123.3 (pyrene 

CH); 122.1 (pyrene CH); 112.5 (pyrrole CH); 61.3 (CH2); 55.6 

(CH); 27.2 (C(CH3)3); HR-MS (ESI+) m/z = 605.2120.005 

(calculated for C31H30N6O6+Na+: 605.212). 

(L)-2-naphtylSerGlyGuaNHBoc 20c was prepared from 

triethylammonium N-Boc 5-guanidinocarbonylpyrrole-2-carboxyla-

te 19 (178 mg, 0.45 mmol), PyBOP (234 mg, 0.45 mmol), NMM 

(0.15 mL, 1.35 mmol) and free amine (180 mg, 0.45 mmol, from 

Boc-deprotection of 18c, yield 94%), Eluent for flash 

chromatography: EtOAc/MeOH 98:2. Yield 200 mg (79%) of a 

brownish solid; mp = 178 ºC (decomposition); 1H-NMR 

([D6]DMSO, 400 MHz)  = 10.81 (br s, 1H,  Guanidino NH); 10.09 

(s, 1H, naphthylNHCO); 9.33 (br s, 1H,  Guanidino NH); 8.74 (t, 1H, 

Gly NH, J = 5.7 Hz); 8.55 (br s, 1H,  Guanidino NH); 8.32 (d, 1H, 

naphthyl H1, J = 1.6 Hz); 8.20 (d, 1H, Ser NH, J = 7.7 Hz); 7.89-

7.81 (m, 3H, naphthyl H4,5,8); 7.68 (dd, 1H, naphthyl H3, J = 8.8 Hz, 
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J = 2.0 Hz); 7.47 (td, 1H, naphthyl H6 or H7, J = 6.8 Hz, J = 1.3 Hz); 

7.41 (td, 1H, naphthyl H6 or H7, J = 6.8 Hz, J = 1.3 Hz); 6.84 (m, 

2H, pyrrole CH); 5.08 (t, 1H, OH, J = 5.4 Hz); 4.55 (dd, 1H, Ser CH, 

J = 13.3 Hz, J = 5.4 Hz); 3.99 (d, 3H, Gly CH2, J = 5.9 Hz); 3.75-

3.72 (m, 2H, Ser CH2); 1.46 (s, 9H, C(CH3)3); 13C-NMR 

([D6]DMSO, 100 MHz)  = 168.6 (CONH or C=NH); 168.5 

(CONH or C=NH); 159.6 (CONH or C=NH); 157.9 (CONH or 

C=NH); 135.8 (naphthyl Cq); 132.8 (pyrrole Cq and naphthyl Cq); 

129.3 (naphthyl Cq); 127.7 (naphthyl CH); 126.9 (naphthyl CH); 

126.7 (naphthyl CH); 125.8 (pyrrole Cq and naphthyl CH); 124.1 

(naphthyl CH); 119.6 (naphthyl CH); 114.9 (pyrrole CH and 

naphthyl CH); 111.8 (pyrrole CH); 61.1 (Ser CH2); 55.4 (CH);  41.6 

(Gly CH2); 27.2 (C(CH3)3); HR-MS (ESI+) m/z = 588.2170.005 

(calculated for C27H31N7O7+Na+: 588.217). 

(L)-1-PyrenylSerGlyNHBoc 21 was prepared from N-(tert-

butoxycarbonyl)glycine (50 mg, 0.28 mmol), PyBOP (149 mg, 0.28 

mmol), NMM (95 L, 0.86 mmol) and free amine (120 mg, 0.28 

mmol, from Boc-deprotection of 18b, yield 94%). Eluent for flash 

chromatography: EtOAc/n-hexane 4:1. Yield 115 mg (87%) of a 

yellowish solid; mp = 182-185 C; 1H-NMR ([D6]DMSO, 400 

MHz)  = 10.28 (s, 1H, pyreneNH); 8.30-8.21 (m, 4H, pyrene H); 

8.19-8.15 (m, 4H, pyrene H and Ser NH); 8.08 (t, 2H, pyrene H, J = 

7.7 Hz); 7.08 (t, 2H, Gly NH); 5.24 (br t, 1H, OH, J = 5.3 Hz); 4.72-

4.69 (m, 1H, CH); 3.91-3.87 (m, 1H, Ser CH2); 3.82-3.78 (m, 1H, 

Ser CH2); 3.72-3.69 (m, 2H, Gly CH2);  1.36 (s, 9H, C(CH3)3); 13C-

NMR ([D6]DMSO, 100 MHz)  = 169.9 (CONH); 169.7 (CONH); 

