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Abstract: The TOTEM Roman pot detectors are used to reconstruct the transverse momentum of
scattered protons and to estimate the transverse location of the primary interaction. This paper presents
new methods of track reconstruction, measurements of strip-level detection efficiencies, cross-checks
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selection of signal collision events. The track reconstruction is performed by exploiting hit cluster
information through a novel method using a common polygonal area in the intercept-slope plane. The
technique is applied in the relative alignment of detector layers with μm precision. A tag-and-probe
method is used to extract strip-level detection efficiencies. The alignment of the Roman pot system
is performed through time-dependent adjustments, resulting in a position accuracy of 3 μm in the
horizontal and 60 μm in the vertical directions. The goal is to provide an optimal reconstruction tool
for central exclusive physics analyses based on the high-𝛽∗ data-taking period at
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1 Introduction

Elastic and diffractive interactions of high-energy protons at the CERN LHC are characterised by
scattered protons emerging at small angles (microradians) with respect to the beam direction. These
protons can be measured with detectors that are inserted into the beam pipe called “Roman pots” (RPs),
which are movable near-beam devices that allow the detectors to be brought very close (down to a few
mm) to the beam without affecting the vacuum, beam stability, or other aspects of accelerator operations.

This paper describes methods for the reconstruction of the scattered proton trajectories in such
near-beam detectors. These reconstruction techniques have been developed by the CMS and TOTEM
Collaborations for the studies of central exclusive hadron production [1–3], where in addition to the
two scattered protons, a central system of particles is created. This paper is based on data jointly taken
by the CMS and TOTEM detectors in a special, low instantaneous luminosity run in July 2018, at the
proton-proton (pp) centre-of-mass energy of 13 TeV, with an integrated luminosity of 4.7 pb−1 [4].

The acceptance of the RP detector system for elastically or diffractively scattered protons is
determined by the beam optics configuration.
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With the high-𝛽∗ setting, the beam divergence is small. Here 𝛽∗ denotes the value of the amplitude
function at the interaction point (IP), often referred to as the distance from the IP where the beam
width doubles [5]. The forward detectors, a few hundred metres away from the interaction point and
within millimetres from the outgoing beam, are able to measure the scattered protons at microradian
angles and sub- GeV transverse momenta. The acceptance as a function of the squared four-momentum
transfer of the protons (𝑡) starts at −0.03 GeV2. The proton kinematic properties are determined
from the proton scattering angle, independently of the momentum loss if the latter is small. Protons
with fractional momentum loss up to 20% can be observed, with wide acceptance for the invariant
mass of the created central hadron system [1, 2].

The present paper covers subjects ranging from signal clustering in the silicon microstrip detectors
used in the RPs, to the reconstruction of proton tracks, the cross-check of the beam optics, and the
alignment with respect to the beam line. The aim is to measure the scattered proton momentum
and the location of the primary interaction for central exclusive physics events [6]. Improvements
relative to earlier methods are presented for the selection and analysis of signal events, specifically
for the precise momentum balance of forward protons with centrally produced particles. Several of
the discussed techniques are relevant to other beam optics settings as well.

The paper is organised as follows. An overview of the LHC beam parameters and the RP detectors
is given in section 2, along with some considerations on the scattered proton trajectory, and details of
the data set used. The reconstruction of the proton hit locations within the RPs is discussed in section 3,
including pattern recognition and matching, relative alignment of the detector layers, extraction of
the strip hit efficiencies, and determination of the correction factors. The reconstruction of the full
proton trajectory is detailed next (section 4), together with a discussion of the cross-checks of the
beam optics, the distributions of the interaction point locations and scattering angles, and the absolute
alignment of the RPs. Results on momentum resolution and applications for event classification and
selection for physics analyses are also shown. The paper ends with a summary in section 5.

2 The CMS and TOTEM detectors

We use a right-handed coordinate system, with the origin at the nominal collision point, the 𝑥 axis
pointing to the centre of the LHC ring, the 𝑦 axis pointing up (perpendicular to the LHC plane),
and the 𝑧 axis along the anti-clockwise beam direction.

2.1 The LHC beam parameters

In this low instantaneous luminosity data-taking period, the 𝛽∗ values in the horizontal and vertical
directions are 𝛽∗𝑥 = 45 m and 𝛽∗𝑦 = 90 m, respectively. The initial normalised emittance is in the range
𝜀𝑛 = 1.2–1.6 μm [7]. The half-crossing angle in the horizontal plane is 60 μrad. At the nominal IP, the
transverse size of the beam is 𝜎 =

√
𝜀𝛽∗ and the angular beam size (beam divergence) is 𝜎′ =

√︁
𝜀/𝛽∗,

where the emittance 𝜀 is related to the normalised emittance as 𝜀𝑛 = 𝜀𝛽𝛾. Here 𝛽 is the ratio of the
velocity of the beam particles to the speed of light, and 𝛾 is the Lorentz factor. Given the beam energy
of 𝑝beam = 6500 GeV, we have 𝛽𝛾 ≈ 6930 and the expected value of the emittance is 𝜀 ≈ 0.2 nm. The
transverse momentum spread is 𝜎𝑝𝑥/𝑦 = 𝑝beam𝜎

′
𝑥/𝑦 . Table 1 summarises the relevant beam parameters.

The transverse size of the beam spot (BS) can be calculated from the beam width as 𝜎BS = 𝜎/
√

2.
The size of the beam spot is measured by using reconstructed interaction vertices with tracks in the
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central silicon tracker of the CMS detector [8]. It slowly increases within an LHC fill from 70 to 110 μm
in 𝑥, and from 90 to 110 μm in the 𝑦 direction. With an assumed average initial normalised emittance
𝜀𝑛 ≈ 1.4 μm we expect in the horizontal direction 𝜎BS

𝑥 ≈ 65 μm, 𝜎′
𝑥 ≈ 2.1 μrad, 𝜎𝑝𝑥

≈ 14 MeV, and
in the vertical direction 𝜎BS

𝑦 ≈ 95 μm, 𝜎′
𝑦 ≈ 1.5 μrad, 𝜎𝑝𝑦

≈ 10 MeV. Both the measured horizontal
and vertical initial beam spot width values are close to their expectations (70 and 90 μm).

Table 1. The beam parameters and related quantities at the CMS interaction point for the 𝛽∗ = 90 m run at√
𝑠 = 13 TeV in 2018.

Beam parameter Value
Horizontal amplitude function at IP, 𝛽∗𝑥 45 m
Vertical amplitude function at IP, 𝛽∗𝑦 90 m
Normalised emittance (expected), 𝜀𝑛 1.2–1.6 μm
Horizontal beam spot width (measured), 𝜎BS

𝑥 70–110 μm
Vertical beam spot width (measured), 𝜎BS

𝑦 90–110 μm
Half of horizontal crossing angle 60 μrad

2.2 Roman pot detectors

The intersection points of the LHC are numbered from 1 to 8. The CMS detector operates at interaction
point 5, and the adjacent LHC sectors are referred to as “45” and “56”. The proton spectrometer of
the TOTEM experiment consists of two telescope arms, referred to as “Arm 1” (in sector 45) and
“Arm 2” (in sector 56) for positive and negative pseudorapidities, respectively [9, 10]. In each arm
there are two stations located at about ±213 m (near) and ±220 m (far) relative to the nominal IP
(figure 1). Each station consists of two units. Only the units with vertical pots are considered in this
paper. Each unit has two RPs, one located above (“top” or T), and one below (“bottom” or B) the LHC
beam. The names of the RP detector layer groups are given in table 2 and figure 2 (left panel). The
term “parallel” refers to cases where both RP detectors above or below the beamline (top-top or TT,
bottom-bottom or BB) have signals above predefined thresholds, whereas the “diagonal” configuration
refers to the other two cases (top-bottom or TB, bottom-top or BT).

An RP contains ten layers of silicon strip detectors, placed alternately in two orthogonal
orientations (u and v) with five layers in each. The strips are directed at 45◦ with respect to the vertical
(𝑦) axis for the far pots (figure 2, right), and at 37◦ or 53◦ for the near pots. The layers can approach

213 m
220m

D2

D1 (6×MBXW)

Q4

Roman Pots

beam 1

beam 2

Q1
TAS

TCL4 TCL5

Q2 Q3
Q5

CMS
central detector

LHC sector 45

DFBX

LHC sector 56

Figure 1. Plan view of LHC section 56 (Arm 2) close to CMS (point 5 at the LHC). The location of the near
and far Roman pots of Arm 2 are indicated in red. Also, various magnetic beam elements (dipoles D1 and 2,
quadrupoles Q1 to Q6) as well as other Roman pots not used for this paper are shown.
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Table 2. The naming of the various RP layer groups.

