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Abstract 

Raman spectra of acetylacetone were recorded for molecules isolated in an argon matrix at 10 K 

and for a polycrystalline sample. In the solid sample, broad bands appear superimposed on a 

much weaker Raman spectrum corresponding mainly to the stable enol form. The position of 

these bands depends on the excitation wavelength (514.5 and 488.8 nm argon ion laser lines 

were used), sample temperature, and cooling history. They are attributed to transitions from an 

excited electronic state to various isomer states in the ground electronic state. Laser photons have 

energies comparable to energies of a number of excited triplet states predicted for a free 

acetylacetone molecule (Chen, X.-B.; Fang, W.-H.; Phillips, D. L. J. Phys. Chem. A 2006, 110, 

4434). Since singlet-to-triplet photon absorption transitions are forbidden, states existing in the 

solid have mixed singlet/triplet character. Their decay results in population of different isomer 

states, which except for the lowest isomers SYN enol, TS2 enol (described in Matanović I.; 

Došlić, N. J. Phys. Chem. A 2005, 109, 4185), and the keto form, which can be detected in the 

Raman spectra of the solid, are not vibrationally resolved. Differential scanning calorimetry 

detected two signals upon cooling of acetylacetone, one at 229 K and one at 217 K, while upon 

heating, they appear at 254 and 225 K. The phase change at higher temperature is attributed to a 

freezing/melting transition, while the one at lower temperature seems to correspond to 

freezing/melting of keto domains, as suggested by Johnson et al. (Johnson, M. R.; Jones, N. H.; 

Geis, A; Horsewill. A. J.; Trommsdorff, H. P. J. Chem. Phys. 2002, 116, 5694). Using matrix 

isolation in argon, the vibrational spectrum of acetylacetone at 10 K was recorded. Strong bands 

at 1602 and 1629 cm
-1

 are assigned as the SYN enol bands, while a weaker underlying band at 

1687 cm
-1

 and a medium shoulder at 1617 cm
-1

 are assigned as TS2 enol bands. 

Introduction 

Acetylacetone (2,4-pentanedione), acac, serves as a model for the study of intramolecular 

hydrogen bonding, together with other β diketone molecules.
1
 It is often used as a complexing 

agent with various metal ions
2,3

 and in producing compounds for organic light-emitting diodes.
4
 

It is a rather small molecule but of rich dynamics, exhibiting effects of tautomerism. In the 

simplest model, two molecular species, enol and keto, exist in equilibrium at room temperature 

in the approximate ratio of 3:1 in favor of the enol.
1
 Temperature

5
 and solvents

6
 are known to 

affect this ratio and move it either toward the enol or keto side.  
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The potential energy surface that determines the positions of the tautomeric minima has been 

intensively studied.
7-18

 Matanović et al. explored the potential energy surface for proton transfer 

in acetylacetone.
12

 The ground state was found to be SYN enol (see Figure 1). The transition 

state TS2 was only 0.25 kcal/mol higher in energy than SYN enol, and the transition state TS1 

had an energy that was 1.45 kcal/mol higher than that of SYN. The main difference in geometry 

between the TS1 and TS2 transition states concerns the orientation of the methyl groups (Figure 

1). Although the SYN, TS1, and TS2 conformers have Cs symmetry, the experimental 

difficulties in detecting the position of the hydroxyl proton raise the possibility of identifying 

unrelaxed molecules in the TS1 and TS2 states and reporting them as molecules having C2v 

symmetry because the methyl groups are placed symmetrically with respect to the plane 

containing oxygen atoms in both TS1 and TS2. Thus, the X-ray diffraction experiment 

conducted at 210 and 110 K by Boese et al.
19

 reported acetylacetone molecules with C2v 

symmetry. Johnson et al.
20

 measured methyl tunneling splitting energies in polycrystalline acac 

using the quasielastic neutron scattering diffraction technique. They showed that rapid cooling of 

liquid acac results in a polycrystalline mixture of enolic and keto tautomers and succeeded in 

producing pure enolic polycrystalline powder. The method used was to anneal the sample below 

the melting point (at 245 K) for 10 h. The two different methyl tunneling splitting energies that 

were measured for the annealed sample at 5 K were assigned as originating from two different 

methyl groups of the same molecule. Their work supports the SYN enol form as the stable enolic 

form of acetylacetone in the crystal state.  

