
Out-of-Core Solution of Eigenproblems for
Macromolecular Simulations on GPUs

José I. Aliaga1, Davor Davidović2, and Enrique S. Quintana-Ort́ı1

1 Dpto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I,
12.071–Castellón, Spain. {aliaga,quintana}@icc.uji.es

2 Institut Ruder Bošković, Centar za Informatiku i Računarstvo - CIR,
10000–Zagreb, Croatia. ddavid@irb.hr

Abstract. We consider the solution of large-scale eigenvalue problems
that appear in the motion simulation of complex macromolecules on
desktop platforms. To tackle the dimension of the matrices that are in-
volved in these problems, we formulate out-of-core (OOC) variants of the
two selected eigensolvers, that basically decouple the performance of the
solver from the storage capacity. Furthermore, we contend with the high
computational complexity of the solvers by off-loading the arithmetically-
intensive parts of the algorithms to a hardware graphics accelerator.

Keywords: Macromolecular motion simulation, eigenvalue problems,
out-of-core computing, multicore processors, GPUs

1 Introduction

Coarse-grained models (CGM) combined with normal mode analysis (NMA)
has been applied in recent years to simulate biological activity at molecular
level for extended time scales [2], [3], [15]. Concretely, iMod [9] is a tool chest
that exploits the advantage of NMA formulations in internal coordinates (ICs)
while extending them to cover multi-scale modeling. Despite the reduction in
the degrees of freedom offered by ICs, the diagonalization step remains the ma-
jor computational bottleneck of this approach, specially for large molecules. In
particular, the eigenproblem that has to be solved in this step of CGM-NMA is
given by

AX = BXΛ, (1)

where A ∈ Rn×n and B ∈ Rn×n correspond, respectively, to the Hessian and
kinetic matrices that capture the dynamics of the macromolecular complex, Λ ∈
Rs×s is a diagonal matrix with the s sought-after eigenvalues, and X ∈ Rn×s

contains the corresponding unknown eigenvectors [8]. Furthermore, when dealing
with large macromolecules, A,B are dense symmetric positive definite matrices,
n ≥ 10,000, and typically only the s ≈ 100 smallest eigenpairs are required.

In this paper we address the efficient solution of large-scale generalized sym-
metric definite eigenproblems arising in the simulation of collective motions
of macromolecular complexes using multicore desktop platforms equipped with

2

graphics processing units (GPUs). While there exist other related work [1], [11],
[10], our paper makes the following original contributions:

– The eigenproblems associated with this particular application involve dense
matrices that are, in general, too large to fit into the memory of the GPU
and, in some cases, even the main memory of the server. To address this,
we consider two specialized algorithms that, by applying out-of-core (OOC)
techniques [16], amortize the cost of data transfers with a large number of
floating-point arithmetic operations (flops). Besides, to deliver high perfor-
mance, both “OOC-GPU” algorithms off-load the bulk of their computations
to the attached hardware graphics accelerator.

– One of our algorithms is the first OOC-GPU implementation that employs
spectral divide-and-conquer (sd&c) based on the polar decomposition pro-
posed recently [13]. We enhance this algorithm with ad-hoc splitting strate-
gies, that aim at reducing the number of sd&c iterations, and are cheap to
compute for the biological target application.

– As an alternative algorithm, we revisit an implementation of the two-stage
reduction to tridiagonal form [6], where the first stage is also an OOC-GPU
code while the subsequent stage operates on a much reduced compact matrix
that fits in-core.

– We perform a comparison of these two approaches using several datasets
representative of large-scale macromolecular complexes [10].

Overall the major contribution of this paper lies in that it provides a demonstra-
tion that complex macromolecular motion simulations can be tackled on desktop
servers equipped with GPUs even when the problem data is too large to fit into
the memory of the hardware accelerator and, possibly, even the main memory.

The rest of the paper is structured as follows. In Section 2 we briefly describe
the solution of generalized eigenproblems. In Section 3 we review in detail the
sd&c method [13], and revisit the two-stage eigensolver, describing our hybrid
CPU-GPU approach. Implementations of these eigensolvers are evaluated next,
in Section 4, using a collection of cases from biological sources. Finally, we close
the paper in Section 5 with a few concluding remarks.

