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distributions for various kinematic observables, are in agreement with leading-order quantum
electrodynamics predictions complemented with final-state photon radiation. The measured
differential BW cross sections allow discrimination between different theoretical descriptions
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1 Introduction

The electromagnetic field of any charged particle at high energies can be interpreted, in the
equivalent photon approximation (EPA) [1–3], as a flux of quasireal photons [4, 5] whose
longitudinal energy is proportional to the beam Lorentz factor, γL, and whose intensity is
proportional to the square of the radiating electric charge, Z2. The study of high-energy
photon-photon (γγ ) processes started in e+e− and electron-proton collisions decades ago [6–8],
but has received a strong boost in the last decade thanks to the greatly increased centre-of-
mass (c.m.) energies and luminosities accessible in collisions with hadron beams at the CERN
LHC. Furthermore, the possibility of accelerating not just protons but heavy ions with charges
up to Z = 82 for lead (Pb) ions, has enabled a multitude of novel γγ -collision measurements
in proton-proton, proton-nucleus, and nucleus-nucleus ultraperipheral collisions (UPCs), as
anticipated in refs. [9–12].

Since the photons are coherently emitted by the whole charge distribution of the Pb
ion, their EPA fluxes have very low virtuality, Q2 < 1/R2 ≈ 10−3 GeV2 for a Pb radius
of R ≈ 7 fm, and reach longitudinal photon energies Eγ = γL/R ≈ 100 GeV at the LHC.
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The photon-photon luminosities associated with PbPb UPCs are enhanced by factors of
up to Z4 ≈ 5 × 107 compared with similar proton-proton or electron-positron interactions.
These facts open up new possibilities, beyond the typical heavy ions research topics [13],
to study very rare standard model (SM) photon-photon processes, such as light-by-light
(LbL) scattering (γγ → γγ ) [14], and enable searches for new particles beyond the SM (BSM)
that couple preferentially to photons [15, 16].

The LbL scattering process proceeds at leading order (LO) in the quantum electrody-
namics (QED) coupling α ≈ 1/137.04 via virtual box diagrams containing charged particles
(figure 1, upper left). In the SM, the box diagram involves contributions from charged
fermions (leptons and quarks) and bosons (W±). Because of its minuscule cross section,
σγ γ ∝ α4 ≈ 3 × 10−9, the first evidence and observation of LbL scattering were only achieved
recently by exploiting the very large fluxes of quasireal photons emitted in PbPb UPCs
at the LHC [17–19]. The study of the γγ → γγ process, whose cross section is known at
next-to-leading (NLO) accuracy in QED and quantum chromodynamics (QCD) with finite
fermion masses [20, 21], has been proposed as a particularly clean channel to study BSM
physics coupled to photons [14]. Modifications of the LbL scattering rates with respect to
the SM predictions can occur if, e.g. new heavy particles, such as spin-0 axion-like particles
(ALPs) [22, 23] or spin-2 massive gravitons [24, 25] (figure 1, lower right) contribute to
the LbL continuum or appear as new diphoton resonances on top of it. In addition, LbL
scattering cross sections probe nonlinear Born-Infeld extensions of QED [26] and, generically,
anomalous quartic (4γ) gauge couplings [27].

Before measuring the very rare LbL process and searching for new BSM phenomena,
it is beneficial to study first photon-fusion processes with larger cross sections and well-
known properties to use them as references for the more elusive signals. Arguably, the
simplest SM photon-photon collision process is the t-channel production of an electron-
positron pair, γγ → e+e−, by which pure light is transformed into matter (figure 1, upper
right). Such a diagram, often called the Breit-Wheeler (BW) process [28], was amongst the
first ones studied in QED. The simplicity and large cross section of the BW process have
facilitated its measurement in UPCs at fixed-target and collider energies by the WA93 [29],
CERES/NA45 [30], STAR [31, 32], PHENIX [33], CDF [34, 35], ALICE [36], CMS [18, 37, 38],
and ATLAS [17, 39, 40] experiments. These results were found in overall agreement with
the theoretical EPA predictions at LO accuracy in QED. Having a good control of the BW
process, where the e± radiate a hard bremsstrahlung photon, is also of relevance as a potential
background for the LbL scattering measurement.

Whereas the BW process is free from any significant irreducible background, the LbL
scattering shares the same final state as the so-called “central exclusive” production (CEP)
process [41] where a pair of photons are produced in the exchange of gluons in a colour-singlet
state (figure 1, lower left). Such a process is short-range, not ultraperipheral, but also leads
to a final state with just two photons produced in an otherwise empty detector.

This paper reports on a measurement of LbL scattering and the BW process using PbPb
collision data recorded by the CMS experiment in 2018 at a nucleon-nucleon c.m. energy of√
s

NN
= 5.02 TeV, corresponding to an integrated luminosity of Lint = 1.70 ± 0.03 nb−1 [42].

This analysis is an extension of the previous study of both processes carried out in 2015
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Figure 1. Schematic diagrams of light-by-light scattering (γγ → γγ , upper left), the Breit-Wheeler
process (γγ → e+e−, upper right), central exclusive diphoton production (gg → γγ , lower left), and
axion- or graviton-like particle production (γγ → a,G → γγ , lower right) in ultraperipheral PbPb
collisions. The (∗) superscript indicates a potential electromagnetic excitation of the outgoing Pb ions.

in PbPb collisions at the same c.m. energy but with about a fourth as much integrated
luminosity [18]. The final-state signature of interest is the exclusive production of two
photons, PbPb γ γ−→ Pb(∗)

γγPb(∗), or an e+e− pair, PbPb γ γ−→ Pb(∗)e+e−Pb(∗), where the
diphoton or dielectron final state is measured in the central part of the detector and the
outgoing Pb ions survive the interaction and escape undetected at very low angles with
respect to the beam. The lead ions can potentially exchange soft photons and be excited
above their ground state, as denoted by the (∗) superscript. Such an excitation is often
followed by the emission of one or a few neutrons collinear to the beam(s), a process called
electromagnetic dissociation (EMD) [43].

A set of criteria are applied to the data sample to select events with just a pair of
exclusively produced photons or e+e− and to reduce backgrounds. Fully corrected differential
cross sections as a function of various kinematic variables are presented for both processes and
compared with theoretical predictions. The measured invariant mass spectrum of exclusive
diphotons is also exploited to set limits on the yields of ALPs, produced resonantly via the
γγ → a → γγ process on top of the LbL continuum, over the mγ γ = 5–100 GeV mass range.

The paper is organized as follows. Sections 2, 3, 4, and 5 present the CMS detector, the
Monte Carlo (MC) event generators, the reconstruction algorithms, and the efficiencies of the
event reconstruction and selection, respectively. The results of the measurement of the BW
process and LbL scattering are described in sections 6 and 7, respectively, and the search
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for ALPs coupled to photons is discussed in section 8. The paper ends with a summary in
section 9. Tabulated results can be found in HEPData [44].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass
and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap
sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and
endcap detectors. Muons are reconstructed in gas-ionization detectors embedded in the steel
return yoke outside the solenoid. The silicon tracker, consisting of 1856 pixel and 15 148 strip
detector modules, measures charged particle trajectories within the pseudorapidity range
|η| < 2.5. For charged particles with 1 < pT < 10 GeV and |η| < 1.4, the track resolutions
are typically 1.5% in pT [45].

The ECAL consists of nearly 76 000 lead tungstate crystals, which provide coverage in
pseudorapidity |η| < 1.479 in the barrel region (EB) and 1.479 < |η| < 3.0 in two endcap
regions (EE). A preshower detector consisting of two planes of silicon sensors interleaved
with a total of three radiation lengths of lead is located in front of the EE. The HCAL
provides coverage in pseudorapidity |η| < 1.3 in the barrel region (HB) and 1.3 < |η| < 3.0
in two endcap regions (HE).