 

 

Fig 1 Figure 1 Enol (SYN, TS2, and TS1) and keto tautomers of acetylacetone. The SYN enol is the most stable 

configuration, and TS2 and TS1 are transition states 0.25 and 1.45 kcal/mol higher in energy than SYN, respectively.10 
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For the free acac molecule, experiments involved in determination of the minimum energy 

conformation include high-resolution rotational spectra of Caminatti and Grabow
21

 and electron 

diffraction experiments by Lowrey et al.,
22

 which were in favor of the C2v equilibrium structure. 

On the contrary, electron diffraction experiments by Ijima et al.
23

 and Srinivasan et al.
24

 argued 

that the planar but nonsymmetrical Cs structure was the most stable. Camerman et al. identified 

enolic acetylacetone as residual solvent in a crystal of antiepileptic drugs.
25

  

After the discovery of Veierov et al.
26

 that acetylacetone displays isomerization upon UV 

illumination, a number of studies were devoted to isolation of different isomers and calculation 

of their relative energies.
27-34

  

Vibrational studies of acetylacetone gave a thorough assignment of bands for the enolic Cs 

tautomer, and some, more intense, bands of the keto tautomer could be confidently attributed.
35-

39
 Tayyari

35
 reported the SYN conformer as the most stable form (his notation I), which coexists 

in liquid with TS2 (II in his notation). He assigned the low-temperature 1635 cm
-1

 band to the 

stable conformer and the 1600 cm
-1

 low-temperature band to the conformer II (TS2). Chiavassa 

et al. first performed infrared matrix-isolation experiments,
36

 and later Coussan et al. included 

induced UV and IR isomerizations of matrix-isolated acac.
29

  

We undertook the Raman matrix-isolation experiment to verify the conclusion of Cohen and 

Weiss
5
 and Tayyari

35
 that there exists two enolic forms rapidly interconverting in the liquid. 

Also, low-temperature Raman spectra of the polycrystalline sample were collected from 10 to 

300 K for the study of the possible disorder of the methyl groups.  

Experimental Methods 

Acetylacetone (acac), 99.5% pure, was purchased from Sigma-Aldrich (Fluka) and transferred to 

a capillary tube with several freeze−pump−thaw cycles performed to eliminate dissolved air. The 

capillary was sealed under vacuum. For low-temperature measurements, we used several 

cryostats, an old CTI model 21 CRYOGENICS, a new CCS350 JANIS RESEARCH, both with a 

closed cycle of liquid helium, which could reach 10 K, and a VPF 700 from JANIS 

RESEARCH, operating with liquid nitrogen for temperatures as low as 80 K. For temperature 

control, a Lake Shore 331 instrument was used.  

For the matrix-isolation experiment, a small amount of pure liquid acac was transferred into 

glass vial, and freeze−pump−thaw cycles were repeated. The vial with frozen sample was 

evacuated with rotary and diffusion pumps and then connected to a Swagelok needle valve 

leading to the cold golden-plated cryostat finger on one side and to the reservoir of argon on the 

other. The vapor pressure of liquid acac is 0.8 kPa (from the Sigma-Aldrich website). After the 

sample melted at room temperature, acac vapor was allowed to mix with argon from the 

reservoir held at a pressure of 1 atm by opening the valve toward argon. The matrix ratio was 

estimated from the ratio of pressures of acetylacetone vapor and argon and was approximately 

1:100. The vapor/gas mixture was deposited on the golden surface inside of the cryostat head 
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cooled to 10 K. Traces of air were found (2328 cm
-1

 from the N2 stretching band and 1554 cm
-1

 

from the O2 stretching band) because of imperfect sealing.  

A differential scanning calorimetry experiment was performed with Netzsch DSC 200 

instrument equipped with a liquid nitrogen cooling system in a He atmosphere. The cooling rate 

was 5 K/min, and the heating rate was also 5 K/min.  

