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Abstract

In some recent papers it was shown that ZrO, single films can be modelled using
inhomogeneous models. A similar modelling approach to analyze CeO, layers has been used.
Films have been produced using a standard reactive evaporation technique. Following the
measurement results, obtained by normal incidence transmission and variable angle
spectroscopic ellipsometry, reverse engineering of the monolayer with its sub-layers has been
performed. Novel in this method is that no assumption of refractive index profile is needed. A
very good fit of the experimental data with the reverse engineered multi-layers has been

obtained, showing that it is possible to find a fine substructure of analyzed films.
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1. Introduction

The refractive index of a thin film often varies through layer’s thickness. It can be seen that
the transmittance of a simple single layer on a glass substrate could not be related to the
known theory of homogeneous media. Instead of touching the substrate’s transmittance curve
at the transmittance maximum (when Ngim > Ngupstrate) It Crosses it [1, 2]. The only possible
explanation for this behaviour can be related to the inhomogeneities in the layer. Most
dielectric films exhibit some degree of inhomogeneity.

Homogeneity of layers is a common approximation in the process of multi-layer
design, introducing an error that cannot always be neglected. Unfortunately in the real world
we have to accept inhomogeneity, which can be a source of error in production. Therefore,
understanding of the refractive index profile is very important in the development of
demanding multilayers, i.e. antireflective coatings for high power laser applications where the

main contribution to the error we may expect from the first layer adjacent to the substrate, due



to its inhomogeneity. The main causes of refractive index variation are modes of nucleation
and growth during the deposition. The layer can then be represented by a multilayer stack [3,
4].

Numerous methods for optical characterization of inhomogeneous films have been
developed. Some of them are based on transmittance T(A) analysis [1] or ellipsometric
functions y(A, 0) and A(A, 0) analysis [5], some on in-situ spectroscopic ellipsometry [6] or
spectrophotometry [7] or their combination [8, 9].

For determination of optical constants of unknown homogeneous dielectric materials
in multilayers the reverse engineering method has been successfully applied before [10]. Our
approach was to divide a single inhomogeneous layer into several sublayers of unknown
refractive indices and thicknesses and then find refractive index profile according to a

measured transmittance spectrum at normal incidence and y spectra at several angles.

2. Experimental details

To illustrate the method we analyzed a cerium dioxide layer. Cerium dioxide has excellent
operating properties such as high thermal and chemical endurance. It makes good high index
optical coatings in the range between 500 nm and 14 mm (Merck—Patinal brochure). It is not
very popular in the visible region due to its significant absorption bellow 500 nm, but is
excellent for the infrared region. Due to their porous structure, which is growing using

reactive evaporation, cerium dioxide layers are suitable also for gas sensors (Merck—Patinal

brochure).
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Fig. 1. Transmittance spectrum for the CeO, film and the bare BK7 substrate. CeO, curve
crosses that of the substrate in a wide region of wavelengths showing considerable

inhomogeneity.
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Fig. 2. Ellipsometric spectra for the CeO, film at different angles.

The film was prepared by reactive electron beam evaporation. The starting material
was CeO; in tablets (Balzers, purity 99.9%). The BK7 glass substrate was heated to 225°C.
Temperature of substrate was measured by bimetal maximum thermometer (PTC instruments,
model 575 CM). Residual gas and reactive gas pressures were 2x10® torr and 4x107° torr,
respectively. The rate of deposition and layer thickness were controlled by an oscillating
quartz crystal. According to the assumed cerium dioxide density of 7.1 g/cm?, the rate of
deposition was 0.2 nm/s and the layer thickness was 150 nm. The substrate was rotated during
deposition to improve uniformity and minimize optical anisotropy of the film.

We expected that measuring the transmittance and c function at different angles would
give enough data to obtain a unique and reliable solution. Transmittance measurements have
been done using a Cary 50 spectrophotometer. Transmittance has been taken each 1 nm
between 400 and 900 nm at the 0° incidence angle. Ellipsometric y function measurements
have been done using a Jobin Yvon UVISEL DH10 spectroscopic ellipsometer at five
different angles between 55° and 75° and each 5 nm between 380 and 830 nm. The film was
relatively thin so the transmittance curve had only one maximum. The measurements are
represented in Figs. 1 and 2.

The commercial TFCalc™ version 3.4 software has been used for reverse engineering
calculations. The measured data were defined as target values. The initial design was a stack

consisting of 10 sublayers of equal thicknesses and unknown refractive indices. Total



thickness was set at 150 nm. Transmittance and ellipsometric data were restricted to a narrow
region, 40 nm wide, including the transmittance maximum. In this way the error due to not yet
introduced dispersion of sublayer’s refractive indices could have been reduced. Then, the
software was let to find indices and each sublayer’s thickness. The profile having decreasing
refractive indices has been obtained. Significant changes of initial thickness all led to the
same result. The next step was introduction of dispersion in the whole range of measured data.
Due to cerium dioxide absorption, k index had to be introduced as well. All the layers were
given the same Cauchy shape of dispersion, each layer having some shift in refractive index.
Sublayers with refractive indices slightly different from the initial layers, were introduced and
optimized, decreasing the deviation from target function. As long as it has been so, the model
could have been improved. To test the reliability of the method simplex and variable metric

optimization methods have been used and results compared.