Extensive forward calorimetry, based on Cherenkov-light detectors, complements the
coverage provided by the barrel and endcap detectors. The forward hadron (HF) calorimeter
uses steel as an absorber and quartz fibres as the sensitive material. The two halves of the HF
are located 11.2 m from the interaction region, one on each end, and together they provide
coverage in the range 3.0 < |η| < 5.2. Two zero degree calorimeters (ZDC), made of quartz
fibres and plates embedded in tungsten absorbers, located at ±140 m from the collision
point, measure neutrons and photons emitted at |η| > 8.3 [46].

Data are collected with a two-level trigger system. The first level (L1) of the CMS trigger
system, composed of custom hardware processors, uses information from the calorimeters
and muon detectors to select the most interesting events within a given bunch crossing
in a fixed time interval of less than 4 µs [47]. The second level, known as the high-level
trigger, consists of a farm of processors running a version of the full event reconstruction
software optimized for fast processing, and it is capable of reducing the event rate from
around 100 kHz to less than 1 kHz, before data storage [48]. A more detailed description of
the CMS detector, together with a definition of the coordinate system used and the relevant
kinematic variables, can be found in refs. [49, 50].

3 Monte Carlo event simulation

The BW process is generated at LO QED accuracy using different MC event generators:
starlight 3.13 [51]; superchic 3.03 [52] combined with photos++ 3.61 [53] for the
final-state radiation (FSR) of photons; and gamma-upc 1.0 [54] including the initial photon
transverse momentum kT [55] combined with MadGraph5_amc@nlo [56], and pythia
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8 [57] (shortened also as gamma-upc/mg5 + FSR(py8) below) to generate photon FSR. The
FSR corrections from photos++ and pythia 8 are very similar. The LbL scattering signal
is generated with superchic at LO and with gamma-upc with QED and QCD corrections
at NLO accuracy (called gamma-upc@NLO) [20, 21]. The three photon-photon generators
employed are based on the EPA, but have different implementations of the Pb photon
fluxes and/or treatment of the nuclear survival probability. The superchic and gamma-
upc codes share the same photon flux derived from the charged form factor of the Pb ion,
whereas starlight uses the electric-dipole flux, which leads to 10–15% lower γγ effective
luminosities [54, 55]. The superchic and starlight codes use optical Glauber expressions
to compute the PbPb overlap probability, whereas gamma-upc uses parameterized overlap
functions from a Glauber MC model [58], for a better description of the very peripheral
collisions [59]. The central exclusive production process, gg → γγ , as well as the production
of ALPs are simulated with superchic. Whereas the gamma-upc-based predictions are mostly
used to compare with the final total and differential cross sections, the generated starlight
and superchic events are also passed through the Geant4 [60] detector simulation, and the
events are reconstructed with the same software used with the collision data. The simulation
describes the tracker material budget with an accuracy better than 10%, as established
by measuring the distribution of reconstructed nuclear interactions and photon conversions
in the tracker [45, 61].

4 Event reconstruction

Photons and electrons are reconstructed using an algorithm based on the particle-flow (PF)
global event description [62]. The PF algorithm uses information from each subdetector system
to provide charged particle tracks, calorimeter clusters, and muon tracks. Electromagnetic
showers from photons and electrons deposit 97% of their incident energy into an array
of 5×5 ECAL crystals. The tracker material can induce photon conversion and electron
bremsstrahlung and, because of the presence of the strong CMS solenoidal magnetic field, the
energy reaching the calorimeter is thereby spread in azimuthal angle. The spread energy is
recovered through a collection of adjacent clusters, or “supercluster” [63]. The PF algorithm
allows for an almost complete recovery of the energy of the photons and electrons, even if
they initiate an electromagnetic shower in the material in front of the ECAL.

Photons are identified as ECAL energy clusters not linked to the extrapolation of any
charged particle trajectory to the ECAL. Electrons are identified as a primary charged particle
track and potentially many ECAL energy clusters corresponding to this track extrapolation
to the ECAL and to possible bremsstrahlung photons emitted along the way through the
tracker material. The default CMS photon reconstruction algorithm is optimized for γ and
e± with transverse energies ET = E sin θ > 10 GeV (where θ is the polar angle). However,
the cross section for photons and electrons from exclusive production peaks at the chosen
selection threshold of ET ≈ 2 GeV. The parameters of the PF algorithm have been retuned
in this analysis for e± and γ reconstruction in the low-ET range [64]. Thanks to the
clean UPC environment, the ET threshold for photons, electrons, and superclusters can
be lowered to 1 GeV, instead of the 10–15 GeV values used in standard CMS analyses [63],
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and different calorimeter shower parameters are reoptimized to improve the reconstruction
of softer photons and electrons.

For photon candidates, the reconstructed energy of the ECAL supercluster is used to
define their energy. A dedicated regression procedure starting from ET = 2 GeV is applied
to optimize the γ energy scale and resolution, which is validated using MC simulations and
control samples in data. The reconstructed supercluster energy and generated γ energy
agree within a few percent, confirming that the former is well calibrated. The final photon
energy resolutions achieved are ≈20% (≈7%) for selected photons of ET = 2 (10) GeV, which
translate into ≈1.4 (1.9) GeV absolute diphoton mass resolutions at mγ γ ≈ 5 (20) GeV masses.
Particle identification (ID) criteria are applied to remove converted photons, photons produced
in neutral meson decays, and clusters from other neutral hadrons. Those ID requirements
are based on the electromagnetic shower properties such as its width along the η direction,
timing information, ratio of energy deposits in the ECAL and HCAL, and others [63]. In
order to minimize the contamination from exclusive e+e− events in the LbL final state, the
photons are required to be unconverted in the tracker.

Additional identification criteria (isolation, number of tracker hits, HCAL/ECAL energy
deposit ratio) are applied to the electron candidates, as discussed in ref. [37]. The energy
of electrons is determined from a combination of the track momentum, the corresponding
ECAL cluster energy, and the energy sum of all bremsstrahlung photons attached to the
track. The electron energy scale is verified using a sample of γγ → e+e− events, comparing
the energy of the supercluster E to the momentum of the track p. The electron E/p ratio
is within 5% of unity in the barrel and 15% in the endcaps. The momentum resolution
for electrons above a few GeV is 1.5%. It is generally better in the barrel region than in
the endcaps, and also depends on the bremsstrahlung energy emitted by the electron as it
traverses the material in front of the ECAL [63, 65]. A good agreement is found between
data and simulation, both in the energy scale and resolution.

5 Event selection and experimental corrections

The exclusive diphoton and dielectron candidate events are selected at the trigger level with
a dedicated L1 algorithm that requires at least two electromagnetic clusters (L1 EG) with
ET above 2 GeV and at least one of the HF detectors with total energy below the noise
threshold. The HF veto requirement rejects events with significant particle production, typical
of hadronic PbPb interactions. Data are also recorded with other single-photon triggers
with ET thresholds above 3 and 5 GeV, with or without the HF veto. These triggers are
used to estimate the efficiency of the main analysis trigger with a “tag-and-probe” (TnP)
technique [66], as described below.

