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ABSTRACT 

Genes of the p53 family are known to be critical regulators of the cell cycle. They have already 

been established as possible biomarkers. Elaborate regulation mechanisms result in numerous 

cDNA and protein isoforms being expressed from each gene of the p53 family. Their similarity 

caused an often misleading nomenclature in non-vertebrate species. The aim of the present work 

is a clarification of the nomenclature of molluscan p53 family sequences, an essential 

prerequisite for reliable interpretation of gene expression and protein function studies. Here, we 

report five partial cDNA and one partial genomic p63 sequences, all originating from two 

Mytilus galloprovincialis individuals. DNA, deduced protein sequences, and the exon/intron 

architecture were analyzed and compared to p53, p63 and p73 sequences from other organisms. 

Along with our sequences, we analyzed all similar molluscan sequences found in the GenBank 

database. The analysis showed our cDNA sequences code for the TAp63γ isoform of the p63 

protein, and identified all other molluscan p53 family sequences as p63 genes or their expression 

isoforms. Our results also indicate p63 as the ancestral gene of the p53 family as well as the only 

gene of the family present in non-chordate metazoan species. 

 

Keywords: mollusca, mytilus, nomenclature, p53, p63, p73, phylogeny, sequence 

 

1. INTRODUCTION 

 

Some 80% of all marine pollution comes from land-based activities (web page: UNEP, United 

Nations Environment Programme) with many pollutants being deposited in estuaries and coastal 

waters. Common blue mussels (Mytilus sp.) are sessile, filter feeding marine organisms with a 

worldwide coastal water distribution. They are well recognized as bioindicators for the 

assessment of anthropogenic stress in marine environments (Gosling, 1992). Because of its 

central role in the molecular networks that decide the fate of cellular life and death, the p53 

protein has been termed a key regulator of cell fate (Oren, 2003). Expression and activity of p53 

in mammalian systems are increased in response to DNA damage, and functional p53 serves as 

a transcription factor for genes associated with cell cycle arrest and apoptosis, thus preventing 

the proliferation of aberrant cells (Vogelstein et al., 2000). About a decade ago it was discovered 

that p53 is not an orphan but belongs to a family of similar proteins (Kaghad et al., 1997; Yang 

et al., 1998). The family consists of three genes: p53, p63 and p73; with p63 being postulated as 

the ancestral gene (Yang et al., 2002). Protein isoforms expressed from any of the three genes 

are numerous (Levrero et al., 2000) and their regulation elaborate (Strano et al., 2001). Their 
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overlapping and distinct functions as well as many regulation mechanisms have been 

continuously discovered since (Murray-Zmijewski et al., 2006; Halaby & Yang, 2007). 

As the expression and activity of p53 family genes and proteins are sensitive in response to 

genotoxic conditions, they are currently being investigated in order to develop potential 

biomarkers for genotoxic stress in bivalves (Muttray et al., 2005; Ciocan & Rotchell, 2005; St 

Jean et al., 2005; Dondero et al., 2006; Farcy et al., 2008; Banni et al., 2009). The identification 

of p53 family genes and different isoforms of their products is the first step towards their 

potential use as biomarkers. 

Due to the similarity of p53 family genes and a high number of their alternative products, the 

naming of newly discovered sequences should be done very carefully. This is especially because 

the nomenclature of invertebrate members of the p53 family has already been noted as often 

being misleading and/or confusing (Goodson et al., 2006; Muttray et al., 2008) and the 

possibility of experimental mistakes as well as misleading BLAST results have also been 

discussed regarding molluscan p53 family sequences (Muttray & Baldwin, 2007; Rotchell & 

Ciocan, 2007). Our work aims to identify the origin and the number of genes in the p53 family 

in mollusks, thus clarifying the nomenclature, which is of vital importance for reliable 

interpretation of their expression and function. 

 

2. MATERIAL AND METHODS 

 

2.1. Animals, cDNA and genomic DNA preparation 

Blue mussels of the species Mytilus galloprovincialis were collected in October 2005 directly 

from their natural habitat at the banks in front of the Center for Marine Research in Rovinj 

(Latitude: 45° 5' N, Longitude: 13° 38' E), Adriatic sea, Croatia. 15mg of mussel gills tissue of 

one individual was snap-frozen and ground in liquid nitrogen; total RNA was promptly isolated 

using RNeasy Protect Kit (Qiagen #74124) according to manufacturer instructions. The RNA 

was eluted in 40µl of elution buffer. 10µl of total RNA (estimated to 1µg) was transcribed into 

cDNA in a reaction volume of 50µl using High Capacity cDNA Archive Kit and protocol 

(Applied Biosystems #4322171). 

To extract the DNA, 50mg gill tissue of the same individual was snap-frozen and ground in 

liquid nitrogen. Genomic DNA was extracted using DNeasy Kit (Qiagen #28704) according to 

manufacturer instructions. 
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A second individual, grown for commercial purposes, obtained from mariculture in Limski 

kanal (Latitude: 45° 8' N, Longitude: 13° 41' E), was processed in the same way as described 

above. 

 

2.2. Cloning of M. galloprovincialis p63 partial genomic and cDNA sequences 

The applied PCR and sequencing strategies are presented in Fig. 1. Primers P1F + P1R were 

used to amplify clone 1 (EU697598) and clone 2 (EU697599) cDNA sequences; P1F + P2R for 

clone 3 (EU697600) and clone 4 (EU697601); and P2F + P2R for clone 5 (GQ231488). PCR 

reactions contained 1.25U of Taq DNA Polymerase (Fermentas, #EP0404) in 1X Taq Buffer 

with KCl, 0.2mM dNTPs (Fermentas, #R0242), 2mM MgCl2, 2µl of M. galloprovincialis 

cDNA and 0.3µM primers in a reaction volume of 50µl. The reactions were overlayed with 

20µl of mineral oil. Thermal cycling conditions: initial denaturation 90 s at 95ºC; 40 cycles of 

30 s at 95ºC, 30 s at 60ºC, 1 min (for the expected 0.65kb product - cDNA clones 1 and 2) and 2 

min (for the expected 1.5kb - cDNA clone 5 and 2kb - cDNA clones 3 and 4) at 72ºC; final 

extension 10 min at 72ºC. PCR products of expected sizes were excised from a preparative 

agarose gel and purified using MinElute Gel Extraction Kit and protocol (Qiagen #28604). 

Purified PCR products were cloned using TOPO TA Cloning Kit and protocol (Invitrogen Life 

Technologies #45-0641). Plasmids were isolated using NucleoSpin Plasmid Isolation Kit 

(Macherey Nagel #740588; the kit was more than 15 years old but still found to work well).  

To amplify the M. galloprovincialis p63 partial genomic sequence (GenBank accession no. 

EU697602) primers P2F and P2R were used in a PCR reaction containing 50ng of genomic 

DNA as a template. Reaction conditions were the same as above except for primer extension 

time increased to 4 min. A single 4kb PCR band was obtained and subsequently cloned as 

described previously. All sequencing was performed through the sequencing service of 

Macrogen Inc., Republic of Korea. 

