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Abstract- A three dimensional (3D) photonic microstructure consisting of metal clusters embedded 

in dielectric matrix is coated with a dielectric mirror. The produced photonic structure shows optical 

behaviour that combines the interferential effects of the multilayer stack and the surface plasmon 

resonance of metal clusters. Due to its feasibility and the possibility to widely modify the optical 

properties of the resulting interferential-plasmonic structure, this approach represents a promising 

method for the production of novel optical components. 

 

1. INTRODUCTION 

Metal clusters attract lot of interest due to the effect of surface plasmon resonance of free electrons, showing a 

strong absorption at specific wavelengths that depend on the particle size, shape and spatial distribution1. They 

are used in selective absorbers, optical polarizers and data storage2-4, or in chemical and biological sensing and 

surface enhanced spectroscopy5,6. Metal clusters in dielectric matrix or present on the surface of a substrate can 

be structured by electric field assisted dissolution (EFAD)7. Simultaneous application of electric field and 

increased temperature induces dissolution of metal clusters. Using patterned electrodes EFAD can be applied 

locally, giving mirrored pattern on the sample containing metal clusters. Due to the possibility of structuring, the 

application can be extended to the production of devices ranging from plasmonic waveguides8 to gratings9. 

We have fabricated 3D microstructure by EFAD of metal clusters embedded in multilayer stacks10,11. The 

optical behaviour of the structure is additionally tailored by the interferential effects: the stack is further coated 

with a dielectric mirror. The obtained structure shows the tailored optical behaviour of the resulting 3D structure 

and the interference phenomenon that takes place within the multilayer stack. 

 

2. EXPERIMENTAL 

A multilayer structure of metal clusters embedded in dielectric matrix was prepared by electron beam 

evaporation of Ag and SiO2 at N-BK7 glass substrates of 1 mm thickness. The structure of the coating was 

glass/(Ag/SiO2)
10, with layer mass thickness 7 nm (Ag) and 20 nm (SiO2). Deposition rates were 2-3 Å/s for Ag 

and 10Å/s for SiO2. There was no pre-heating of the substrates. Ag film deposited in this conditions remains in 

the shape of metal clusters with no significant percolation among the clusters. The SiO2 layers of the given 

thickness cover the metal nanoclusters completely, so the resulting coating has a real multilayer structure11,12. 

 The prepared samples were mounted between electrodes and exposed to EFAD for 2 hours at 250 oC and 

1000 V. One part of the anode was a diffracting grating, the other part was made as uniform contact and a part of 

the sample has not been in contact with the anode10. 

 Upon the treatment, the sample has been returned to the deposition chamber and a dielectric TiO2/SiO2 

quarter wave H(LH)3 mirror centered at 450 nm has been deposited. 

 The measurements of optical performances of different parts of the samples were done by Perkin Elmer 



Lambda 25 spectrophotometer and Woollam VWASE ellipsometer. Reflectance and transmittance 

measurements were performed in the range 350-1100 nm, each 1 nm, and ellipsometric measurements of ψ and 

Δ in the range 0.57-4.35 eV, each 0.02 eV at 45o, 60o and 75o incidence angle. In addition to this, diffraction 

patterns of generated structures were measured with ellipsometer working in scatterometry mode. The incidence 

beam was coming to the uncoated side of the sample. Transmittance and reflectance in the range 300-1100 nm, 

each 25 nm, at the scattering angles 0-10o and 20-30o, respectively, by 0.2o. 

 

3. RESULTS AND DISCUSSION 

Optical performance of as deposited (AD) samples is dominated by surface plasmon resonance of metal clusters, 

showing maximum of absorption in the range 350-480 nm (Figure 1.). It is possible to distinguish three different 

parts of the sample after the treatment. Zone A is the transparent part where metal clusters are dissolved due to 

EFAD. The spectrum shows interferential fringes that can be related to the refractive index difference of SiO2 

layers and voids remaining after dissolution of layers containing metal clusters (Figure 1.). The significant 

absorption (A) in the visible and UV part can also be related to the voids, i.e. representing losses due to 

scattering of the light at voids. Zone B was not in the contact with the anode during the treatment, so it was 

exposed to the increased temperature only. The optical spectra show no significant difference corresponding to 

the AD sample (Figure 1.). The absorption peak is somewhat narrower and more intense after annealing that can 

be related to the thermally induced changes in shape and/or size of nanoclusters10.  