Arm Location
Vertical

Proj. Name
position

1 near top 𝑢 1nTu
1 near top 𝑣 1nTv
1 near bottom 𝑢 1nBu
1 near bottom 𝑣 1nBv
1 far top 𝑢 1fTu
1 far top 𝑣 1fTv
1 far bottom 𝑢 1fBu
1 far bottom 𝑣 1fBv

Arm Location
Vertical

Proj. Name
position

2 near top 𝑢 2nTu
2 near top 𝑣 2nTv
2 near bottom 𝑢 2nBu
2 near bottom 𝑣 2nBv
2 far top 𝑢 2fTu
2 far top 𝑣 2fTv
2 far bottom 𝑢 2fBu
2 far bottom 𝑣 2fBv

Arm 1

Arm 2
beam line

(x*,y*)

1nT

1nB

1fB

2fT

2fB

2nB

1fT

2nT

u

x

y

z

v

Figure 2. Left: The eight RP units in Arm 1 and Arm 2 with the beam line, along with the location (𝑥∗, 𝑦∗)
of the primary interaction and two proton trajectories (dashed blue arrows), not to scale. Right: An RP unit
comprising 10 layers with strips oriented alternately in the 𝑢 and 𝑣 directions. The blue dashed arrow represents
an incoming proton. The axes of the local coordinate system are indicated with black solid arrows.

the beam at a distance of a few millimetres without affecting the LHC operation (they are retracted
before each beam injection and inserted again afterwards).

Schematic displays of some events with hits and projections of reconstructed local straight tracks,
called “tracklets”, in RPs are displayed in figure 3. Normally, the scattered protons are detected by
both the near and far pots, yielding a total of four tracklets. Events with more than four tracklets,
pointing to energetic secondaries or multiple simultaneous primary pp collisions, are excluded from
the analysis. The RPs share a common readout with the CMS detector.

2.3 Proton trajectory

Once the scattered protons leave the interaction region, they traverse the magnetic fields created by the
CMS solenoid and the LHC beam magnets until most of them reach the first and then the second RP
stations. During their flight, such protons do not traverse the beam pipe. The RP stations have their
own secondary vacuum, separated by a 300 μm thin steel window from the primary LHC vacuum,
and they are in a region where the magnetic field is zero. Of course, to determine the scattered
proton kinematics the inhomogeneous magnetic fields due to the sequence of several quadrupole
and dipole magnets need to be modelled.
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Figure 3. Schematic displays of four events with hits and projections of reconstructed local tracks (tracklets) in
RPs, with outlines of Arm 1 and 2, near and far, upper and lower plots (not to scale). Strips of reconstructed
clusters in 𝑢 and 𝑣 layers are plotted with red x and blue + markers, respectively. Two vertically adjacent
symbols represent a two-strip cluster. Reconstructed clusters on a found tracklet are marked with circles. From
left to right and from top to bottom: (a) normal event, (b) normal event with additional secondary particles;
(c) not reconstructed event (less than three hits in the 𝑣 orientation of 1n); (d) not reconstructed event (hadronic
interaction in some beam element before 2n).

The effects of multiple scattering and nuclear collisions in the detector material and in the
stainless steel window that separates the LHC primary vacuum from the RP secondary vacuum, need
to be considered. The sensitive detector elements are silicon layers with a thickness 𝑑 = 300 μm.
Silicon (steel) has a radiation length 𝑋0 = 9.370 (1.757) cm, and a nuclear collision length 𝜆 =

30.16 (10.37) cm. For multiple scattering within one layer, the standard deviation of the scattering
angle, in a Gaussian approximation [11], is given by 𝜃0 ≈ 13.6 MeV/(𝛽𝑐𝑝) × 𝑧

√︁
𝑑/𝑋0, where 𝑧 is the

charge number of the incident particle, and we have neglected the logarithmic correction. With the
proton momentum 𝑝 = 6500 GeV, we get 𝜃0 ≈ 0.12 (0.27) μrad for the silicon (steel) layer. Within an
RP, assuming 9 detector planes, after a distance of 36 mm between the first and the last layer, the average
resulting shift is 15 nm, and is neglected. After 10 scattering planes and a distance of 7 m between two
pots, the shift is 3 μm, which again is neglected. The probability of a nuclear collision within a silicon
(steel) layer is 𝑑/𝜆 ≈ 10−3 (3 × 10−3). In the case of an RP with two thin windows and 10 layers, it
adds up to 1.6%. The nuclear collisions thus contribute to the tails of the hit location distributions.
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2.4 The data set

In the high-𝛽∗ data-taking period considered here, the average number of pp collisions per bunch
crossing is small (0.1–0.3), and for the same reason the collected integrated luminosity is limited. For
this data set, the Level 1 (hardware) trigger requires detected protons in the far RPs in each arm, in
parallel or diagonal configurations (section 2.2). Triggering is based on “trigger roads”, groups of 32
consecutive silicon strips. The trigger bit is set if trigger roads at the same location have signals above
a predefined threshold in several detector layers. The elastic pp cross section is much larger than that
of central exclusive production events, and therefore the available bandwidth of the data acquisition
system would be saturated. Suitable combinations of the trigger bits from the RPs are used to reject
elastic events. The high-level trigger has multiple components [12]; the pixel and track activity filters
of the CMS silicon tracker system require hits or tracks from centrally produced charged particles.

For these studies two data sets are used. One data set with no centrally reconstructed charged
particles (“0-track” data set with some unrelated hits in the pixel detector) contains 39 million events
of which 29 million have all four tracklets reconstructed. The other data set has two oppositely-charged
centrally reconstructed particles (“2-track” data set) contains 119 million events of which 88 million
have all four tracklets reconstructed.

3 Tracklet reconstruction

In various exclusive physics analyses, the classification of signal events is based on the conservation
of momentum between the incoming and outgoing particles. To maximise the selection efficiency,
an optimisation of the standard local tracklet reconstruction [9, 10] was performed, which led to
improvements of resolution and uncertainty estimations.

Every RP detector layer contains 512 strips, each with a width (pitch) of 66 μm. A hit cluster is a
group of adjacent strips, each with a collected charge above a certain threshold. Most of the clusters
are one-strip wide, with the hit in the central area of the strip. The less frequent two-strip clusters arise
through drifting and diffusing electrons from hits in the region between two strips (e.g. in panel (a) of
figure 3, Arm 1, 1nT). The fraction of two-strip clusters for each detector layer is shown in figure 4,
in groups of similarly oriented layers (layer groups). The result of a Gaussian fit is also indicated,
with a mean 𝑓2 = 10.5%. The outliers, mostly at smaller values, belong to layers with low strip-level
efficiencies. Two-strip clusters carry important information and provide better spatial resolution than
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Figure 4. Left: Fraction of two-strip clusters for each detector layer, in groups of similarly oriented layers.
Right: Distribution of the fraction of two-strip clusters with the result of a Gaussian fit.
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one-strip clusters (section 3.1). Clusters with three or more strips are rare, with a rate below half a
percent, demonstrating that the effect of capacitive coupling between neighbouring strips is negligible.

Lacking an analog strip readout, the location of a cluster cannot be computed using a charge-
weighted cluster mean. Hence the location of a one-strip cluster can be associated to an integer number
𝑠𝑖, whereas the location of two-strip cluster is the average of their integer numbers (half-integer).

3.1 Pattern recognition

In conventional applications, track finding usually starts with local hit reconstruction that, in case of
segmented detectors, also includes cluster finding. Based on the hits found, track seeds (compatible
hit multiplets) are built. These are used as starting points for a global track finding by extending
them towards other detector layers and picking up free, unused hits (through a Kalman filtering
method [13, 14]). Finally, the track candidates are scanned for split or multiply reconstructed trajectories,
their momentum vectors are determined, and they are used to fit a common global event vertex. The
calibration of a tracking detector includes its alignment by means of cosmic ray muons or particles
originating from particle collisions, but sometimes also implies a gain calibration. The performance
of a tracking system is usually characterised by its position and momentum resolutions [15].