Raman spectra were recorded with the DILOR Z24 Raman spectrometer, while excitation was 

provided with an argon ion laser (COHERENT INNOVA 400) operating at 514.5 and 488.8 nm 

with a laser power of 200 mW at the sample. Spectra were recorded in the sequential mode, and 

the step sizes used ranged from 0.5 to 4 cm
-1

. The slit width was 300 μm, giving spectral 

resolution of 2.3 cm
-1

.  

 

Results 

Matrix-Isolation Experiment. Infrared and Raman spectra of liquid acac are shown in Figure 2, 

and Raman spectrum of the matrix-isolated sample is shown in Figure 3. The positions of 

selected observed bands are listed in Table 1, while the complete list is given in the Supporting 

Material. The assignment of the enol bands was done according to the calculation by Matanović 

and Došlić,
7
 and the keto bands attributed according to our calculation performed at the 

B3LYP/6-311++G(d, p) level of theory.
40

 The calculated unscaled values for the keto tautomer 

are listed in Table 2 of the Supporting Material. Several keto bands in liquid could be confidently 

identified by comparing the spectra of polycrystalline acac containing only enol molecules and 

the liquid spectra; the 1730 cm
-1

 band was attributed to C O groups stretching out of phase, the 

1709 cm
-1

 band was attributed to C O groups stretching in phase, the 1157 cm
-1

 band 

corresponded to the δ(CH2), the 957 cm
-1

 band corresponded to skeletal C−C stretching, the 621 

cm
-1

 band was assigned to C−CH2−C bending, and the 330 cm
-1

 band was assigned to H3C−C−C 

bending. 
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Fig 2 Infrared and Raman spectra of liquid acetylacetone. 

 

 

Fig 3 Raman spectrum of acetylacetone isolated in an argon matrix at 10 K (10−3800 cm-1). The matrix ratio is 1:100. 
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Table 1 Selected Observed Raman and Infrared Bands of Acetylacetone (cm-1)a,b 

Raman matrix 

10 K 

Raman solid 10 K 

enols + keto 

Raman solid 

10 K 

enols + keto 

Raman solid 

10 K enols 

Raman liquid 

295 K 

enols + keto 

infrared liquid 

295 K 

enols + keto 

assignment  

  1800 m, vbr          luminescent band  

  1715 w  1715 vvw    1732 w  1730 s  ν(C O) keto, out-of-phase  

  1700 w  1698 vvw      1709 s  ν(C O) keto, in-phase  

1687 w,sh      1683 w      ν(C C−C O) TS2 enol  

        1672 br, =sh      

  1651 mw,sh  1653 mw,sh  1652 mw,sh      ν(C C−C O) SYN enol, 

crystal spliting  

1629 m,sh  1634 m  1638 mw  1634 ms    1622 vs,vbr  ν(C C−C O) SYN enol  

1617 m,sh            ν(C O) + δ(O−H) TS2 enol  

1602 s  1605 m  1605 m  1607 ms  1604 s,br    ν(C O) + δ(O−H) SYN enol  

  1585 mw,sh  1583 mw  1585 m      ν(C O) + δ(O−H) SYN enol, 

crystal splitting  

  1355 w,sh  1354 w  1355 w      δ(O−H) + ν (C O) SYN enol  

  1309 mw,sh  1310 w,sh  1308 w,sh      ν(C−C C) + δ(OH) SYN enol  

      1300 s,vbr      luminescent band  

1296 s  1296 m,br  1297 mw,br  1298 ms  1296 s,br  1307 ms  ν(C−C C) + δ(O−H) SYN enol, 

crystal splitting  

1200 w,br            δ(CH) in-plane bending TS2 enol  

1175 m  1173 mw  1174 m  1173 m  1176 mw  1172 m  δ(CH) in-plane bending SYN enol  