2 Solution of Symmetric Definite Eigenproblems

All the eigensolvers considered in this work initially compute the Cholesky fac-
torization B = UTU , where U ∈ Rn×n is upper triangular [8], to then tackle the
standard symmetric eigenproblem

CY = Y Λ ≡ (U−TAU−1)(UX) = (UX)Λ, (2)

where C ∈ Rn×n is symmetric and Y ∈ Rn×s. Thus, the standard eigenprob-
lem (2) shares its eigenvalues with those of (1), while the original eigenvectors
can be recovered from X := U−1Y . The initial Cholesky factorization, the con-
struction of C := U−TAU−1 in (2), and the solve for X are known to deliver

3

high performance on a large variety of HPC architectures, including multicore
processors and GPUs, and their functionality is covered by numerical libraries
(e.g., LAPACK, libflame, ScaLAPACK, PLAPACK, etc.) including some OOC
extensions (SOLAR, POOCLAPACK). Therefore, we will not consider these op-
erations further but, instead, focus on the more challenging solution of the stan-
dard eigenproblem (2) on a hybrid CPU-GPU platform when the data matrices
are too large to fit into the GPU memory (and, possibly, the main memory).

Among the different solvers for the symmetric eigenproblem, we discard those
based on the one-stage reduction to tridiagonal form as well as the Krylov meth-
ods [8]. From an OOC viewpoint, the major drawback of these two classes of
methods is that they cast a significant part of their computations in terms of
the matrix-vector product (mvp). For a matrix of size n×n, this kernel roughly
performs 2n2 flops on n2 numbers (i.e., a rate of computation to data of O(1)),
so that an implementation that operates with OOC data (e.g., a GPU mvp rou-
tine where the matrix is on the main memory, or a multicore mvp code with
data on disk) is intrinsically limited by data movement and will attain very low
performance.

Instead, we will investigate a recent sd&c approach [13], with a much higher
computational cost than the one-stage/Krylov-based methods, but which con-
sists mainly of matrix-matrix operations that naturally render it as an appeal-
ing candidate for OOC-GPU strategies/platforms. As an alternative, we will
also consider a classical eigensolver based on a two-stage reduction to tridiag-
onal form, which first transforms the matrix C from dense to band form, to
then refine this intermediate matrix to tridiagonal form. We have previously
described [6] an OOC-GPU practical implementation of this two-stage eigen-
solver and demonstrated how, by carefully orchestrating the PCI data transfers
between host and device, in-core performance is maintained or even increased
for the OOC solution of general large-scale eigenproblems on hybrid CPU-GPU
platforms.

3 OOC Eigensolvers for GPUs

In this section we review the mathematical methods that underlie our GPU
eigensolvers, discuss how to refine the sd&c algorithm to reduce its compu-
tational cost for the solution of the eigenproblems arising in macromolecular
motion simulation, and offer some practical details about the OOC-GPU imple-
mentations using one key numerical kernel that appears in the algorithms.

3.1 The sd&c algorithm

Numerical method. For a symmetric matrix Â ∈ Rn×n, the following sd&c
algorithm [13] starts by computing its polar factor using the QR-based dynam-
ically weighted Halley (QDWH) iterative scheme [12]:[√

cjXj

In

]
=

[
Q1

Q2

]
R (QR factorization), (3)

4

Xj+1 :=
bj
cj
Xj +

1
√
cj

(
aj −

bj
cj

)
Q1Q

T
2 , j ≥ 0, (4)

where X0 := Â/α and In denotes the identity matrix. In practice, the scalars α,
aj , bj , cj require estimates of the smallest singular value and matrix 2-norm of

Â, which are cheap to compute and, upon convergence, the sequence Xj yields
the sought-after polar factor Up.

Assume QDWH has been applied to Â := C − σIn, with σ a user-defined
splitting point for the eigenspectrum of the symmetric matrix C in (2). The
subspace iteration [8] is next employed to compute an orthogonal matrix [V1, V2],
where V1 ∈ Rn×k, such that (Up + In)/2 = V1V

T
1 ; therefore,[

V T
1

V T
2

]
C [V1, V2] =

[
C1 E

T

E C2

]
, (5)

where C1 and C2 contain, respectively, the eigenvalues of C to the left and right
of σ, and ‖E‖F ≈ u, with u the machine unit roundoff [13].