155.9 (COOtBu); 131.5 (pyrene Cq); 130.8 (pyrene Cq); 130.5 

(pyrene Cq); 128.5 (pyrene Cq); 127.2 (pyrene CH);  127.1 (pyrene 

CH);  126.7 (pyrene CH); 126.4 (pyrene CH); 125.2 (pyrene CH);  

125.0 (pyrene CH);  124.5 (pyrene Cq);  124.3 (pyrene CH); 123.8 

(pyrene CH); 122.6 (pyrene CH); 78.1 (C(CH3)3); 61.9 (Ser CH2); 

55.6 (CH); 43.4 (Gly CH2); 30.4 (C(CH3)3); HR-MS (ESI+) m/z = 

484.1840.005 (calculated for C26H27N3O5+Na+: 484.184). 

(L)-1-PyrenylSerGlyGuaNHBoc 22 was prepared from 19 N-

Boc 5-guanidinocarbonylpyrrole-2-carboxylic acid (30 mg, 9.9 x 10-

5 mol), PyBOP (51 mg, 9.9 x 10-5 mol), NMM (33 L, 29.6 x 10-5 

mol) and free amine (47 mg, 9.9 x 10-5 mol, from Boc-deprotection 

of 21, yield 67%). Eluent for flash chromatography: THF/n-hexane 

3:1. Yield 49 mg (78%) of a yellowish solid; mp = 219 ºC 

(decomposition); 1H-NMR ([D6]DMSO, 400 MHz)  = 11.10 (br s, 

1H, pyrrole NH); 10.73 (br s, 1H, NH); 10.31 (s, 1H, pyreneNH); 

9.35 (br s, 1H, NH); 8.75 (br t, 1H, Gly NH, J = 5.7 Hz); 8.53 (br s, 

1H, NH); 8.29-8.26 (m, 5H, pyrene H and Ser NH); 8.19-8.14 (m, 

4H, pyrene H); 8.07 (t, 1H, pyrene H, J = 7.6 Hz); 6.87 (br s, 1H, 

pyrrole CH); 6.62  (br s, 1H, pyrrole CH); 4.10-4.00 (m, 2H, Gly 

CH2); 3.93-3.88 (m, 1H, Ser CH2); 3.86-3.81 (m, 1H, Ser CH2); 1.46 

(s, 9H, C(CH3)3); HR-MS (ESI+) m/z = 662.2330.005 (calculated 

for C33H33N7O7+Na+: 662.233). 

N-5-Boc N-2-[(5-(acridin-2-ylamino)-5-oxopentyl)carbamo-

yl]-1H-pyrrole-5-carbonylguanidino 24 was prepared from N-Boc 

5-guanidinocarbonylpyrrole-2-carboxylic acid 19 (40 mg, 0.13 

mmol), PyBOP (70 mg, 0.13 mmol), NMM (44 L, 0.41 mmol) and 

free amine (55 mg, 0.13 mmol, from Boc-deprotection of 23b, yield 

98%).  Eluent for flash chromatography: EtOAc/n-hexane 10:1  

14:1. Yield 30 mg (39%) of a yellow solid; mp = 198 ºC 

(decomposition); 1H-NMR (D6DMSO, 400 MHz)  = 11.81 (br s, 

1H, NH); 9.61 (br s, 1H, NH); 9.06 (t, 1H, acridineCONH, J =  5.6 

Hz); 8.80 (br s, 1H, NH); 8.47 (t, 1H, acridineCONHCH2CH2CH2-

CH2NH, J = 5.4 Hz); 8.20 (d, 2H, H1,8, J = 8.7 Hz); 8.00 (d, 2H, H4,5, 

J = 8.7 Hz); 7.92-7.88 (m, 2H, H3,6); 7.70-7.65 (m, 2H, acridine 

H2,7);  6.97 (br s, 1H, pyrrole CH); 6.84 (s, 1H, pyrrole H); 3.56-

3.52 (m, 2H, acridineCONHCH2CH2CH2-CH2NH); 3.48 (br s, 2H, 

acridineCONHCH2CH2CH2CH2NH); 1.72-1.69 (m, 4H, 

acridineCONHCH2CH2CH2CH2NH); 1.48 (s, 9H, C(CH3)3); 13C-

NMR (D6DMSO, 100 MHz)  = 165.2 (acridineCONH); 158.8 

(acridineCONHCH2CH2CH2CH2NHCO); 147.1 (C4a,10a); 142.6 (C9); 

