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Abstract 

Diabetes mellitus succeeded by diabetic cataract was induced to experimental animals (Wistar 

rats) by applying an Alloxan injection. Eye properties deterioration were monitored from clinical 

standpoint and using Raman and infrared spectroscopies. All cases of developed cataract were 

followed by important changes in vibrational spectra, but Raman spectroscopy proved to be more 

useful because of larger number of resolved bands. Each kth Raman spectrum of diseased lens 

(in our notation k denotes disease age and cataract degree as described in chapter Alloxan 

diabetes) can be expressed as a sum of the Raman spectrum of healthy lens, IR, multiplied by a 

suitable constant ck, and the fluorescent background spectrum, IFB. We introduce the ratio of 

integrated intensities IFB and ck*IR as a physical parameter called fluorescent background index 

FFB. It turns out that FFB grows as cataract progresses and has its maximum at approx. 4, whence 

it decreases. FFB values are larger for 200–1800 cm
−1

 spectral interval than for 2500–4000 cm
−1

 

interval. 

In the same manner another quantity called water band index FW is defined for each Raman 

spectrum of diseased lens in the 2800–3730 cm
−1

 interval. It is the ratio of the integrated 

intensity from 3100 to 3730 cm
−1

 (water band interval) divided by the integrated intensity of the 

2800–3100 cm
−1

 interval (C–H stretching region). FW increases monotonously with cataract 

progression with maximum at the end of monitored period (5 months). 

These two indices helped us to formulate a model describing disease development from the 

earliest molecular changes to its macroscopic manifestation. As glucose and other small 

saccharide molecules enter the lens tissue, they bind to crystallin and other proteins via O- and S-

glycosidic linkages which occur probably at tyrosine and cystein sites. In Raman spectrum this 

corresponds to broad bands at 540 and 1100 cm
−1

 which grow together with the fluorescent 

background, because both contributions originate in nonenzimatically glycated proteins. The 

maximum of possible binding ends after approximately 4 months (cataract degree 4), but the 

water continues to enter the tissue and resides in water agglomerates. 

The lens impairing caused by fluorescent light scattering on aberrant glycoproteins and other 

fluorescent centers appears first and is usually associated with the ageing cataract, while 

deterioration of lens properties caused by increased binding of water steadily rises with glucose 
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and is characteristic of diabetic cataract. This interpretation is in agreement with electron 

microscopy results of other groups and with our preliminary findings obtained with light 

microscopy. 

Keywords 

Diabetes; Eye-lens; Cataract; Raman spectroscopy 

1. Introduction 

The majority of reported cataracts fall in the category of senile cataract (85%) [1]. Among other 

severe causes influencing lens opacity such as drugs, irradiation by UV or ionized light, 

traumatic injuries, inflammation diseases and others, diabetes is certainly among the widely 

spread. 

Diabetes is commonly occurring malady causing the number of diseased to increase in each 

succeeding generation by about 3%, with retinopathy as the most frequent specific complication. 

At the time of diagnosis less than 5% of patients have retinopathy. After 10 years of manifest 

diabetes the prevalence to retinopathy intensifies to 40–50% and, after 20 years more than 90% 

of patients have some retinal abnormality. In many of them the natural course of events is 

accelerated by poor control of rather permanent hyperglycaemia, and often serious secondary 

complications. 

It is well known that unique optical properties of the eye lens strongly depend on packing 

arrangements of fibrous proteins called crystallins, which provide optically homogeneous 

structural layers less than 20 nm apart [1]. These fibres are encapsuled by a layer of epithaxial 

cells from the anterior side, perpendicularly to the optical axis of the lens, and contain a bunch of 

embrionic fibres at the lens center [2]. Thus in every lens the central part is the oldest one, and 

the youngest fibres are at the periphery (cortex). Lens contains no blood capillaries, and the 

metabolism in such tissues is conducted via direct membrane contacts [3]. Specific nature of 

these contacts in lens is not known, but they take up as much as 50–60% of membrane surface 

compared to only 3–4% in other tissues [1]. Recent research focused on the role intermediate 

filament proteins (in particular CP49 protein) play in formation and maintenance of lens skeleton 

[4]. 

