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Abstract: The potential of random metal-dielectric nanocomposites as 

constituent elements of metamaterial structures is explored. Classical 

effective medium theories indicate that these composites can provide a 

tunable negative dielectric function with small absorption losses. However, 

the tuning potential of real random composites is significantly lower than 

the one predicted by classical theories, due to the underestimation of the 

spectral range where topological resonances take place. This result suggests 

that a random mixture consisting of a metal matrix with embedded isolated 

dielectric inclusions is a promising design guideline for the fabrication of 

tunable composites for metamaterial purposes. 
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1. Introduction 

Research on metamaterial structures undergoes continuous progress due to their unique 

electromagnetic behavior and the associated application potential [1]. With constant advances 

in design approaches [2] and fabrication capabilities [3], metamaterial development appears to 

be restricted by the properties of naturally available materials used to build metamaterial 

structures. For instance, the near field superlens slab can provide perfect focusing of light in 

the near field region if the lens material has negligible absorption losses and its dielectric 

function equals to -εH, where εH is the dielectric function of the host surrounding the slab [4]. 

Such characteristics are best matched by metals, particularly silver [5,6], but only in a reduced 

spectral range, including the near ultraviolet and part of the visible. Alternatively, polar 

crystals like SiC can provide superlensing in the mid-infrared range [5]. A wider operational 

range of superlenses could have a strong potential application in areas like near field 

spectroscopy, lithography or microscopy [1,6]. Overall, materials with negative dielectric 

function in the optical range are essential for many metamaterial designs and the choice is 

usually limited to noble metals [7]. 

An interesting route to obtain materials with tailorable dielectric function is the use of 

metal-dielectric mixtures. In particular, random metal dielectric composites are easy to 

prepare using thin film deposition techniques and their effective dielectric function can be 

varied by controlling the mixture composition. It has been suggested to use such composites 

to tune the operational wavelength of a superlens slab in a broad spectral range by just 

adjusting the metal filling factor [8]. Further tuning was later proposed by modifying also the 

particle shape in the composite [9]. The performance of metal-dielectric multilayer sub-

wavelength imaging structures can be improved when replacing the metal layers by metal-

dielectric composites [10,11]. The potential benefits of metal-dielectric mixtures are not 

restricted to the near-field superlens only. These composites may enable wavelength-tuning of 

super-resolution devices operating in the far field [12], improve the performance of negative 

index structures [13,14] cloaking devices [15] and provide transparency or extreme anisotropy 

[16]. 

In most of the mentioned works [8–15], the effective dielectric function of the metal-

dielectric composite was assumed to follow the Bruggeman mixing formula [17]. Recently, it 

has been pointed out that a composite whose effective dielectric function is described by the 

Maxwell-Garnett [18] formalism can also show negative dielectric function [16,19]. In any 

case, effective medium theories describe the effective dielectric function of complex systems 

through the dielectric function of the components and a limited number of parameters, usually 

the filling fraction of the components only [20]. Therefore, these theories can provide just an 

approximate description of the effective behavior of complex mixtures and it is questionable 

to what extent real random metal-dielectric composites can be described by simple mixing 

formulae. For example, numerical simulations based on the finite difference time domain 

method showed that random composites have significant absorption in a spectral range 

broader than the one predicted by the Bruggeman theory, highly undesirable for most 

metameterial requirements [21]. In addition to the theoretical work, there have been some 

recent attempts to fabricate metal-dielectric composites for superlens purposes [22,23]. 

Indeed, the obtained composites show unwanted absorption significantly higher than the one 

predicted by effective medium theory, acknowledging that a more advanced description is 

necessary for a correct prediction of the observed effective dielectric function. 