3. Results and discussion
Comparison of the results obtained by simplex and variable metric optimization method is
presented in Table 1. The refractive index profile preserved its shape while decreasing

towards air. Both obtained models are very similar, as illustrated in Fig. 3.

Table 1
Comparison of models of refractive index profile obtained by simplex and variable metric

optimization methods

Thickness Mean Deviation Number of Deviation of refractive index from _
(nm) refractive sublayers the mean value for each sublayer (n—n)/n (%)
index N
at 500 nm 1 - 3 4
n
Variable 211.24 1.619 0.375 4 47.52 4.91 1.21 —24.73

metric
Simplex 205.68 1.635 0.365 4 49.54 3.98 0.31 —22.63
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Fig. 3. Comparison of models of refractive index profile for the CeO, film obtained by

variable metric and simplex methods. Layer 1 is adjacent to the substrate.
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Fig. 4. Transmittance fits corresponding to the obtained refractive index profiles.
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Fig. 5. Ellipsometric y function fits for 65° of the angle of incidence.



The transmittance curves calculated by the two methods match excellently, so they are almost
indistinguishable one from another in Fig. 4. The same applied to y function fit. Only the fit
for angle of incidence of 65° is presented in Fig. 5, and was similarly good for the other
angles. Both, transmittance and y function, curves fit experimental data very well. Dispersion
curves of all the sublayers are presented in Figs. 6 and 7 and comparison of mean refractive
index dispersions obtained by simplex and variable metric methods is shown in Fig. 8. The
comparison of k index dispersions is illustrated in Fig. 9. It can be seen the solutions obtained
by two different optimization methods led to very similar solutions, so it can be said the
results have good reliability. Although a multilayer structure, like the one obtained, has
multiple local minima, we believe that the different ways of minimization starting with very
thin layers, used by two methods, yield a reliable final solution. The reason for that is in the
fact that local minima are very shallow and Simplex method can overcome such problems. If

a simple gradient method only was used, than we may not make such a conclusion.
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Fig. 6. Refractive index dispersions of all sublayers obtained by variable metric optimization

method.



n 28
] 1
24 _k
224
2.0
1,84
k
I, -k
3
1,4
&
12+
—
400 500 600 700 800 900

Wavelength (nm)
Fig. 7. Refractive index dispersions of all sublayers obtained by the simplex optimization

method.
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Fig. 8. Mean refractive index dispersions obtained by simplex and variable metric

optimization methods.
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Fig. 9. Dispersions of k index determined by both methods.



It should be mentioned that during the optimization processes thickness of the sublayers were
changed and particular sublayers have been replaced by others having even significantly
different refractive indices. All of this again led to the same result. In just a few cases
completely different design has been obtained, but was rejected for extreme thickness (300—
600 nm) and very poor matching to the experimental data.

The obtained mean refractive indices are significantly lower than those usually found
in literature. The reason for that is in the fact we applied a lower substrate temperature and
deposition rate then recommended, to stimulate inhomogeneous growth. Therefore, the whole
cerium dioxide film has a relatively low packing density and refractive index. Especially,
looking at the Fig. 3, we can also notice that the surface layer has an extremely low refractive
index what suggests that growth of the film yielded a very rough surface.

Processes of modelling and optimization gave two similar solutions. It means that the
performed measurements provided enough data and boundary conditions (well known
refractive indices of air and glass) were well defined. The used software had no option to
optimize dispersion simultaneously with thickness. This is the reason why the shape of
refractive index dispersion was the same for all the sublayers. Refractive indices were defined
for discrete wavelengths and values between were linearly interpolated.

Still at the beginning of the study, we had to decide whether to make it on a thinner
(nd=\/2, L = 650 nm) or a thicker (nd>X) film. If we had a thicker film with more extremes,
like in the y spectrum, this would enable the optimization process to run more smoothly.
Several methods for determining refractive indices from the spectra of thicker films have
already been published [1, 11]. In this paper we have shown that reverse engineering can also
be successfully applied to thinner films.

The results of the presented study enable further improvements of many thin film
components, especially those for which optical characteristics are strongly dependent on the
layer adjacent to substrate. This layer can be simply replaced by a stack of layers, which can
be predicted using the shown procedure. In this way one can obtain better agreement between
designed and produced performances. It should be also mentioned that layers grown on
already deposited layers surely have different profiles and this could be the subject of future

research.



4. Conclusions

In the presented paper it has been shown that the reverse engineering method can be very
successfully applied to relatively thin films of CeO,. Both minimization methods led to the
almost same solutions, i.e. the same refractive index profile. The results of this investigation
can be applied to multilayers, the optical characteristics of which strongly depend on the layer

adjacent to substrate.
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