Vibrational spectroscopies, Raman and infrared, have been extensively used in biology and 

medicine as analytic and diagnostic tools from their early beginnings [5], [6], [7] and [8]. Rapid 

computerisation and the discovery of laser accelerated the number of these studies reported in 

books and conference proceedings [9], [10] and [11]. The application of vibrational 

spectroscopies in the eye research focused mainly of the lens and cornea. Pioneer work from 
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early 1970s [12], [13], [14] and [15] broadened and intensified and presently encompasses even 

very specialized topics such as artificial lenses [16] or organ cultured cornea [17]. 

Biochemical markers of early eye lens changes characterizing diabetic microangiopathy and 

progressive development of cataract are not completely understood. The presence of aldose 

reductase and the accumulation of sorbitol in the lens of diabetic animals have been observed for 

a long time [18]. It has been shown that many of the lens changes stem from osmolarity effect 

caused by sorbitol and galactose [19]. On the other hand the function of sorbitol in diabetic 

complications of different tissues was proved insignificant by further investigation [20]. 

The current hypothesis of diabetic cataract formation considers it to be a consequence of non-

enzymatic glycosylation of lens proteins [21], [22], [23] and [24]. Formation of Schiff's bases 

between glucose and amino groups of proteins was recognised [25] and an Amadori 

rearrangement to a more stable ketoamino structure was noticed [26]. 

In this study we have investigated development of diabetic cataract in the rat lens with Raman 

and infrared spectroscopy during 5 months. The degree of cataract formation of each rat lens was 

determined by observation of progressive damage of iris blood vessels. 

2. Research design and methods 

2.1. Alloxan diabetes, catarct development 

Adult male Wistar rats, 2 months of age, weighting 190–230 g, were housed in cages with food 

and water ad libitum, in temperature controlled room (22 °C) with 12-h light–dark cycle. 

Diabetes was induced by single injection of alloxan (75 mg/kg b/w) into the tail vein. After 2 

days, glycosuria was detected by urinary glucose strips. Blood samples were withdrawn from the 

tail vein and the level of glucose was determined by glucose oxidase technique. Animals were 

sacrificed in regular time intervals one month apart, until their ‘natural’ death at the age of 5 

months. 

After 10 years of experience [27] we briefly classify alterations observed for diabetic cataratous 

eyes as follows: 

Degree 0. Healthy eye, transparent lens. 

Degree 1. Typical blood vessels dilatation and calibration, transparent lens. 

Degree 2. Dilatation and/or caliber irregularities. Deterioration of lens tranparency. 

Degree 3. Atrophy of the iris blood vessels up to 1/3. Cataract around 1/3 of the lens. 

Degree 4. Atrophy of the iris blood vessels up tp 2/3. Cataract more than 2/3. 

Degree 5. Atrophy of the iris blood vessels more than 2/3. Milk-white lens. 
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According to the above given classification, the cataract degree corresponds rather well with the 

cataract duration measured in months. 

2.2. Lens/sample preparation 

Immediately after the extraction under the low-magnification stereo microscope each pair of the 

rat lenses was subjected to vibrational spectroscopic study. For Raman spectroscopy one lens 

globe of every pair was immersed in a rectangular quartz cell with phosphate buffer saline 

(PBS). Inner dimension of the used cell was slightly smaller than the lens diameter securing a 

tight contact between cell walls and the lens globe. The contribution of the water conservant 

(PBS used here) to the Raman scattering from the sample was thus quite negligible. The other 

lens of each pair was pressed with KBr to form a pellet for transmission FTIR spectroscopy. 