Primer sequences: T7 Promoter 5'-TAATACGACTCACTATAGGG-3'; M13R-pUC(-40) 5'-

CAGGAAACAGCTATGAC-3'; P1F 5'-TTTCAACTACATGCACACCATCAG-3'; P2F 5'-

TACGTCAGAATGGCAACTACTTG-3'; P1R 5'-CTTTCATTGAGCTCTTTAGATGTG-3'; 

P2R 5'-CTTTCATTGAGCTCTTTAGATGTG-3'; S1F 5'-

GCCAGAGTGTTCTAATTCCACAT-3'; S2F 5'-GCTCTCCCACCATGCAAACA-3'; S3F 5'-

TCTGTGTAGACTGAGGGATTC-3'; S4F 5'-CGACCAGGAATCAAATCAAGAAC-3';  S1R 

5'-TATCCTCAATGTTCCTGAACCAAT; 

S2R 5'-GAACAAATGAATGTATGACCTTA-3'. Primers P2F and P1R were designed using a 

p53-like partial genomic sequence from Mytilus galloprovincialis (AJ966664) and located in 
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coding regions. Primers P1F and P2R were designed from the alignments (Clustal X; 

Thompson et al., 1997) of p53-like cDNA sequences from Mytilus edulis (AY579472) and 

Mytilus trossulus (AY611471). 

 

2.3. Phylogenetic analysis 

The GenBank nucleotide sequence database (Benson et al., 2007) was screened for p53 family 

sequences from mollusca and from selected animal model organisms. The sequences were 

analysed using ClustalX ver. 1.83 (Thompson et al., 1997; Jeanmougin et al., 1998). To avoid 

biases caused by comparing different expression isoforms, only the most conserved central 

region (present in all p53 family isoforms) was used for phylogenetic analysis. The 

phylogenetic tree was corrected for multiple substitutions and only the gap-free columns were 

used. The results were presented with GeneDoc ver. 2.7.000 (Nicholas et al., 1997) and 

TreeView ver. 1.6.6 (Page, 1996). Colour codes, as used by default setting of GeneDoc, applied 

for colouring of physicochemical properties of aligned aminoacids, were as follows: blue font 

on red background = proline, green on red = glycine, blue on yellow = tiny aminoacids, green 

on yellow = small, red on blue = positive, blue on grey = aromatic, green on blue = negative, 

white on blue = charged, red on green = amphoteric, black on green = polar, red on grey = 

aliphatic and white on black = hydrophobic. Shown coloured on IUB codes for single 

aminoacids: ACDEFGHIKLMNPQRSTVWY. 

 

3. RESULTS AND DISCUSSION 

 

3.1. cDNA sequences 

Five partial cDNA sequences originating from two M. galloprovincialis individuals were 

sequenced (Fig. 1). None of those sequences contains the 5' untranslated region (UTR), the start 

of the coding sequence (CDS), or the end of the 3'UTR. cDNA clones 1 and 2 contain the 5' 

fraction of the CDS, clones 3 and 4 contain the majority of the CDS as well as the majority of 

the 3'UTR and clone 5 contains the 3' fraction of the CDS and the majority of the 3'UTR. 

Lengths of the sequences are 649 nucleotides (nt) for clones 1 and 2, 2014 nt for clone 3, 2005 

nt for clone 4, and 1522 nt for clone 5. Clones 3 and 4 each code for 428 amino acids in a single 

open reading frame (ORF). 

Having in mind possible PCR and sequencing mistakes, some sequence differences between 

different plasmid clones can be expected. On the other hand, differences can also originate from 

different alleles of the same gene. Table 1 shows the distribution of differences within the CDSs 
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of cDNA clones from Fig.1, when compared to a consensus of the same 5 clones. Sequences 

introduced by PCR primers were not considered for the analysis. The distribution of differences 

is highly biased towards affecting the third base of codons, which is not in accordance with the 

assumption that PCR and sequencing mistakes are random (at least regarding the base position 

within codons), but is in excellent accordance with the degeneracy of the genetic code. We 

therefore believe most of the differences did not originate in experimental procedures but reflect 

differences in allelic variants of the p63 gene, especially the clone 1 cDNA which incorporates 

18 differences, 16 of which are silent and affect third bases of codons. Nevertheless, due to such 

a low number of independent plasmid clones, we cannot rule out the nucleic acids manipulation 

mistakes, and this aspect of our results can therefore only be regarded as preliminary. According 

to BLAST results, our sequences show the highest similarity to Mep53like (GenBank accession 

no. AY579472) and Mtp53like (GenBank accession no. AY611471) - sequences used to design 

the screening PCR primers P1F and P2R. 

Apart from our sequences (GenBank accession no. EU697598, EU697599, EU697600, 

EU697601, EU697602 and GQ231488), screening for p53 family sequences in the GenBank 

nucleotide sequence database detected a total of 16 additional p53 family sequences named as 

Mytilus (edulis, trossulus or galloprovincialis). MegaBLAST (Altschul et al., 1990) analysis of 

our sequences retrieved 15 (out of 16) Mytilus p53 family sequences. The only sequence not 

being detected was the sequence with GenBank accession no. AY705932 (Mytilus edulis p53 

mRNA), suggesting a different origin of this particular sequence compared to all other Mytilus 

sequences. A more detailed analysis revealed that this sequence contained an invert repetition of 

27 nucleotides; one copy of which is situated at one end whereas the inverted copy is situated at 

the other end of the sequence. The 27 invert-repeated nucleotides match the sequence of the 

primer used in a direct RACE strategy to screen for M. edulis p53 (Ciocan & Rotchell, 2005). 

BlastN (Altschul et al., 1990) showed 81% identity (at the nucleotide level) to Barbus barbus 

p53 sequence (GenBank accession no. AF071570), whereas the end of the “M. edulis” sequence 

(i.e. the inverted primer sequence) showed no homology at all. Furthermore, the B. barbus p53 

sequence is considerably more similar to M. edulis (AY705932) than to Danio rerio 

(NM_131327), which is highly unusual, as the two fish species are very close relatives both 

belonging to the Cyprinidae family. We therefore believe the sequence named as M. edulis p53 

(AY705932) is a p53 sequence but originates from some cyprinid fish, and not from M. edulis. 

 

3.2. Other molluscan p53 family sequences 
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We further retrieved all publicly available molluscan p53 family sequences both by keyword 

and similarity searches. Except for three genomic (Mytilus galloprovincialis p53-like - 

AJ966664, Mya arenaria p53 homolog - U45238 and Mya arenaria p63/73 and p53 gene, 

FJ041332), all publicly available molluscan p53 family sequences are cDNA sequences. 

No redundant protein sequences were selected through preliminary alignments. A schematic 

representation of aligned selected protein sequences is presented in Fig. 2, together with referent 

human p53 family sequences. 

The central region of all p53 family sequences codes for the DNA binding domains and is very 

similar in all members of the family (Murray-Zmijewski et al., 2006). Within the phylum of 

mollusks, all the sequences originating from the same species have an identical or almost 

identical central region (differing in up to a few single nucleotide differences in almost 1kb of 

DNA sequence). Except for the above mentioned sequence named as Mytilus edulis p53 

(AY705932), all other molluscan sequences can, according to the alignment in Fig. 2, be divided 

into three regions: the N-terminal region with at least two alternative forms, the central part 

which is conserved in all the sequences and the C-terminal region again with at least two 

alternative forms. As already discussed by other authors (Goodson et al., 2006), this suggests we 

here deal with alternative sequences originating from the same gene, which is not surprising 

given that all p53 family genes are able to express alternative products (Murray-Zmijewski et 

al., 2006). 

Protein alignments showed all the domains, motifs and conserved residues already discussed by 

other authors (Kelley et al., 2001; Jessen-Eller et al., 2002; Cox et al., 2003; Muttray et al., 

2005; Goodson et al., 2006; Muttray et al., 2007). 