In the present work we analyze the potential and limitations of random metal-dielectric 

composites for metamaterial applications. First, the classical effective medium theories of 
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Maxwell-Garnett and Bruggeman are re-visited in the framework of the Bergman spectral 

density representation. It is shown that both of these theories can lead to a negative effective 

dielectric function based on different physical mechanisms: surface plasmon resonance of 

isolated metal particles and percolation of the metal component. Next, the limitations of these 

effective medium theories are analyzed by characterization of different fabricated random 

metal-dielectric composites. Although these theories explain the behavior of the composites 

qualitatively, they significantly underestimate absorption at wavelengths where tuning is 

sought. The determination of the spectral density function of these composites from 

experimental measurements evidences that the unwanted absorption is closely related to the 

random nature of the composites. Finally, in the last section, a random composite topology 

consisting of metal matrix with embedded isolated dielectric inclusions, is proposed. It is 

shown that the potential of such composite for metamaterial purposes is almost unaffected by 

the random nature of the mixture. 

2. Effective medium theories and spectral density representation 

Effective medium theories define an effective dielectric function for a composite material in 

terms of the dielectric function of its components and their geometrical arrangement [20,24]. 

The applicability of effective medium theories is restricted by the size of the structures 

composing the mixture: sufficiently large to preserve locally their own electromagnetic 

behavior and small enough for the composite to appear homogeneous compared to the 

wavelength of the interacting radiation. Over the last century numerous effective medium 

theories have been proposed, being the Maxwell-Garnett and the Bruggeman expressions the 

most successful to explain the effective behavior of a large number of composites. If the 

mixture consists of isolated and poorly interacting spherical metal inclusions embedded in a 

dielectric matrix, the Maxwell-Garnett formula reads as: 

 
1 2 1

1 2 1

,
2 2

eff

eff

p
   

   

 


 
  (1) 

where εeff is the effective dielectric function, ε1 is the dielectric function of the matrix, ε2 is the 

dielectric function of the metal inclusions and p is the filling fraction of metal in the 

composite. Another commonly found topology corresponds to aggregate systems with some 

degree of interconnection between the two components. The role of matrix and inclusions 

cannot be clearly defined and the matrix where the phases are mixed is considered to be the 

effective medium itself. For these cases, the Bruggeman theory appears to be more 

appropriate: 

  
2 1

2 1

1 0.
2 2

eff eff

eff eff

p p
   

   

 
  

 
  (2) 

Metal-dielectric composites with effective dielectric function that obeys the previous 

expressions can show a negative real part of the effective dielectric function (Re(εeff) < 0) 

which absolute value can be adjusted by controlling the filling fraction [8,19]. However, from 

the above expressions it is not evident by which physical mechanism Re(εeff) < 0 is obtained. 

A more general description of the geometry-related features that are contained in each 

effective medium theory can be obtained in the context of the spectral density theory [25]. 

This theory states that any effective dielectric function of a composite made of two 

components with dielectric functions ε1 and ε2 can be expressed as [26,27]: 

 
 1

0

1

,
1 ,eff

g u p
p du

t u
 

 
  

 
   (3) 
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where u is an integral variable, t = ε1 /(ε1 – ε2) and g(u, p) is the spectral density function. The 

above expression, known also as Bergman representation, presents the effective dielectric 

function as a sum of poles that can be identified with resonances related to the topology of the 

system. These resonances take place for values of the parameter t between 0 and 1 and have a 

weight given by g(u, p). The spectral density function depends uniquely on the geometrical 

arrangement of the components in the mixture. Therefore, the Bergman representation 

explicitly separates the effects of the composite topology, enclosed in g(u, p), and of the 

specific dielectric functions of the composing materials, contained in t. It appears that the 

closer the values of t to the real interval [0, 1], the stronger the influence of the composite 

topology on the effective dielectric function. This is actually the case of many metal-dielectric 

composites as shown in Fig. 1 for SiO2-Ag and SiC-Ag mixtures with optical constants taken 

from literature [28,29]. 

 

Fig. 1. Real and imaginary part of parameter t = ε1/(ε1 – ε2) for SiO2-Ag and SiC-Ag mixtures. 

The spectral density function g(u, p) can be split in two contributions [26]: a delta-function 

at u = 0, that represents the percolation among inclusions and a continuous part (gcont) that 

accounts for the interaction of isolated inclusions among themselves and with the matrix. 