Because of high lens tissue toughness, a very thorough milling, several pressings and dilutions 

were needed. Although special attention was paid to maintenance of reproducibility, the infrared 

results were not very reliable from hydration point of view. We used them only for monitoring 

purpose. 

2.3. Raman spectroscopy 

Preliminary Raman measurements have shown the advantage of backscattering as compared with 

90° geometry, particularly for highly developed cataractous samples. Therefore all spectra were 

recorded in backscattering, focusing the laser beam across the lens globe centre in order to 

exclude inhomogeneity/directional influence [28]. Since biological material is sensitive to laser 

irradiation, total beam power at the place of the sample was 100 or 200 mW, chosen as a 

compromise of signal enhancement and minimization of sample degradation. For the excitation 

COHERENT argon ion laser model INNOVA 100-15 operating at 514.5 nm in light-stabilizing 

mode was used. Spectra were recorded by computerized triple monochromator DILOR model 

Z24, incorporating a new Peltier-cooled (C31034-A02 RCA/BURLE) photomultiplier. 

Additional improvement of S/N ratio was obtained taking four scans over the 200–1800 and 

2500–4000 cm
−1

 spectral regions, with 4 cm
−1

 resolution, 1 cm
−1

 data interval (step size) and 

accumulation time of 1 s per data point. Because of daily spectral calibration, wavenumbers are 

correct within 1 cm
−1

. 

2.4. Spectra treatment 

Raman vibrational spectra were recorded using original software purchased together with 

described spectrometer. Another commercial software was used for data and background 

substraction, transmittance→absorbance conversion, and for total and partial integration of 

vibrational bands. 

Two Raman spectra recorded for 200–1800 and 2500–4000 cm
−1

 spectral intervals together with 

infrared spectrum obtained for 400–4000 cm
−1

 are displayed in Fig. 1. These all refer to a healthy 
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rat lens and represent a comparison of efficiency and complementarities of both vibrational 

spectroscopic methods. Although spectra were recorded under equivalent resolution 

circumstances, it is obvious that vibrational bands are much better resolved in Raman spectra. 

Also, in the middle of the stretching region of water molecule (roughly between 3100 and 

3700 cm
−1

) infrared spectral feature is approaching total absorption. Bearing in mind destruction 

of biological tissue introduced here by KBr pellet preparation technique, it is obvious that this 

method is not very suitable for the investigation of the fine water balance in the eye lens. 

 

Fig 1 Comparison of infrared (upper curve) and Raman (lower curve) spectra of a healthy rat lens that are 

used as reference, internal standard in this work. The left ordinate scale in thousands of counts per second 

relates to parts of Raman spectrum, and the right ordinate scale in percentage of transmittance relates to 

infrared spectrum. 

3. Results 

3.1. Disease Progression 

Glucose concentration in all rats with developed alloxan diabetes was higher than 15 mmol/l 

(Fig. 2b), although some individual differences were observed. Together with continuous weight 

loss (Fig. 2a) other common disease characteristics like polydipsia, polyuria, glycosuria (>5%) 

and periodical ketonuria were present. In the case of healthy, control animals glycosuria and 

ketonuria were never observed, and blood glucose was below 5.5 mmol/l (Fig. 2b) during the 

whole experiment. 
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Fig 2 Body weight (a) and blood glucose (b) as a function of time (in months) for healthy and diabetic 

rats during the experimental period. 

3.2. Main spectral characteristics 

Positions of all vibrational bands observed for clear, healthy rat lens using Raman and infrared 

spectroscopy are given in first two columns of Table 1. Together with wavenumbers the shortest 

description of spectral peculiarities is added for each band. Two spectroscopies give results, 

which agree rather well, considering widths of infrared bands. In the third column, that includes 

a tentative assignment of observed bands, we try to compromise our consideration with opinions 

of other research groups (for some spectral regions not perfectly in accord, see for example Refs. 