In the case of RP layers, local hit reconstruction is performed by searching for groups of contiguous
strips, mostly one-strip and two-strip clusters, resulting in integer and half-integer cluster coordinates.
The strips do not provide pulse height information, but only binary information based on signal
discrimination. Since a cluster is a series of adjacent strips with a given width, the trajectory-hit
residuals follow rectangular distributions. For this reason, instead of performing least-square fits, a
different approach is chosen with the aim to use as much information as possible.

In each RP, the orientations 𝑢 and 𝑣 are handled separately, since the strips in the two orientations
are orthogonal. The tracklet model is a straight line with local hit coordinate 𝑢𝑖 (or 𝑣𝑖) in the 𝑖th layer:

𝑢𝑖 = 𝑎𝑧𝑖 + 𝑏 + 𝛿𝑖 , (3.1)

where 𝑎 is the slope and 𝑧𝑖 is the coordinate of the location of the detector layer along the beam direction.
The centre of the RP is at 𝑧 = 0 where the tracklet has the coordinate 𝑏 (intercept). The misalignment
of the detector layers is quantified by relative shifts 𝛿𝑖 (section 3.2). Common translation (all 𝛿𝑖 values
are equal) and shear (linear relation 𝛿𝑖 = 𝜏shear𝑧𝑖) are weak modes and are difficult to detect, and
therefore the alignment is carried out with the outermost (first and fifth) layers fixed, 𝛿1 = 0 and 𝛿5 = 0.
The 𝑧-locations of the layers for Arm 1 are 20.3, 11.3, 2.3, −6.7, −15.7 mm (𝑢 orientation) and 15.7,
6.7, −2.3, −11.3, −20.3 mm (𝑣 orientation); the same values hold for Arm 2, but with opposite sign.

An ideal track traverses two pots (near and far), i.e., in total four layer groups, and each layer
group can have up to five hits. Using all events in the 0-track and 2-track data sets, a database of
hit location patterns is built. This database is essential for pattern matching, in connection with a
tag-and-probe method [16], for precise relative alignment (section 3.2) and for the determination of
individual strip hit efficiencies (section 3.3). Such a procedure employs an unbiased sample of probe
objects that is used to measure the efficiency of a specific set of selection criteria. Here tracklets with
at least four hits are tagged, and in each layer a hit at the expected location is searched for. In the case
of layer group 1nTu, at least three hits are required since one of its layers is inefficient.

To greatly reduce the number of hit location patterns, common translation (of the first layer, 𝑠1)
and average shear are removed. Since we want to distinguish between one-strip and two-strip clusters,
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only integer displacements −[𝑠1] are applied. This way, the relative location in the first layer will be
either 0 (one-strip) or 0.5 (two-strip). If the first layer is empty, the next layer with valid hit is taken as
reference. The average integer shear is also removed by subtracting the value 𝑖⟨𝑠𝑖 − [𝑠1]⟩ for layer 𝑖,
where ⟨𝑠𝑖 − [𝑠1]⟩ is deduced from

∑
𝑖(𝑠𝑖 − [𝑠1])/

∑
𝑖 by rounding down to an integer, where 𝑠𝑖 is the

strip number on layer 𝑖. Some examples for the final patterns are (0, 0.5, 1, 1, 2), (0, 0,−1,−3,−2),
or (0.5, 1, 1, 2.5, 2). Our data sets provide a database of relative hit location patterns with about 15
thousand entries for each layer group (there are altogether 16 layer groups).

If the relative shifts 𝛿𝑖 are known, the predicted hit location on the 𝑖th layer is 𝑢pred
𝑖

= 𝑎𝑧𝑖 +𝑏+𝛿𝑖 in
strip-width units. The hit distribution of the incoming protons is locally uniform. The incidence angles
of the protons are very small, and the protons enter the silicon planes perpendicularly to the planes. If the
proton hit is closer than 𝑤 to the boundary line between two adjacent strips, it deposits enough energy,
such that both strips collect charge above threshold: we get a two-strip cluster. Here 𝑤 is measured
in pitch units. If the hit is farther than that, the proton deposits a sizeable amount of charge only in
one central strip, leading to a one-strip cluster. Because of the local uniformity of the incoming proton
distribution, the occurrence of two- and one-strip clusters is directly proportional to the width of the areas
described above. For two-strip clusters 𝑓2 = 2𝑤, hence 𝑤 ≈ 0.0525. For one-strip clusters the cluster
centre 𝑢meas is expected to lie closer than 1/2−𝑤 = 0.4475 to the hit, whereas for two-strip clusters the
distance should be below 𝑤. This way, two-strip clusters provide better spatial resolution by a factor
of (1− 𝑓2)/ 𝑓2 ≈ 8.5 with respect to one-strip clusters. The above requirements can be written down as

|𝑢meas − 𝑢pred | < 𝑤 or 𝑢meas
𝑖 − 𝑎𝑧𝑖 − 𝛿𝑖 − 𝑤 < 𝑏 < 𝑢meas

𝑖 − 𝑎𝑧𝑖 − 𝛿𝑖 + 𝑤. (3.2)

These two inequalities define a band in the intercept-slope (𝑏–𝑎) plane (figure 5).
Since each detector layer provides such a constraint, we look for the intersection of five bands,

i.e., a polygonal area. The determination of this common area is carried out iteratively. First, the
intersection of the first two bands, i.e., a parallelogram, is determined. Next, the third band is taken,
and intersections of its boundary lines with the sides of the parallelogram are looked for. If such points
are found, they are added to the polygon as new vertices, and the vertices that became unnecessary
are removed. The process is continued until all bands are dealt with, and we end up with a polygon
(𝑎 𝑗 , 𝑏 𝑗) of 𝑗 = 1, . . . , 𝑛 vertices. All points within this final polygon are equally probable and valid.
The best value and variance of the intercept are represented through the centroid and the moment of
inertia of the polygon [17]. Some examples for the common polygons are shown in figure 5.

In some cases such a common polygon does not exist. This can happen if there are one or
more layers where the cluster centre is farther than the expected distance 𝑤 from the location of
the predicted hit. In such cases the above polygon method does not work: one needs to define a
suitable goodness-of-fit measure. It is accomplished by means of a penalty function 𝑐: if the distance
𝑑 of the predicted hit and the cluster is larger than 𝑤, we collect and sum terms |𝑑 − 𝑤 |. Such a
choice, instead of the squared difference, favours the suppression of outlier (noise or background)
clusters. The minimisation of the 𝑐 value in the 𝑏–𝑎 plane is accomplished by using the downhill
simplex method of Nelder-Mead [18]. The minimisation usually converges in 3–5 steps, but always
finds the minimum in less than 50 steps. Some examples can be seen in figure 5. In these cases
the standard deviation of the measurement in the 𝑏 direction is taken to be 0.3 units. This choice
ensures a smooth and monotonic relation between the measured and the predicted variances of the
proton momentum sum (

∑
𝑝𝑥) distributions (section 4.4, figure 22).
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Figure 5. Examples of tracklet fits. The colour represents the value of the tracklet penalty function 𝑐 in the
intercept-slope (𝑏–𝑎) plane. Bands corresponding to individual detector layers are shown with differently
coloured parallel straight lines. The intersection of these bands, if it exists, is shown as a white polygonal area
(𝑐simp = 0) framed with thick black lines, and its centroid is marked with a red filled square. If such intersection
does not exist (top left subfigure), the result of the simplex minimisation 𝑐simp > 0 is given, and the location of
the minimum indicated with a purple open circle.

3.2 Relative alignment of the detector layers

Tracklet fits can be converted into a tool to determine the relative alignment of the detector layers. The
parameters of this three-dimensional problem are the relative shifts of the inner layers (𝛿2, 𝛿3, 𝛿4).
The goal is to minimise the joint goodness-of-fit measure, i.e., the sum of 𝑐 values for a large
set of the tracklets. The employed minimisation method is again the downhill simplex method of
Nelder-Mead [18]. The best 𝛿𝑖 values for the 16 layer groups, corresponding to the lowest sum, are
displayed in figure 6. The indicated systematic uncertainties represent the region where the sum
of the 𝑐 values (tracklet penalty) would increase by one percent, a well-visible change. The values
from the 2-track and 0-track data sets are compatible with each other. The standard deviation of the
relative shifts is about 0.35, in units of strip-width. The deduced relative shifts are cross-checked
with an alternative method by counting the number of tracklets with 𝑐 = 0, giving compatible results.
One-dimensional line scans around the minima are shown in figure 7.