In the offline analysis, events are selected with exactly two well-reconstructed photons or
two electrons, each with ET > 2 GeV and |η| < 2.2. Events where photons or electrons fall
in a few inactive or noisy ECAL areas are removed from the selection. Then, charged and
neutral exclusivity selection criteria are applied to reject events having charged or neutral
particles produced over the |η| < 2.4 and 5.2 ranges, respectively. The charged exclusivity
condition first removes from further analysis all diphoton or dielectron events that have any
additional reconstructed charged particle with pT > 0.3 GeV and a minimum of four valid
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Diphotons or dielectrons
ET > 2 GeV, |η| < 2.2, for each single photon or electron
mγ γ ,ee > 5 GeV, pγ γ ,ee

T < 1 GeV, Aγ γ ,ee
ϕ < 0.01, for the pair

Exclusivity
No additional neutral particles with ET > 1 GeV and |η| < 5.2

No additional charged particles with pT > 0.3 GeV and |η| < 2.4
Less than 3 neutrons in both ZDCs: ET < 7 TeV for |η| > 8.3

Table 1. Definition of the fiducial phase space for the BW and LbL scattering processes, used in
their respective cross section measurements.

associated hits in the tracker. In addition, events are required to have no neutral particles
depositing energy in individual EB, EE, HB, HE, and HF calorimeter readout towers, other
than those associated with the diphoton or dielectron candidates. This neutral exclusivity
condition rejects events with additional neutral particles produced and detected above noise
thresholds over |η| < 5.2 and full ϕ. For events with electron candidates, towers in the region
|∆η| < 0.15 (0.15) and |∆ϕ| < 0.7 (0.4) around the electron in the EB (EE) were not included
in this neutral exclusion, while all of the towers in the HB, HE, and HF were included.
For events with photon candidates, the criterion is the same as for electrons, but with a
narrower ϕ window of |∆ϕ| < 0.15 around it, for both the barrel and endcap. The chosen
noise thresholds are determined from a study of the activity of calorimeters in empty bunch
crossing events and are fully efficient to reject events with single neutral particles produced
with ET > 1 GeV over |η| < 5.2. In addition to requiring no towers above the noise threshold
in the central calorimeters, a condition was imposed on the energy deposit in the ZDCs to
remove potential events where the diphoton or dielectron system is produced in peripheral
nuclear interactions with minimum central activity, instead of through UPC γγ collisions. A
loose selection was applied to reject events where there was more than 7 TeV of energy deposits
on either ZDC side, which is equivalent to the concurrent emission of three or more neutrons
in either direction [67]. While neutron emission is not directly simulated in the available MC
generators, the impact of this requirement on the signal cross sections for the BW and LbL
scattering processes was found negligible according to gamma-UPC simulations [68].

Nonexclusive backgrounds are typically characterized by a final state with larger pair
pT and larger acoplanarity, Aγ γ ,ee

ϕ = (1 − ∆ϕγ γ ,ee/π), than the back-to-back exclusive γγ

and e+e− signal events. To further reduce these backgrounds, the transverse momentum
of the reconstructed pairs is required to be p

γ γ ,ee
T < 1 GeV, and the acoplanarity of the

pair to be A
γ γ ,ee
ϕ < 0.01.

Table 1 lists the fiducial phase space where the BW and LbL scattering yields have been
extracted. Whereas the exclusive dielectron sample has negligible physical background left
after all the criteria above have been applied, the LbL scattering process has at least two
background sources remaining in the signal region, both of which are discussed below: (i)
γγ → e+e−γ (γ ) with one or two hard photons radiated by the produced e+e− pair, and/or
both electrons being misidentified as photons, and (ii) the CEP gg → γγ process.

The experimental selection of signal events is subject to detector inefficiencies in the
trigger, energy reconstruction, photon/electron identification, and exclusivity conditions.
In order to transform measured kinematic quantities for exclusive diphoton and dielectron
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events into physical observables, one needs to account for such inefficiencies. Schematically,
a data-driven efficiency factor Cγ γ ,ee is derived from control samples in data through the
factorized expression,

Cγ γ ,ee = εγ γ ,ee (SFγ ,e,reco)2 (SFγ ,e,ID)2 SFtrig SFch.excl SFneut.excl, (5.1)

where εγ γ ,ee is the overall exclusive diphoton or dielectron efficiency (accounting for event
selection and reconstruction effects) derived from the MC simulations, and SFreco, SFID,
SFtrig, SFch.excl, and SFneut.excl are scale factors derived from control regions (CRs) in data,
such that SF ≡ εdata/εMC accounts for the differences for each individual efficiency between
the actual data and MC simulation for photon/electron reconstruction, identification, trigger,
and exclusivity criteria, respectively. The efficiencies and SFs are obtained from detector
simulations based on events generated with the starlight and superchic codes, and are
found to be fully consistent with each other. The SF values are close to unity and each
derived from CRs via tag-and-probe techniques as explained below.

5.1 Exclusive diphoton final state

The overall exclusive diphoton efficiency within the phase space defined by table 1 derived
from the LbL scattering MC simulation amounts to εγ γ = (13.5 ± 0.3)%. This result is
mostly driven by the inefficiencies of the single-photon reconstruction and identification
(εγ ,reco+ID ≈ 40%), and of the trigger (εγ γ ,trig ≈ 80%) in the ET = 2 GeV regions closest to the
kinematic threshold of our selection. The quoted uncertainty here is statistical only, reflecting
the finite size of the LbL scattering MC sample. This MC-based efficiency is cross-checked
and corrected using CRs in data, as explained below.

The photon reconstruction efficiency εγ ,reco is extracted from data using the TnP approach
by selecting γγ → e+e− events in which one of the electrons emits a hard-bremsstrahlung
photon because of interaction with the material of the tracker. In such a case, the electron
imparts a large fraction of its energy to the photon and thereby cannot reach the ECAL
to be identified as an electron. However, it is reconstructed in the tracker as a charged
particle. In a first step, hard-bremsstrahlung events are selected among events passing a
trigger requiring one L1 EG cluster with ET > 5 GeV that have exactly two oppositely
charged particle tracks and exactly one electron reconstructed. Among the selected events,
only those with exactly one photon compatible with a hard bremsstrahlung are kept. Such
events are used to estimate the efficiency in a TnP procedure, via

ε
γ ,reco, hard-brem
data =

Nreco,hard-brem
passing

Nreco, hard-brem
probe

, (5.2)

where the denominator and numerator are defined as follows:

• Nreco, hard-brem
probe : electrons are selected if (i) their direction matches with one of the two

reconstructed tracks within a radius ∆Re,track =
√

(ηe − ηtrack)2 + (ϕe − ϕtrack)2 < 1.0,
(ii) they have Ee

T > 5 GeV, and (iii) their associated ECAL supercluster is matched
within ∆Re,L1 EG < 0.1 to an L1 EG cluster with ET > 5 GeV. The punmatch

T of the
track that is not matched with the electron must be between 0.65 and 2 GeV, since it is
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assumed that the track is generated by the electron after bremsstrahlung emission. The
punmatch

T < 2 GeV requirement ensures that this low-pT charged particle is sufficiently
bent by the magnetic field, and thus the expected photon (extrapolated to the ECAL)
and the second electron are sufficiently separated. Events entering the denominator are
not required to have a reconstructed photon.

• Nreco, hard-brem
passing : events from the denominator are also included in the numerator if a

photon is found with ET > 2 GeV that passes the identification criteria.

The efficiency is extracted by selecting signal-like events through a fit to the acoplanarity
distribution between the (tag) electron and the (probe) charged particle track and amounts to
ε

γ ,reco
data = (76.7±2.4)%, to be compared with εγ ,reco

MC = (78.6±0.6)% in the MC simulation, where
uncertainties are systematic (as well as all other SF uncertainties quoted in this section). The
ratio of these efficiencies is used to define the corresponding SFγ ,reco = 0.98± 0.03 scale factor.

The third term of eq. (5.1) accounts for the εγ ,ID efficiency, which is estimated using
the Nreco, hard-brem

passing events passing the TnP method described above where, in addition,
they are required to have A(tag,probe)

ϕ < 0.06 to select mostly signal events. The efficiency
is extracted by counting the number of events that pass all selections and amounts to
ε

γ ,ID
data = (50.0 ± 4.5)% to be compared with ε

γ ,ID
MC = (51.5 ± 3.5)% in the MC simulation for

this CR. The corresponding SF is estimated by taking the ratio of data and MC efficiencies
and amounts to SFγ ,ID = 0.95 ± 0.05.