[9], [10], [11] and [29]. 
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Table 1 Wavenumbers (in cm
−1

) of Raman and infrared observed bands of a healthy rat lens with a tentative 

assignment and short description of band profiles 

Raman Infrared Assignment 

3630 

w,sh  

 

Superposition of ν(OH) vibration of water molecule with 

stretching vibration of other hydrogen bonded fragments 

 
3500 s,br 

3430 

m,br   

3280 

m,br 
3285 vs,br 

 

3210 

w,sh 
3210 m,sh 

 

3065 m 3065 m,br 
ν(CH), 

aromatic  

2975 

m,sh 
2963 m 

ν(CH), 

aliphatic  

2933 vs 2932 m 
ν(CH), 

aliphatic  

2877 

m,sh 
2875 w 

ν(CH), 

aliphatic  

2768 vw 
 

 

Overtone and combination region 

2726 vw 
  

2578 vw 
 

ν(SH), protein 

sulfhydryl 

groups 
 

1670 s 1655 vs,br 
ν(C O), 

amide I  

1616 m 
 

Trp, Tyr, Phe 
 

1604 m 
 

Trp, Tyr, Phe 
 

1585 w 
 

Trp, Tyr, Phe, 

Pro  

1577 w 
 

Trp, Tyr, Phe 
 

1549 m 1536 vs,br Amide II 
 

1446 s 1451 m δ(CH2) 
 

1400 w 1398 m δ(CH3) 
 

1361 

w,sh  

δ(CH3), Trp, 

indole ring  

1341 s 1343 vw γ(CH3, CH2) 
 

1315 

w,sh 
1313 w Amide III 

 

1238 s 1240 m Amide III 
 

1208 s 
 

ν(CC), Tyr and 
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Raman Infrared Assignment 

Phe 

1175 w 1174 vw ν(CC), Tyr 
 

1155 w 1157 vw ν(CC) skeletal 
 

1125 w 1126 vw ν(CC) skeletal 
 

1085 

w,br 
1082 w,br ν(CC) skeletal 

 

1031 m 
 

ν(CC) 

aromatic, 

skeletal 
 

1003 vs 
 

ν(CC) aromatic 
 

937 w,br 930 vw,br 
ν(CC), δ(OH) 

carboxylic  

878 m 875 vw 
ρ(CH2) Trp, 

Hypro  

854 m 856 vw,sh 
β(CCH) Tyr, 

Pro  

830 m 832 vw 
δ(CCH) 

aliphatic, Tyr  

758 m 745 w 
ρ(CH2) Trp, 

amide IV  

643 m 
 

Tyr (side 

chain), ν(CS), 

amide V 
 

622 m 
 

Phe (side 

chain) ν(CS), 

amide V 
 

 
 

Multiplet structure; stretchings of CS, SS and SC fragments in different 

environments, amide VI 

v, very; w, weak; m, medium; s, strong; br, broad; sh, shoulder; ν, stretching; β, in plane bending; ρ, rocking; 

γ, wagging; δ, deformation; Phe, phenylalanine; Tyr, tyrosine; Trp, tryptophan; Pro, proline; Hypro, 

hydroxyproline. 

The main water band region between 3100 and 3700 cm
−1

 was investigated in a number of 

studies, sometimes using polarization analysis. Two important bands of comparable intensity are 

always observed together with two shoulders. It is well known that strong band at lower 

frequency side changes it intensity depending on the concentration of dissolved matter. This 

effect, observed for both inorganic and organic water solutions [30], [31] and [32] is explained in 

terms of Fermi resonance and in the same context will be considered later here. Spectral interval 

2500–3100 cm
−1

 includes aromatic and aliphatic C–H stretching, stretching of protein sulfhydril 

groups and few very weak combination bands. 
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Below 1700 cm
−1

 there are many vibrational modes whose assignment is not straightforward. 

Most prominent amid bands (I and II) are easily recognised while assignment of other 

characteristic amide bands (for example amide III) is less certain. The overlap of different 

assignments of vibrational bands characterizing different molecular subgroups is particularly 

pronounced for skeletal side chain, amide side chain and disulphide–amide pairs. 