          1157 m  δ(CH2) keto  

647 s  648 s  648 ms  649 s    643 mw  out-of-plane ring bend SYN enol  

635 s  642 s  642 ms  643 s  645 s    in-plane ring def. SYN enol  

  624 mw      623 ms,sh  621 mw,sh  C−CH2−C bending, keto tautomer  

615 w,sh          583 w  in-plane ring def. TS2 enol  

555 mw  555 ms  554 m  554 ms  556 m    out-of-plane ring def. SYN enol  

  534 vw      530 vw  531 mw  C O in-plane bending, out-of-

phase, keto tautomer  

509 w  504 m  505 mw  504 m  510 vw  513 mw  in-plane ring bend SYN enol  

  413 w  413 w  412 w      in-plane ring def. SYN enol  

406 vw  404 w  406 vw  403 w  406 w    in-plane ring def. TS2 enol  

365 vw  358 w,br  353 w  355 w,br  372 w    in-plane ring def. SYN enol  

  340 w,sh      330 w    H3C−C−C bending, keto tautomer  

  235 mw  234 mw  236 mw      out-of-plane ring bend + γ(C−CH3) 

crystal splitting SYN enol  

225 w      226 mw,sh  228 mw    out-of-plane ring bend + γ(C−CH3) 

SYN enol  

      203 mw,sh      out-of-plane ring bend + γ(C−CH3) 

crystal splitting SYN enol  

192 w  198 m  196 ms  197 m      out-of-plane ring bend + τ(CH3) 

SYN enol  

  174 w  170 mw  174 w      out-of-plane ring bend + τ(CH3) 
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SYN enol, crystal splitting  

158 w  155 w  153 w  155 w  160 m,sh    methyl group torsion 

SYN enol (close to C−O−H)  

      113 mw,sh      lattice vibration  

  101 s  101 vs  105 s      lattice vibration  

  86 m,br  89 ms  90 mw      lattice vibration  

  71 m  73 ms  74 m      lattice vibration  

  62 vvs  63 vvs  65 vvs      coincidence of lattice vibration 

and methyl group torsion 

SYN enol (close to C O)  

    55 ms  55 w      lattice vibration  

  48 w,sh  47 m  48 w      lattice vibration  

  39 w    41 w      lattice vibration  

  34 w  35 m  35 w      lattice vibration  

  27 w          keto lattice phonon 
a
 The assignment of matrix bands is based on B1LYP/6-311G(d, p) calculations for SYN and TS2 enols from 

ref 7. Assignment of keto bands is based on B3LYP/6-31++G(d.p) calculations,
40

 this work.
b
 Abbreviations. v:  

very, s:  strong, m:  medium, w:  weak, as:  asymmetric, sh:  shoulder, br:  broad.   

Generally, there are no bands corresponding to the keto isomer in the spectrum of matrix-isolated 

acac, but there is a superposition of weaker and broader bands onto stronger and narrower bands 

falling at the same wavenumber (see Figure 3); such is the case of a weak band at 1687 cm
-1

 

underlying the stronger one at 1629 cm
-1

. We assign the band at 1687 cm
-1

 as a quasiaromatic 

carbonyl stretching band in the symmetric TS2 enol, and the band at 1629 cm
-1

 is assigned to the 

SYN enol. The shoulder at 1617 cm
-1

 is assigned as the TS2 enol band, and the strong band at 

1602 cm
-1

 is assigned as belonging to the SYN enol. All 39 normal modes both for SYN and TS2 

enols are active in Raman and infrared. Coussan,
29

 Nagashima,
30

 and Chiavassa
36

 recorded 

infrared spectra of matrix-isolated acac. Nagashima's values for the argon matrix agree rather 

well with our reported values, and we could provide bands below 500 cm
-1

, neither of which 

were reported previously.  

Matanović and Došlić
7
 calculated the CH stretching vibration of the methyne hydrogen of SYN 

enol at 3101 cm
-1

, higher than the corresponding mode in TS2 enol at 3098 cm
-1

 (at the 

anharmonic B1LYP/6-311G(d, p) level of theory). We observed two bands in the Raman matrix 

spectrum of acac, one at 3113 cm
-1

 and the other at 3082 cm
-1

. The methyne stretching band was 

assigned to the band at 3008 cm
-1

 in methylpropene,
41

 to the 3101 cm
-1

 band in butadiene,
42

 

while in malonaldehyde, it was assigned to the band at 2848 cm
-1 43

 or reassigned to the 3060 cm
-

1
 band.