The facts that drew our attention were: 

- The size of the shorter N-terminal fragment (ΔN) in M. edulis and M. trossulus (13 

deduced amino acids which are identical in all four ΔNp63/p73 sequences; GenBank 

accession no. DQ865151, DQ865153, DQ060436 and DQ060438) is more similar to the 

ΔN fragment of human p63 than to p73 (Fig. 3). 

- The shorter C-terminal fragments (shown in red in Fig. 2) can be compared to the 

translation of human exon 10’ expressed in gamma forms of p63 proteins. The sizes as 

well as physicochemical properties are here less conserved but the similarity is still 

evident (Fig. 4). Alternatively, the short molluscan C-terminal fragments can also be 

aligned to the end of human p53 protein (like in figure 1 of Muttray et al. 2005), showing 

considerable similarity to the NLS III region. Although possible, such an alignment is 

probably accidental as it is not supported by the structure of alternative molluscan cDNA 
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sequences, some of them coding for ΔN isoforms (absent from p53 genes), and all of 

their longer C-terminal forms coding for SAM domains (see the following paragraph), 

also absent from p53 products. Finally, the genomic structures of M. galloprovincialis 

and M. arenaria genes are also against p53 as the gene of choice (chapters 3.3. and 3.4.; 

Figs 6, 7 and 8). 

- Comparison of longer C-terminal fragments of molluscan proteins with human p63 and 

p73 α and β C-terminal sequences clearly shows the presence of Sterile Alpha Motifs 

(SAM) in molluscan sequences (Fig. 5). The presence of the SAM in the longer C-

terminal molluscan proteins suggests them as alpha protein isoforms. 

The only sequence not being in accordance with our conclusions is the Euprymna scolopes 

p63(47) (DQ247973) whose deduced 37aa “short” C-terminal fragment, instead of being similar 

to other “short” molluscan C-terminal fragments, is actually identical to the start of the C-

terminal fragment of the longer E.scolopes sequence p63(62) (DQ247974). This sequence was 

taken as less reliable for being deposited without the stop codon and the following 3’UTR, so 

the possibility of a nonsense mutation (causing a premature stop codon) or a DNA/RNA 

manipulation mistake was not ruled out. 

 

3.3. Mytilus galloprovincialis genomic sequence EU697602 

Genomic structures of vertebrate p63 and p73 genes are very similar to one another. Both genes 

code for two 3’UTRs, having the distal 3’UTR situated at the very end. One distinct structural 

difference regards the position of the other (proximal) 3’UTR which is, in p63 genes situated at 

the end of exon 10’, and in p73 genes at the end of exon 13 (Murray-Zmijewski et al., 2006; see 

H. sapiens p63 and p73 in Fig. 6). As a consequence, the region between exon 10 (the last exon 

of the conserved central region present in all p53 family proteins) and the exon containing the 

proximal 3’UTR, contains just one intron (intron 10) in p63 genes, whereas in p73 genes it 

contains three introns (introns 10, 11 and 12) and two exons (exons 11 and 12). The exon/intron 

structure of this genomic region (Fig. 6) could be used to differentiate between p63 and p73 

genes. 

To identify whether our sequences originate from p63 or p73 genes, we cloned and sequenced a 

partial genomic sequence starting within the conserved central region present in all molluscan 

sequences (see “OLIGO+NLS” in Fig. 2) and ending within the 3’UTR of the short 3’ version of 

Mytilus cDNAs (hypothesized as the proximal 3’UTR). The obtained sequence is presented in 

Fig. 7. 
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The partial M. galloprovincialis genomic sequence (Figs 6 and 7) shows no additional exons 

between the conserved exon 10 and the exon containing the 3’UTR. 

Except for two missing introns (corresponding to introns 6 and 9 in all three human p53 family 

genes), the organization of our genomic sequence is the same as in mammal p63 genes. Such 

genomic organization is in accordance with the conclusion that our M. galloprovincialis 

sequences code for p63 proteins. 

 

3.4. Mya arenaria genomic sequence FJ041332 

Recently, a genomic sequence named “Mya arenaria p63/p73 and p53 genes” (FJ041332) was 

published through the NCBI nucleotide database. As the corresponding publication was not 

found we only analysed structural features of this gene relating to our conclusions. The gene 

structure (Fig. 6) can be revealed by aligning it to M. arenaria cDNA sequences AF253323 and 

AF253324. The only exon not revealed in such an alignment is the exon corresponding to 

human exon 3’, the first exon of the ΔN protein isoform. The coding fraction of this exon can be 

predicted by performing a blastn search (against a non-redundant NCBI nucleotide database) 

using the M. arenaria genomic region between exons corresponding to human exons 3 and 4 (nt. 

1722 – 6046 of FJ041332) as a query. Blast results show a very high similarity to M. edulis and 

M. trossulus ΔN fragments (the first 39 nucleotides of sequences DQ865151, DQ865153, 

DQ060436 and DQ060438; Fig. 8) suggesting it’s presence also in M. arenaria. 

Although the conservation of intron positions can be used as a phylogenetic marker, especially 

for short evolutionary distances (Venkatesh et al. 1999), current knowledge about introns 

doesn’t make them a reliable phylogenetic marker (Rogozin et al. 2005). Our opinion is that the 

main problem in aligning intron positions is their dependence on the degree of aminoacid 

sequence conservation. The exact alignment of intron positions is especially unreliable in 

regions of low aminoacid sequence conservation, for it is possible that some intron did not move 

but this cannot be determined because the surrounding sequence is not conserved. On the other 

hand, intron phases are easy to identify and are independent of most mutations which give rise 

to functional homologous genes. Intron phases have already been noted as an evolutionary 

conserved property if the intron remains present in the gene (Gilbert et al 1997). The structural 

alignment, as presented in Fig. 6 is strongly backed up by intron phases, which are the same for 

all corresponding introns in all the sequences in Fig. 6, with the only exception being a M. 

arenaria intron which corresponds to human intron 11 (phase 0 in M. arenaria compared to 

phase 1 in human p63 and p73). 
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The main structural difference of M. arenaria compared to human p53 family genes is evident 

in the central region of the gene (containing exons homologous to human exons 4-9) where three 

introns are absent (corresponding to human introns 4, 6 and 8), whereas two additional introns 

are present within the region corresponding to human exon 4. The last part of the gene shows 

positions very similar, or identical to human genes, allowing the possibility of alternative 

excision of the SAM region (Figs 5 and 6). 

Structure of the 5’end (i.e. the first two exons) of M. arenaria gene looks more like human p73 

than like p63 (Fig. 6). We aniway do not think this defines it as a p73 gene because the 

TAp63/p73-like sequences from M. edulis and M. trossulus (ABI23723 and AAZ05997) have 

shown a considerable extension of the 5’ side of the ORF, thus being in favour to p63 (i.e. 

giving a reason to expect the first intron in Mytilus species within the ORF). It is also intriguing 

that human p73 and M. arenaria genomic sequences, if translated from the start codon and 

within the same ORF but towards their 5’ sides, both show the same “phase” (phase 2) of their 

5’UTR intron, corresponding to the first human p63 intron (also phase 2). Thus, it is possible 

that p73 and, independently, the M. arenaria gene have, in the course of evolution, “lost” the 

first part of their ORF while still retaining the intron in this region. 