Thus, the effective dielectric function can be expressed as: 

     
 

2 1

1

0

1

,
1 ,

cont

eff o o

g u p
pg p pg p p du

t u
      

   (4) 

with go being the percolation strength that quantifies the degree of interconnectivity among 

inclusions. Therefore, the percolation of inclusions contributes to the effective dielectric 

function with a weighted average of the dielectric functions of the composing materials. 

The spectral density function of the Maxwell-Garnett theory is a delta function [30]: 

  
1

, .
3

MG

p
g u p u

 
  

 
  (5) 

Thus, the Maxwell-Garnett theory predicts a single resonance for t = (1– p)/3, that in the 

dilute limit (p0) corresponds to the surface plasmon resonance of isolated spherical particles 

in the quasi-static approximation (ε2 = – 2ε1) [31]. Combining Eqs. (5) and (3) it appears that a 

negative real part of the effective dielectric function can be achieved if the parameter t is 

between (1– p)/3 and (1 + 2p)/3. Thus, the condition Re(εeff) < 0 is obtained for wavelengths 

below the resonance and the range of wavelengths where Re(εeff) < 0 can be obtained is wider 

as p increases. Figure 2 shows the dependence of the effective dielectric function on the 

wavelength and filling fraction for composites consisting of Ag inclusions in either SiO2 or 

SiC matrix with optical constants taken from literature [28,29] . The dashed lines in Fig. 2 
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correspond to Re(εeff) = – Re(εSiC), i.e. with the composite matching a SiC host in a near-field 

superlens structure (matching condition) [8]. 

 

Fig. 2. Effective dielectric function of a dielectric–Ag composite computed with the Maxwell-

Garnett formula: (a, c) real part, (b, d) logarithm of imaginary part. The dielectric matrix is 

SiO2 (a, b) and SiC (c, d). The dashed line corresponds to the matching condition for the 

composite operating as a near-field superlens in a SiC host. 

For the Bruggeman effective medium theory, the spectral density function reads as [30]: 

             
3 1 3

, 3 1 ,
2 4

BG L R L R

p
g u p u p u u u u u u u u

p pu
   




         (6) 

with 

   2

/

1
1 2 2 2 ,

3
R Lu p p p      (7) 

and θ is the Heaviside step function. The first term describes the percolation of metal 

component that increases with p and is zero below the percolation threshold (pc = 1/3). The 

second term is a continuous distribution of resonances between uL and uR and accounts for the 

interaction among inclusions. Figure 3 shows the effective dielectric function of a SiO2–Ag 

composite computed with the Bruggeman formula. At low filling fraction there is a single 

surface plasmon resonance that rapidly broadens and red-shifts as p increases. On the contrary 

to the Maxwell-Garnett theory, the resonance is not strong enough to lead to negative values 

of the effective dielectric function. As p increases above the percolation threshold, the surface 

plasmon resonance vanishes and the effective dielectric function is dominated by the 
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percolation contribution. Thus, negative values of the dielectric function are obtained for p 

well above pc by simple averaging the dielectric functions of the components. 

 

Fig. 3. Effective dielectric function of a SiO2–Ag composite computed with the Bruggeman 

formula: (a) real part, (b) logarithm of imaginary part. The dashed line corresponds to the 

matching condition for the composite operating as a near-field superlens in a SiC host. 

The effective dielectric function at p = 2/3 for different composites is shown in Fig. 4(a) in 

order to illustrate that negative values of the effective dielectric function are obtained based 

on different phenomena for each effective medium theory. In addition to the condition Re(εeff) 

< 0, negligible absorption losses are also required for practical issues. Thus, most material 

quality factors for metamaterial and plasmonic applications involve the ratio between the real 

and imaginary part of the dielectric function [7]. For instance, for the near-field superlens, the 

quality factor defined as: 

 

( )
ln

2 ( )
,

2

eff

eff

Im

Re
QF







 
  
 