Choosing the splitting point. The previous method is designed as a recursive
sd&c algorithm: after dividing the spectrum of C into those of C1 and C2, the
method is applied again to these two subproblems, using appropriate shifts σ1
and σ2 to further divide the spectrum. Note that our goal is to compute only a
few eigenpairs of the problem, specifically the smallest s. We therefore designed
three sd&c strategies, with the common purpose of selecting the appropriate
value of σ, that separates the eigenspectrum of C into two subsets C1 and C2,
with the dimension of the former being equal to (or only slightly larger than) s.
Specifically, we designed and evaluated three different sd&c strategies:

sd&c-a. σ = trace{A}/n, where trace{·} denotes the trace of its argument.
sd&c-b. σ = 4 trace{A}/n.
sd&c-c. In this case, given a macromolecule, we use iMod to generate the
Hessian and kinetic matrix for a problem of much smaller dimension, say
m ≈ 1, 024, and choose σ as the (100 · m/n)-th largest eigenvalue of this
problem.

Note also that just before the application of the subspace extraction, the
value k = ‖Up + In‖2F /2 indicates the number of eigenvalues in C1. Therefore, in
case k < s, the QDWH iterate has to be recomputed, with a larger value for σ.
After the first successful split, the eigenspectrum of C1 is completely computed
using a direct in-core eigensolver based on the reduction to tridiagonal form (and
with a negligible cost compared with that of the initial stage).

3.2 Two-stage reduction to tridiagonal form

The eigensolver based on the two-stage reduction to tridiagonal form performs
the major part of the computations in terms of efficient Level-3 BLAS opera-
tions, in exchange for a nonnegligible increment in the computational cost when

5

compared with the direct (one-stage) reduction. The two-stage algorithm first
computes the decomposition QT

1 CQ1 = Ĉ, where Ĉ ∈ Rn×n is a matrix of band-
width w, and Q1 ∈ Rn×n is orthogonal. In the subsequent stage, Ĉ is further
reduced to a tridiagonal matrix T ∈ Rn×n as QT

2 ĈQ2 = T with Q2 ∈ Rn×n

orthogonal. Finally, the eigenvalues of T (which are also those of the C) and
the associated eigenvectors, in Z ∈ Rn×s, are computed using, e.g., the MR3

solver [7], [4]; and the eigenvectors are recovered from Y := Q1Q2Z.

Our implementation of this approach is based on the SBR (Successive Band
Reduction) toolbox [5] for the two-stage reduction to tridiagonal form, and em-
ploys the LAPACK routine for the MR3 method, which in general only adds
a negligible cost. We have previously described an OOC-GPU implementation
of the reduction to band form [6] that carefully orchestrates computation and
communication to deliver performance equal or superior to that of an in-core
GPU routine. Furthermore, provided w is carefully chosen, the second stage and
the solution of the tridiagonal eigenproblem can proceed with data in core [6].

The OOC-GPU code for the first stage consists basically of three major
kernels: QR factorization, one-sided update (for the application of orthogonal
transforms from the left), and two-sided update (application from both left and
right). These kernels are thus conceptually analogous to some of those appearing
in the sd&c algorithm.

3.3 OOC kernels

We next illustrate the OOC-GPU implementations using (a specialized case
of) the QR factorization as a workhorse. Our OOC-GPU algorithm for this
operation encodes a left-looking, slab-oriented factorization [16] that transfers
data by column blocks (slabs) of width s. Note that, while there exist linear
algebra libraries to obtain the QR factorization on GPUs [11], these lack of the
specialized kernels that are necessary for our particular operation.

In particular, let us denote the 2n×n matrix that has to be factorized in (3)
as D, and consider a partitioning of this matrix into blocks of dimension s × s
each, where D[i, j] denotes the (i, j)-th block and, for simplicity, we assume
that n is an integer multiple of s. Here, the parameter s is chosen so that a
slab of size (n + s) × s can fit into the GPU memory. Routine QR OOC in
Listing 1.1 and Figure 1 (left) describe how to leverage the upper triangular
structure of the bottom n × n half of D during the computation of the QR
factorization of this matrix using our OOC-GPU algorithm. For each iteration
of the outer loop, the algorithm first updates (part of) the k-th slab of D w.r.t.
the transforms that were calculated earlier (as corresponds to a left-looking
variant). These transforms are divided into slabs of width s and applied, in the
inner loop, to the corresponding fraction of D[:, k] from the left, invoking routine
Update GPU for that purpose. After the update, the algorithm proceeds to
factorize the current slab, using routine QR Hybrid. Note how, at each outer
iteration of this loop, one slab of D is transferred from main memory to the
GPU, modified there, and the results are sent back to the main memory.