44
 In acetylacetone, we assign the methyne CH stretching frequency of the SYN enol to 

the 3082 cm
-1

 band. The band at 3113 cm
-1

 could be a combination of the 1629 cm
-1

 band of the 

SYN enol and the asymmetric methyl bending at 1464 cm
-1

 of the same conformer.  

Other bands involving the methyne group that are sensitive to the enol state are, according to ref 

7, in-plane CH deformation predicted to be at 1183 cm
-1

 for SYN enol and at 1178 cm
-1

 for TS2 

enol and out-of-plane CH deformation predicted to lie at 766 cm
-1

 for SYN isomer and at 758 
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cm
-1

 for TS2 enol. We observed a shoulder at 1184 cm
-1

, a medium band at 1175 cm
-1

, and weak 

bands at 786 and 774 cm
-1

.  

Upon careful inspection of the spectrum for the O−H stretching band, we could not confidently 

assign it. The weak band at 3500 cm
-1

 was also observed in a subsequent matrix-isolation 

experiment performed by us, but no band of acetylacetone was simultaneously observed. 

Therefore, the 3500 cm
-1

 band is most probably caused by remnants of methanol that was used 

for cleaning of the apparatus. Nagashima et al.
23

 also observed a weak band at 3500 cm
-1

 in 

infrared matrix-isolation experiments and assigned it to small amounts of water interacting with 

acetylacetone. The bands at 2855 and 2721 cm
-1

 were observed in liquid and in polycrystalline 

solid as well and can be assigned as combinations of the SYN enol bands (1602 + 1250 cm
-1

) 

and (1296 + 1435 cm
-1

). A weak band at 365 cm
-1

 is a ring bending mode of SYN enol involving 

oxygen atoms.
35

  

In conclusion, besides the SYN enol, another conformer (TS2) of acac was present in the isolate, 

characterized by the bands at 1687 and 1617 cm
-1

 and broad weak bands at 1470, 1200, 786, and 

615 cm
-1

.  

Raman Spectra of Polycrystalline Acetylacetone. Acac, which is liquid at room temperature, 

freezes at 229 K upon cooling and further exhibits a solid−solid phase transition at 217 K (Figure 

4). Upon heating, these phase changes occur at the higher temperatures of 254 and 225 K. The 

transition at higher temperature is the freezing/melting transition, while the lower one probably 

involves the freezing/melting of the keto domains, as suggested by Johnson et al.
20

 We compared 

Raman spectra of samples obtained by rapid cooling (spectrum at the top of Figure 5) and spectra 

of the annealed sample (shown at the bottom of Figure 5). The annealing procedure consisted of 

freezing the liquid at 230 K, heating it to 240 K, keeping it at that temperature for several hours 

(sometimes overnight), and then cooling down the sample to 10 K. There were no bands at 1711 

and 1700 cm
-1

 corresponding to C O stretching vibrations in keto isomers in the annealed 

samples (spectrum at the bottom of Figure 5). Other bands corresponding to keto acac in the 

rapidly cooled sample are the 975 cm
-1

 band (attributed to skeletal C−C stretching), the 624 cm
-1

 

band (C−CH2−C bending), and the 534 cm
-1

 band (C O in-plane bending). The positions of all 

observed bands are listed in Table 1 of the Supporting Material. The crystal structure of 

acetylacetone was determined at 210 and 110 K by Boese et al.
19

 It is Pnma with four molecules 

per unit cell and molecular site symmetry C2v. The number of expected optical phonons Γopt ph = 

3Ag 3B1g 3B2g 3B3g 3Au 2B1u 2B2u 2B3u. All 12 gerade phonons are Raman 

active, and 6 phonons of B1u, B2u, and B3u symmetry are infrared active. Nine low-frequency 

bands in the Raman spectrum of polycrystalline enol acac were assigned as lattice vibrations at 

113, 105, 90, 74, 65, 55, 48, 41, and 35 cm
-1

. Phonon spectra of the annealed sample and of the 

sample that was rapidly cooled differ in the ratio of intensities of the 65 and 105 cm
-1

 phonon 

bands and in the appearance of the weak band at 27 cm
-1

 in the spectrum of rapidly cooled 

sample. Since we did not observe this band in the spectrum of annealed acac, it was assigned to a 

phonon from crystalline domains containing keto tautomers. 
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Fig 4 Differential scanning calorimetric signal of acetylacetone. The heating rate was 5 K/min, and the cooling rate was 5 