    (8) 

quantifies the resolution power of the superlens slab. Figure 4(b) shows the quality factor for 

dielectric-Ag composites matching a SiC host. At 451 nm the quality factor is maximum, 

coinciding with the case of pure silver (i.e. p = 1). Although it is possible to tune the 

wavelength where the matching condition takes place using both theories, the Maxwell 

Garnett theory offers tuning in a rather limited spectral range. The quality factor rapidly 

decreases as p reduces. Additionally, it is difficult to obtain a real system of isolated particles 

with p close to 1 and no percolation, as required by the Maxwell-Garnett description. On the 

contrary, the Bruggeman theory enables tuning in a much broader spectral range with a 

quality factor comparable to that of pure Ag. The quality factor starts to decrease at large 

wavelengths only, where imaginary part of the dielectric function is affected by the absorption 

related to the surface plasmon resonance, as shown in Fig. 4(b). Therefore, the wider 

wavelength tuning range and higher quality factor obtained using the Bruggeman effective 

medium theory indicates that tuning based on percolation of the metal component can offer 

better performance than tuning based on the surface plasmon resonance of isolated particles. It 

must be remarked that optical constants of bulk Ag are considered in these simulations. If the 

nanocomposite contains very small metal particles, typically below 5-10 nm, size confinement 

effects can appear [32], resulting in a larger imaginary part of the dielectric function of Ag 

that would worsen the composite performance. 
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Fig. 4. (a) Real (solid) and imaginary (dashed) part of the effective dielectric function of 

dielectric-Ag composites using the Maxwell-Garnett and Bruggeman theories. (b) Quality 

factor Eq. (8) for a dielectric-Ag composite superlens matching a SiC host. In both figures the 

composites are: SiO2-Ag using the Maxwell-Garnett theory (red), SiC–Ag using the Maxwell-

Garnett theory (green), and SiO2–Ag using the Bruggeman theory (blue). 

3. Fabrication and characterization of random metal-dielectric composites 

In order to analyze to what extent the prediction of effective medium theories agree with the 

real behavior of random metal-dielectric composites, a set of SiO2-Ag layers was fabricated 

and characterized. The composite layers were obtained by the subsequent deposition of SiO2, 

Ag and SiO2 on a glass substrate. SiO2 layers were 80 nm thick and Ag layer mass thickness 

was up to 15 nm. Due to the small amount of deposited metal, an island-like growth takes 

place resulting in the formation of metal nanoclusters rather than a compact Ag film [33]. The 

depositions were performed by electron beam evaporation in a modified Varian chamber with 

a base pressure of 107 torr, using quartz crystal to monitor the deposited nominal mass 

thickness. The deposition rates of Ag and SiO2 were ~0.1 and 1 nm/s respectively. The island-

like growth of Ag depends on the deposition temperature [34,35]. Thus, according to our 

previous studies of metal clusters obtained with the above mentioned system [36], two series 

of samples were produced: one using substrates heated at 220 °C prior and during the 

deposition and the other set without pre-heating. The island formation is enhanced on pre-

heated substrates, resulting in more spherical and larger particles than for samples deposited 

onto unheated substrates, where irregular shapes are obtained and percolation among islands 

is achieved with a smaller amount of deposited metal [33,36]. Thus, the set of samples 

deposited onto pre-heated substrates is expected to have a topology close to the assumptions 

of the Maxwell-Garnett theory, while the samples deposited onto unheated substrates should 

fit better into the Bruggeman description. For each set, samples with different Ag mass 

thickness were produced. It must be remarked that the aim of this experimental study is to 

analyze the discrepancies between the predictions of effective medium theories and the 

behavior of real random composites and not to fabricate a composite for a given metamaterial 

application. Thus, neither the total thickness of the composite nor its surface roughness was 

optimized for a favorable performance [22,23]. 

Optical measurements allowed retrieving the effective dielectric function and thickness of 

the composite layer, modeled as sketched in Fig. 5. The measurements were performed in the 

spectral range between 275 and 2000 nm with a J. A. Woollam V-VASE ellipsometer. 