The distribution of the joint 𝑐 values for tracklets is plotted in the upper panel of figure 8. Most
tracklets (89%) have 𝑐 = 0, The distribution of the standard deviation 𝜎𝑢 of fitted hit location in
strip-width units for the polygon method, and for the cases where the simplex minimisation was
necessary, is shown in the lower panel of figure 8. The average spatial resolution is 0.10 units, i.e., about
6–7 μm. This is to be compared with the naive expectation from averaging three box distributions,
66 μm/

√
12 × 3 ≈ 11 μm, which worsens once the contribution from the standard deviation of the

relative shifts (66 μm × 0.35/
√

3 ≈ 13 μm) is also included.
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Figure 7. One-dimensional line scans of the relative shifts (𝛿2 — red, 𝛿3 — green, 𝛿4 — blue) for the 16 layer
groups around the best values found. The joint 𝑐 value is plotted as a function of the relative shifts of the inner layers
around the found minima (solid curves, left vertical scale). Goodness-of-fit from an alternative method, counting
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Figure 8. Upper: Distribution of the tracklet penalty function with the slope 𝜆 of an exponential fit (black line)
in the range 1–3. Lower: Distribution of the standard deviation of the fitted hit location in strip-width units for
the polygon method (red), and for those cases where the simplex minimisation was necessary (blue, at 0.3). The
three columns correspond to the 0-track (left), 2-track (centre), and the simulated (right) data sets. The vertical
arrow indicates the location of the average value.

To control and cross-check the deduced calibrations and to extract the tracklet efficiencies, a fast
but realistic simulation containing one million events was set up. Tracklets are generated following a
straight-line model including the non-Gaussian nature of multiple scattering, as well as the effects of
nuclear collisions in the detector material. Hit creation follows the measured fraction of two-strip
clusters, and takes into account the individual shifts and efficiencies. Conditions for triggering and for
tracklet reconstruction are properly included. A reasonable agreement between the simulated and
measured tracklet joint penalty and 𝜎𝑢 distributions (figure 8, right column) is achieved.

In summary, the advanced treatment just described results in better spatial and transverse
momentum resolutions.

3.3 Strip hit efficiencies

The tracklet measurement is redundant since in each RP there are five layers in each orientation (𝑢
and 𝑣), but three hits are enough for triggering (using the far RPs) and for reconstruction (using all
RPs). A reduced efficiency in all detector layers in an RP, as is the case in the near bottom RPs in both
arms discussed below, results in tracklet detection inefficiency and a reduced proton reconstruction
efficiency. In these detector layers, the inefficiency is a function of the sequential strip number in
each layer and is probably caused by two factors: the instantaneous luminosity and the radiation
damage accumulated during the lifetime of the detectors.

Strip-level efficiencies are extracted from the data by using the dominant hit location patterns
defined below. Using the library of patterns, we count the occurrence of similar patterns where the
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hit position in the given layer differs by either −2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, or 2 strip units. If
the most common pattern has a frequency of more than 90% among the variants, and possesses a
one-strip hit in the given layer, this pattern is called dominant.

For a tracklet with no missing hit, layers are selected one by one. If the pattern for a layer is
dominant, the strip must have a hit, and the efficacy counter (𝑛1) for this strip is increased. For a
tracklet with exactly one missing hit, the location of that hit can be predicted through the dominant
pattern, and the inefficacy counter (𝑛0) for that strip is increased. The strip efficiency and its uncertainty
are estimated using these counters.

Strip hit efficiencies extracted from the data are shown for a given layer in the 1nTv and 2nBu
layer groups, and for a representative run, in figure 9. Values based on the 2-track data set and
those from the 0-track data are plotted. They are compatible with each other, and the effect of
their uncertainty in the proton reconstruction efficiency is about 3%. There are regions where the
efficiency is rather low — especially the layer groups 1nBu, 1nBv, 2nBu, and 2nBv. These are
the near bottom RPs on both sides of the IP, likely the consequence of radiation damage. Strip
hit efficiencies as a function of run number, for strip #350, as an example, in layers 1–5 in various
layer groups are shown in figure 10. The efficiencies are mostly constant, but for some planes they
change with the run number by up to 20%.
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Figure 9. Strip hit efficiency from data, determined with a tag-and-probe method. Shown here are layer 5
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the 2-track data set (red symbols) and those from 0-track data (blue symbols) are plotted. The borders of the
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Figure 10. Strip hit efficiencies as functions of the run number for strip #350 in layers 1–5 (coloured points) in
various layer groups (labels in the lower right corner). Statistical uncertainties are indicated with vertical bars.
Lines are spline interpolations to guide the eye.

3.4 Tracklet efficiencies and joint weights

The tracklet reconstruction efficiencies are determined by means of a simulation based on the strip
hit detection efficiencies. Efficiency as a function of the tracklet location at the centre of the RP
(the track intercept) and of the track slope is shown for each layer group separately in figure 11, for
a representative run. Substantial losses are present at specific tracklet locations and slopes. The
periodic efficiency loss seen at every 32nd strip for the far RPs is due to the RP trigger that uses
roads of 32 strips to define a track candidate. If the tracklet is in the border region between trigger
roads, there is an increased chance that it is lost. This kind of pattern is not observed in the near
RPs that were not used in the trigger.
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Figure 11. Tracklet reconstruction efficiency (colour scale) as a function of tracklet location at the centre of
the RP (intercept) and the track slope, for a representative run, shown for each layer group separately. Yellow
regions correspond to fully efficient tracklet reconstruction, whereas the red regions exhibit substantial losses
with efficiencies in the range 0.4–0.6. Vertical green lines denote boundaries of the front-end chips.

In a normal event, where both scattered protons are detected by both near and far pots, we have
four tracklets, each with 𝑢 and 𝑣 projections. The product of their corresponding tracklet efficiencies
(obtained from a table, figure 11) gives the probability of detecting such an event. The reciprocal
of this joint probability is the joint tracklet weight that is applied in physics analyses. As expected
from the low strip hit efficiencies in the bottom RPs, events with trigger configuration BB suffer
the most, while the detection of TT events is fully efficient.
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Once the tracklet coordinates in 𝑢 and 𝑣 directions are fitted, the hit transverse location (𝑥, 𝑦)
in the global coordinate system, at the centre of the RP (on the “reference surface”), is calculated
through a rotation (section 2.2).

The efficiency-corrected distribution of proton hit locations in the 𝑥–𝑦 plane at the reference
surfaces of the eight RPs, are shown in figure 12 for different trigger configurations. The wavy pattern
seen in the plots of the events with the diagonal trigger (TB and BT) is a direct consequence of the
trigger rejecting a large fraction of elastic events. This is performed by vetoing events where hits in
the two arms have similar coordinates but with opposite sign. The halo seen in the 0-track sample for
the parallel trigger configurations (TT and BB) shows that those are not elastic events, but overlapping
inelastic events where the momentum loss of the scattered protons is significant.
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Figure 12. Efficiency-corrected distribution of proton hit locations in the 𝑥–𝑦 plane at the references surfaces of
the eight RPs (rows), for different trigger configurations (labels at the upper right corner). The two columns on
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0-track data set. The wavy pattern and the halo seen in the 0-track data set is explained in the text.
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4 Proton reconstruction

Our goal is to reconstruct the (𝑝𝑥 , 𝑝𝑦) transverse momentum vectors, or the emission angles (𝜃∗𝑥 , 𝜃∗𝑦),
and the locations (𝑥∗, 𝑦∗) of the scattered protons in the transverse plane at the nominal IP. This
is accomplished by using only the fitted hit locations (𝑥, 𝑦) of the proton tracklets at the reference
surfaces of the RPs. The deduced local slopes (d𝑥/d𝑧 and d𝑦/d𝑧) are not used since those have poor
resolution. A detailed cross-check of the beam optics based on the measured hit position covariances,
and a precise run-by-run alignment are also described in the following.

4.1 Beam optics

The nominal optics determination and alignment procedure for RPs uses elastic events [19, 20] and
MAD-X [21], which is a general purpose accelerator design program. The method exploits kinematical
distributions of elastically scattered protons observed in the RPs. It varies the rotation angles and
currents of the six quadrupoles between the IP and the RPs for both beams, as well as the beam energy
of both beams, each within its uncertainty. Theoretical predictions, as well as Monte Carlo studies,
show that the residual uncertainty in the deduced optical parameters is smaller than 0.25%.