K/min. 
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Fig 5 Low-temperature Raman spectra of polycrystalline acetylacetone at 10 K obtained when the sample was 

cooled rapidly from room temperature to 10 K (spectrum at the top), when the sample was cooled to 185 K, 

heated above the solid−solid phase transition temperature to 230 K, and then cooled to 10 K (middle spectrum), 

and for the annealed sample (spectrum at the bottom) in the 100−1800 cm-1 interval. 

Among internal vibrations of acac, the lowest frequency modes are expected to be methyl 

torsional modes. Johnson et al.
20

 measured methyl torsional 0 → 1 transitions at 146.4 and 61.6 

cm
-1

 in pure enolic polycrystalline acac and attributed the higher transition to the CH3 group 

closer to C−OH, while the lower transition proceeds between states of the methyl group proximal 

to C O. In Raman spectra of annealed crystalline acac, the weak band at 155 cm
-1

 is assigned 

as the first torsional transition of methyl groups attached to C−OH in SYN enol form of 

acetylacetone molecules. The band observed at 192 cm
-1

 in the matrix (Figure 3), corresponding 

to a mixed mode of out-of-plane ring bending and methyl torsion in SYN enol, splits in the 

spectrum of the annealed sample into two bands at 174 and 197 cm
-1

. In a similar manner, the 

band observed at 225 cm
-1

 in the matrix splits into bands at 203 and 228 cm
-1

 in the spectrum of 

the annealed sample at 10 K.  

Very broad bands of medium and strong intensity accompanied all Raman spectra and are 

discussed in the next section. The intensity distribution among the internal modes depends on the 
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cooling procedure and the amount of enol conformer produced. It is often possible to observe the 

situation where, at 10 K, the band at 1296 cm
-1

 is stronger than the band at 1605 cm
-1

 (Figure 5, 

spectrum at the top), while in another cooling, again at 10 K, the ratio is reversed (Figure 5, 

spectrum in the middle).  

Tayyari and Milani-Nejad
35

 gave a thorough assignment of the SYN enol vibrations, providing 

also bands from the solid. They reported two bands; the one at 1600 cm
-1

 was attributed to TS2 

and the band at 1630 cm
-1

 to the SYN conformer, while they considered the band at 1575 cm
-1

 to 

be common to both SYN and TS2. Raman spectra in the carbonyl stretching region (1500−1800 

cm
-1

) of polycrystalline acetylacetone and matrix-isolated acac are compared in Figure 6. 

Whereas at 85 K there is only one band at 1630 cm
-1

 in the polycrystalline annealed sample 

(spectrum at the top), at 10 K, there is also a shoulder at 1652 cm
-1

 (spectrum in the middle), 

besides the other two bands at 1600 and 1585 cm
-1

. All of these bands are attributed to two 

internal SYN enol modes, which split into four modes in the crystal (see Table 1 for mode 

description).  

 

Fig 6 Comparison of Raman spectra of annealed polycrystalline acetylacetone at 85 K (spectrum at the top), at 

10 K (middle spectrum), and with the spectrum of matrix-isolated acetylacetone at 10 K (spectrum at the 

bottom) (1500−1800 cm-1). Bands in the crystal belong to SYN enol, except a very weak band at 1683 cm-1 

observed at 10 K and attributed to TS2 enol. 
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Luminescence in Polycrystalline Acetylacetone. Luminescence bands are reported to appear 

together with Raman spectra of organic solutions
45

 in supraconductors
46

 and conjugated 

polymers.
47

 Usually, vibrational spectroscopists attribute the term luminescence to bands which 

appear in Raman spectra at different wavenumbers when different laser lines are used for 

excitation (their Raman shift varies) but are at the same absolute wavenumbers. Figure 7 shows 

the temperature-dependent Raman spectra of acac that were obtained when the green or blue 

laser line served as the excitation source. There are more bands when the blue line is used, and 

their band centers shift a little. 