Ellipsometric data were taken at angles of incidence 45°, 55°, and 65° and transmittance 

spectra were taken at normal incidence. This combination of measurements was used as it 

enables a precise simultaneous determination of the dielectric function and thickness of very 

thin absorbing films [37]. The dielectric function of the composite was modeled using a 

multiple-oscillator approach that takes into account both the surface plasmon resonance of 

isolated particles and the percolation effects [38,39]. For all the analyzed samples it was 

possible to obtain very satisfactory data fits (Fig. 6). 
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Fig. 5. Sketch of the fabricated samples (left) and model for extraction of effective dielectric 

function and thickness of the Ag-SiO2 composite from optical measurements (right). 

 

Fig. 6. Experimental ellipsometry and transmittance measurements (symbols) and model 

simulation (solid lines) for a SiO2-Ag composite with nominal Ag mass thickness of 8 nm 

deposited onto a pre-heated substrate. 

3.1 Composites deposited onto pre-heated substrates 

The effective dielectric constant of SiO2-Ag composites deposited onto pre-heated substrates 

is shown in Fig. 7(a) and Fig. 7(b). The filling fraction of the composite, estimated as the ratio 

between the deposited mass thickness and the effective thickness obtained by fitting of optical 

measurements, varies between 0.15 and 0.45. Qualitatively, the observed behavior agrees well 

with the Maxwell-Garnett theory: the wavelength-dependence of the effective dielectric 

function is dominated by the surface plasmon resonance of metal nanoparticles, that red-shifts 

and broadens as the metal filling fraction increases. However, the range where Re(εeff) < 0 is 

markedly shorter than the one predicted by the Maxwell-Garnett theory [Eq. (1)] or by its 

two-dimensional counterpart [16]. In addition, the imaginary part of the effective dielectric 

function far from the surface plasmon resonance peak shows values higher than the predicted 

by the theory. Thus, the quality factor of the fabricated composites is significantly smaller 

than for SiO2-Ag Maxwell-Garnet composites. 

The differences between the Maxwell-Garnett theory prediction and the deposited 

composites are related to a surface plasmon resonance broader than the computed one. Our 

previous studies of similar composites indicate that the minimum typical particle size is 

approximately 10 nm [36] and consequently the broadening cannot be related to confinement 

effects [32]. Thus, the experimentally determined broader surface plasmon resonance appears 

to be associated to the inappropriateness of the Maxwell-Garnett theory for these composites. 

In order to analyze this discrepancy, the spectral density function has been inverted 

numerically from the experimentally determined effective dielectric function, in a similar way 

to the one presented in [40,41]. Basically, the procedure consists in the discretization of the 

spectral density function at N (N = 100) equidistant points located in the range [0,1] of the 

integral variable u. The values of the spectral density at each point are found by non-linear 

constrained optimization. The function to minimize is the difference between the 

experimentally determined effective dielectric function and the dielectric function computed 

using Eq. (3) with t calculated from the dielectric functions of Ag and SiO2. In addition, 

regularization conditions are imposed to preserve the mathematical properties of the spectral 

density function [26]: non-negativity and sum rules related to the zeroth and first order 
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moments. Fitting of the experimentally determined effective dielectric function was 

satisfactory for all the samples (solid lines in Fig. 7). When the filling fraction was included as 

unknown parameter in the inversion process, the obtained value was very close (up to ± 5%) 

to the ratio between the nominal mass thickness and the effective thickness found by optical 

characterization. 

 

Fig. 7. Real (a, c) and imaginary (b, d) part of the effective dielectric function of SiO2-Ag 

composites with different Ag mass thickness (indicated in nm) deposited onto pre-heated (a, b) 

and unheated (c, d) substrates. The number in brackets is the ratio between nominal thickness 

and effective thickness obtained by ellipsometry. Solid lines are best-fits obtained by numerical 

inversion of the spectral density function. Effective dielectric functions of SiO2-Ag composites 

computed using the Maxwell-Garnett (a, b) and Bruggeman (c, d) theories at two different 

filling fractions are shown (gray dashed line) for comparison. 