The fourth term of eq. (5.1) accounts for the trigger selection efficiency. The analysis
trigger comprises two main ingredients, the requirement of two L1 electron/photon objects
above a given ET threshold, and a veto on energy in the HF. Each component is studied
independently. The efficiency for reconstructing an L1 EG cluster with ET > 2 GeV is verified
using the TnP technique on γγ → e+e− events, where the dielectron acoplanarity is fit to
extract the signal and measure the efficiency. Events are further selected using a supporting
trigger requiring one L1 EG cluster with ET > 5 GeV with the same HF energy veto as the
analysis trigger. The L1 EG cluster used in the trigger is matched (using the same criterion
mentioned above) to one of the two electrons reconstructed offline, called the tag. The other
electron in the event is the probe, and it qualifies as a passing probe if it is matched (within
a ∆Re,L1 EG < 0.5 radius) to an L1 EG cluster with ET > 2 GeV. The efficiency is defined as
the fraction of probes that are also passing probes, and it is in the 45–100% range with the
lowest efficiency found close to the ET = 2 GeV threshold. The efficiencies in data and MC
simulation are found to be (92.0 ± 0.2)% and (91.2 ± 0.1)%, respectively, corresponding to
SFtrig,EG = 1.01±0.01. The same γγ → e+e− sample is used to assess the efficiency of the HF
veto component of the trigger, using a complementary trigger with the same photon/electron
ET threshold but without any HF veto requirement. Events passing the reference trigger
are required to have exactly two opposite-charge electrons passing all identification criteria,
matched with L1 EG objects with ET > 2 GeV within ∆Re,L1 EG < 0.5, and no additional
charged particles in the event. The fraction of these events also passing the main trigger
corresponds to the HF veto efficiency at L1. The efficiency was estimated by counting the
number of events with acoplanarity <0.01 and found to be 87.0 ± 8.0% in data and fully
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efficient (within a ±0.4% uncertainty) in the simulation. The scale factor is estimated by
taking the ratio of both efficiencies, and amounts to SFtrig,HF = 0.87 ± 0.05.

The last two terms of eq. (5.1) account for the efficiency of the charged and neutral
exclusivity selections. These efficiencies are estimated from the fraction of events passing
the dielectron selection criteria with the exception of the exclusivity criteria. Using the
acoplanarity distribution to extract the signal, it is found that (93.0 ± 0.8)% of the events
feature no additional track in the event, to be compared with (99.5± 0.4)% in the simulation.
The associated scale factor is SFch.excl = 0.93 ± 0.01. A similar strategy is used for the
neutral exclusivity selection, this time in events passing the corresponding requirements.
This efficiency is found to be (80.8 ± 0.8)% in data, and (95.1 ± 0.4)% in simulation. This
scale factor is then SFneut.excl = 0.85 ± 0.01.

5.2 Exclusive dielectron final state

The overall exclusive dielectron efficiency within the phase space defined by table 1 derived
from the simulation samples of the BW process amounts to εee = (7.2± 0.1)%. The efficiency
to reconstruct dielectrons is about half that for diphotons because of the comparatively softer
nature of the e+e− produced in the BW process compared with the photons produced in LbL
scattering. The single e± of the BW process have a steeper ET spectrum than the photons
from LbL scattering and, therefore, have a smaller probability to pass the different energy
selection thresholds. Such losses are further enhanced because the overall probability for
both electrons to pass the trigger requirements, or to be concurrently reconstructed above
the chosen pT and invariant mass thresholds, depends on the individual efficiencies squared.

Most of the SFs for the exclusive dielectron final state are common with those obtained
for the diphoton case because they are computed using the same TnP samples, except for the
reconstruction and identification efficiency. For the latter, the TnP technique is employed
using a fit to the acoplanarity distribution in γγ → e+e− events, as done for the diphoton
case, except that now the probe is a charged particle track that becomes a passing probe if it
is matched to an electron passing the reconstruction and identification criteria. An efficiency
of (67.0 ± 0.6)% is found in data, to be compared with (71.1 ± 0.1)% in the MC simulation,
corresponding to a scale factor of SFe, reco+ID = 0.94 ± 0.01.

5.3 Summary of the efficiencies

Applying eq. (5.1), data-driven efficiency factors of Cγ γ = (8.0±1.0)% and Cee = (4.4±0.3)%
are found for the exclusive diphoton and dielectron final states, respectively. The final
data-driven efficiency factors have a relative uncertainty of 12.5% and 6.6% for the LbL and
BW processes, respectively, with the uncertainties of each individual factor being propagated
in quadrature. The MC-based efficiencies, the individual data-to-simulation SFs, and the
final data-driven efficiency factors, are summarized in table 2 for the diphoton and dielectron
channels. The overall Cγ γ ,ee factors are both about a factor of two smaller than those
determined in our previous analysis using 2015 data [18]. This is due to comparatively
noisier calorimeters that worsen the low-ET photon and electron reconstruction, and reduce
the neutral exclusivity efficiency.
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Diphoton efficiency from simulation εγ γ = (13.5 ± 0.3)%
γ reco. and ID data-to-simulation scale factor SFγ ,reco+ID = 0.92 ± 0.06
Dielectron efficiency from simulation εee = (7.2 ± 0.1)%
e± reco. and ID data-to-simulation scale factor SFe,reco+ID = 0.94 ± 0.01

Trigger selection data-to-simulation scale factor SFγ γ ,trig = 0.88 ± 0.05
Charged exclusivity data-to-simulation scale factor SFch.excl = 0.93 ± 0.01
Neutral exclusivity data-to-simulation scale factor SFneut.excl = 0.85 ± 0.01

Diphoton global efficiency, eq. (5.1) Cγ γ = (8.0 ± 1.1)%
Dielectron global efficiency, eq. (5.1) Cee = (4.4 ± 0.3)%

Table 2. Summary of the overall efficiencies from simulation (εγ γ ,ee), individual data-to-simulation
SFs, and data-driven efficiency factors (Cγ γ ,ee) obtained for the exclusive diphoton and dielectron
analyses. The quoted uncertainties in εγ γ ,ee , SF, and Cγ γ ,ee are statistical, systematic, and statistical
and systematic added in quadrature, respectively.

6 Measurement of the Breit-Wheeler process

Following the reconstruction and selection criteria explained above, about 20 000 exclusive
dielectron pairs pass the fiducial criteria listed in table 1. Table 3 indicates the number of
events remaining after each analysis step in the data and in the simulations. The latter are
shown for superchic + FSR(photos++) and starlight MC simulations. The number
of events in the first four rows do not match exactly for data and MC simulations because
these selection requirements accept a fraction of nonexclusive backgrounds that are not
included in the latter. However, the data-to-simulation agreement is much better when
the full exclusivity is added to the selection criteria, reaching differences of a few percent
once all requirements are applied.

The kinematic distributions of the γγ → e+e− events passing all the analysis criteria
are shown in figure 2, together with the superchic + FSR(photos++) and starlight
MC simulations, at the detector-level (i.e. without efficiency and bin-migration corrections).
The absolute value of the cosine of the scattering angle with respect to the z-axis in the
Collins-Soper frame [69] is defined as

|cos θ∗| = 2
∣∣∣∣∣E

eepe1
z − pee

z E
e1

meem
ee
T

∣∣∣∣∣ , (6.1)

where E, pz, m, and mT are, respectively, the energy, the z-axis component of the momentum,
the invariant mass, and the transverse mass (mT =

√
E2 − p2

z) of either the leading electron
(superscript e1) or the dielectron (superscript ee).