130.5 (CH3,6); 128.2 (CH4,5); 126.3 (CH2,7); 125.2 (CH1,8); 121.3 

(C8a,9a); 114.5 (pyrrole CH); 111.6 (pyrrole CH); 82.1 (C(CH3)3); 

38.2 (acridineCONHCH2CH2CH2-CH2NH); 37.7 

(acridineCONHCH2CH2CH2CH2NH); 26.8 (C(CH3)3); 26.0 

(acridineCONHCH2CH2CH2CH2NH); 25.9 (acridineCONHCH2-

CH2CH2CH2NH); HR-MS (ESI+) m/z = 572.2610.005 (calculated 

for C30H34N7O5
+: 572.261). 

(L)-1-PyrenoyldiaminoethaneLys(Cbz)NHBoc 25 was prepa-

red from (L)-BocLys(Z)OH (69 mg, 0.18 mmol), PyBOP (94 mg, 

0.18 mmol), NMM (0.06 mL, 0.54 mmol) and free amine (73 mg, 

0.18 mmol, from Boc-deprotection of 23a, yield quant), obtaining a 

brownish solid (106 mg, 90%); mp = 190 ºC (decomposition); 1H-

NMR (D6DMSO, 400 MHz)  = 8.63-8.60 (m, 1H, pyreneCONH); 

8.50 (d, 1H, pyrene H, J = 9.3 Hz); 8.34-8.31 (m, 3H, pyrene H); 

8.27-8.23 (m, 3H, pyrene H); 8.20-8.09 (m, 2H, pyrene H); 8.03 (br 

t, 1H, pyreneCONHCH2CH2NH, J = 5.6 Hz); 7.36-7.28 (m, 5H, 

Ph); 7.19 (br t, 1H, CbzNH, J =  5.5 Hz); 6.79 (d, 1H, LysNH, J = 

7.7 Hz); 4.99 (s, 2H, PhCH2); 3.88-3.85 (m, 1H, Lys CH); 3.50-3.42 

(m, 4H, pyreneCONHCH2CH2NH); 2.97-2.92 (m, 2H, CbzNHCH2);  

1.70-1.58 (m, 1H, CbzNHCH2CH2CH2CH2); 1.57-1.44 (m, 1H, 

CbzNHCH2CH2CH2CH2); 1.34-1.20 (br s, 13H,  

CbzNHCH2CH2CH2CH2 and C(CH3)3); 13C-NMR (D6DMSO, 100 

MHz)  = 172.0 (pyreneCONH); 168.5 (Lys CONH); 155.6 

(COOBn or COOtBu); 154.9 (COOBn or COOtBu); 136.7 (C1 Ph); 

131.3 (pyrene Cq); 131.1 (pyrene Cq); 130.2 (pyrene Cq); 129.7 

(pyrene Cq); 127.8 (C2 Ph, C3 Ph and pyrene CH); 127.6 (pyrene 

CH); 127.3 (pyrene Cq); 127.2 (C4 Ph); 126.7 (pyrene CH); 126.1 

(pyrene CH); 125.3 (pyrene CH); 125.1 (pyrene CH); 124.8 (pyrene 

CH); 124.3 (pyrene CH); 123.8 (pyrene CH); 123.3 (pyrene Cq); 

123.1 (pyrene Cq); 77.5 (C(CH3)3); 64.6 (PhCH2); 53.9 (CH); 39.6 

(pyreneCONHCH2CH2); 37.9 (Lys CH2); 31.2 (Lys CH2); 28.6 (Lys 

CH2); 27.6 (C(CH3)3);  22.3 (Lys CH2); HR-MS (ESI+) m/z = 

673.2990.005 (calculated for C38H42N4O6+Na+: 673.299). 