6

The code for the building kernels Update GPU and QR Hybrid is also
given in Listing 1.1, and both procedures are illustrated in Figure 1 (right). In
these routines matrices E and F are partitioned into blocks of size b × b, so
that E[i, j], F [i, j] stand for the (i, j)-th blocks of the corresponding matrix. For
simplicity, we assume now that s is an integer multiple of b. The first routine
operates with F (a slab ofD of width s) stored in-core (i.e., in the GPU memory),
and streams blocks of E, of width b, from the main memory to the GPU, in order
to update F with the orthogonal transforms contained in them. The second
routine computes a QR factorization of F (stored in-core), using a conventional
blocked left-looking procedure with block size b, so that the block factorizations
and orthogonal transforms are computed in the CPU, while the updates of the
trailing submatrices are performed in the GPU.

1 function D = QROOC(n, s, b, D);
2 r = n/s;
3 for k = 1:r
4 Copy D[1:r+k, k] to GPU
5 for j = 1:k-1
6 D[j:r+j, k] = Update OOC(n, s, b, D[j:r+j, j], D[j:r+j, k]);
7 end
8 D[k:r+k, k] = QR Hybrid(n, s, b, D[k:r+k, k]);
9 Copy D[k:r+k, k] to main memory

10 end
11 // --
12 function F = Update OOC(n, s, b, E, F);
13 r = n/b; t = s/b;
14 for k = 1:t
15 Copy E[k:r+k, k], containing Qk , to main memory
16 F[k:r+k, :] = Qk ’ * F[k:r+k, :]; // Update in GPU
17 end
18 // --
19 function E = QR Hybrid(n, s, b, E);
20 r = n/b; t = s/b;
21 for k = 1:t
22 Copy E[k:r+k, k] to main memory
23 E[k:r+k, k] = Rk/Qk = QR(E[k:r+k, k]); // Factorize in CPU
24 Copy E[k:r+k, k], containing Qk , to GPU
25 E[k:r+k, k+1:r] = Qk ’ * E[k:r+k, k+1:r]; // Update in GPU
26 end

Listing 1.1. OOC-GPU left-looking slab-based algorithm for the QR factorization
QR OOC and the building kernels Update OOC and QR Hybrid.

Optimization of QR OOC. In our QR OOC algorithm, only the orthogo-
nal matrix of the resulting QR factorization of D is built/stored while the upper
triangular factor is not referenced/kept. Our QR algorithm is a left-looking algo-
rithm that applies all previous transformations to the current slab —in contrast
with the traditional right-looking approach that immediately propagates the
transforms to the right of the current slab— since left-looking OOC variants in
general incur in a smaller number of transfers [16].

Furthermore, we leverage the special structure of D[:, k] (Figure 1, left) to
further reduce the number of transfers. Concretely, at each step of the inner loop
of routine QR OOC, D[j : r + j, k], of size (n + s) × s, is stored in the GPU
memory. Now, during the next iteration of loop j, D[j + 1 : r + j + 1, k] will

7

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

D[j:r+j,j]

D[j:r+j,k]

D[k:r+k,k]

n+s

n+s

s s

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���
���
���

���
���
���

���
���
���
���

���
���
���
���

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

s

b

s

E[k:r+k,k]

E[k:r+k,k+1:r]

F[k:r+k,1:r]

n+b n+s

Fig. 1. Accompanying illustrations for the OOC-GPU QR factorization QR OOC
(left), and the building kernels Update OOC and QR Hybrid (right).

be required; see Figure 1 (left). Thus, the difference between these two slabs
corresponds to D[j, k], which does not need to be sent back to main memory as
it belongs to the upper triangular factor; and D[r + j + 1, k], which is stored in
main memory and will have to be transferred to the GPU. Therefore, at the end
of iteration j, D[j, k] is removed from the GPU memory, as it is not required
any longer; and the new block D[r + j + 1, k] is transferred from main memory
to the GPU. Applying this approach, at each update step only one block of size
s× s needs to be sent to the GPU, instead of the whole slab of size (n+ s)× s.

Optimization of QR Hybrid. This routine computes the QR factorization
of D[k : r + k, k] with the collaboration of both CPU and GPU. This slab is
divided into blocks of width b; see Figure 1 (right). At each iteration of routine
QR Hybrid in Listing 1.1, the orthogonal factor for E[k : r+ k, k] is computed
on the CPU, and transferred to the GPU; and the submatrix to the right is next
updated on the GPU. Thus, the QR factorization computed at each iteration
only involves E[k : r + k, k]. Following this approach, the special structure of
E can be efficiently exploited with little overhead, that depends only on the
relation between b and s. (In practice, b ≤ 128 while s is much larger.)