The obtained spectral density functions are shown in Fig. 8(a). In all cases, the spectral 

density function consists of a broad peak instead of a delta peak, what can be related to the 

local field fluctuations characteristic for a random system. In a disordered system, each 

inclusion will have its own surface plasmon resonance condition, strongly affected by the 

interaction with neighbor particles. Consequently, resonances appear for a wide range of t 

values, finally resulting in a broad surface plasmon resonance. Indeed, the obtained results are 

in good qualitative agreement with the spectral density function of a system of randomly 

located polarizable spheres as calculated numerically [42]. The broadening of the spectral 

density cannot be exclusively associated to the spatial disorder of the inclusions. It has been 

shown that inclusions with a shape distribution lead to a broadened distribution of resonances 

since the local field acting on each particle also depends on the particle shape [34,43]. In any 

case, the randomness of the composite topology results in a broad surface plasmon resonance 

that increases absorption and reduces the range with Re(εeff) < 0, dramatically reducing the 

composite potential for metamaterial purposes. 
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Fig. 8. Spectral density function of SiO2-Ag composites deposited onto pre-heated (a) and 

unheated (b) substrates obtained by numerical inversion of the effective dielectric function. 

3.2 Composites deposited onto unheated substrates 

The effective dielectric functions of the SiO2-Ag composites deposited onto unheated 

substrates are shown in Fig. 7(c) and Fig. 7(d). The filling fractions of the composites, 

calculated as the ratio between the deposited mass thickness and the effective thickness 

obtained by optical characterization, are larger (p ~0.5 - 1) than those for composites 

deposited onto pre-heated substrates. Qualitatively, the behavior of the effective dielectric 

function fits into the Bruggeman description: composites with low metal filling fraction 

present significantly broader surface plasmon resonance than composites deposited onto pre-

heated substrates. As the filling fraction increases, the contribution of the surface plasmon 

resonance vanishes and the effective dielectric function becomes closer to a weighted average 

of the dielectric functions of pure Ag and SiO2. This indicates that the percolation of metal 

inclusions dominates the observed optical behavior. Thus, it is possible to tune widely Re(εeff) 

< 0 for high metal filling fractions, as predicted by the Bruggeman theory. However, a 

quantitative comparison indicates that the absorption is higher than the one computed by the 

theory, even in the spectral range unaffected by the surface plasmon resonance. This larger 

absorption, that has been also observed in recent numerical [21] and experimental studies 

[22,23], results in less optimal characteristics for applications. Thus, while the Bruggeman 

theory predicts quality factors comparable to the one of pure Ag (~0.65) when the matching 

condition wavelength is not affected by the surface plasmon absorption (Fig. 4), the fabricated 

composites have quality factors between 0.2 and 0.4. 

Same as for the composites deposited on pre-heated substrates, the spectral density 

function has been extracted numerically from the experimentally determined effective 

dielectric function. In addition to the discretization of the spectral density, the percolation 

strength is also included as an unknown parameter in the optimization process. The resulting 

spectral density function is shown in Fig. 8(b). The percolation threshold appears to be for 

values of p between 0.65 and 0.77 and the percolation strength, go, grows monotonically for 

larger p. The continuous part of the spectral density function consists of a peak that broadens 

and shifts to lower u as the filling fraction approaches the percolation threshold. This trend is 

qualitatively similar to the behavior of the Bruggeman theory. Above the percolation 

threshold, the spectral density function extends through the whole range [0, 1], rapidly 

decaying with u. It has been shown previously that percolated metal-dielectric random 

composites fabricated by evaporation process present typically a fractal structure consisting of 

metal inclusions of all sizes, ranging from isolated clusters to a large connected metal network 

[1,20]. Therefore, every topological resonance can take place in such system, leading to 

absorption in broad electromagnetic spectrum. The presence of a continuous distribution of all 

possible resonances for filling fractions above the percolation threshold has been also 

experimentally observed in other random systems, such as metal-polymer composites [44], 
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porous silicon [45] or ultra-rough silver films [46]. Regarding the effective dielectric function, 

the topological resonances will result in additional absorption when the values of t are close to 

zero. According to Fig. 1, such resonances will affect directly the spectral region where the 

matching condition is achieved. The Bruggeman theory does not consider topological 

resonances for small values of t if the filling fraction is large enough. Hence, an ideal 

Bruggeman composite would have better performance from the application point of view than 

a real percolated system with fractal structure. 