After the preliminary vibrational spectroscopic investigation of a healthy rat lens, summarized in 

Fig. 1 and Table 1, cataractous cases were studied in ascending order of deterioration degree. 

Fig. 3 and Fig. 4 illustrate important spectral changes for the degree of cataract denoted +2, 4 and 

5. Lower degrees of cataract, between 0 and +2, gave so similar spectra that no changes were 

identified even with spectra differentiation. Once the cataract degree approaches +2, several new 

characteristics are noticeable. The first one, the signal to noise ratio deterioration, is a direct 

consequence of the loss of lens transparency and is observed for the whole spectral region. 

Another one is the increase of the background fluorescence whose level and spectral shape 

significantly change depending on cataract duration. Finally, it is important to notice the growth 

of relative intensity for three specific regions: 400–600, 1000–1200, and 3100–3700 cm
−1

 (Fig. 

3 and Fig. 4). To quantify these changes, two indices were introduced that characterize diseased 

lenses from spectroscopic point of view. 

 

Fig 3 Raman spectra of cataractous rat lens (200–1800 cm
−1

). The cataract degree is shown in 

parenthesis. 



Furić, K., Mohaček-Grošev, V., Hadžija, M. (2005), ''Development of cataract caused by diabetes 

mellitus: Raman study'' Journal of Molecular Structure, Vol. 744-747, pp. 169-177. 

 

Fig 4 Raman spectra of cataractous rat lens (2500–4000 cm
−1

). The cataract degree is shown in 

parenthesis. 

3.3. Fluorescence-background index (FFB) 

A spectral record for the kth cataract degree, more precisely the intensity distribution versus 

wavenumbers (in counts/data point/accumulation time) is denoted here as Ik(ν¯). The spectrum 

of the healthy lens (k=0 in our notation) possesses the lowest background fluorescence level (we 

would say zero) and naturally is used as a reference spectrum. Spectra of cataractous lenses are 

characterized by higher fluorescence-background level. Therefore, the spectrum of diseased lens 

Ik(ν¯) (where k≠0) can be easily resolved in two contributions 

(1) 

 

using some software suitable for one-dimensional treatment. The upper term describes pure 

Raman contribution (healthy lens) to the total scattering intensity and lower term can be assigned 

to background-fluorescence contribution. To put it another way, when the constant ck
 is properly 

chosen, pure Raman scattering contribution is minimised (suppressed) in the diseased lens 

spectrum. Fig. 5 shows an example of such spectral treatment for the cataract degree equal to 3. 

We introduce the fluorescence-background index 
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(2) 

 

as the ratio of two integral values. It is in fact the integral value of fluorescence-background 

contribution normalised by integral value of Raman contribution, both over the same A–B 

spectral interval. In Fig. 5 FB contribution (numerator in the FFB definition) is equal to the area 

below lower (b) spectrum and Raman contribution (denominator in the FFB definition) is equal to 

the area between two (a and b) spectra. In this study two A–B intervals were analyzed (200–1800 

and 2500–4000 cm
−1

); results for both are displayed in Table 2 and Fig. 6. 

 

Fig 5 Determination of background-fluorescence index (FFB). Upper (a) spectrum is the original record 
obtained on lens having the third degree of cataract. Lower (b) spectrum is the background-fluorescence 

leftover after best suppression of the Raman spectrum of healthy lens has been achieved. 
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Table 2 Fluorescence background index FFB and water band index FW determined using Raman spectroscopy 

for rat lenses with different degree of cataractous degradation (definitions are given in the text) 

Cataract degree 

(k=month) 

Fluorescence background index (FFB) for 

interval 
Water band index 

(FW) 
200–

1800 cm−1 
2500–4000 cm−1 

0 0 0 1 

1 0.10 −0.02 1.00 

−2 0.07 0.05 1.05 

2 a a a 

+2 0.07 0.07 1.08 

3 0.83 0.84 1.28 

4 6.58 2.80 1.68 

5 3.47 1.70 2.16 

 

a These values were not determined during the main course of the experiment due to a sudden failure of the 