(L)-1-PyrenoyldiaminoethaneLys(Cbz)GuaNHBoc 26 was 

prepared from N-Boc 5-guanidinocarbonylpyrrole-2-carboxylic acid 

19 (34 mg, 0.11 mmol), PyBOP (60 mg, 0.11 mmol), NMM (0.04 

mL, 0.34 mmol) and free amine (76 mg, 0.11 mmol, from Boc-

deprotection of LH324, yield 98%) Eluent for flash 

chromatography: EtOAc/MeOH 95:5  9:1. Yield 70 mg (74%) of 

a brownish solid; mp = 136-139 ºC; 1H-NMR (D6DMSO, 400 

MHz)  = 11.51 (br s, 1H, pyrrole NH); 10.87 (br s, 1H, NH); 9.31 

(br s, 1H, NH); 8.61 (t, 1H, pyreneCONH, J = 5.4 Hz); 8.51 (d, 1H, 

pyrene H, J = 9.3 Hz); 8.47 (d, 1H, Lys NH, J = 7.6 Hz); 8.46 (br s, 

1H, NH); 8.33 (t, 2H, pyrene H, J = 8.4 Hz); 8.26-8.08 (m, 7H, 

pyrene H and NH); 7.35-7.27 (m, 5H, Ph); 7.21 (t, 1H, NHCbz, J = 

5.4 Hz); 6.82 (br s, 2H pyrrole H); 4.98 (s, 2H, PhCH2); 4.41 (m, 1H, 

Lys CH); 3.50-3.36 (m, 4H, pyrene CONHCH2CH2NH); 2.96 (q, 2H, 

CbzNHCH2, J = 6.4 Hz); 1.79-1.76 (m, 1H, CbzNHCH2CH2-

CH2CH2); 1.69-1.66 (m, 1H, CbzNHCH2CH2CH2-CH2); 1.46-1.39 

(m, 13H, CbzNHCH2CH2CH2CH2 and C(CH3)3); 13C-NMR 

(D6DMSO, 100 MHz)  = 171.6 (pyreneCONH); 168.5 (Lys 

CONH); 159.0 (pyrroleCONH); 157.9 (pyrroleCONH); 155.5 

(COOBn and COOtBu); 136.7 (C1 Ph); 131.3 (pyrene Cq); 131.0 
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(pyrene Cq); 130.2 (pyrene Cq); 129.7 (pyrene Cq); 127.8 (C2 Ph, 

C3 Ph and pyrene CH); 127.7 (pyrene CH); 127.5 (pyrene CH); 

127.3 (pyrene Cq); 127.2 (C4 Ph); 126.6 (pyrene CH); 126.0 (pyrene 

CH); 125.2 (pyrene CH); 125.0 (pyrene CH); 124.8 (pyrene CH); 

124.3 (pyrene CH); 123.8 (pyrene CH); 123.3 (pyrene Cq); 123.1 

(pyrene Cq); 113.1 (pyrrole CH); 112.4 (pyrrole CH); 69.3 

(C(CH3)3); 64.6 (PhCH2); 52.5 (CH); 39.4 (pyreneCONHCH2CH2); 

38.6 (pyreneCONHCH2CH2); 37.6 (Lys CH2); 31.2 (Lys CH2); 28.6 

(Lys CH2); 27.2 (C(CH3)3); 22.5 (Lys CH2); HR-MS (ESI+) m/z = 

829.3680.005 (calculated for C45H49N8O8
+: 829.366). 

(L)-1-PyrenylGlyArgAnalogue(OMe)NHBoc 29 was prepared 

from free acid (92 mg, 0.30 mmol, from tBu-protected acid 27, yield 

66%), PyBOP (157 mg, 0.30 mmol), NMM (0.10 mL, 0.91 mmol) 

and ArgAnalogue 28 (120 mg, 0.30 mmol). Eluent for flash 

chromatography: EtOAc/n-hexane 10:1  EtOAc  EtOAc/MeOH 

9:1. Yield 120 mg (58%) of a brownish solid; mp  230 ºC; 1H-

NMR (D6DMSO, 400 MHz)  = 10.82 (br s, 2H, pyrrole NH and 

NH); 9.33 (br s, 1H, NH); 8.91 (t, 1H, NH, J = 5.9 Hz); 8.65 (m, 1H, 

pyrene H); 8.54-8.52 (m, 3H, NH); 8.36-8.33 (m, 3H, pyrene H); 

8.28-8.20 (m, 4H, pyrene H); 8.14-8.10 (m, 1H, pyrene H); 6.79 (br 

s, 2H, pyrrole H); 4.60 (q, 1H, CH, J = 6.7 Hz); 4.11 (d, 2H, Gly 

CH2, J = 5.9 Hz); 3.77-3.67 (m, 1H, NHCH2CH); 3.67 (s, 3H, CH3); 