The transverse coordinate 𝑥 of a particle (proton) at position 𝑠 along the beam line can be
described as [22]

𝑥(𝑠) =
√︁
𝛽𝑥 (𝑠)𝜀 cos [𝜙0 + Δ𝜇(𝑠)] + 𝐷𝑥 (𝑠)Δ𝑝/𝑝, (4.1)

where 𝛽 is the betatron amplitude, 𝜀 is the emittance, 𝜙0 is the phase offset, Δ𝜇 is the phase advance,
𝐷 is the dispersion function, and Δ𝑝/𝑝 is the relative momentum loss of the scattered proton. The
quantities characterising the LHC optics are the horizontal and vertical betatron amplitude 𝛽(𝑠), the
magnification 𝑣(𝑠) =

√︁
𝛽(𝑠)/𝛽∗ cosΔ𝜇(𝑠), and the effective length 𝐿 (𝑠) =

√︁
𝛽(𝑠)𝛽∗ sinΔ𝜇(𝑠). The

phase advance Δ𝜇(𝑠) is calculated as Δ𝜇(𝑠) =
∫ 𝑠

0 d𝑠′/𝛽(𝑠′), in other words dΔ𝜇/d𝑠 = 1/𝛽(𝑠). At the
nominal IP (𝑠 = 0), the location of the particle is 𝑥∗ = 𝑥(0), 𝑦∗ = 𝑦(0), and 𝛽∗ = 𝛽(0), Δ𝜇(0) = 0.
The dependences of 𝑥 on 𝑥∗, 𝜃∗, and Δ𝑝/𝑝 around a given location can be linearised, and in an arm
for the two RP stations (subscript 𝑛 for near, and 𝑓 for far) we have:

𝑥n = 𝑣𝑥,n𝑥
∗ + 𝐿𝑥,n𝜃

∗
𝑥 + 𝐷𝑥,nΔ𝑝/𝑝, (4.2)

𝑥f = 𝑣𝑥,f𝑥
∗ + 𝐿𝑥,f𝜃

∗
𝑥 + 𝐷𝑥,fΔ𝑝/𝑝, (4.3)

where the path-dependent dispersion function 𝐷𝑥 (𝑠) is needed for the description of particles with
momentum spread or momentum loss (Δ𝑝). For 𝛽∗ = 90 m, the expected values are approximately
𝐿𝑥 ≈ 0, 𝐿𝑦 ≈ 262 m, 𝑣𝑥 ≈ −1.9, 𝑣𝑦 ≈ 0.0, 𝐷𝑥 ≈ −0.041 m, and 𝐷𝑦 ≈ 0, based on table 6.1 in
ref. [23]. The actual values are a bit different, asymmetric, and are shown in table 3 (truncated to four
or five significant digits), based on MAD-X calculations and subsequent matching with data [19, 20].
The optics is such that the 𝑥 and the 𝑦 directions decouple. In the 𝑦 direction the magnification and
dispersion are close to zero; therefore, only the emission angle can be determined with good precision,
through a simple proportionality relation 𝜃∗𝑦 = 𝑦n/𝐿𝑦,n or 𝑦f/𝐿𝑦,f .

For elastic and central exclusive collisions (|Δ𝑝/𝑝 | ≪ 1), the above eqs. (4.2)–(4.3) can be solved as

𝑥∗ = (𝐿𝑥,f𝑥n − 𝐿𝑥,n𝑥f)/𝑑, (4.4)
𝜃∗𝑥 = (𝑣𝑥,n𝑥f − 𝑣𝑥,f𝑥n)/𝑑, (4.5)

– 16 –



2
0
2
5
 
J
I
N
S
T
 
2
0
 
P
0
4
0
1
2

Table 3. Nominal values of beam optics variables (magnifications 𝑣, effective lengths 𝐿) [19, 20], truncated to
four or five significant digits.

Arm Station 𝑣𝑥 𝐿𝑥 [m] 𝑣𝑦 𝐿𝑦 [m]
1 near −2.204 3.1042 0.032395 238.2
1 far −1.884 −0.5225 0.007509 271.3
2 near −2.245 0.1943 0.018513 238.3
2 far −1.923 −2.9508 −0.008295 271.3

where the determinant is 𝑑 ≡ 𝑣𝑥,n𝐿𝑥,f − 𝑣𝑥,f𝐿𝑥,n. It can be shown that 𝑑 equals the distance between
the two RP stations, more precisely the distance between their reference surfaces in the beam direction
(in our case, 𝑑 = 7000 mm).

Cross-checks of beam optics were performed with data, based on the measured variances
and covariance of the proton hit positions in 𝑥. Once these quantities are measured, the variance
var(𝑥∗) is obtained as

var(𝑥∗) = var(𝑥n) var(𝑥f) − cov(𝑥n, 𝑥f)2

var(𝑥f)𝑣2
𝑥,n − 2 cov(𝑥n, 𝑥f)𝑣𝑥,n𝑣𝑥,f + var(𝑥n)𝑣2

𝑥,f
, (4.6)

which does not depend on the actual values of the effective lengths, but only on the given magnifications
𝑣𝑥,n and 𝑣𝑥,f , and the measured hit position variances and covariances. The ratio of far and near
effective lengths is

𝐿𝑥,f

𝐿𝑥,n
=

√√
var(𝑥f) − var(𝑥∗)𝑣2

𝑥,f

var(𝑥n) − var(𝑥∗)𝑣2
𝑥,n

. (4.7)

The variance of the emission angle is

var(𝜃∗𝑥) =
var(𝑣𝑥,f𝑥n − 𝑣𝑥,n𝑥f)

|𝑑 |2
. (4.8)

With that, the effective lengths are

𝐿𝑥,n =

√︄
var(𝑥n) − var(𝑥∗)𝑣2

𝑥,n

var(𝜃∗𝑥)
, 𝐿𝑥,f =

√︄
var(𝑥f) − var(𝑥∗)𝑣2

𝑥,f

var(𝜃∗𝑥)
. (4.9)

The estimated size of the beam spot in the 𝑥 direction is 𝜎𝑥∗ ≈ 100 μm, consistent with
measurements using charged particles reconstructed in the central CMS silicon tracker. The emission
angle is 𝜎𝜃∗𝑥 ≈ 28 μrad for 0-track and 42 μrad for 2-track events. These values are substantially larger
than the beam divergence (2.1 μrad, section 2.1), since the characteristic width of the proton emission
angle is dominated by the much larger scale of the various physics processes. The ratio of effective
lengths for Arm 1 is 𝐿𝑥, 𝑓 /𝐿𝑥,𝑛 ≈ −0.3, and for Arm 2 𝐿𝑥, 𝑓 /𝐿𝑥,𝑛 ≈ −4. These are to be compared
with the nominal values −0.17 and −15, yielding only a poor agreement. This first look is refined, and
shows a much better agreement, once the precise run-by-run RP alignment is put in place (section 4.3).
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4.2 Effects of the IP transverse location and proton emission angle

The correlation of the proton hit locations in the 𝑥 and 𝑦 directions reflects various physics effects, such
as momentum loss, width of the beam at the nominal IP, and the influence of effective length ratios.