Raman instrument. After the instrument reparation the sample [2] deteriorated completely, and the 

experiment was repeated with new samples (see the results for cataract degrees (−2) and (+2); 1 week 

before and one after the second month). 
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Fig 6 Dependence of background-fluorescence index (FFB) on the degree of cataract changes. Two 

curves obtained over different spectral intervals possess the same general behaviour. 

3.4. Water band index FW 

In an attempt to improve understanding of fine water balance, probably one of the crucial 

properties of the living tissue, the O–H stretching region was carefully studied. As a second 

measure of cataract changes we introduce water band index 

(3) 

 

where A, B, C integration limits border a water band O–H region (BC=3100–3700 cm
−1

) and a 

protein C–H region (AB=2800–3100 cm
−1

) as shown by Fig. 7. It is necessary now to frame a 

background problem. The simplest approach would be integration above AB and BC straight 

lines, but it leaves important triangular (ABC) area not attributed. Without highly sophisticated 

tools needed for spectral resolving of many broad and close bands, we solved the problem by 

integrating both intervals AB and BC above the common AC straight line. In this way triangular 

background area was spread in approximately 2:1 ratio favorizing O–H against C–H 

contribution. These two simple methods give for the same spectral record numerically different 

results. However, general feature of FW dependence on cataract degree is the same for both 

cases, and the second approach was chosen for further discussion. To simplify mutual 

comparison, results obtained for all cataractous cases were normalised to the healthy lens value, 

as displayed in Table 2 and Fig. 8. 



Furić, K., Mohaček-Grošev, V., Hadžija, M. (2005), ''Development of cataract caused by diabetes 

mellitus: Raman study'' Journal of Molecular Structure, Vol. 744-747, pp. 169-177. 

 

Fig 7 Determination of water band index (FW). Points A, B and C important for partial integration are taken 
at 2800, 3100 and 3730 cm

−1
. Higher frequency (BC) interval covers water molecule stretching region, lower 

frequency (AB) interval is assigned to protein C–H stretching region. 

 

Fig 8 Dependence of water band index (FW) on the degree of cataract changes. 
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4. Discussion 

Studying laboratory induced (experimental) diabetes provides many opportunities for 

development and investigation of secondary complications. Non-enzymatic glycosylation of lens 

proteins is involved in cataractogenesis and other diabetic complications [21], [22], [23], 

[24] and [33]. Besides glucose some other compounds (fructose, fructose-3-phosphate, glucose-

6-phosphate, glucosamine, ribose) participate in this process [34] and [35], and efforts have been 

made to evaluate the modification done to lens proteins by glycation-induced crosslinking [24]. 

Here we try to elucidate the mechanism underlying cataract development by finding correlations 

between spectral changes in diseased lenses and protein sites most prone to glycosylation. 

According to their molecular mass, crystallins in the lens are labeled α (Mr=750,000–

1,200,000 g/mol), β (Mr≈180 000 g/mol) and γ (Mr≈20,000 g/mol) crystallins [36]. The majority 

of those present (45%) are α crystallins which act as chaperons, that is, they prevent aggregation 

of smaller crystallins above 30 °C [37]. For some crystallins the X ray structure is determined, 

such as for calf γ II crystallin [38]. This protein has two domains with large amount of sulfhydryl 

groups and no disulfide bonds in the native state [39]. Fourier transform infrared spectroscopy 

confirmed the majority of secondary structure in lens proteins to be in the form of β pleated 

sheet, which gives origin to the strong 1670 cm
−1

 infrared amide I band [40]. Scanning electron 

microscopy of human lenses belonging to various age groups was employed for better 

understanding of tertiary and quaternary structure of protein fibers and membrane layers as well 

[2]. Raman microscopic study, also done on human lenses, concentrated on distribution of 

tyrosine and tryptophane amino acids in different sections of the lens [41]. What happens during 

cataract progression? 