 

Figure 1. Reflectance (dashes), transmittance (full 

line) and absorption (dots) of the AD sample and 

zones of the sample where metal nanoclusters were 

dissolved (A) and where they were annealed only (B). 

The measurements were taken at 0o angle of 

incidence. 

Figure 2. Diffraction transmittance pattern in 

logarithmic scale of zone C (diffraction grating) of 

the treated sample, in respect to the wavelength and 

scattering angle. It is possible to see different 

diffraction orders and their intensities. The incidence 

beam comes from the uncoated side of the sample.

 

Zone C is the one with the EFAD imprinted structure of diffraction grating from the anode. This planar structure 

consisting of stripes with dissolved and non-dissolved metal clusters is repeated throughout the coating forming 

in this way a 3D structure. The diffraction pattern is presented in Figure 2. showing the efficiency of the grating 

in transmittance in respect to the wavelength and scattering angle. The efficiency is higher for the wavelengths 



                                                                                          

where TB is lower (500-600 nm).  

 The dielectric mirror has been deposited onto the treated sample and a bare glass substrate. Optical 

measurements of zones A, B and C were performed. Optical performance of the final structure is presented in 

Figure 3. and Figure 4.  

 

Figure 3. Reflectance (dashes), transmittance (full 

line) and absorption (dots) of the mirror (RM), sample 

before deposition of mirror (TB) and zones A and B 

after deposition of mirror. The measurements were 

taken at 0o angle of incidence. 

 

 

Figure 4. Diffraction transmittance pattern in 

logarithmic scale of zone C (diffraction grating) of 

the sample with mirror, in respect to the wavelength 

and scattering angle. It is possible to see the reduced 

efficiency of the grating in the range 390-540 nm. 

The incidence beam comes from the uncoated side of 

the sample.

 

Reflectance and transmittance of zone A, same as reflectance of zone B, are dominated by the performance of 

the mirror itself, that reflectance (RM) is shown for comparison as well. In the case of incidence light coming to 

the coated side, high proportion of the intensity is reflected, so less intensity is absorbed in the comparison to the 

sample without the mirror. Therefore, the absorption of the zone B (AB) is following opposite trend than 

reflectance RB+M. In the range below 400 nm absorption of TiO2 contributes as well. The resulting transmittance 

(TB+M) is finally lower than the one for the sample without the mirror. It is also possible to see that TA and TB, 

that correspond to the transmittance of the lines and space between them in the diffraction grating, both have low 

values between 390 and 540 nm. This reduces the performance of the grating that is clearly seen in Figure 4.  

Additional diffraction orders maxima are present due to the interference effects. 

 

4. CONCLUSIONS 

3D microstructure has been obtained by EFAD of metal clusters embedded in multilayer stacks. The parts of the 

stack containing metal clusters i.e. where electric field dissolution was not performed show absorption due to 

surface plasmon resonance, while the rest of the stack is transparent. The stack is further coated with a dielectric 

mirror. Thus, in addition to the SPR-based metallodielectric properties, the optical behaviour of the structure is 

refined by the interferential effects. The obtained structure shows the tailored optical behaviour of the resulting 

3D structure and the interference phenomenon that takes place within the multilayer stack.  



From a technological point of view these 3D structures can be fabricated easily, as their production requires 

the combination of well established thin film deposition processes and the EFAD technique. Multilayer thin film 

stacks enable the design of a wide variety of components with different optical performances: antireflective 

coatings, band-pass filters, mirrors, polarisers etc. The production of these interferential-plasmonic structures 

could be done at low cost and easily implemented in mass-production processes, as it requires well-established 

thin film deposition technology and inexpensive EFAD technique. 
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