For elastic collisions, the momentum loss of the protons is very small, its spread is |Δ𝑝/𝑝 | ≲ 10−4,
reflecting the momentum variance of the beam. This corresponds to about 5 μm hit position spreading,
which is hardly detectable. The acceptance of the central tracker limits the detectable 2-track central
exclusive events to |Δ𝑝/𝑝 | ≲ 10−3 through momentum conservation, corresponding to a 50 μm
shift in hit position (comparable to the strip width of 66 μm). Here “shift” refers to the difference
between the true hit position and the predicted track impact point position assuming the nominal beam
momentum. For diffractive and highly inelastic collisions, where the momentum loss of the incoming
protons is sizeable, a well-detectable displacement is visible: a 10% momentum loss corresponds
to a 5 mm shift. The events show a linear correlation between 𝑥f and 𝑥n (figure 13) with a slope
𝐷𝑥, 𝑓 /𝐷𝑥,𝑛 ≈ 0.68 for Arm 1, and ≈ 0.64 for Arm 2, as expected.
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Figure 13. Correlation of proton hit locations in the 𝑥 direction (two-dimensional occupancy histograms) in the
far and near RPs, shown for various trigger configurations (TB, BT, TT, and BB, in rows). The two columns
on the left side refer to the 2-track data set, and the two on the right side display distributions based on the
0-track data set. A straight line corresponding to the expectation 𝑥f = 𝑥n 𝐷𝑥,f/𝐷𝑥,n is also plotted, where
𝐷𝑥, 𝑓 /𝐷𝑥,𝑛 ≈ 0.68 for Arm 1, and ≈ 0.64 for Arm 2. The plots are produced with the final detector alignment.
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The effect of the beam width at the nominal IP, 𝜎∗
𝑥,𝑦 ∼ O(100 μm), can be propagated to the

RPs (𝑣𝑥𝑥∗) and results in a spread of about 200 μm. Such an event-by-event shift is correlated
between the two arms (the protons come from the same actual IP) and is well detectable. For a
transverse momentum 𝑝𝑥 = 200 MeV we have 𝜃∗𝑥 ≈ 10−4, which results in a shift of 20–300 μm.
The higher values are already detectable and in the case of elastic collisions there should be a clear
correlation between the two arms.

In the case of small 𝑥 values (figure 14), the distribution consists mostly of elastic and central
exclusive events with Δ𝑝/𝑝 ≈ 0. For the diagonal configuration, the 0-track data set (mostly elastic
events) shows a slope of 0.79 for Arm 1, and 0.92 for Arm 2. For the parallel configuration (in
part central exclusive events), the slope is 0.70–0.73 for Arm 1, and 0.95–0.99 for Arm 2. The
slopes for elastic and central exclusive events differ because the variance of the proton emission
angle var(𝜃∗𝑥) in the two cases is different. The quantities shown in figure 14 are used for estimating
var(𝑥∗) using eq. (4.6).

In the 𝑦 direction, the measured data match our expectations with the slope 𝐿𝑦, 𝑓 /𝐿𝑦,𝑛 =

271.3/238.2 ≈ 1.14 (figure 15).

4.3 Absolute run-by-run alignment

An inspection of collision events shows apparent deviations from momentum conservation. This is
corrected by means of additional shifts of the RPs in the 𝑥 and 𝑦 directions. This absolute alignment is
tested through symmetry and momentum conservation by studying the distributions of the deduced
IP coordinates and of the momentum sum, and more specifically their means.

The alignment in both the 𝑥 and 𝑦 directions must be performed for each run separately, since
sizeable apparent displacements from run to run are observed. The changes are mostly due to the
drifting LHC proton orbit, since the RP movement system ensures a position reproducibility of about
20 μm. However, instead of correcting the incoming proton direction, for the sake of simplicity, in
the present analysis the RPs are artificially shifted. The goal is to determine the additional shifts
𝛿𝑥 and 𝛿𝑦 for the eight RPs, i.e., altogether 16 values.

The measured deviations ®Δ and the local shifts ®𝑥0 are connected through a linear transformation
𝐴 ®𝑥0 = ®Δ, where 𝐴 is a matrix. The shifts ®𝛿𝑥 are such that 𝐴( ®𝑥0 + ®𝛿𝑥) = 0, and therefore they can
be determined from solving 𝐴 ®𝛿𝑥 = −®Δ.

The alignment in the 𝑥 direction is based on the nearly Gaussian hit location and momentum
sum distributions, since they must be symmetric about zero:

• the location of the primary interaction 𝑥∗ = (𝑥n𝐿𝑥,f − 𝑥f𝐿𝑥,n)/𝑑. This quantity is calculated in
a single arm (1 or 2), using either the top or the bottom pots (T or B), hence the notations 1T,
1B, 2T, and 2B.

• the sum of particle momenta
∑

𝑝𝑥 in elastic or exclusive events. For scattered protons in the
RPs, 𝑝𝑥 is calculated as 𝑝𝑥 = 𝑝beam(𝑥f𝑣𝑥,n − 𝑥n𝑣𝑥,f)/𝑑.

We can use the measured means of 16 distributions: the location of the IPs 𝑥∗, calculated from
RP arm configurations 1T, 1B, 2T, and 2B (4 values); the sum of the proton transverse momenta∑

𝑝𝑥 for RP trigger configurations TB, BT, TT, and BB (4 values); the local hit positions 𝑥 in each
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Figure 14. Correlation of proton hit locations in the 𝑥 direction (two-dimensional occupancy histograms) in the
far and near RPs, shown for various trigger configurations (TB, BT, TT, and BB, in rows), with a restricted scale.
Parameters (standard deviations in major and minor axis directions 𝜎1 and 𝜎2, and the rotation angle 𝛼) of the
fitted tilted two-dimensional normal distributions are displayed in the plots. The corresponding ellipses cover
99% of the points; the dashed green lines indicate their major axes. The two columns on the left side refer to the
2-track data set, whereas the two on the right side display distributions based on the 0-track data set. The plots
are produced with the final detector alignment.

RP (8 values). The transformation matrix is

𝐴𝑥 =

©­­­­­­­­­­­­­«

𝐿1f/𝑑 −𝐿1n/𝑑 0 0 0 0 0 0
0 0 𝐿1f/𝑑 −𝐿1n/𝑑 0 0 0 0
0 0 0 0 𝐿2f/𝑑 −𝐿2n/𝑑 0 0
0 0 0 0 0 0 𝐿2f/𝑑 −𝐿2n/𝑑

−𝑝𝑣1f/𝑑 𝑝𝑣1n/𝑑 0 0 0 0 −𝑝𝑣2f/𝑑 𝑝𝑣2n/𝑑
0 0 −𝑝𝑣1f/𝑑 𝑝𝑣1𝑛/𝑑 −𝑝𝑣2f/𝑑 𝑝𝑣2n/𝑑 0 0

−𝑝𝑣1f/𝑑 𝑝𝑣1n/𝑑 0 0 −𝑝𝑣2f/𝑑 𝑝𝑣2𝑛/𝑑 0 0
0 0 −𝑝𝑣1f/𝑑 𝑝𝑣1n/𝑑 0 0 −𝑝𝑣2f/𝑑 𝑝𝑣2n/𝑑

ª®®®®®®®®®®®®®¬
, (4.10)
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Figure 15. Correlation of proton hit locations in the 𝑦 direction (two-dimensional occupancy histograms) in the
far and near RPs, shown for various trigger configurations (TB, BT, TT, and BB, in rows). The two columns
on the left side refer to the 2-track data set, whereas the two on the right side display distributions based on
the 0-track data set. A straight line corresponding to the expectation 𝑦f = 𝑦n 𝐿𝑦,f/𝐿𝑦,n is also plotted, where
𝐿𝑦, 𝑓 /𝐿𝑦,𝑛 ≈ 1.14. The plots are produced with the final detector alignment. The apparent piecewise linear
segments are simply the consequence of the binning.

where 𝑝 = 𝑝beam, and the transformation itself is

𝐴𝑥

©­­­­­­­­­­­­­«

𝛿𝑥1nT

𝛿𝑥1fT

𝛿𝑥1nB

𝛿𝑥1fB

𝛿𝑥2nT

𝛿𝑥2fT

𝛿𝑥2nB

𝛿𝑥2fB

ª®®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­­«

−⟨𝑥∗1T⟩
−⟨𝑥∗1B⟩
−⟨𝑥∗2T⟩
−⟨𝑥∗2B⟩

−⟨∑ 𝑝𝑥,TB⟩
−⟨∑ 𝑝𝑥,BT⟩
−⟨∑ 𝑝𝑥,TT⟩
−⟨∑ 𝑝𝑥,BB⟩

ª®®®®®®®®®®®®®¬
. (4.11)
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Figure 16. Deduced displacements of RPs in the 𝑥 (top) and 𝑦 (bottom) directions as a function of run number.
Statistical uncertainties are shown with vertical bars. The LHC fills are indicated by grey areas.

The top and bottom RPs are independently movable, and their hit location distribution in the 𝑦

direction has a gap in the middle. In addition, because of the varying 𝑝𝑦 acceptance of various pots,
the normalisation of the distributions in the top and bottom parts is unrelated. Hence the alignment
in the 𝑦 direction cannot be based on the hit location distributions alone. There are two variables
whose distributions must be symmetric about zero, and are not biased:

• the location of the primary interaction 𝑦∗. In an arm, using either the top or the bottom RPs,
it is calculated as 𝑦∗ = (𝑦n𝐿𝑦,f − 𝑦f𝐿𝑦,n)/𝑑. There are four such independent equations (two
arms, top or bottom RPs).