Fig. 6 also shows some structural difference between M. arenaria and M. galloprovincialis gene 

fragments (i.e. the region where the two genes overlap) being the lack of a different intron. The 

missing M. arenaria intron corresponds to human intron 8 while the missing M. 

galloprovincialis intron corresponds to human intron 9. 

Summarised all together, the overall structure of the Mya arenaria gene is most similar to 

human p63, which is supporting the conclusion that all M. arenaria p53-family sequences code 

for p63 proteins. 

 

3.5. P53 family genes in non-vertebrate genomes 

Using blastp and tblastn (Altschul et al., 1990) we retrieved p53-similar sequences from 

Drosophila melanogaster (BT001357.1; Arthropoda), Tribolium castaneum (XP_968867; 

Arthropoda), Ciona intestinalis (NP_001071796 and BAE06626.1; Tunicata) and 

Strongylocentrotus purpuratus (XP_001196748.1; Deuterostomia), model organisms all with 

completely sequenced or highly covered (≥8X) genome assemblies (web page: NCBI, 

Eukaryotic Genome Sequencing Projects). During our searches of the Ensembl database 

(Hubbard et al., 2007) a gene named CEP-1 (WBGene00000467, web page: WormBase), 

annotated as Caenorhabditis elegans P-53-like was found. As already noted in the literature, 

standard similarity methods fail to reveal this well documented C. elegans gene, functionally 
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similar to human p53 (Derry et al., 2001; Arum & Johnson, 2007; Der Ou et al., 2007). We 

performed blastp on C. elegans Ab initio protein database and tblastn on RefSeq genomic C. 

elegans database and found no similarity with our M. galloprovincialis or S. purpuratus p63 

sequence. 

The sequences of the above mentioned model organisms contain only one p53-similar locus per 

haploid genome, except for C. intestinalis - the representative of the most primitive chordates, 

which contains two. 

The number of p53-similar sequences per haploid genome in different model organisms 

suggests only one ancestral gene of the p53 family persisting in non-chordate branches. 

Tunicates, as the most primitive chordates, were found to contain two p53-similar loci and only 

vertebrates are evident to contain three p53 family genes. 

 

3.6. Phylogenetic analysis 

To avoid possible misleading results due to different origin (caused by alternative expression 

and/or splicing), all the sequences were truncated and only the most conserved central region 

was used for the analysis. Due to its divergence, the C. elegans cep-1 sequence was not used at 

all. Aligned protein sequences used for phylogenetic analysis are presented in Fig. 9. 

The phylogenetic tree (Fig. 10) shows an unexpected result regarding the positions of model 

organisms S. purpuratus (echinoderm) and C. intestinalis (tunicate). Both deuterostomes, they 

are not expected to be more distant from vertebrates than molluscs are (Maddison & Schulz, 

2007). We believe this could be the result of different degrees of divergence in p53 family 

gene(s) in different animal phyla, which is probably due to different evolutionary rates (Gamulin 

et al., 2000). This is in accordance with the fact that some animals have p53-like genes diverged 

at a degree not detectable by standard similarity methods (Derry et al., 2001). 

Nevertheless, it is evident that all vertebrate genes are grouped together in a separate branch 

with no exception. The branching point of p53 genes can be seen earlier than the split of p63 and 

p73. Furthermore, all animal model organisms (analyzed by us) up to and including the 

echinoderm S. purpuratus contain one p53-similar gene per haploid genome, the tunicate C. 

intestinalis contains two (which, according to the tree, probably duplicated after the split of 

tunicates from the common ancestor) and vertebrates contain three genes. The appearance of the 

tree together with the number of p53-similar genes in model genomes suggests the radiation of 

the ancestral p63 to three members of the p53 family only in the vertebrate lineage. This is in 

accordance with the results of other authors (Yang et al., 2002). 
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As a summary of our conclusions, we present a list of molluscan sequences with our suggestions 

to what they actually code for (Table 2). 
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Figure 1: PCR and sequencing strategy. cDNA sequences and exons are marked with bold lines, 

introns and the ruler are thin. Primers are indicated with arrowheads and named P for PCR, S for 

sequencing, F for forward and R for reverse. Each sequence was obtained by sequencing of one 

plasmid clone. The clones originate from two different M. galloprovincialis individuals, as 

indicated on the right hand side of the figure. cDNA clones 1 (EU697598) and 2 (EU697599) 

were amplified using P1F and P1R primers, clones 3 (EU697600) and 4 (EU697601) using P1F 

and P2R and clone 5 (GQ231488) using P2F and P2R. The genomic clone 1 (EU697602) was 

amplified using P2F and P2R. All clones were sequenced using vector-specific primers T7 

Promoter and M13R-pUC(-40). Additionally,  cDNA clones 3 and 4 were sequenced using P2F, 

P1R, S2F and S1R; clone 5 using S2F and S1R; and the genomic clone 1 using S1F, S2F, S3F, 

S4F, S1R and S2R. 
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Table 1: Distribution of differences within the CDSs of single cDNA clones when compared to a 
consensus composed of all five clones together.  
 

distribution of differences CDSs of 
cDNA clones 

size 
(nt) total missense silent 1. base 2. base 3. base 

clone 1 (EU697598) 601 18 2 16 1 1 16 
clone 2 (EU697599) 601 2 0 2 0 0 2 
clone 3 (EU697600) 1262 7 1 6 2 0 5 
clone 4 (EU697601) 1262 5 1 4 0 1 4 
clone 5 (GQ231488) 778 5 0 5 0 0 5 
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Figure 2: Schematic representation of protein sequences coded by molluscan p53 family genes 

compared to human referent p53 family sequences (the four sequences at the bottom). The 

proteins are presented in three fragments, whose lengths (in aminoacids) are numerically 

indicated (above each fragment). The fragments show a unique central region conserved in all 

p53 family sequences and two alternative N-terminal as well as C-terminal regions. The shorter 

alternative terminal regions are shown in red. P53 sequences are shown in blue. Bold are 

indicated: TA = transactivating domain; DBD II-V = DNA binding domains II-V; OLIGO + 

NLS = oligomerization domain and nuclear localization signal; SAM = sterile alpha motif. The 

star (*) indicates the p53 sequence named as M. edulis which, as elaborated in the chapter 3.1., 

most probably originates from some cyprinid fish. Sequence names (left hand side of the figure) 

are abbreviated species and gene names followed by GenBank accession numbers. 

 

Mep6373l ABI23723 
Mtp6373l AAZ05997 

Mtp53l AAT72302 
Mep53l AAT72301 

Mep53* AAW47933 

Lfp53short AAA98564 

Esp6362 AAB77690 
Esp6347 AAB77689 

Ssp120 
AAL99584 

Ssp6373alpha AAQ55112 
Ssp6373beta AAQ55113 

Htp73l CAL36910 
Map73l AAF67734 

Cgp53l CAJ85664 

Map53l AAF67733 

Crp53l AAR17059 
MtDNp6373lalt AAZ05998 
MtDNp6373l ABI23726 
MeDNp6373lalt AAZ05996 
MeDNp6373l ABI23724 

135 

135 

76 

76 

327 

327 

327 

327 

161 

31 

31 

195 

193 

327 

327 193 

195 13 

13 

161 

329 76 29 

331 82 30 

331 82 208 

80 331 203 

71 331 194 

75 331 185 

74 320 172 

74 320 37 

71 321 26 

Lfp53 AAA98563 71 321 172 

Mgp63clone3 ACD76067 
Mgp63clone4 ACD76068 

70 

70 

327 

327 

31 

31 

HsTAp63α AAH39815 

HsΔNp63γ AAC62634 

Hsp73α NP_005418 

Hsp53wt NP_000537 393 

108 342 230 

342 

62 337 237 

37 14 

Mgp53l ABA03133 

Mgp53lgen CAI84997 

160 

108 

TA 
OLIGO 
+NLS SAM 

DBD 
II-V 

* 



 18 

 