 

Fig 7 Temperature-dependent Raman spectra of acetylacetone displaying strong broad luminescence bands 

corresponding to frozen relaxation from higher energy isomers (see text). The excitation wavelengths were 514.5 

nm (19436 cm-1) and 488 nm (20458 cm-1). 

In the literature,
27-34

 there are several studies reporting on the UV photoisomerization of 

acetylacetone and of experiments performed using infrared radiation for conversions of one 

matrix-trapped isomer into the other. Here, we report photoisomerization that is going on in the 

visible part of the spectrum when the sample is solid at low temperature. The fact that the acac is 
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solid at low temperature has two important consequences. First, if the sample is liquid, no 

absorption in the 2.2−2.5 eV interval can take place because the electronic states of molecules in 

liquid resemble those of free molecules, and in that energy interval, only the triplet T2 state is 

predicted to exist (or a series of triple states for different isomers).
8,29-31

 We also recorded some 

UV−vis absorbance spectra of liquid acac, and there were no absorption bands in the 450−550 

nm interval for liquid. Second, photons cannot be emitted if molecules make transitions from 

pure triplet states to the ground singlet state (spin zero); therefore, the electronic states to which 

acac molecules are excited and from which they decay into the ground state must have partial 

singlet character in the crystal. The broad bands that we report in Figure 7 (the laser line is green, 

514.5 nm, energy 2.41 eV) are not at the same wavenumbers as those which appear when the 

blue laser line (at 488.8 nm, energy 2.53 eV) is used. The assignment of the band centers given 

in Table 2 is approximate because we compared the position of the band centers with the 

predicted energy difference for each isomer Elaser − Eisomer.
8,10,30 

 

Table 2 Observed Broad Bands Underlying Low-Temperature Raman Spectra of Acetylacetone 

excitation λ0 = 514.5 nm ν 0 = 19436 cm
-1

 Excitation λ0 = 488.8 nm ν 0 = 20458 cm
-1

 

T 

(K) 

ν R 

(cm
-1

) 

ν 0 − ν R 

(cm
-1

) 

AcAc isomer giving origin 

to the band 

T 

(K) 

ν R 

(cm
-1

) 

ν 0 − ν R 

(cm
-1

) 

AcAc isomer giving origin 

to the band  

230  4635  14800  CTC,CTT  235  6208  14250  CCT  

  785  18650  TS1 enol + keto    3958  16500  CTC,CTT,TCC  

200  4435  15000  CTC,CTT    1458  19000  TS1 enol + keto  

  835  18600  TS1 enol + keto  215  6158  14300  CCT  

180  4200  15236  CTC,CTT    3958  16500  CTC,CTT,TCC  

  2735  16700  transition state    1490  18968  TS1 enol + keto  

  1035  18400  TS1 enol + keto  150  5758  14700  CCT  

150  4635  14800  CTC,CTT,TCC    4008  16450  CTC,CTT,TCC  

  985  18450  TS1 enol + keto    1458  19000  TS1 enol + keto  

90  4735  14700  CTC,CTT,TCC  100  5758  14700  CCT  

  1085  18350  TS1 enol + keto    4008  16450  CTC,CTT,TCC  

          1458  19000  TS1 enol + keto  

40  4735  14700  CTC,CTT,TCC  80  5758  14700  CCT  

  1035  18400  TS1 enol + keto    4008  16450  CTC,CTT,TCC  

          1558  18900  TS1 enol + keto  

10  4835  14600  CTC,CTT,TCC  50  5858  14600  CCT  

  1085  18350  TS1 enol + keto    4058  16400  CTC,CTT,TCC  

          1558  18900  TS1 enol + keto  

        10  5858  14600  CT  

          4058  16400  CTC,CTT,TCC  

          1558  18900  TS1 enol + keto 
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Discussion 

Among systems displaying keto−enol tautomerism, such as 1-hydroxyanthraquinone
48

 or 2-(2‘-

hydroxyphenyl)benzoxazole,
49

 enol and keto singlet and triplet states are close in energy, and 

upon excitation, a number of relaxation pathways are possible. A similar situation is found in 

acetylacetone, whose excited electronic states were studied by Chen et al.,
8
 Nakanishi et al.,