• the sum of particle momenta
∑

𝑝𝑦 in elastic or exclusive events. For scattered protons in the
RPs, 𝑝𝑦 is calculated as 𝑝𝑦 = 𝑝beam [2(𝑦n/𝐿𝑦,n + 𝑦f/𝐿𝑦,f)]. There are four such independent
equations, one for each configuration.

We have the measured means of twelve distributions: the location of the IPs 𝑦∗, calculated from
RP pairs 1T, 1B, 2T, and 2B (4 values); the sum of proton transverse momenta

∑
𝑝𝑦 for RP trigger

configurations TB, BT, TT, and BB (4 values); the averaged local hit positions 𝑦 in RP groups 1n,
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1f, 2n, and 2f (4 values). The transformation matrix is

𝐴𝑦 =

©­­­­­­­­­­­­­«

𝐿1f/𝑑 −𝐿1n/𝑑 0 0 0 0 0 0
0 0 𝐿1f/𝑑 −𝐿1n/𝑑 0 0 0 0
0 0 0 0 𝐿2f/𝑑 −𝐿2n/𝑑 0 0
0 0 0 0 0 0 𝐿2f/𝑑 −𝐿2n/𝑑

𝑝/(2𝐿1n) 𝑝/(2𝐿1f) 0 0 0 0 𝑝/(2𝐿2n) 𝑝/(2𝐿2f)
0 0 𝑝/(2𝐿1n) 𝑝/(2𝐿1f) 𝑝/(2𝐿2n) 𝑝/(2𝐿2f) 0 0

𝑝/(2𝐿1n) 𝑝/(2𝐿1f) 𝑝/(2𝐿2n) 𝑝/(2𝐿2f) 0 0
0 0 𝑝/(2𝐿1n) 𝑝/(2𝐿1f) 0 0 𝑝/(2𝐿2n) 𝑝/(2𝐿2f)

ª®®®®®®®®®®®®®¬
, (4.12)

and the transformation itself is

𝐴𝑦

©­­­­­­­­­­­­­«

𝛿𝑦1nT

𝛿𝑦1fT

𝛿𝑦1nB

𝛿𝑦1fB

𝛿𝑦2nT

𝛿𝑦2fT

𝛿𝑦2nB

𝛿𝑦2fB

ª®®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­­«

−⟨𝑦∗1T⟩
−⟨𝑦∗1B⟩
−⟨𝑦∗2T⟩
−⟨𝑦∗2B⟩

−⟨∑ 𝑝𝑦,TB⟩
−⟨∑ 𝑝𝑦,BT⟩
−⟨∑ 𝑝𝑦,TT⟩
−⟨∑ 𝑝𝑦,BB⟩

ª®®®®®®®®®®®®®¬
. (4.13)

The optimisation of the additional shifts was performed through a joint least squares fit using
the estimated variances of ⟨𝑥∗⟩ and ⟨𝑦∗⟩ values, and those of the momentum sums. The extracted
values in the 𝑥 and 𝑦 directions as a function of run number are shown in figure 16. All RPs in
an arm need to be artificially shifted in a coordinated manner, although the two arms appear to be
independent. The necessary run-by-run adjustments are in the range ±50 μm in 𝑥, and ±0.5 mm in
𝑦. The time dependence of the additional shifts was examined, but they show no obvious periodic
behaviour. We conclude that the observed behaviour does not reflect an actual displacement of
the RPs, but the drifting of the incoming proton beam orbits. The difference between the 𝑥 and 𝑦

directions is the consequence of the special LHC beam optics configuration at the location of the RPs
(section 4.1). The effective length in the 𝑥 direction is close to zero (𝐿𝑥 ≈ 0), hence the horizontal
position of the proton in the RP principally depends on the IP coordinate 𝑥∗. The magnification in
the 𝑦 direction is close to zero (𝑣𝑦 ≈ 0) which makes the vertical position of the proton in the RP
mainly dependent on the scattering angle 𝜃∗𝑦 and not the IP coordinate 𝑦∗. Hence any beam-related
effect plays out rather differently in the two directions.

Details and cross-checks for a specific run (#319311) after full alignment are shown in figure 17,
including the distribution of the IP coordinates (𝑥∗, 𝑦∗) and that of the four-particle momentum sum
(∑ 𝑝𝑥 ,

∑
𝑝𝑦) for each RP configuration, as well as the distribution of the local hit coordinates in

the 𝑥 (single Gaussian) and 𝑦 directions (separate Gaussians). The measured residuals and those
expected from the extracted displacements are shown in figure 18. Although not all the constraints
can be satisfied at the same time, the relevant quantities used for event selection and physics analysis,
i.e., the momentum sums

∑
𝑝𝑥 and

∑
𝑝𝑦 , are well optimised.

Estimates, based on measured data, of the effective lengths at the location of the near (𝐿𝑛,𝑥)
and far pots (𝐿 𝑓 ,𝑥) as functions of the run number are shown in figure 19. They were deduced from
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Figure 17. Cross-check of the full alignment, shown here for run #319311. From top to bottom: Distribution
of the IP coordinates (𝑥∗, 𝑦∗) for RP arm configurations 1T, 1B, 2T, and 2B. Distribution of the four-particle
momentum sum (∑ 𝑝𝑥 ,

∑
𝑝𝑦) for the RP trigger configurations TB, BT, TT, and BB. In both cases the

two-dimensional Gaussian fits are indicated (at 2𝜎) with green dotted ellipses. Distribution of local hits in
the RPs in the 𝑥 (single Gaussian) and 𝑦 directions (separate Gaussians). Dashed blue curves represent the
Gaussian fits, vertical green dashed lines indicate the deduced relative shifts, vertical magenta dash-dotted lines
on 𝑦 plots show fit ranges.
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Figure 18. The measured residuals (red symbols) and those expected from the extracted displacements
(horizontal blue lines) for run #319311, before (upper) and after (lower) the alignment.
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Figure 19. Effective lengths at the location of the near (𝐿𝑛,𝑥) and far pots (𝐿 𝑓 ,𝑥) as functions of the run number,
deduced from near-far hit covariances in RPs for RP arm configurations 1T, 1B, 2T, and 2B. Statistical uncertainties
are indicated with error bars, systematic ones are plotted with shaded rectangles. Values of the nominal TOTEM
optics parameters (table 4) are also shown with horizontal black lines. LHC fills are indicated by grey areas.
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near-far hit covariances in RPs for arm configurations 1T, 1B, 2T, and 2B. Systematic uncertainties are
obtained by varying the size of the selection ellipse (figure 14) by 50%, and by varying the values
of magnification (𝑣𝑥,n and 𝑣𝑥,f) within their expected uncertainties (0.2%). Values of the nominal
optics [19, 20] are also plotted for reference, with black lines. The comparison between the nominal
and averaged estimates from collected events is given in table 4 where any run-by-run variation of the
estimated value is included in the uncertainty. They are in good agreement.

Table 4. Nominal values and estimates of the effective lengths 𝐿𝑥 , truncated to two decimal places. For the
estimates, the systematic uncertainties are indicated; the statistical ones are negligible.

Arm Station
𝐿𝑥 [m]

Nominal Estimated
1 near 3.10 3.05 ± 0.11
1 far −0.52 −0.57 ± 0.12
2 near 0.19 0.39 ± 0.16
2 far −2.95 −2.78 ± 0.12

4.4 Results

The locations of the primary pp interactions in the 𝑥∗–𝑦∗ plane at the IP using RPs in Arm 1 or in
Arm 2 are shown for each trigger configuration in figure 20. All the distributions are well centred
at (0, 0). The elongated regions at negative 𝑥∗ values correspond to protons with large momentum
loss. The width of the distributions is the result of various factors: the beam spot size, the effect of
multiple scattering of the protons within the RP material, and the local position resolution of the RPs.
The joint distributions of 𝑥∗ (or 𝑦∗) coordinates deduced using RPs in Arm 1 and 2 are shown for
each trigger configuration in figure 21. The 𝑥∗ coordinates are determined with good precision, and
they correlate well between Arm 1 and 2, with a beam spot size of 135/

√
2 ≈ 95 μm and resolution

10/
√

2 ≈ 6–7 μm. The 𝑦∗ coordinates have much larger uncertainties, but their distributions are well
centred around (0, 0), with tails from non-exclusive events.