4. An alternative random metal-dielectric composite topology 

The random nature of the fabricated composites decreases their performance for metamaterial 

purposes in respect to the predictions of effective medium theories. It appears that tuning of 

the effective dielectric function based on the percolation of metal is a more attractive 

approach than controlling the surface plasmon resonance of isolated inclusions. Improved 

performance of composites could be obtained if the continuous distribution of resonances is 

minimized, i.e. if the metal component would be percolated but not having a fractal structure. 

This condition can be realized by a random system consisting of isolated dielectric inclusions 

in a metal matrix. Such system could correspond to the composites deposited onto pre-heated 

substrates but with exchanged roles of the metal and dielectric components. In this case, the 

spectral density function of the system would be the one calculated from experimental 

measurements [Fig. 8(a)] and the effective dielectric function of the mixture can be calculated 

using Eq. (3) by simply exchanging the dielectric functions of the matrix and inclusions  

(Fig. 9). It can be noticed that these composites, even having a random nature, can offer a 

wide range of tuning of the real part of the effective dielectric function, having absorption 

lower than pure Ag. Thus, the matching condition for a SiC host is achieved between 495 and 

610 nm for the range of filling factors of simulated mixtures and the quality factor is close to 

0.65 in all the cases. Further wavelength tuning towards the infrared part of the spectra could 

in principle be achieved by inclusions with higher dielectric function (for instance, SiC) or 

increasing the filling factor of inclusions. 

 

Fig. 9. Effective dielectric function of Ag-SiO2 composite (metal matrix with dielectric 

inclusions) computed using the spectral densities extracted from the experimental effective 

dielectric function of fabricated SiO2-Ag composites [Fig. 8(a)]. The solid lines are simulations 

using the Maxwell-Garnett expression. 

A system consisting of dielectric inclusions in a metal matrix presents the same 

topological resonances as the complementary metal-in-dielectric composite. However, the 

resonances will now affect the values of the parameter t’ = ε2 / (ε2 – ε1), i. e. t’ = 1 - t. Thus, 

the resonances will occur around t’ = (1 – p)/3 or, equivalently, t = (2 + p)/3. It means that the 

resonances will take place in the short-wavelength spectral range (Fig. 1) and will affect in a 

lesser degree the wavelengths where the condition Re(εeff) = –Re(εSiC) is achieved. The effect 

of the topological resonances can be observed in the imaginary part of the effective dielectric 
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function around 350 nm. In the low filling fraction limit, it corresponds to the “void” plasmon 

resonance of a dielectric inclusion embedded in metal (ε2 = – ε1/2) [47]. This resonance does 

not broaden significantly as the filling fraction of dielectric inclusions increases, in opposition 

to the case of metal inclusions in dielectric matrix. The reason is that as the filling fraction 

increases, the topological resonances shift towards smaller values of t’, but this affects a 

reduced spectral range due to the fast decrease of t’ as wavelength is decreased. The spectral 

density functions experimentally obtained for real composites and the spectral density of the 

Maxwell-Garnet theory have zero or negligible values for t’ corresponding to the matching 

condition. As a result, the effective dielectric function is very similar at the matching 

condition whether it is computed using the Maxwell-Garnett theory (solid lines in Fig. 9) or 

from the experimentally determined spectral density functions. This fact is further supported 

in Fig. 10, where the effective dielectric function of a composite consisting of Ag matrix and 

SiO2 inclusions is calculated using the Maxwell-Garnett theory and from numerical 

simulations of the spectral density function of random systems of polarizable spheres as done 

in reference [42]. This is an important result, as it enables the use of the Maxwell-Garnett 

expression for computing the effective dielectric function of such composite in the spectral 

range where the matching condition is achieved, regardless the random nature of the mixture. 