Our two integrated intensity ratios that were defined (background-fluorescence index and water 

band index) both have small value at the beginning of disease, until the cataract degree equal to 2 

is approached (approx. 2 months later). A sudden increase in all indices is then observed, as 

shown in Fig. 6 and Fig. 8 and Table 2, followed by a common steady increase until the cataract 

degree equals 4. After that point the water band index continues its exponential-like increase, but 

the background-fluorescence index drops. At the first glance this is an embarrassing controversy, 

but once the diabetic cataractous process is understood, a simple explanation seems plausible. 

We give here a model describing the main course of the studied disease. During very early stage 

of cataract, hydrated molecules of glucose start to stick to protein sheet, forming glycosidic 

bonds at certain locations. The most probable targets would be molecular groups which are 

known to bind to sugars in glycoproteins and proteoglycans-if O-glycosidic linkage is to be 

formed, than an O–H group such as in tyrosine is likely candidate, and for lens proteins abundant 

in reactive sulfhydryl groups it is possible that S-glycosidic linkages take place [42]. A strong 

Raman band at 1100 cm
−1

 corresponds to freshly formed C–O bonds, while C–S bonds have 

their counterpart in the broad band at 540 cm
−1

 which gains on intensity as the disease progresses 
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(Fig. 4). These products of Maillard reaction also act as fluorophors, giving rise to fluorescence 

which completely screens out Raman signal in later stages of cataract. 

Each glucose molecule binds water, so the amount of water chelated to glycated protein 

increases. Since crystallin is among the most durable proteins in living beings, it seems likely 

that water agglomerates in pockets between fibers without protein breaking. This would explain 

why it is possible to decompose each Raman spectrum of diseased lens into a ‘healthy’ spectrum 

and fluorescent background contribution. These water agglomerates contribute to 3100–

3700 cm
−1

 spectral interval more and more (Fig. 3) as the cataract progresses and the water band 

index rises sharply (Fig. 8). The accumulation of water takes place in the cortex first, that is in 

the part most distant from the lens nucleus, and in the part in which cells are youngest and still 

dividing. Earlier electron microscopy findings of other groups together with our preliminary 

results obtained using light microscopy also support the model proposed. 

5. Conclusion 

Raman spectroscopy has been employed in the study of healthy and cataractous rat lenses. The 

cataract was the result of progressive diabetes mellitus caused by an alloxan injection in rats tail 

vein. From spectral changes observed during 5 months of disease follow-up, we conclude that 

agglomeration of water to small sugar molecules which bind to crystallin fibers and possibly 

other proteins is the main cause of diabetic cataract. Raman spectroscopic investigation 

presented in this work can be resumed by simplified model within them three different 

mechanisms has been resolved (Fig. 9). Inside of the cataractous lens there are completely 

transparent parts of the healthy tissue where light rays follow simple Snell's rule of diffraction 

contributing to the sharp image in the focal plane (annotated as regular in the same figure). Some 

of the rays, passing the lens, scatter on the fluorescent centers changing the own wavelength and 

the direction (lower trace in the same figure). The third mechanism (the lowest ray in Fig. 9) is 

also scattering process but this one develops on water agglomerates possessing an index of 

refraction very similar to those of crystallin. In this case the light rays change their direction but 

not the color. Of course, the second and the third mechanism deteriorate a sharp view (which is 

characteristic of a healthy lens), but not on the equal footing. Our early but not proved 

experience says that the fluorescence centers are more responsible for an aged cataract, while 

water agglomerates contribute dominantly to the diabetic cataract. It is highly probable that both 

processes are present in all cases. 
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Fig 9 Light refraction and light scattering inside of the eye lens. Three different mechanisms are resolved 

using Raman spectroscopy. 
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