4 Experimental Results

All the experiments were performed on a server with two Intel Xeon E5520
quad-core processors (total of 8 cores @ 2.27 GHz), 48 Gbytes of RAM, and a
Tesla C2050 GPU (2.6 Gbytes of memory, ECC on), using ieee double-precision

8

arithmetic. The results include the cost of transferring the input data and results
between main memory and GPU. The codes were linked to NVIDIA CUBLAS
(v5.0) and the BLAS implementation in GotoBLAS2 (v1.13).

For simplicity, we will only consider GPU routines that operate with data
residing in the main memory. For matrix decompositions such as the QR fac-
torization and other similar Level-3 BLAS-based kernels, disk latency can be
mostly hidden by overlapping it with computation, even in platforms equipped
with GPU accelerators [14]. Therefore, we expect these results to carry over to
the case where data is stored on disk.

We employed 6 datasets in the experimentation: utubseam40, utubseam10,
riboTIpre, 1cwp, 1qgt and utubseam20, leading to eigenproblems of dimen-
sion n =24,943, 29,622, 30,065, 30,504, 30,785 and 31,178, respectively, that in
all cases do not fit into the GPU memory.

Our first experiment analyzes the scalability of the OOC-GPU algorithms,
measured as the ability of these methods to deliver a constant GFLOPS (billions
of flops/second) rate as the problem dimension grows to exceed the capacity of
the GPU memory. For this purpose, we employed iMod to generate matrices of
varying dimensions for the utubseam{10, 20, 40} benchmarks. Figure 2 shows
that the OOC-GPU two-stage and sd&c algorithms are scalable in this sense.
At this point, be aware that the much higher GFLOPS ratio of the approach
based on the sd&c method do not necessarily imply superior performance since,
as we will show in the next experiment, this method also requires a much higher
cost than the two-stage alternative.

0

50

100

150

200

0 5000 10000 15000 20000 25000 30000

G
F

L
O

P
S

Matrix Dimension

OOC-GPU algorithms on Intel Xeon E5520 (x2) and NVIDIA C2050

SD&C
Two-stage

Fig. 2. GFLOPS rate of the OOC-GPU eigensolvers applied to reduced versions of the
utubseam{10, 20, 40} test cases.

Table 1 compares the total execution time of the OOC-GPU two-stage and
sd&c algorithms, using the three techniques to choose the splitting parameter
σ described in subsection 3.1 for the latter. As could be expected, the execution
time of the sd&c algorithm strongly varies depending on the properties of the

9

Case
Two-stage sd&c-a sd&c-b sd&c-c

Time Time #iter split Time #iter split Time #iter split
utubseam40 1534.3 3087.9 7 8678 2402.8 7 712 2428.2 7 1024
utubseam10 2536.3 4652.3 7 9006 3871.2 7 936 3877.8 7 1034
riboTIpre 2426.4 5868.2 9 11779 3420.6 6 284 4736.9 7 11448
1cwp 2523.1 5949.8 9 7005 4276.4 7 1412 8264.1 12 16721
1qgt 2622.9 6503.7 10 7362 5525.9 9 1562 9650.2 12 20952
utubseam20 2780.9 7263.4 10 9288 4521.4 7 815 5937.8 9 2511

Table 1. Comparison of eigensolvers. Time is reported in seconds in all cases. For the
sd&c variants, “#iter” is the number of QDWH iterations and “split” is subproblem
size after the first divided-and-conquer step.

spectrum and the splitting point, and different strategies to select σ greatly af-
fect the convergence speed of the QDWH. For our particular test cases, strategy
sd&c-b offers the best results as it combines fast convergence with the decou-
pling of a subproblem C1 of reduced size, which renders the cost of the subspace
iteration low. However, in all cases, the two-stage approach is clearly superior
to the sd&c method.

5 Concluding Remarks

We have presented and evaluated two hybrid CPU-GPU algorithms for the solu-
tion of generalized symmetric eigenproblems arising in macromolecular motion
simulation, based on the two-stage reduction to tridiagonal form and a new spec-
tral divide-and-conquer approach for the polar decomposition. In both cases, by
carefully amortizing the cost of the PCI data transfers with a large number
of floating-point arithmetic operations, the implementations attain high perfor-
mance and, more importantly, offer perfect scalability so that the dimension
of the macromolecular problems that can be tackled is not constrained by the
capacity of the GPU memory.