3.62-3.51 (m, 1H, NHCH2CH); 1.46 (s, 9H, C(CH3)3); 13C-NMR 

(D6DMSO, 100 MHz)  = 170.4 (pyreneCONH); 168.8 (Gly 

CONH and COOCH3); 159.7 (pyrroleCONH); 157.9 (pyrrole-

CONH); 131.2 (pyrene Cq); 130.9 (pyrene Cq); 130.2 (pyrene Cq); 

129.7 (pyrene Cq); 127.8 (pyrene CH); 127.5 (pyrene CH); 127.4 

(pyrene Cq); 126.7 (pyrene CH); 126.0 (pyrene CH); 125.3 (pyrene 

CH); 125.1 (pyrene CH); 124.8 (pyrene CH); 124.4 (pyrene CH); 

123.9 (pyrene CH); 123.2 (pyrene Cq); 123.1 (pyrene Cq); 113.2 

(pyrrole CH); 111.7 (pyrrole CH); 66.5 (C(CH3)3); 51.7 (CH and 

COOCH3); 42.0 (Gly CH2); 39.5 (CH2); 27.2 (C(CH3)3); HR-MS 

(ESI+) m/z = 704.2430.005 (calculated for C35H35N7O8+Na+: 

704.244). 

(L)-1-Pyrenoyldiaminoethane-Lys(Cbz)Gua-NH.CF3COOH 

12  

26 (70 mg, 8.44 x 10-5 mol, 1 eq) was dissolved in 1.5 mL of 

TFA and 1.5 μL (0.1%) of TFMSA were added. The solution was 

stirred at rt for 24h. Then, TFA and TFMSA were removed under 

reduced pressure (oil pump). The oil obtained was dried and 

lyophilized. The white solid residue was purified by MPLC (RP18 

column, flow 40-20 mL/min, eluent: 100% H2O + 0.1% TFA → 

100 % MeOH + 0.1% TFA), obtaining 40 mg (57%) of 12 as a 

white solid; mp = 170 ºC (decomposition); 1H-NMR (D6DMSO, 

400 MHz)  = 12.51 (s, 1H, pyrrole NH); 11.79 (s, 1H, NH); 8.67-

8.64 (m, 2H, NH); 8.51 (br s, 4H, (NH2)2); 8.50 (d, 1H, pyrene H, J 

= 9.3 Hz); 8.43-8.10 (m, 9H, pyrene H and NH); 7.72 (br s, 3H, 

NH3); 7.39 (br s, 1H pyrrole H); 6.90 (m, 1H, pyrrole H); 4.50-4.44 

(m, 1H, Lys CH); 3.51-3.39 (m, 4H, pyreneCONHCH2CH2); 2.82-

2.69 (m, 2H, NH3CH2); 1.91-1.78 (m, 1H, NH3CH2CH2CH2CH2); 

1.73-1.64 (m, 1H, NH3CH2CH2CH2CH2); 1.57-1.52 (m, 2H, 

NH3CH2CH2CH2CH2); 1.47-1.36 (m, 2H, NH3CH2CH2CH2CH2); 
13C-NMR (D6DMSO 100 MHz)  = 171.2 (pyreneCONH); 168.5 

(Lys CONH); 158.4 (pyrroleCONH); 157.5 (pyrroleCONH); 131.2 

(pyrene Cq); 131.1 (pyrene Cq); 130.2 (pyrene Cq); 129.6 (pyrene 

Cq); 129.4 (pyrrole Cq); 127.7 (pyrene CH); 127.5 (pyrene CH); 

127.3 (pyrene Cq); 126.7 (pyrene CH); 126.0 (pyrene CH); 125.3 

(pyrene CH); 125.1 (pyrene CH and pyrrole Cq); 124.8 (pyrene 

CH); 124.2 (pyrene CH); 123.8 (pyrene CH); 123.2 (pyrene Cq); 

123.1 (pyrene Cq); 114.9 (pyrrole CH); 113.1 (pyrrole CH); 52.3 

(Lys CH); 38.5 (pyreneCONHCH2CH2); 37.9 (pyreneCONHCH2-

CH2); 37.7 (Lys CH2); 31.0 (Lys CH2); 26.2 (Lys CH2); 22.0 (Lys 

CH2); HR-MS (ESI+) m/z = 595.2770.005 (calculated for 

C32H35N8O4
+: 595.277); HPLC: tR = 5.89 min (99%); eluent: 50% 

MeOH + 0.1% TFA and 50% H2O + 0.1% TFA  100% MeOH + 

0.1% TFA, flow 1 mL/min,  = 300 nm. 