Humanp73ΔN       : MLYVGDPAR-HLA- : 12 
Humanp63ΔN       : MLYLENNAQTQFSE : 14 
Mytilusp63/p73ΔN : MIKFERTGFTTYR- : 13 
 
Figure 3: Comparison of physicochemical properties of human p63 and p73 ΔN fragments to 

ΔN fragments of mytilus p63/p73-like proteins (deduced from M. edulis and M. trossulus cDNA 

sequences DQ865151, DQ865153, DQ060436 and DQ060438, which are all 100% identical in 

this region). Mytilus fragments are more similar to human p63 than to p73. Coloring of 

physicochemical properties was done by default setting of Genedoc; a detailed legenda is 

provided in chapter 2.3. 
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                        *        20         *             
Map53l       : WLTNVLAKEGKSRLIKKKHRPGK---IIRHPLK---- : 30 
Cgp53l       : WLSVVLARESKNKLMKRKTKPGK---VIKRPA----- : 29 
Mytilus      : WLSMILARENKNKLMKKVKRPQHRP-GIKSRT----- : 31 
Lfp53        : WLSDNYNIPDTSTGAETTQDADP------PPL----- : 26 
Hsp63exon10’ : LLSACFRNELVEPRRETPKQSDVFFRHSKPPNRSVYP : 37 
 

Figure 4: Comparison of the translation of human p63 exon 10’ (expressed in gamma forms of 

human p63 proteins) with the ends of short C-terminal forms of molluscan proteins (shown in 

red in Fig. 2). Mytilus = any of the four short C-terminal Mytilus sequences ACD76067, 

ACD76068, AAT72301 or AAT72302. The fragments are similar in size and a substantial 

portion of residues share their physicochemical properties at conserved positions. Coloring of 

physicochemical properties was done by default setting of Genedoc; a detailed legenda is 

provided in chapter 2.3. 
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Esp6362      : PKCEPNENTIAQWLTKLGLQAYIDNFQQKGLHNMFQLDEFTLEDLQSMRIGTGHRNKIWKSLLDYRRVLSTG : 523 
Lfp53        : TKCEPTENTIAQWLTKLGLQAYIDNFQQKGLHNMFQLDEFTLEDLQSMRIGTGHRNKIWKSLLDYRRLLSSG : 521 
Map73l       : N--DMQDNSVSTWLNALGLGAYIDGFHEQNLYSLLQLDDFSLDDLAKMKIGNSHRNKIWKSLLELRNQGFTT : 555 
Ssp6373alpha : ENGEMTDISVAAWLNHLGLGAYIDSFHEHNLFSVIQLDDFSLDDLAKMKIGNAHRNKIWKSVLELRNEGLTA : 523 
Mep6373l     : N----GDHSISNWLTTLGLSAYIDNFHQQNLFTMEQLDDFTVEDLQKMRIGTSHRNKIWKALVEFHSESITI : 592 
Htp73l       : NGQTLVDNSVASWLTSIGLSAYIDNFHEKNFLNMFQLDEFSLEDLSAMKIGTSHRNKIWKSLVEYKQANAYT : 551 
HsTAp63alpha : PPPYPTDCSIVSFLARLGCSSCLDYFTTQGLTTIYQIEHYSMDDLASLKIPEQFRHAIWKGILDHRQLHEFS : 611 
HsTAp73alpha : PPPYHADPSLVSFLTGLGCPNCIEYFTSQGLQSIYHLQNLTIEDLGALKIPEQYRMTIWRGLQDLKQGHDYS : 555 

                        
Figure 5: Comparison of human and molluscan Sterile Alpha Motifs (SAMs). SAMs have been 

found in all “longer” forms of molluscan p63 proteins. The exon omitted in β forms of human 

p63 and p73 proteins is indicated under the alignment. The alignment shows the presence of 

complete SAM motifs indicating the aligned molluscan sequences as α protein isoforms. 

β 



 21 

 
 
Figure 6: Schematic alignment of human p53 family genes, Mya arenaria p63/p73 and p53 
genes sequence (Ma FJ041332) and Mytilus galloprovincialis p63 partial genomic sequence 
(Mg EU697602). Exons are represented with boxes (white boxes for coding regions and black 
for untranslated regions. Horizontal lines represent introns. Transactivating domains (TA), DNA 
binding domains II-V (DBD II-V), oligomerisation domains and nuclear localization signals 
(OLIGO+NLS) and sterile alpha motifs (SAM) are boxed with dashed lines. The figure was 
constructed using the alignment in fig. 1 of Jessen-Eller et al. 2002, exon numbering from figs 1, 
2 and 3 in Murray-Zmijewski et al. 2006 and locating intron positions using Evidence viewer for 
human TP53, TP63 and TP73 genes (web page: NCBI, Homo sapiens (human) genome view). 
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exon - aligning to exon 5 of human p53, p63 and p73 

 Y  V  R  M  A  T  T  C  P  I  R  F  K  C  L  R  Q  P  P  Q  G  C  V     5 
TACGTCAGAATGGCAACTACTTGCCCAATCCGGTTTAAGTGTTTGAGACAGCCTCCACAAGGATGTGTTA 
I  R  A  M  P  I  F  M  K  P  E  H  V  Q  E  P  V  K  R  C  P  N  H  A   5 
TTCGTGCAATGCCAATATTCATGAAACCTGAACATGTCCAAGAACCTGTAAAAAGATGCCCAAATCATGC 
  T  S  K  E  H  N  E                                                    5 
CACATCTAAAGAGCACAATGAAAgtaagtagtt… phase 1 intron (like intron 5 in human p53, p63 and p73 
 

exon - aligning to exons 6 and 7 of human p53, p63 and p73 
            N  H  P  A  P  T  H  L  C  R  C  E  H  K  L  A  K  F  V  E  6/7 
 …tttcttttagATCATCCAGCTCCAACACATTTATGTCGATGTGAGCACAAACTTGCTAAATTTGTTGA 

position of intron 6 (phase 0) in human p53, p63 and p73 
  

  D  P  Y  T  S  R  Q  S  V  L  I  P  H  E  I  P  Q  A  G  S  E  W  V   6/7 
AGATCCATATACCAGCCGCCAGAGTGTTCTAATTCCACATGAGATACCTCAAGCTGGCTCAGAATGGGTC 
 T  N  L  F  Q  F  M  C  L  G  S  C  V  G  G  P  N  R  R  P  I  Q  I    6/7 
ACCAATTTGTTCCAGTTCATGTGCCTGGGGTCATGTGTAGGAGGACCAAACAGAAGGCCTATTCAGATTG 
V  L  T  L  E  K  D                                                     6/7 
TTCTGACTTTAGAAAAAGAgtaagtttaagg… phase 2 intron (like intron 7 in human p53, p63 and p73) 
 

exon - aligning to exon 8 of human p53, p63 and p73 
              N  Q  V  L  G  R  R  A  V  E  V  R  I  C  A  C  P  G  R    8 
 …tatttttcagTAATCAAGTGCTAGGTAGACGGGCAGTAGAAGTTAGAATTTGTGCCTGTCCTGGGAGA 
 D  R  K  A  D  E  K  A  A  L  P  P  C  K  Q  S  P  K  K                 8 
GACAGAAAGGCTGATGAGAAGGCAGCTCTCCCACCATGTAAACAGTCCCCAAAGAAAGgtaaacaata... 
phase 1 intron (like intron 8 in human p53, p63 and p73) 
 

exon - aligning to exons 9 and 10 of human p53, p63 and p73 
            G  Q  K  V  N  I  I  N  E  I  T  T  V  T  P  G  G  K  K  R  9/10 
 …ctcatttaagGCCAGAAAGTTAATATTATCAATGAAATCACTACAGTAACACCAGGAGGCAAAAAGAG 

position of intron 9 (phase 0) in human p53, p63 and p73 
  

  K  A  E  D  E  P  F  T  L  S  V  R  G  R  E  N  Y  E  I  L  C  R  L   9/10 
GAAAGCAGAAGACGAACCATTCACATTATCTGTACGAGGACGAGAAAACTACGAAATTCTGTGTAGACTG 