A good data-to-simulation agreement is found for all variables within uncertainties,
except for the starlight predictions of the dielectron transverse momentum and acoplanarity.
These quantities are better reproduced by superchic + FSR(photos++) because this latter
simulation includes the emission of FSR photons that recoil against the BW pair, boosting it
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Selection criterion Data superchic starlight
+ photos++

Nevents (%) Nevents (%) Nevents (%)
Trigger 4 600 672 — 53 500 — 47 700 —
Two reco+ID e± with pT > 2 GeV, |η| < 2.2 38 053 1 28 700 54 26 400 55
Dielectron mass mee > 5 GeV 35 716 94 28 700 100 26 300 100
Charged exclusivity selection 30 198 85 26 300 92 24 000 91
Neutral exclusivity selection 23 464 78 21 100 80 19 500 81
Dielectron p

ee
T < 1 GeV 20 909 89 19 500 92 18 600 95

Dielectron A
ee
ϕ < 0.01 20 161 96 19 200 98 18 400 99

ZDC− < 7 TeV or ZDC+ < 7 TeV 19 689 98 19 200 100 18 400 100

Table 3. Exclusive dielectron yields after applying each selection criteria in data and MC simulations.
The MC simulation yields match the integrated luminosity of the measurement, σfid,MCLint, and are
corrected by the SFs listed in table 2. The (%) column indicates the percentage of events remaining
after applying the selection with respect to the previous row.

Trigger SF 6.2%
MC-based e+e− efficiency 2%
Electron reconstruction and identification SF (2 × 0.5)%
Charged exclusivity SF 1%
Neutral exclusivity SF 1%
Integrated luminosity 1.7%

Total 6.9%

Table 4. Summary of relative systematic uncertainties in the measurement of exclusive dielectron
cross sections.

above pee
T ≈ 0.2 GeV and inducing larger azimuthal acoplanarities for Aee

ϕ > 0.006. Higher-
order (NLO) QED corrections (currently missing in the MC event generators) have been
shown to further increase the dilepton pair acoplanarity and transverse momentum [55], and
would improve the agreement with the data in the tails of the Aee

ϕ and p
ee
T distributions.

The systematic uncertainties for the exclusive dielectron measurement are summarized
in table 4. The main source of uncertainty in the measured γγ → e+e− yields is that
of the trigger efficiency, and amounts to ±6.2%. The integrated luminosity uncertainty
is 1.7% [42]. The sum in quadrature of all uncertainties propagates into a global 6.9%
uncertainty in the BW yields.

The BW scattering fiducial cross section, for electron pairs passing all selections listed
in table 1, is

σfid(γγ → e+e−) = N ee,data

CeeLint
= 263.5 ± 1.8 (stat) ± 17.8 (syst)µb, (6.2)
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Figure 2. Detector-level kinematic distributions for exclusive e+e− events passing the analysis
requirements (table 1) in the data (black points), and in superchic + FSR(photos++) and starlight
simulations (histograms). The MC simulations are normalized to match σfid,MCLint, and corrected
with the SFs listed in table 2. The pe

T and mee distributions display the number of events per bin,
divided by the bin width. Ratios of the data to MC expectation are shown in the lower panels. Error
bars around the data points (hatched bands) indicate statistical (quadrature sum of MC statistical
and systematic) uncertainties.
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with N ee,data = 19 689, Cee = 4.4 ± 0.3%, and Lint = 1.70 ± 0.03 nb−1. The measured
cross section can be compared to the current state-of-the-art theoretical prediction given
by the LO QED calculations complemented with photon FSR, which accounts for a good
fraction of the NLO corrections [55]. To provide a consistent comparison across predictions
and data, FSR emission has been added to the MC output of the three models and the
fiducial phase space requirements applied to the generated events. The corresponding
theoretical predictions are σfid(γγ → e+e−) = 225µb for starlight + FSR(py8), σfid(γγ →
e+e−) = 261µb for superchic + FSR(photos++), and σfid(γγ → e+e−) = 265µb for
gamma-upc/mg5 + FSR(py8). Theoretical uncertainties (not quoted) due to missing higher-
order QED corrections are of the order of a few percent [55]. The measured BW cross section
is in very good agreement with the two latter predictions, but it is 15% larger than the
starlight + FSR(py8) result. It is worth noting that the cross sections for the pure LO
process, without FSR, amount to σfid(γγ → e+e−) = 251, 293, and 297µb for starlight,
superchic, and gamma-upc, respectively. The inclusion of photon FSR reduces the fiducial
γγ → e+e− cross section because about 10% of the events fail to satisfy the kinematic
requirements: either the radiating e± falls below the ET = 2 GeV threshold at low pair masses,
or the e+e− pair goes above the pee

T < 1 GeV criterion at high invariant masses. Numerical
differences among σfid predictions can be traced to different implementations of the Pb photon
flux and the nuclear nonoverlap (i.e. exclusivity) condition. Variations of the nonoverlap
condition computed with a Glauber model for varying Pb radius and diffusivity parameters [58]
propagate into a few percent differences in the cross sections. The major difference among
the MC models comes from their implemented photon fluxes (electric-dipole form-factor
in starlight, and charged form-factor in superchic and gamma-upc). The present BW
measurement favours the more realistic charged form-factor γ flux from the Pb ions.

Finally, the number of forward neutrons emitted in the EMD of the two interacting ions
is also measured in BW events passing the fiducial criteria of table 1 with the exception of
the maximal ZDC activity requirement. The number of neutrons is determined based on the
energy deposition in the ZDC detectors, correcting for bin migrations, and EMD pileup events,
as described in refs. [67, 70]. Table 5 lists the fraction of different neutron multiplicity classes
(0n, 1n, and Xn with X ≥ 1) on each ZDC side measured in the BW process, and figure 3
shows them in graphical form, compared with the superchic 4.2 [71], starlight 3.13 (this
generator does not compute all measured categories), and gamma-upc 1.6 [68] predictions. In
general, a good agreement is found between data and EMD models, except for the 0n1n+1n0n
and 1nXn+Xn1n categories where differences ±20%, or larger, are found. The latest gamma-
upc 1.6 predictions show the best accord with the measured neutron category probabilities
as this model includes fits to more differential photoexcitation cross section data not included
in the other two event generators.

The uncorrected kinematic distributions of the exclusive dielectron events obtained after
all selection criteria (figure 2) are unfolded to the particle level in the fiducial phase space
defined in table 1. The only background to the BW process passing our fiducial criteria
(table 1) is exclusive Υ photoproduction, followed by the dielectron decay of the charmonium
meson, which contributes to the mee ≈ 10 GeV invariant mass bin. We have estimated this
contribution to be below 1% and neglected it in this study. The unfolding procedure corrects
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Neutron multiplicity Probability (%)
category Data superchic 4.2 starlight 3.13 gamma-upc 1.6

0n0n 74.0 ± 0.7 76.6 ± 1.0 74.5 ± 1.0 74.9 ± 2.4
0nXn + Xn0n 19.8 ± 0.5 18.6 ± 0.2 19.1 ± 1.0 19.5 ± 1.2

XnXn 6.2 ± 0.2 4.9 ± 0.1 5.9 ± 0.5 5.6 ± 1.2
0n1n + 1n0n 4.5 ± 0.2 6.4 ± 0.1 — 5.8 ± 0.2

1nXn + Xn1n 3.7 ± 0.1 3.0 ± 0.0 — 3.0 ± 0.2
1n1n 0.54 ± 0.04 0.5 ± 0.0 0.4 ± 0.1 0.45 ± 0.03

Table 5. Probability of different neutron multiplicity classes (0n, 1n, and Xn with X ≥ 1) measured
on each ZDC side for the exclusive e+e− events passing the fiducial criteria (first four rows of
table 1), compared with the predictions of superchic 4.2, starlight 3.13, and gamma-upc 1.6 for the
deexcitation of the Pb ions in EMD processes. The experimental (MC model) uncertainties quoted
are the square sum of statistical and systematic (MC statistical) sources.
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Figure 3. Probability for different neutron multiplicity classes (0n, 1n, and Xn with X ≥ 1) measured
on each ZDC side for the exclusive e+e− events passing the fiducial phase space defined in table 1. The
measured ratios are compared with superchic 4.2, starlight 3.13, and gamma-upc 1.6 predictions.