The standard deviation of the momentum sum
∑

𝑝𝑥 for the 0-track data as a function of the
predicted standard deviation from the RP position resolution is shown in figure 22, where the result of
a fit using the functional form (𝜎2

0 +𝜎2∑
𝑝𝑥
)1/2 is indicated. The constant contribution of 𝜎0 ≈ 39 MeV

is the result of several factors: the divergence of both incoming proton beams (Δ𝜎0 ≈ 20 MeV,
section 2.1), multiple scattering of the protons within the RP material, and most importantly the
physics process itself. Here inelastic scattering contributes significantly to 𝜎0 if undetected particles
lead to an apparent momentum imbalance.

Distributions of the sum of the scattered proton momenta (∑2 𝑝𝑥 ,
∑

2 𝑝𝑦), two particles, for
diagonally triggered events are shown in figure 23, left. The measured distributions in the

∑
2 𝑝𝑦

direction are slightly distorted, a consequence of the elastic veto (section 3.4). Distributions of
the sum of scattered proton and central hadron momenta (∑4 𝑝𝑥 ,

∑
4 𝑝𝑦), four particles, shown

for each trigger configuration for 2-track events, are plotted in figure 23, right. Both distributions
are well centred on (0, 0).

The distribution of the sum of scattered proton and central hadron momenta and the sum of
scattered proton momenta (

∑
4 𝑝𝑥 and

∑
2 𝑝𝑥 ,

∑
4 𝑝𝑦 and

∑
2 𝑝𝑦) is shown for each trigger configuration
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Figure 20. Location of the primary pp interaction in the 𝑥∗–𝑦∗ plane at the IP using RPs in Arm 1 or 2
(subscripts 1 or 2), shown for various trigger configurations (TB, BT, TT, and BB, in rows). The two columns
on the left side refer to the 2-track data set, whereas the two on the right side display distributions based on the
0-track data set. The elongated regions at negative 𝑥∗ values correspond to events with large proton momentum
loss. The green circles mark (0, 0).

for 2-track events in figure 24. The contributions of true elastic (only two scattered protons, vertical
band) and true central exclusive (two scattered protons and two central charged hadrons, horizontal
band) are well visible. In addition, a slanted area due to non-exclusive or inelastic background is present.

The procedures just described are used for the precise transverse momentum measurement of the
scattered protons, for event classification and selection in the physics analysis of central exclusive
production, where two oppositely charged hadrons are detected by the CMS silicon tracker [3].

5 Summary

The Roman pot detectors of the TOTEM experiment are used to reconstruct the transverse momentum
of scattered protons and to estimate the transverse location of the primary interaction. In this

– 27 –



2
0
2
5
 
J
I
N
S
T
 
2
0
 
P
0
4
0
1
2

x
* 2 

[m
m

]

x*1 [mm]

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

[a
.u

.]

TB

CMS-TOTEM

0-track2-track

y
* 2 

[m
m

]

y*1 [mm]

-4

-2

 0

 2

 4

-4 -2  0  2  4

TB

x
* 2 

[m
m

]

x*1 [mm]

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

TB

σ1 = 132.3±0.4 µm
σ2 = 9.53±0.03 µm

tan α = 0.999±0.001

y
* 2 

[m
m

]

y*1 [mm]

-4

-2

 0

 2

 4

-4 -2  0  2  4

TB

√s = 13 TeV (2018, β* = 90 m)

x
* 2 

[m
m

]

x*1 [mm]

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

BT
y
* 2 

[m
m

]

y*1 [mm]

-4

-2

 0

 2

 4

-4 -2  0  2  4

BT

x
* 2 

[m
m

]

x*1 [mm]

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

BT

σ1 = 135.6±0.4 µm
σ2 = 9.41±0.03 µm

tan α = 0.997±0.001

y
* 2 

[m
m

]

y*1 [mm]

-4

-2

 0

 2

 4

-4 -2  0  2  4

BT

x
* 2 

[m
m

]

x*1 [mm]

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

TT

y
* 2 

[m
m

]

y*1 [mm]

-4

-2

 0

 2

 4

-4 -2  0  2  4

TT

x
* 2 

[m
m

]

x*1 [mm]

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

TT

y
* 2 

[m
m

]

y*1 [mm]

-4

-2

 0

 2

 4

-4 -2  0  2  4

TT

x
* 2 

[m
m

]

x*1 [mm]

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

BB

y
* 2 

[m
m

]

y*1 [mm]

-4

-2

 0

 2

 4

-4 -2  0  2  4

BB

x
* 2 

[m
m

]

x*1 [mm]

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

BB

y
* 2 

[m
m

]

y*1 [mm]

-4

-2

 0

 2

 4

-4 -2  0  2  4

BB

Figure 21. Joint distribution of 𝑥∗ (or 𝑦∗) coordinates deduced using RPs in Arm 1 and 2 (subscripts 1 and
2), shown for various trigger configurations (TB, BT, TT, and BB, in rows). The two columns on the left side
refer to the 2-track data set, whereas the two on the right side display distributions based on the 0-track data set.
In the case of the diagonally triggered (TB and BT) 0-track (in part elastic) events the parameters (standard
deviations in major and minor axis directions 𝜎1 and 𝜎2, and the rotation angle 𝛼) of the fitted ellipses are
displayed in the plots. The green circles mark (0, 0), the dashed green lines are the identity lines.

study advanced methods for track reconstruction, measurements of strip-level detection efficiencies,
cross-checks of beam optics, and the detector alignment procedure are presented, along with their
application in the selection of signal events.

The track reconstruction is performed by finding a common polygonal area in the intercept-slope
plane, thus exploiting all available cluster information. As a result, an ultimate spatial resolution
of 6–7 μm is achieved, which is an order of magnitude smaller than the strip width. The tool is
applied to the relative alignment of detector layers with μm precision. A tag-and-probe method is
used to extract strip-level detection efficiencies. They are mostly high and constant, but for some
strips they change with time; there are up to 20% variations. The tracklet efficiencies are calculated
using a probabilistic model, based on the temporal variation of the hit detection efficiencies. These
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Figure 22. Left: Standard deviation of the momentum sum
∑

𝑝𝑥 for the 0-track data (TB and BT configurations),
as a function of the predicted standard deviation from the RP position resolution. Statistical uncertainties are
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0 + 𝜎2∑
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)1/2 is plotted with a green curve. Right:

The occurrence of 𝜎∑
𝑝𝑥

. The peaks correspond to events with protons causing one or more two-strip clusters,
and hence better resolution.
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Figure 23. Left: Distribution of the sum of scattered proton momenta (∑2 𝑝𝑥 ,
∑

2 𝑝𝑦) for diagonally triggered
events (TB and BT). The left column refers to the 2-track data set, whereas the right one displays the distribution
based on the 0-track data set. Right: Distribution of the sum of scattered proton and central hadron momenta
(∑4 𝑝𝑥 ,

∑
4 𝑝𝑦) shown for various trigger configurations (TB, BT, TT, and BB) for 2-track events. Ellipses with

semi-minor axes of 150 MeV (𝑥) and 60 MeV (𝑦) are overlaid. The green circles mark (0, 0).

are functions of the tracklet location and slope. There are up to 50% losses in specific but small
areas, to be corrected in the physics analyses.

The alignment of the Roman pot system (8 numbers for each arm) is performed by means of
16 measured quantities in the horizontal, and 12 in the vertical direction, resulting in a position
accuracy of 3 μm in the horizontal and 60 μm in the vertical directions. The deduced locations
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Figure 24. Distribution of the sum of scattered proton and central hadron momenta and the sum of scattered
proton momenta only (

∑
4 𝑝𝑥 and

∑
2 𝑝𝑥 ,

∑
4 𝑝𝑦 and

∑
2 𝑝𝑦) shown for various trigger configurations (TB, BT,

TT, and BB) for 2-track events. The green circles mark (0, 0).

of the primary interaction, the distribution of the scattered proton momenta, and their correlations
confirm the success of the detailed calibration process and provide a solid ground for exclusive physics
analyses based on the high-𝛽∗ data set. The developed methods have been successfully applied in
the analysis of central exclusive production events [3].
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