▼ 
 R  D  S  L  E  L  S  S  M  V  P  Q  N  Q  I  D  V  Y  K  Q  K  Q  L    9/10 
AGGGATTCATTGGAACTGTCATCCATGGTTCCCCAGAATCAAATAGATGTATACAAACAGAAACAACTTG 
D  T  N  R  Q                                                           9/10 
ATACAAACAGACAgtaagtaatc… phase 2 intron (like intron 10 in human p53, p63 and p73) 
 

exon - similar to exon 10’ of human p63 (see Fig. 4) 
              W  L  S  M  I  L  A  R  E  N  K  N  K  L  M  K  K  V  K   10’ 
 …ctaattgcagGTGGCTGTCGATGATACTGGCCAGGGAGAACAAAAACAAACTGATGAAGAAGGTGAAA 
 R  P  Q  H  R  P  G  I  K  S  R  T                                     10’ 
CGACCTCAACATCGACCAGGAATCAAATCAAGAACTTGAAGAGAGAAGT… 3’UTR 
 

3’UTR   …TATTTCTTTAATGTGATATGTCTTTGAAATGTGCT… 3’UTR 
 

Figure 7: Partial genomic sequence of M. galloprovincialis p63 gene. The GT-AG intron 

borders as well as the Stop codon are shown in red. The sequence of the forward primer (P2F) 

and the complementary sequence of the reverse primer (P2R) are shown in blue. The first 

fragment of the sequence is coding and aligns to the majority of human exon 5, which is 

conserved in all three human genes (p53, p63 and p73). The following three exons correspond to 

human exons 6 and 7; exon 8; and exons 9 and 10; all present in all three human genes. The last 
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exon of this genomic fragment corresponds to exon 10’ of human p63 gene (see Fig. 4 and 

chapter 3.2. for explanation why this exon does not correspond to the last exon (exon 11) of p53 

genes). The phases of all introns present in this genomic fragment are the same like the phases 

of the corresponding human introns in all three human p53 family genes. Positions of lacking 

introns corresponding to human introns 6 and 9 (both phase 0) are marked with arrows (). The 

intron corresponding to human intron 6 is also missing from the M. arenaria gene (see Fig. 6 

and chapter 3.4.) Our sequence lacks the intron 9, present in M. arenaria as well as in all three 

human genes, being non-coding in M. arenaria and human p63 and p73, while coding for the 

alternative C-terminal ends of β and γ forms of human p53 products (exon 9’ in Fig. 6). Exon 10 

codes for the oligomerization domain, the last domain conserved in all protein products of the 

human p53 family (except for the theoretical short protein coded by ΔN’p73 mRNA which is 

often overexpressed in tumors (Pützer et al, 2003)). Up to the point marked with an arrowhead 

(▼), all analysed sequences are highly conserved. The remainder is very divergent in human 

p53, not allowing the alignment of the position of the last p53 intron (intron 10). The sequence 

ends within the 3’UTR. The region between exons 9/10 and 10’ (the closest exon ending with a 

3’UTR) shows the presence of one intron (intron 10 which shows no BLASTX hits to the non 

redundant protein NCBI database), corresponding to the structure of human p63 gene. 
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Query  1850  atGATTAAGTTTGAGAGAACTGGCTTCACAACTTATAGG  1888 
             ||||| || |||||||||||||| || ||||| |||||| 
Sbjct  1     ATGATCAAATTTGAGAGAACTGGATTTACAACCTATAGG  39 
 

Figure 8: Conservation of the nucleotide sequence of the translated part of M. arenaria predicted 

exon 3' (Query; corresponding to nt. 3571-3609 of M. arenaria genomic sequence FJ041332) 

and the start of M. edulis and M. trossulus ΔNp63/p73-like protein mRNAs (Sbjct; sequences 

DQ865151, DQ865153, DQ060436 or DQ060438, which are all 100% identical in this region). 

The alignment shows 34/39 (87%) identity. Differences are all silent and affect third bases of 