Experiments on an desktop platform with two Intel Xeon multicore proces-
sors and an NVIDIA “Fermi” GPU, representative of current server technology,
illustrate the potential of these methods to address the simulation of biological
activity. These results also show the superior performance of the OOC-GPU two-
stage approach over the sd&c implementations, despite the former necessarily
computes the full eigenspectrum of the problem while the latter can be used, in
principle, to obtain only the sought-after part of the spectrum.

As part of future work, we plan to extend these algorithms to operate with
data on disk, so that much larger problems can be addressed on desktop plat-
forms with a reduced main memory.

10

Acknowledgments

D. Davidović’s visit to UJI was supported by the COST Action IC0805. The re-
searchers from UJI were supported CICYT TIN2008–06570-C04-01 and FEDER,
the EU FP7 318793 “EXA2GREEN”, and P1-1B2011-18 of the Fundació Caixa-
Castelló/Bancaixa and UJI. We also thank the Structural Bioinformatics Group,
from CSIC, for the datasets.

References

1. J. Aliaga, P. Bientinesi, D. Davidović, E. D. Napoli, F. Igual, and E. S. Quintana-
Ort́ı. Solving dense generalized eigenproblems on multi-threaded architectures.
Applied Mathematics and Computation, 218(22):11279–11289, 2012.

2. G. S. Ayton and G. A. Voth. Systematic multiscale simulation of membrane protein
systems. Curr. Opin. Struct. Biology, 19(2):138–44, 2009.

3. I. Bahar, T. R. Lezon, A. Bakan, and I. H. Shrivastava. Normal mode analysis
of biomolecular structures: functional mechanisms of membrane proteins. Chem.
Rev., 110(3):1463–97, 2010.

4. P. Bientinesi, I. S. Dhillon, and R. van de Geijn. A parallel eigensolver for dense
symmetric matrices based on multiple relatively robust representations. SIAM J.
Sci. Comput., 27(1):43–66, 2005.

5. C. H. Bischof, B. Lang, and X. Sun. Algorithm 807: The SBR Toolbox—software
for successive band reduction. ACM Trans. Math. Soft., 26(4):602–616, 2000.

6. D. Davidović and E. S. Quintana-Ort́ı. Applying OOC techniques in the reduction
to condensed form for very large symmetric eigenproblems on GPUs. In 20th Euro.
Conf. PDP 2012, pages 442–449, 2012.

7. I. S. Dhillon and B. N. Parlett. Multiple representations to compute orthogonal
eigenvectors of symmetric tridiagonal matrices. Linear Algebra and its Applica-
tions, 387:1 – 28, 2004.

8. G. H. Golub and C. F. V. Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 3rd edition, 1996.

9. J. R. Lopez-Blanco, J. I. Garzon, and P. Chacon. iMOD: multipurpose normal
mode analysis in internal coordinates. Bioinformatics, 27(20):2843–50, 2011.

10. J. R. López-Blanco, R. Reyes, J. I. Aliaga, R. M. Badia, P. Chacón, and E. S. Quin-
tana. Exploring large macromolecular functional motions on clusters of multicore
processors. J. Comp. Phys., 246:275–288, 2013.

11. MAGMA project home page. http://icl.cs.utk.edu/magma/.
12. Y. Nakatsukasa, Z. Bai, and F. Gygi. Optimizing Halley’s iteration for computing

the matrix polar decomposition. SIAM J. Matrix Anal. Appl., 31:2700–2720, 2010.
13. Y. Nakatsukasa and N. J. Higham. Stable and efficient spectral divide and conquer

algorithms for the symmetric eigenvalue decomposition and the SVD. Technical
Report 2012.52, Manchester Inst. Math. Sci., The University of Manchester, 2012.

14. G. Quintana-Ort́ı, F. D. Igual, M. Marqués, E. S. Quintana-Ort́ı, and R. A. V.
de Geijn. A run-time system for programming out-of-core matrix algorithms-by-
tiles on multithreaded architectures. ACM Trans. Math. Softw., 38(4):25:1–25:25.

15. L. Skjaerven, S. M. Hollup, and N. Reuter. Normal mode analysis for proteins. J.
Mol. Struct. (Theochem), 898(1-3):42–48, 2009.

16. S. Toledo. A survey of out-of-core algorithms in numerical linear algebra. In
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1999.