(L)-N-1-PyrenylGly-(1-pyrenoyldiaminoethane) Arg Analo-

gue NHBoc 30 

29 (40 mg, 4.5 x 10-5 mol, 1 eq) was dissolved in a 4:1 mixture 

of THF/H2O (3 mL THF, 0.75 mL H2O) and LiOH.H2O (3 mg, 6.6 x 

10-5 mol, 1.5 eq), was added. The solution was stirred at rt for 2h, 

afterwards neutralized until pH 6 with 5% HCl aq and lyophilized. 

The acid obtained was used in the next step without further 

purification. A solution of the acid (50 mg, 7.5 x 10-5 mol, 1 eq), 

PyBOP (39 mg, 7.5 x 10-5 mol, 1 eq) and NMM (25 L, 0.91 mmol, 

3 eq) in dry DMF (3 mL) was stirred for 20 min at rt. Afterwards, 

free amine from 23a (30 mg, 7.5 x 10-5 mol, 1 eq) was added and the 

solution was stirred at rt overnight. Then, it was poured onto water 

and the suspension was stirred at 0 ºC for 2 h. The precipitate was 

filtered off, washed several times with water and lyophilized. The 

residue was purified by flash chromatography (SiO2, eluent: 

EtOAc/MeOH 9:1  EtOAc/MeOH 8:2), yielding 16 mg (23%) of 

30 as a brownish solid; mp = 250 ºC (decomposition); 1H-NMR 

(D6DMSO, 400 MHz)  = 11.54-11.11 (br s, 1H, pyrrole NH); 

11.11-10.65 (br s, 1H NH); 9.29 (br s, 1H, NH); 8.95 (t, 1H, 

pyreneCONH, J = 5.7 Hz); 8.68 (t, 1H, NH, J = 5.6 Hz); 8.60 (d, 1H, 

pyrene H, J = 9.2 Hz); 8.54 (br s, 1H, NH); 8.48 (d, 1H, pyrene H, J 

= 9.3 Hz); 8.39 (d, 1H, Gly NH, J = 7.5 Hz); 8.34-8.06 (m, 18H, 

pyrene H and 2NH); 6.77 (br s, 2H, pyrrole H); 4.55 (q, 1H, CH, J = 

6.6 Hz); 4.58-4.00 (m, 2H, Gly CH2); 3.73-3.39 (m, 6H, 3CH2); 1.44 

(s, 9H, C(CH3)); 13C-NMR (D6DMSO, 100 MHz)  = 169.4 

(CONH); 169.1 (CONH); 168.7 (CONH); 168.6 (CONH); 157.9 

(CONH); 131.2 (2pyrene Cq); 131.0 (pyrene Cq); 130.7 (pyrene 

Cq); 130.1 (2pyrene Cq); 129.6 (2pyrene Cq); 127.8 (pyrene CH); 

127.7 (pyrene CH); 127.5 (2pyrene CH); 127.4 (pyrene Cq); 127.2 

(pyrene Cq); 126.6 (2pyrene CH); 126.0 (2pyrene CH); 125.2 

(2pyrene CH); 125.0 (2pyrene CH); 124.8 (2pyrene CH); 124.3 

(pyrene CH); 124.2 (pyrene CH); 123.8 (2pyrene CH); 123.2 

(2pyrene Cq); 123.1 (pyrene Cq); 123.0 (pyrene Cq); 113.1 (pyrrole 

CH); 111.7 (pyrrole CH); 62.3 (C(CH3)3); 53.0 (CH); 42.5 (Gly 

CH2); 40.2 (CH2); 38.7 (2CH2); 27.3 (C(CH3)3); HR-MS (ESI+) m/z 

= 960.3440.005 (calculated for C53H47N9O8+Na+: 960.344). 

Spectroscopic studies: 

Polynucleotides were purchased as noted: poly dA- poly dT, 

poly dAdT- poly dAdT, poly dGdC – poly dGdC, polyA-polyU, 

poly A, poly G, poly C, poly U (Sigma), calf thymus (ct)-DNA 

(Aldrich). Polynucleotides were dissolved Na-cacodylate buffer, I = 

0.05 mol dm-3, pH=7. Calf thymus ct-DNA was additionally 

sonicated and filtered through a 0.45 µm filter.  Polynucleotide 

concentration was determined spectroscopicaly as concentration of 

phosphates. 