codons thus leaving the 13 aminoacids 100% identical.  
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                      *        20         *        40         *        60              
Esp6362      : GDYQFEISFSQP-SKETKSTTWTYSEKLDKLYVRMATTCPVRFKTAHSPP-SGCQIRAMPIYMKPEH :  65 
Lfp53        : GEYVFEMSFAQP-SKETKSTTWTYSEKLDKLYVRMATTCPVRFKTARPPP-SGCQIRAMPIYMKPEH :  65 
Map73l       : GDYGFEISFATP-SKETKSTTWTYSDILKKLYVRMATTCPVRFKTLRQPP-PGCVIRSMPIFMKPEH :  65 
Ssp6373alpha : GDYGFEISFATP-SKETKSTTWTYSDMLKKLYVRMATTCPVRFKTNRQPP-AGCIIRSMPIFMKPEH :  65 
Mgp63clone3  : GDYGFTISFSQP-SKETKSTTWTYSESLKKLYVRMATTCPIRFKCLRQPP-QGCVIRAMPIFMKPEH :  65 
Htp73l       : GDFNFEISFAQP-SKETKSTTWTYSESLKKLYVRMATTCPVRFRAQRTPP-VGSIIRAMPIFMKPEH :  65 
Hsp63        : GPHSFDVSFQQ--SSTAKSATWTYSTELKKLYCQIAKTCPIQIKVMTPPP-QGAVIRAMPVYKKAEH :  64 
Ggp63        : GPHSFDVSFQQ--SSTAKSATWTYSTELKKLYCQIAKTCPIQIKVMTPPP-QGAVIRAMPVYKKAGH :  64 
Xlp63        : GPHSFDVSFQQ--SSTAKSATWTYSTDLKKLYCQIAKTCPIQIKVMTPPP-QGAVVRAMPVYKKAEH :  64 
Drp63        : GPHTFDVSFQQ--SSTAKSATWTYSTELKKLYCQIAKTCPIQIKVLTNPP-QGAVIRAMPVYKKAEH :  64 
Hsp73        : GPHHFEVTFQQ--SSTAKSATWTYSPLLKKLYCQIAKTCPIQIKVSTPPP-PGTAIRAMPVYKKAEH :  64 
Ggp73        : GPHHFEVTFQQ--SSTAKSATWTYSPLLKKLYCQIAKTCPIQIKVSSPPP-PGTIIRAMPVYKKAEH :  64 
Drp73        : GPHNFEVTFQQ--SSTAKSATWTYSPLLKKLYCQIAKTCPIQIKLASSPP-NGSVIRAMPIYKKAEH :  64 
Bbp73        : GPHNFEVTFQQ--SSTAKSATWTYSPLLKKLYCQIAKTCPIQIKLASSPP-NGSVIRAMPIYKKAEH :  64 
Hsp53        : GSYGFRLGFLH--SGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPP-PGTRVRAMAIYKQSQH :  64 
Ggp53        : GDFDFRVGFVE--AGTAKSVTCTYSPVLNKVYCRLAKPCPVQVRVGVAPP-PGSSLRAVAVYKKSEH :  64 
Drp53        : GDHGFRLRFPQ--SGTAKSVTCTYSPDLNKLFCQLAKTCPVQMVVDVAPP-QGSVVRATAIYKKSEH :  64 
Bbp53        : GEHGFKLGFPQ--SGTAKSVTCTYSSDLNKLFCQLAKTCPVQMVVNVAPP-QGSVIRATAIYKKSEH :  64 
Xlp53        : GKYGLQLDFQQ--NGTAKSVTCTYSPELNKLFCQLAKTCPLLVRVESPPP-RGSILRATAVYKKSEH :  64 
CiAscid      : GIYNFEINFGEKTESAPKSAPFTYSYSLQKLFVKMNENCPIKFRCSPQPP-SGCVIRAIPVFEKPNN :  66 
CiAscidI1    : GEWDFQINFGEATESAPKSAQYTYSPIINKLFVKMNVTCPIKFKCARPPP-NGCVVRVMPVFKRPEH :  66 
Spp63Echino  : GDYAFEINLGQPTSQAAKSVSWTYSPTLKKLFVDRDKPCPIQFKTTSAPP-PNCFIRVLPIFKQAEN :  66 
Tc73Insect   : GPFNFSVLISP----NEQKSPWEYSEKLNKIFIGINVKFPVAFSVQNRPQNLPLYIRATPVFCQTQH :  63 
DmInsect     : GGYCFSMVLDE-----PPKSLWMYSIPLNKLYIRMNKAFNVDVQFKSKMPIQPLNLRVFLCFSN--D :  60 
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Esp6362      : VQEVVKRCPNHAT-AKEHNE-KHPAPL-HIVRCEHK-LAKYNEDKYN----GRQSVLIPHEMP---- : 120 
Lfp53        : VQEVVKRCPNHAT-AKEHNE-KHPAPL-HIVRCEHK-LAKYHEDKYS----GRQSVLIPHEMP---- : 120 
Map73l       : VQEAVKRCPNHAT-SKEFNE-NHPAPN-HLVRCEHK-VSKYVEDPYT----NRQSVLIPQETP---- : 120 
Ssp6373alpha : VQEAVKRCPNHAT-SKEFNE-NHPAPN-HLVRCEHK-LAKYVEDPYT----SRQSVVIPQETP---- : 120 
Mgp63clone3  : VQEPVKRCPNHAT-SKEHNE-NHPAPT-HLCRCEHK-LAKFVEDPYT----SRQSVLIPHEIP---- : 120 
Htp73l       : VQEVVKRCPNHAT-SKGHNE-SHPAPT-HLVRCEHK-LARYHEDSYT----SRQSVIIPHEIP---- : 120 
Hsp63        : VTEVVKRCPNHEL-SREFNE-GQIAPPSHLIRVEGNSHAQYVEDPIT----GRQSVLVPYEPP---- : 121 
Ggp63        : VTEVVKRCPNHEL-SREFNE-GQIAPPSHLIRVEGNSHAQYVEDPIT----GRQSVLVPYEPP---- : 121 
Xlp63        : VTEVVKRCPNHEL-SREFNE-GQIAPPSHLIRVEGNNHAQYVEDPIT----GRQSVLVPYEPP---- : 121 
Drp63        : VTEVVKRCPNHEL-SREFND-GQIAPPSHLIRVEGNSHAQYVEDSIT----GRQSVLVPYEPP---- : 121 
Hsp73        : VTDVVKRCPNHEL-GRDFNE-GQSAPASHLIRVEGNNLSQYVDDPVT----GRQSVVVPYEPP---- : 121 
Ggp73        : VTEVVKRCPNHEL-GRDFND-GQSAPASHLIRVEGNNLSQYVDDPVT----GRQSVMVPYEPP---- : 121 
Drp73        : VTEVVKRCPNHKL-GRDFNE-SQTAPASHLIRVEGNNLCQYVDDPVT----GRQSVLVPYESP---- : 121 
Bbp73        : VTEVVKRCPNHEL-GRDFNE-SQTAPASHLIRVEGNNLSQYVDDPVT----GRQSALVPYEAP---- : 121 
Hsp53        : MTEVVRRCPHHER-CSD-SD-G-LAPPQHLIRVEGNLRVEYLDDRNT----FRHSVVVPYEPP---- : 119 
Ggp53        : VAEVVRRCPHHER-CGGGTD-G-LAPAQHLIRVEGNPQARYHDDETT----KRHSVVVPYEPP---- : 120 
Drp53        : VAEVVRRCPHHER-TPD-GD-N-LAPAGHLIRVEGNQRANYREDNIT----LRHSVFVPYEAP---- : 119 
Bbp53        : VAEVVRRCPHHER-TPD-GD-G-LAPAAHLIRVEGNSRALYREDDVN----SRHSVVVPYEVP---- : 119 
Xlp53        : VAEVVKRCPHHER-SVEPGE-D-AAPPSHLMRVEGNLQAYYMEDVNS----GRHSVCVPYEGP---- : 120 
CiAscid      : VTEIVTRCFNHRNECRTESS-DSNTPNSHLIRVESKSNN-IQYCLTHE---GRECVVVPYEPP---- : 124 
CiAscidI1    : VTDIVTRCPNHK--IPDQAQ--HIPHSQHLIRAEMPGENPAIYNVAMD---GRENVAVMFERP---- : 122 
Spp63Echino  : LAEVVSRCPNHVGSPQD-------YSKDHLVLCSDP-ATMYYTDLQS----ARHSLVVPYTVP---- : 117 
Tc73Insect   : FQDLVHRCVGHRH-PQDQSNKGVAPHIFQHIIRCSNDSALYFGDKNTG---ARLNIVLPLAHP---- : 122 
DmInsect     : VSAPVVRCQNHLS-VEPLTA-N-NAKMRESLLRSENPNSVYCGNAQGKGISERFSVVVPLNMSRSVT : 124 
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Esp6362      : QAGSEWVVNLYQFMCLGSC--VGGPNRRPIQLVFTLE-KDNQVLGRRAVEVRICACPGRDRKADE : 182 
Lfp53        : QAGSEWVVNLYQFMCLGSC--VGGPNRRPIQLVFTLE-KDNQVLGRRAVEVRICACPGRDRKADE : 182 
Map73l       : QAGSEWVTNLFQFMCLGSC--VGGPNRRPLQIVFTLE-KDNQVLGRRCVEVRICACPGRDRKADE : 182 
Ssp6373alpha : QAGSEWVTNLFQFMCLGSC--VGGPNRRPLQIVFTLE-KDNQVLGRRCVEVRICACPGRDRKGDE : 182 
Mgp63clone3  : QAGSEWVTNLFQFMCLGSC--VGGPNRRPIQIVLTLE-KDNQVLGRRAVEVRICACPGRDRKADE : 182 
Htp73l       : QAGSEWVTNLFQFMCLGSC--VGGPNRRPIQIVFTLE-HEGKVLGRRAVEVRICACPGRDRKADE : 182 
Hsp63        : QVGTEFTTVLYNFMCNSSC--VGGMNRRPILIIVTLETRDGQVLGRRCFEARICACPGRDRKADE : 184 
Ggp63        : QVGTEFTTVLYNFMCNSSC--VGGMNRRPILIIVTLETRDGQVLGRRCFEARICACPGRDRKADE : 184 
Xlp63        : QVGTEFTTVLYNFMCNSSC--VGGMNRRPILIIVTLETRDGQVLGRRCFEARICACPGRDRKADE : 184 
Drp63        : QVGTEFTTILYNFMCNSSC--VGGMNRRPILIIVTLETRDGQVLGRRCFEARICACPGRDRKADE : 184 
Hsp73        : QVGTEFTTILYNFMCNSSC--VGGMNRRPILIIITLEMRDGQVLGRRSFEGRICACPGRDRKADE : 184 
Ggp73        : QVGTEFTTILYNFMCNSSC--VGGMNRRPILIIITLETRDGQVLGRRSFEGRICACPGRDRKADE : 184 
Drp73        : QVGTEFTTILYNFMCNSSC--VGGMNRRPILIIITLETRDGQVLGRRSFEGRICACPGRDRKADE : 184 
Bbp73        : QVGTEFTTILYNFMCNSSC--VGGMNRRPILIIITLETRDGQVLGRRSFEGRICACPGRDRKADE : 184 
Hsp53        : EVGSDCTTIHYNYMCNSSC--MGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEE : 182 
Ggp53        : EVGSDCTTVLYNFMCNSSC--MGGMNRRPILTILTLEGPGGQLLGRRCFEVRVCACPGRDRKIEE : 183 
Drp53        : QLGAEWTTVLLNYMCNSSC--MGGMNRRPILTIITLETQEGQLLGRRSFEVRVCACPGRDRKTEE : 182 
Bbp53        : QLGSEFTTVLYNFMCNSSC--MGGMNRRPILTIISLETHDGQLLGRRSFEVRVCACPGRDRKTEE : 182 
Xlp53        : QVGTECTTVLYNYMCNSSC--MGGMNRRPILTIITLETPQGLLLGRRCFEVRVCACPGRDRRTEE : 183 
CiAscid      : HSGSEYMALLYRFMCLSSCRTETGINRRPLLTIFNLESETGELLGKRVVSTRICACPGRDRTQEE : 189 
CiAscidI1    : QIGAEYTTVLYKFMCLSSC--VGGINRRPLNAVFNLENAEGQVLGRRVVEVRVCSCPGRDRSQEE : 185 
Spp63Echino  : QVGTEFSKYLFTFKCFISC--VGGLNRRKIQLVFTLENETGSILGRQVLDVRVCACPGRDRKTEE : 180 
Tc73Insect   : QVGEDVVKEFFQFVCKNSCP--LGMNRRPIDVVFTLEDNKGEVFGRRLVGVRVCSCPKRDKDKEE : 185 
DmInsect     : RSGLTRQTLAFKFVCQNSC-----IGRKETSLVFCLEKACGDIVGQHVIHVKICTCPKRDRIQDE : 184 
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Figure 9: Aligned protein sequences used for phylogenetic analysis. Abbreviations and sequence 