for bin migrations in the differential distributions. The default unfolding procedure is carried
out with the superchic + FSR(photos++) MC simulation. In addition, unfolding based
on the starlight and gamma-upc + FSR(py8) MC samples is performed to estimate the
uncertainty due to the choice of the prior model. Each kinematic distribution is unfolded
independently. The matrix inversion method is employed to unfold mee , yee and |cos θ∗|ee

distributions with the RooUnfold package [72]. For pee
T , unfolding with unregularized

matrix inversion is not viable because of its sensitivity to statistical fluctuations, which
lead to bin-to-bin oscillations in the final differential distributions. For this variable, the
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D’Agostini iterative unfolding with early stopping [73] has been used with three iterations
(a value for which the ratio of unfolded and true distributions is very close to the ratio of
reconstructed data and MC distributions). Prior to the unfolding, the response matrices
are corrected for all SFs listed in table 2. The unfolding procedure introduces an additional
uncertainty in the final differential cross sections, beyond those listed in table 4, due to the
MC-dependent shape of the input kinematic distributions. It amounts to ±5% on average,
and ±15% in the tails of the distributions, and is added in quadrature bin-by-bin with the
rest of the systematic uncertainties (hatched bands in figure 4).

Figure 4 shows the comparison of the differential cross sections measured in data to
the generator-level predictions from three MC considered: superchic + FSR(photos++),
starlight + FSR(py8), and gamma-upc + FSR(py8). Within uncertainties, good agree-
ment between data and predictions is found, except in the overall normalization of the
starlight + FSR(py8) distributions, which tend to consistently undershoot the measure-
ments by about a factor of 15%. The incorporation of the recoil due to the photon FSR
improves the agreement between the starlight prediction and the data in the tail of the
pair pee

T distribution in comparison with the default starlight result (figure 2, upper right).
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Figure 4. Differential cross sections for exclusive dielectron production, in the fiducial phase space
defined in table 1, as functions of the pair pT (upper left), rapidity (upper right), invariant mass (lower
left), and |cos θ∗| (lower right). Data (black points) are compared with superchic + FSR(photos++),
starlight + FSR(py8), and gamma-upc + FSR(py8) predictions. Vertical bars (hatched bands) show
statistical (systematic) uncertainties.
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Selection criterion Data superchic superchic + photos++ starlight superchic
LbL γγ → e+e− + FSR γγ → e+e− CEP

Nevents (%) Nevents (%) Nevents (%) Nevents (%) Nevents (%)
Trigger 4 600 672 — 47.1 — 53 400 — 47 700 — 181.6 —
Two reco+ID γ with

1 019 569 22 23.6 50 24 800 46 22 600 47 88.9 49
ET > 2 GeV, |η| < 2.2
Diphoton mass mγ γ > 5 GeV 582 349 57 23.1 98 24 200 97 22 000 97 84.4 95
Charged exclusivity selection 436 172 75 18.9 82 26.5 0.1 19.6 0.1 71.3 84
Neutral exclusivity selection 207 0.05 15.0 79 20.6 78 14.9 76 57.2 80
Diphoton pT < 1 GeV 83 40 14.3 95 15.0 73 11.5 77 47.3 83
ZDC− < 7 TeV or ZDC+ < 7 TeV 81 98 14.3 100 15.0 100 11.5 100 47.3 100
Diphoton A

γ γ

ϕ < 0.01 26 32 12.8 90 2.3 15 1.5 13 10.1 21

Table 6. Exclusive diphoton yields after applying each selection criteria in data and MC simulations.
The simulation yields are scaled by the integrated luminosity of the measurement and corrected by
the SFs listed in table 2. The (%) column indicates the percentage of events remaining after applying
the selection with respect to the previous row.

7 Measurement of light-by-light scattering

The exclusive diphoton signal is extracted after applying all selection criteria described in
section 5, and estimating and subtracting the residual backgrounds. The exclusive dielectron
measurement has no significant physical background, but the much rarer LbL process receives
contributions from BW γγ → e+e− (where the e− and e+ both radiate a hard bremsstrahlung
photon and/or are misidentified as photons) and from CEP gg → γγ events. The number
of events remaining in the data and MC simulations after applying each selection criteria
(section 5) is summarized in table 6. The numbers in the first rows, until applying exclusivity
criteria, do not match between data and MC predictions, as the MC generation does not
include nonexclusive backgrounds. It is also worth noting that the impact of the neutral
exclusivity requirements is significant because they remove many events with noise in the
electromagnetic and hadronic calorimeters. For the final selection, 26 events are observed in
the signal region to be compared with the expected 12.8 LbL signal counts, and 10.1 CEP
plus 1.9 BW FSR backgrounds events, determined as explained next.

7.1 Background subtraction

Because of its much higher rate than the LbL process, the exclusive production of electron
pairs (γγ → e+e−) can be a source of misidentified diphoton events in two circumstances.
Misidentification of an electron as a photon can occur when the electron track is not recon-
structed and/or when the electron pair emits one (or two) hard bremsstrahlung photon(s). The
hard-bremsstrahlung emission can occur within the detector material, and such a contribution
is already properly included in the Geant4 simulation, as well as in the efficiency SFs derived
using CRs in data. The emission of physical FSR (prior to the electron/positron reaching the
detector) is included in the superchic + FSR(photos++) and gamma-upc + FSR(py8) MC
samples, where soft and collinear photons can be emitted by the e+e− pair. In addition,
gamma-upc/MadGraph5_amc@nlo samples were generated for the γγ → e+e−γ and
γγ → e+e−γγ processes, to have an alternative simulation with harder photons. The study
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of the three simulated samples indicates that the only source of BW background to the LbL
measurement is due to e+e− pairs that suffer hard bremsstrahlung in the material and get
misidentified as photons. This conclusion was further confirmed from the data themselves
by studying a sample of γγ → e+e−γ(γ) bremsstrahlung events where electrons were not
identified, but their low-ET tracks could still be reconstructed. Since both superchic and
starlight simulations of the BW background agree within uncertainties, their average is
taken and any differences between them in the signal region are assigned as a systematic
uncertainty, as explained below. The background from BW events, obtained by averaging
out the superchic and starlight predictions, is thus estimated to be 1.9 ± 0.4 events
in the signal region below A

γ γ

ϕ = 0.01.
The theoretical CEP cross section (including coherent and incoherent contributions)

in PbPb collisions is in principle expected to be much smaller than the LbL one [41, 52],
and the final-state diphoton pT is harder than the LbL one [14], such that less events pass
the maximum pT (pair) requirement in the LbL kinematic selection criteria. The CEP
cross section has, however, very large uncertainties. The most striking feature of photons
coming from LbL scattering is how nearly back-to-back they are, whereas any other diphoton
background(s) typically features a larger azimuthal difference. Therefore, rather than relying
fully on the MC predictions for the CEP background estimation, a method based on CRs in
data is used instead that normalizes the sum of any remaining backgrounds to the tail of
the diphoton acoplanarity distribution where no LbL signal is expected. Such a method also
includes by definition any other potential exclusive processes remaining in the selected events
(such as e.g. scalar and tensor bottomonium resonances that can be produced via γγ → ηb , χb
and decay back to diphotons, although their expected yields [54] are much smaller than the
LbL continuum signal). For this purpose, as done in the 2015 PbPb run analysis [18], the
CEP MC contribution is scaled to the data in the acoplanarity tail Aγ γ

ϕ > 0.015 where no
significant LbL signal is expected and, from there, it is extrapolated to the signal region:
A