The electronic absorption spectra were obtained on Varian Cary 

100 Bio spectrometer, CD spectra were collected on the Jasco J-810 

spectrometer and fluorescence spectra were recorded on a Varian 

Cary Eclipse fluorimeter; all in quartz cuvettes (1 cm). The 

measurements were performed in aqueous buffer solution (pH=7 - 
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Na-cacodylate buffer, I = 0.05 mol dm-3, pH = 5 - buffer citric 

acid/NaOH, I=0.03 M). Under the experimental conditions used the 

absorbance and fluorescence intensities of studied compounds were 

proportional to their concentration. Relative fluorescence quantum 

yields (Q) were determined according to the standard procedure.32 

All samples were purged with argon to displace oxygen, emission 

spectra were recorded from 350 – 600 nm and corrected for the 

effects of time- and wavelength-dependent light-source fluctuations 

using a standard rhodamine 101, a diffuser and the software 

provided with the instrument. The sample concentration in 

fluorescence measurements had an optical absorbance below 0.05 at 

the excitation wavelength. As the standard we used N-acetyl-L-

tryptophanamide (NATA, Fluka, Buchs, Switzerland) with 

published fluorescence quantum yield Q=0.14. 33  In fluorimetric 

titrations excitation wavelength of exc > 320 nm was used to avoid 

inner filter effects caused by absorption of excitation light by added 

polynucleotide. The binding constant (Ks) and [bound compound] / 

[polynucleotide phosphate] ratio (n) were calculated according to 

the Scatchard equation by non-linear least-square fitting,  giving 

excellent correlation coefficients (>0.999) for obtained values for Ks 

and n. Thermal melting curves for ds-polynucleotides and their 

complexes with studied compounds were determined as previously 

described by following the absorption change at 260 nm as a 

function of temperature.25 The absorbance of studied compound was 

subtracted from every curve, and the absorbance scale was 

normalized. Obtained Tm values are the midpoints of the transition 

curves, determined from the maximum of the first derivative or 

graphically by a tangent method. Given Tm values were calculated 

subtracting Tm of the free nucleic acid from Tm of complex. Every 

Tm value here reported was the average of at least two 

measurements, the error in Tm is ± 0.5 °C. 

Ethidium bromide (EB) displacement assay: to polynucleotide 

solution (c = 2  10–5 mol dm–3) ethidium bromide (c = 5  10–6 mol 

dm–3) was added (r ([EB]/ [polynucleotide] = 0.4), and quenching of 

the EB/ polynucleotide complex fluorescence emission (ex = 520 

nm, em = 601 nm) was monitored as function of 

c(EB)/c(compound). The given IC50 values present the ratio 

c(EB)/c(compound) = [Int(EB/ polynucleotide) – Int(EBfree)] / 2, 

where Int(EB/ polynucleotide) is fluorescence intensity of EB/ 

polynucleotide complex and Int(EBfree) is fluorescence intensity of 

the free ethidium bromide before polynucleotide is added. 

Proliferation assays:  

The growth inhibition activity was assessed as described 

previously, 34  according to the slightly modified procedure of the 

National Cancer Institute, Developmental Therapeutics Program.35 

The cells were inoculated onto standard 96-well microtiter plates on 

day 0. Test agents were then added in five consecutive 10-fold 

dilutions (10-8 to 10-4 mol/l; 10-5 for 13) and incubated for further 72 

hours. Working dilutions were freshly prepared on the day of testing. 

The solvent (DMSO) was also tested for eventual inhibitory activity 

by adjusting its concentration to be the same as in working 

concentrations (maximal concentration of DMSO was 0.25%). After 

72 hours of incubation, the cell growth rate was evaluated by 

performing the MTT assay which detects dehydrogenase activity in 

viable cells. The absorbency (OD, optical density) was measured on 

a microplate reader at 570 nm. Each test point was performed in 

quadruplicate in three individual experiments. The results are 

expressed as IC50, which is the concentration necessary for 50% of 

inhibition. The IC50 values for each compound are calculated from 

dose-response curves using linear regression analysis by fitting the 

test concentrations that give PG values above and below the 

reference value (i.e. 50%). Each result is a mean value from three 

separate experiments. 
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