Recently, it has been shown that a mixture consisting of metal matrix and dielectric inclusions 

and effective dielectric function described by the Maxwell-Garnett formula has superior 

performance for superlens purposes than the complementary composite of dielectric matrix 

with metal inclusions. This result was verified by numerical simulations of ordered two-

dimensional void inclusions in a silver matrix [19]. The results presented here suggest that a 

random system could give equally good performance, what is very attractive regarding 

fabrication requirements. 

 
Fig. 10. Effective dielectric function of a Ag-SiO2 composite computed with the Maxwell-

Garnett formula: (a, b) and the numerically calculated spectral density for a random sytem of 

polarizable spheres (c, d): real part (a, c) and logarithm of imaginary part (b, d). The dashed 

line corresponds to the condition Re(εeff) = - Re(εeff). 
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Fabrication of a composite consisting of a metal matrix with isolated dielectric inclusions 

by thin film deposition techniques used in this and other studies [22,23] might be complex, 

since the island growth is characteristic for metals and not dielectrics. Alternatively, there are 

several techniques for fabrication of metal films with isolated dielectric inclusions, specially 

voids: nanoporous gold from cluster beam deposition [48], disorder nanohole arrays from 

colloidal lithography [49] or nanoscale casting with electrochemical deposition [50]. Indeed, 

the effective dielectric function of nanoporous gold determined in reference [48] show 

absence of localized surface plasmon resonance in the visible range, as suggested from the 

above theoretical analysis. 

5. Conclusions 

It has been shown that a metal-dielectric composite with effective dielectric function 

described in the framework of classical effective medium theories can provide a negative 

dielectric function with small imaginary part based on the surface plasmon resonance of 

isolated inclusions (Maxwell-Garnett) or on the percolation of metal inclusions (Bruggeman). 

This observation appears from the analysis of the classical effective medium theories in the 

context of the spectral density representation, that explicitly states the influence of the 

composite geometrical configuration through the topological resonances of the system. 

Although both theories can lead to a negative real part of the effective dielectric function and 

small absorption, the Bruggeman composite presents an extended degree of wavelength 

tuning and improved performance. 

The determination of the effective dielectric function of fabricated random metal-dielectric 

composites using optical spectroscopy indicates that real random systems have higher 

absorption than predicted by effective medium theories. These discrepancies, that limit the 

composite potential for metamaterial applications, appear to be closely related to the random 

nature of the mixtures. Thus, in systems consisting of isolated metal particles in dielectric 

matrix, the local field fluctuations lead to a wide range of topological resonances instead of 

the single resonance considered in the Maxwell-Garnett theory. This results in a surface 

plasmon resonance broader than the predicted by the theory, reducing the range of negative 

values that the real part of the effective dielectric function can take and increasing its 

imaginary part. The composites for which tuning of the effective dielectric function is based 

on percolation of the metal component, have spectral density functions consisting of a 

continuous distribution of all possible topological resonances, typical for fractal structures. As 

a result, such composites present higher absorption for the wavelength range where tuning is 

desired, when compared to the Bruggeman theory. 

These results indicate that mixtures with the metal component being percolated, but not 

having a fractal nature, should present higher quality factors for metamaterial applications 

than the composites fabricated in this study. This is the case of a metal matrix with embedded 

isolated dielectric inclusions. In this mixture, the topological resonances of the system do not 

induce additional absorption in the spectral range where tuning is required. A metal matrix 

with dielectric inclusions, even randomly distributed, appears as an attractive design principle 

for fabrication of composites for tunable near-field superlens and for other metamaterial 

applications, where tailoring of the real part of the effective dielectric function is desirable, 

keeping at the same time a small imaginary part. 
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