γ γ

ϕ < 0.01. The tail-based normalization factor is defined as:

fnorm,backgd
CEP,MC =

Ndata(Aγ γ

ϕ > 0.015) −NLbL,MC(Aγ γ

ϕ > 0.015) −NBW,MC(Aγ γ

ϕ > 0.015)
NCEP,MC(Aγ γ

ϕ > 0.015)
, (7.1)

where N(Aγ γ

ϕ > 0.015) indicates the number of exclusive diphoton candidate events observed
in data and MC simulations in the region A

γ γ

ϕ > 0.015.
Figure 5 shows the diphoton acoplanarity distribution over Aγ γ

ϕ = 0–0.1 measured in data
(black points) compared with MC predictions for the LbL process (orange histogram), the
BW process (yellow histogram), and CEP (blue histogram, normalized to data as explained
above). There are two sources of systematic uncertainty in the normalization of the CEP
background in the signal region, which are added in quadrature: ±15% to account for the
finite number of measured events in the sideband acoplanarity region above Aγ γ

ϕ = 0.015 to
which the simulation has been scaled, and ±14% assigned to account for possible differences
between the actual acoplanarity shape of the simulated samples and the observed events. This
latter uncertainty is derived from the differences in the integral of the total background yield
by varying the background acoplanarity distribution to be more similar in shape to the CEP
or BW distributions for Aγ γ

ϕ < 0.015. The uncertainties of statistical (15%) and nonstatistical
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Figure 5. Diphoton acoplanarity distribution over Aγ γ

ϕ = 0–0.1 in events passing the fiducial criteria
of table 1 (except the Aγ γ

ϕ < 0.01 one) measured in data (black points) compared with the predictions
for the LbL signal (orange histogram), the BW process (yellow histogram), and the CEP (blue
histogram, normalized to data in the region A

γ γ

ϕ > 0.015 as explained in the text) backgrounds. Error
bars on the data points show statistical uncertainties, and dashed bands on the stacked histograms
(and at unity in the lower data/MC ratio) represent systematic uncertainties.

(19%) nature combined in quadrature amount to ±24%, as shown in table 7. The background
in the signal region below A

γ γ

ϕ = 0.01 from CEP plus any other acoplanar diphoton processes is
thus estimated to be 10.1±2.4 events. Adding the contribution from misidentified γγ → e+e−

pairs, the total background in the LbL signal region amounts to 12.0 ± 2.9 events.
Figure 6 shows the comparison of single photon and diphoton kinematic variables for

data and MC simulations. All MC contributions are normalized to match σfid,MCLint and are
multiplied by the SFs listed in table 2. The CEP MC has been scaled to match the data in
the region of acoplanarity A

γ γ

ϕ > 0.015 (figure 5), as explained above. Both the measured
yields and kinematic distributions are in accord with the combination of the LbL scattering
signal plus BW process and scaled-CEP background expectations.

7.2 Systematic uncertainties and signal significance

The systematic uncertainties in the LbL scattering measurement are summarized in table 7.
The most important source of uncertainty in the LbL yields is that of the background
normalization and shape combined, and amounts to ±21%. The data-driven efficiency factor,
Cγ γ given by eq. (5.1), has an uncertainty of 12.5%, mostly dominated by the data-to-
simulation SF of the trigger efficiency. The integrated luminosity uncertainty, relevant for
the final cross section extraction, is 1.7% [42].
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Figure 6. Detector-level kinematic distributions for candidate exclusive diphoton events passing all
selection criteria (table 1) in the data (black points) compared with the simulated LbL scattering signal
(orange histogram) and backgrounds from the BW (yellow histogram) and CEP (blue histogram, scaled
as described in the text) processes. The MC simulations are normalized to match σfid,MCLint, and
corrected with the SFs listed in table 2. Error bars on the data points show statistical uncertainties,
and dashed bands on the stacked histograms (and at unity in the lower-panel data/MC ratios) represent
systematic uncertainties.
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Background normalization 15%
Background shape 14%
Exclusive diphoton SFs and efficiency 12.5%
Integrated luminosity 1.7%

Total (statistical/nonstatistical) 24% (15%/19%)

Table 7. Summary of relative systematic uncertainties in the measurement of the LbL scattering
cross section.

The compatibility of the data with the background-only hypothesis is evaluated from
the measured acoplanarity distribution (figure 5) using a profile-likelihood ratio test statistic
modified for upper limits [74]. Systematic uncertainties are included by introducing nuisance
parameters that modulate the number of expected events following a log-normal probability
density function. The uncertainty from the finite size of the MC samples is also included as an
additional nuisance parameter for each bin of the histogram [75, 76]. The significance for the
excess at low diphoton acoplanarity in data, estimated from the expected distribution of the
test statistic for the background-only hypothesis obtained with the asymptotic formula [74],
is 4.7 standard deviations (3.8 standard deviations expected).

In addition, the significance of the LbL signal has been recalculated by adding the number
of measured counts in the analysis of the 2015 PbPb run data [18], which showed 14 events
observed, compared with expectations of 9.0±0.9 events for the LbL signal and 4.0±1.2 (stat)
for the background processes. The difference in signal and background efficiencies between
2015 and 2018 mainly results from tighter selections applied in the latter due to the ageing
of the calorimeters that lead to increased noise levels. After correcting for a small fiducial
acceptance difference (photons were previously measured over |ηγ | < 2.4, instead of |ηγ | < 2.2
now), both results were analyzed with the Combine tool [77]. By exploiting the shape of the
combined acoplanarity distribution, an asymptotic significance of 6.2 standard deviations
(5.5 expected) is obtained.

7.3 Fiducial LbL cross section

The LbL scattering fiducial cross section for photon pairs passing all selections listed in table 1,
is determined from a fit of the signal strength in the combined acoplanarity distributions of
2015 and 2018, using the superchic cross section of σLO

fid = 93 nb as a reference, and yields

σfid(γγ → γγ ) = 107 ± 24 (stat) ± 13 (syst) nb. (7.2)

The experimental measurement agrees within uncertainties with the theoretical predictions
at LO, σLO

fid = 93 nb, and NLO: σNLO
fid = 95.5+2.0

−1.0 (scale)+1.0
−1.5 (param) nb, obtained with

gamma-upc@NLO. The predicted NLO cross section has a total relative uncertainty of about
2%, shared in about equal parts between the missing higher-order uncertainties [20, 21] and
parametric uncertainties from the Pb survival probability. The latter are derived by varying
the nuclear radius and diffusivity of the Pb nucleus with a Glauber MC model [58].
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Figure 7. Differential exclusive diphoton cross sections in the fiducial phase space defined in table 1
as a function of the diphoton rapidity (left) and invariant mass (right) measured in data (black points)
compared with superchic and gamma-upc@NLO predictions. The lower panels show the corresponding
data/MC ratios. Vertical bars (hatched bands) indicate statistical (systematic) uncertainties.

The uncorrected kinematic distributions of the selected exclusive diphoton events obtained
after background subtraction (figure 6) are unfolded to the particle level in the fiducial phase
space defined in table 1 using the same RooUnfold procedure applied to the BW distributions
(section 6). Prior to the unfolding, the response matrix is corrected for all SFs listed in table 2,
determined previously. The matrix inversion method has been used to obtain the diphoton
rapidity and invariant mass differential cross sections. The results are presented in figure 7.
The upper panels present the unfolded distributions measured in the data, compared with
the corresponding superchic and gamma-upc@NLO predictions, and the lower panels their
ratio. Good agreement between both predictions and the unfolded data for diphoton rapidity
and invariant mass can be seen within experimental uncertainties.