27
 

Coussan et al.,
28

 Nagashima et al.,
30

 and Upadhyaya et al.,
31

 among others. The strong UV band 

appearing at 266 nm in the absorption spectra corresponds to the S0 → S2 transition. The S2 state 

decays into lower S1, T2, and T1 states, which decay further into ground states of different acac 

isomers.
27-34

 The notation used to describe the isomers consists of three capital letters CCC, 

CTC, an so forth. The first letter refers to the conformation with respect to rotation around the 

carbon−carbon single bond in the ring, the second letter describes conformation with respect to 

rotation around the double carbon bond, and the third letter refers to conformation with respect to 

rotation around the carbon−hydroxyl oxygen bond. Absorption selection rules for photons forbid 

singlet-to-triplet transitions, but it is known that, in the solid state, the excited states are not pure 

singlet or triplet states.
47

 Figure 8 shows an energy level diagram depicting data from Matanović 

and Došlić,
10

 Nagashima et al.,
30

 and Chen et al.
8
 In the interest of clarity, not all transition triplet 

states listed in ref 8 are shown. One can see that, in the region of our green laser excitation 

(19436 cm 
-1

), the enol triplet state of the free acac molecule E(T1) is predicted at 19845 cm
-1

,
8
 

while around the energy of the blue argon ion laser line (20458 cm
-1

), three states are predicted at 

20405, (CTT(T1)), 20440 (CCT(T1)), and 20545 cm
-1

 (TCC(T1)).
8
 Because electronic states in 

the solid have bandwidths on the order of 1600 cm
-1

,
50

 these states are all accessible with our 

laser excitation. In Table 2, we give the tentative assignment of the broad bands observed in 

polycrystalline acac shown in Figure 7. Three isomers have their energy approximately 

4000−5000 cm
-1

 above the ground state of the CCC isomer. They are CTC, CTT, and TCC 

isomers, and the bands that correspond to them occur in the 14200−14800 cm
-1

 interval when the 

green laser line is used (514.5 nm) and in the 16400−16600 cm
-1

 interval when the 488 nm 

excitation is used. The huge intensity difference observed in the case of the blue line is caused by 

a preresonance condition; the energy of the excited mixed singlet−triplet bands is dependent on 

temperature in such a manner that, at 215 K, the laser photons are closer in energy to the excited 

singlet/triplet band of the CTC, CTT, and TCC isomers. At 100 K and below, the excited 

singlet/triplet states of the keto isomer and TS1 enol are closer to the energy of incoming 

photons. Upon excitation, molecules relax to the ground isomer states, whose populations reflect 

this. 
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Fig 8 Energy level diagram of acetylacetone ground and excited states based on predicted values for TS1 and 

TS2,10 E(T1), TCC(T1), CCT(T1), and CTT(T1)8 and the rest from ref 30. Not all states are shown; please see 

references mentioned for a more complete list. 

In matrix-isolation experiments, no luminescence bands were observed because of the weak 

interactions between molecules. In polycrystalline solid, on the other hand, the intermolecular 

interaction caused changes in the nature of the excited electronic states of acac from the pure 

triplet to mixtures of singlet and triplet states. 

Conclusion 

Light-scattering experiments on acetylacetone at low temperatures display a number of strong 

broad bands appearing beneath the Raman spectra of the solid. These results are interpreted as 

transitions from molecules excited to higher states to various isomers in the ground electronic 

state. Laser photons of energies 19436 and 20458 cm
-1

 excite acac in the region where a number 

of excited triplet states are predicted for the free acetylacetone molecule. Since singlet-to-triplet 

photon absorption transitions are forbidden, we conclude that states existing in solid acac have 

mixed singlet/triplet character. Their decay results in population of different isomer states, which 

are not vibrationally resolved, except for the lowest isomers, SYN enol, the TS2 transition state, 

and the keto form, which can be detected in solid Raman spectra.  
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The molecular conformation of matrix-isolated acetylacetone is dominantly SYN enol. 

Nevertheless, bands corresponding to the enol conformer, with symmetrically placed methyl 

groups (TS2 enol), are also observed. 
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