accession numbers: Esp6362 (Euprymna scolopes) - ABB77690.1, Lfp53 (Loligo forbesi) - 

AAA98563.1, Map73l (Mya arenaria) - AAF67734.1, Ssp6373alpha (Spisula solidissima) - 

AAQ55112, Mgp63clone3 (Mytilus galloprovincialis) – ACD76067.1, Htp73l (Haliotis 
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tuberculata) - CAL36910.1, Hsp63 (Homo sapiens) - NP_003713.3, Ggp63 (Gallus gallus) - 

NP_989682.1, Xlp63 (Xenopus leavis) - NP_001079107.1, Drp63 (Danio rerio) - 

NP_694518.1, Hsp73 - NP_005418.1, Ggp73 - XP_417545.2, Drp73 - NP_899183.1, Bbp73 

(Barbus barbus) - AAD27752.1, Hsp53 - NP_000537.3, Ggp53 - NP_990595.1, Drp53 - 

NP_571402.1, Bbp53 - AAD34212.1, Xlp53 - NP_001081567.1, CiAscid (Ciona intestinalis) - 

NP_001071796, CiAscidI1 - BAE06626.1, Spp63Echino (Strongylocentrotus purpuratus) - 

XP_001196748.1, Tc73Insect (Tribolium castaneum) - XP_968867, DmInsect (Drosophila 

melanogaster) - BT001357.1. 
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Figure 10: Phylogenetic tree constructed from the most conserved central region of p53 family 

sequences (see Fig. 9 for the alignment and sequence accession numbers). The tree was 

corrected for multiple substitutions and positions with gaps were not used. D. melanogaster 

sequence was used as an outgroup. 
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Table 2. List of analyzed molluscan sequences. Our analyses indicate all molluscan cDNA 

sequences named as p53 or p53-like to code for γ C-terminal forms of p63 proteins and the 

sequences named as p63, p73 or p63/73 code for α C-terminal forms of the same gene. 

See Fig. 2 for schematic representations of their deduced protein products. 

 

Acc. number Organism Named as Coding for 

AY705932 M. edulis p53 Cyprinid (fish) p53 
AY579472 M. edulis p53-like TAp63γ 
AY611471 M. trossulus p53-like TAp63γ 
DQ158079 M. galloprovincialis p53-like p63 
EF080937 M. galloprovincialis p53-like 3'UTR p63γ 3'UTR 
DQ865150 M. edulis p63/73-like TAp63α 
DQ060435 M. edulis p63/73-like alt. TAp63α 
DQ865152 M. trossulus p63/73-like TAp63α 
DQ060437 M. trossulus p63/73-like alt. TAp63α 
DQ865151 M. edulis ΔNp63/73-like ΔNp63α 
DQ060436 M. edulis ΔNp63/73-like alt. ΔNp63α 
DQ865153 M. trossulus ΔNp63/73-like ΔNp63α 
DQ060438 M. trossulus ΔNp63/73-like alt. ΔNp63α 
EU697600 M. galloprovincialis TAp63γ clone3 cDNA TAp63γ 
EU697601 M. galloprovincialis TAp63γ clone4 cDNA TAp63γ 
EU697602 M. galloprovincialis p63 clone1 genomic p63 (genomic sequence) 
AM236465 C. gigas p53-like TAp63γ 
AY442309 C.rhizophorae p53-like p63 
DQ247973 E. scolopes p63(47) TAp63 
DQ247974 E. scolopes p63(62) TAp63α 
U43595 L. forbesi p53 TAp63α 
U43596 L. forbesi p53 TAp63γ 
AM396936 H. tuberculata p73-like TAp63α 
AF253323 M. arenaria p53-like TAp63γ 
AF253324 M. arenaria p73-like TAp63α 
U45238 M. arenaria p53 gene p63 (genomic sequence) 
FJ041332 M. arenaria p63/p73 and p53 genes p63 (genomic sequence) 
AY289767 S. solidissima p63/73 alpha TAp63α 
AY289768 S. solidissima p63/73 beta TAp63α 
AF285104 S. solidissima p53-like p120 TAp63α 
 