8 Limits on axion-like particles

Searching for an excess with respect to the expected γγ → γγ continuum has been proposed
to identify the production of ALPs in UPCs [22]. The measured invariant mass distribution
of candidate diphoton events (figure 6, third row, right) is used to search for possible narrow
resonances. The LbL, BW, and CEP continuum processes are considered as backgrounds in
this search. Different superchic MC samples are generated for ALP masses, ma , ranging
from 5 to 100 GeV. The calculation of the ALP photon-fusion cross sections is based on
the Lagrangian density

L ⊃ 1
2∂µa∂

µa−
m2

a
2 a2 −

gaγ

4 aFµνF̃µν , with gaγ ≡ Cγ γ/Λ, (8.1)

– 23 –



J
H
E
P
0
8
(
2
0
2
5
)
0
0
6

where a is the ALP field, F̃µν is the photon field strength dual tensor, and the dimensionful
ALP-γ coupling strength gaγ is inversely proportional to the high-energy scale Λ associated
with the spontaneous breaking of an approximate Peccei-Quinn global U(1) symmetry [78].
The effective dimensionless coefficient Cγ γ can be used to rescale the ALP-γ coupling whenever
the ALP also interacts with, and consequently also decays to, other SM particles. The
photon-dominant, or photophilic, Cγ γ = 1 case considered here is the most common one
found in the literature [23, 79].

Examples of two simulated ALP signals with masses ma = 14, 30 GeV and gaγ =
0.25 TeV−1 are shown in the left plot of figure 8 (gray and red histograms, respectively). The
simulated ALP samples are reconstructed and processed as done for the LbL final state to
estimate the acceptance A and efficiency ε, as well as the expected reconstructed diphoton
mass template distributions. Corrections to the efficiency estimated in the MC simulation are
derived based on data, and applied in the same way as for the LbL final state. The diphoton
mass templates used in the limit-setting procedure are built using the fully simulated and
reconstructed ALP samples, after the final selection. Their cross sections are scaled by
σγ γ→aLintAε, with σγ γ→a arbitrarily fixed to 10 nb as reference point.

Upper limits at 95% confidence level (CL) are then determined using the Combine tool
with asymptotic formulae. A binned maximum likelihood fit is performed in the same way as
done in the LbL analysis. The systematic uncertainty is 100% correlated between the LbL
background and the ALP signal. An additional uncorrelated uncertainty of ±3% is added
to the ALP signal cross section corresponding to the MC statistical uncertainty propagated
to its reconstruction efficiency. The results of this analysis are combined with our previous
limits [18], assuming fully uncorrelated uncertainties.

The CLs criterion [80, 81], with a profile-likelihood ratio as test statistic [82], is used
to extract exclusion limits in the σ(γγ → a → γγ) cross section at 95% CL, as well as the
68 and 95% bands around the expected limits. Limits on σ(γγ → a → γγ) cross section
for ALPs with masses 5–100 GeV are set in the 5–200 nb range, as shown in figure 8 (right).
The red curves in this plot indicate the expected ALP cross sections as a function of ma for
decreasing values of the coupling (gaγ = 0.3, 0.1, and 0.05 TeV−1).

The limits on the σ(γγ → a → γγ) cross sections shown in figure 8 (right) are used to
determine exclusion regions in the gaγ versus ma plane. Constraints on the ALP mass and
its coupling to photons derived from accelerator and collider searches [18, 22, 83–94], beam
dumps [95–100], and supernova particle decays [101] are compared with those obtained from
the current PbPb data in figure 9. All results assume Cγ γ = 1, i.e. a B(a → γγ) = 100%
branching fraction. The exclusion limits extracted here are the most stringent to date over
the ma = 5–10 GeV range.

9 Summary

Measurements of light-by-light scattering (LbL, γγ → γγ) and the Breit-Wheeler process
(BW, γγ → e+e−) are reported in ultraperipheral collisions of lead ions at the LHC. The
data, corresponding to an integrated luminosity of 1.70 nb−1, were collected in 2018 by the
CMS experiment at a centre-of-mass energy per nucleon pair of 5.02 TeV. The LbL and BW
processes are studied in events with exclusively produced γγ and e+e− pairs, respectively. Each
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Figure 8. Left: exclusive diphoton invariant mass distribution measured in data (black points) with
the expected LbL, BW, and CEP backgrounds (orange, yellow, and blue histograms, respectively),
and two arbitrary ALP signals injected at masses ma = 14 and 30 GeV with gaγ = 0.25 TeV−1

(gray and red histograms, respectively). Right: observed (solid black line) and expected (dotted
black line) 95% CL limits on the ALP production cross section σ(γγ → a → γγ ) as a function of
mass ma . The inner (green) and outer (yellow) bands indicate the regions containing 68 and 95%,
respectively, of the distribution of limits expected under the background-only hypothesis. The red
curves indicate the expected ALP cross sections as a function of ma for decreasing photon couplings
(gaγ = 0.3, 0.1, 0.05 TeV−1, upper to lower).

Figure 9. Exclusion limits at 95% CL in the axion-photon coupling gaγ versus axion mass ma plane,
for the operator 1

4ΛaF F̃ (assuming ALPs coupled only to photons) derived from multiple measurements
(gray areas) compared with the limits extracted in this analysis (red area, the corresponding expected
limits are indicated with a dashed line). Previous limits have been obtained from data from LHC
PbPb [18, 83], LEP [22, 84, 85], PrimEx [86, 87], BELLE II [88], BES-III [89], LHC (pp) [90–94], and
beam dumps [95–100], as well as from SN1987A supernova constraints [101].
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reconstructed particle is required to have a transverse energy of Eγ ,e
T > 2 GeV, a pseudorapidity

of |ηγ ,e | < 2.2, and the pairs to have an invariant mass of mγ γ ,ee > 5 GeV, a transverse
momentum of pγ γ ,ee

T < 1 GeV, and an azimuthal acoplanarity of (1 − ∆ϕγ γ ,ee/π) < 0.01. The
selected events are required to have no additional neutral particles with ET > 1 GeV over
|η| < 5.2, as well as no charged particles with pT > 0.3 GeV over |η| < 2.4.

About 20 000 events pass the selection criteria for the BW process, and their detector-
level kinematic distributions are consistent with simulated events generated with the super-
chic 3.03 and starlight 3.13 Monte Carlo (MC) codes based on quantum electrodynamics
calculations at leading order. A fiducial cross section of σfid(γγ → e+e−) = 263.5±1.8 (stat)±
17.8 (syst)µb is measured. The BW fiducial cross section and unfolded e+e− transverse mo-
mentum, rapidity, and invariant mass distributions are compared with the predictions of
the starlight, superchic, and gamma-upc/MadGraph5_amc@nlo MC event generators,
including photon final-state radiation (FSR) simulated with the photos++ or pythia 8
codes. The addition of photon FSR leads to better agreement of the calculations with the
measured dielectron differential distributions. The superchic and gamma-upc predictions,
both based on the charged form factor photon flux of the lead ion, are in better agreement
with the data than the starlight calculations, which are based on an electric-dipole form
factor. The probabilities of different multiplicities of forward neutrons emitted due to the
electromagnetic excitation of the ions in the BW process are also measured, showing best
agreement with the gamma-upc model expectations.

In the LbL final state, 26 exclusive diphoton candidate events are observed after applying
all selection criteria, compared with an expectation of 12.8 events predicted for the signal and
12.0 for the background, the latter dominated by contributions from central exclusive (gluon
mediated) production scaled to the data (10.1 events) with some remaining counts from
the BW process (1.9 events). Combined with previous results, the significance of the LbL
signal with respect to the background-only hypothesis is above five standard deviations. The
measured fiducial LbL scattering cross section, σfid(γγ → γγ ) = 107 ± 24 (stat) ± 13 (syst) nb,
is consistent with theoretical predictions at next-to-leading order accuracy. The unfolded
diphoton rapidity and invariant mass differential cross sections show good agreement with
the theoretical expectations.

Exploiting the measured invariant mass distribution of exclusive diphoton events, new
limits on the resonant production of axion-like particles coupled to photons are set in the mass
vs. axion-photon coupling plane. Couplings larger than gaγ ≈ 0.1–0.4 TeV−1 can be excluded
over ma = 5–100 GeV, including the most stringent constraints to date in the 5–10 GeV range.
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