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1. Introduction

The standard model (SM) of particle physics has emerged as a highly successful theory capable of explaining a large
number of observations. However, alongside its achievements, the SM is unable to provide answers to intriguing questions
that invite further investigation. For instance, the SM faces the hierarchy problem [1], a puzzling issue related to the
vastly different strengths of the electroweak (EW) force and gravity. The Higgs boson (H), whose corresponding field is
responsible for the mass of fundamental particles, exhibits a mass that appears to be unnaturally light compared to the
Planck energy scale, at which new physics must manifest. The level of fine-tuning of the Higgs boson mass that is required
to cancel large quantum corrections in the SM motivates the search for new particles and interactions that could provide

a potentially more natural solution.

Furthermore, neutrinos are treated as massless particles within the framework of the SM. However, observations of
neutrino oscillations [2,3] have since revealed that neutrinos do possess mass. The origin of the neutrino masses and the
reason for their smallness are both unknown, posing further challenges to our understanding of particle physics.
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Fig. 1. Representative Feynman diagrams showing the production of VLQs (Q, left), VLLs (L, middle), and HNLs (N, right) in proton-proton collisions.

Hence, a major issue confronting the SM resides in its inability to comprehensively explain the masses of fundamental
particles such as the Higgs boson and neutrinos. In an attempt to address this problem, new fermions are hypothesized,
with masses ranging from the MeV to the TeV scale: vector-like quarks (VLQs), vector-like leptons (VLLs), and heavy neutral
leptons (HNLs). These hypothetical particles show potential to resolve the limitations posed by the SM in characterizing
particle masses.

Beyond the SM (BSM) models in which VLQs and VLLs are introduced, such as models with extra dimensions [4,5]
and composite Higgs models [6-8], offer solutions to the hierarchy problem [9], aim to explain the observed fermion
flavor structure of the SM, and may provide dark matter candidates. Meanwhile, HNLs may be the missing component
in explaining the origin of neutrino masses [10-12]. Additionally, HNLs could provide a solution to the observed baryon
asymmetry in the universe, as well as contribute to the understanding of dark matter. In the GeV up to the TeV range, these
new fermions are typically predicted to decay into SM particles, which can be recorded in experiments such as CMS [13]
at the CERN LHC. Fig. 1 shows example Feynman diagrams for the production of VLQs, VLLs, and HNLs in proton-proton
(pp) collisions.

In this report, we present the contributions of the CMS experiment to searches for VLQs, VLLs, and HNLs, using the
pp collision data sets collected by the CMS detector during the years 2015 to 2018. We discuss the CMS detector and
event reconstruction, along with the planned CMS detector upgrade at the High-Luminosity LHC (HL-LHC), in Section 2.
This is followed by a description of the data sets and simulations in Section 3 and common experimental challenges faced
in the searches in Section 4. In Sections 5-10, we present the theoretical basis, review the recent results from the CMS
experiment, and discuss future prospects on VLQs, VLLs, and HNLs. Finally, we summarize the review in Section 11. All
acronyms are defined in Appendix A.

2. The CMS detector and event reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic
field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic
calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap
sections. Forward calorimeters extend the pseudorapidity (1) coverage provided by the barrel and endcap detectors. The
forward hadron (HF) calorimeter uses steel as an absorber and quartz fibers as the sensitive material. The two halves of
the HF are located 11.2 m from the interaction region, one on each end, and together they provide coverage in the range
3.0 < |n| < 5.2. They also serve as luminosity monitors. Muons are measured in gas-ionization detectors embedded in
the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition
of the coordinate system used and the relevant kinematic variables, can be found in Ref. [13].

Events of interest are selected using a two-tiered trigger system. The first level, composed of custom hardware
processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within
a fixed latency of 4 us [ 14]. The second level, known as the high-level trigger (HLT), consists of a farm of processors running
a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around
1kHz before data storage [15].

The global event reconstruction, also called particle-flow (PF) event reconstruction [16], aims to reconstruct and
identify each individual particle in an event, with an optimized combination of all subdetector information. In this process,
the identification of the particle type (photon, electron, muon, charged hadron, neutral hadron) plays an important role
in the determination of the particle direction and energy. Photons are identified as ECAL energy clusters not linked to
the extrapolation of any charged particle trajectory to the ECAL. Electrons are identified as a primary charged particle
track and potentially many ECAL energy clusters corresponding to this track extrapolation to the ECAL and to possible
bremsstrahlung photons emitted along the way through the tracker material. Muons are identified as tracks in the central
tracker consistent with either a track or several hits in the muon system, and associated with calorimeter deposits
compatible with the muon hypothesis. Charged hadrons are identified as charged particle tracks neither identified as
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electrons, nor as muons. Finally, neutral hadrons are identified as HCAL energy clusters not linked to any charged particle
trajectory, or as a combined ECAL and HCAL energy excess with respect to the expected charged hadron energy deposit.

The primary vertex (PV) is taken to be the vertex corresponding to the hardest scattering in the event, evaluated using
tracking information alone, as described in Section 9.4.1 of Ref. [17].

The energy and direction of photons is obtained from the ECAL measurement. In the barrel section of the ECAL, an
energy resolution of about 1% is achieved for unconverted or late-converting photons in the tens of GeV energy range.
The energy resolution of the remaining barrel photons is about 1.3% up to || = 1, changing to about 2.5% at |n| = 1.4. In
the endcaps, the energy resolution is about 2.5% for unconverted or late-converting photons, and between 3 and 4% for
the other ones [18].

The energy of electrons is determined from a combination of the track momentum at the PV, the corresponding ECAL
cluster energy, and the energy sum of all bremsstrahlung photons attached to the track. The momentum resolution for
electrons with p; ~ 45 GeV from Z — ee decays ranges from 1.6 to 5.0%. It is generally better in the barrel region than in
the endcaps, and also depends on the bremsstrahlung energy emitted by the electron as it traverses the material in front
of the ECAL [19,20].

Muons are measured in the pseudorapidity range |n| < 2.4, with detection planes made using three technologies:
drift tubes (DTs), cathode strip chambers (CSCs), and resistive-plate chambers (RPCs). The energy of muons is obtained
from the corresponding track momentum. The single-muon trigger efficiency exceeds 90% over the full » range, and the
efficiency to reconstruct and identify muons is greater than 96%. Matching muons to tracks measured in the silicon tracker
results in a relative transverse momentum (p;) resolution, for muons with a p; up to 100 GeV, of 1% in the barrel and 3%
in the endcaps. The p; resolution in the barrel is better than 7% for muons with p; up to 1TeV [21].

The energy of charged hadrons is determined from a combination of the track momentum and the corresponding ECAL
and HCAL energies, corrected for the response function of the calorimeters to hadronic showers. Finally, the energy and
direction of neutral hadrons is obtained from corrected ECAL and HCAL energies with no matching to a track.

For each event, hadronic jets are clustered from these reconstructed particles using the infrared and collinear safe
anti-k; algorithm [22,23] with a distance parameter of 0.4 (“small-radius” jets) or 0.8 (“large-radius” jets). Jet momentum
is determined as the vectorial sum of all particle momenta in the jet, and is found from simulation to be, on average,
within 5 to 10% of the true momentum over the entire p; spectrum and detector acceptance. Jet energy corrections
are derived from simulation to bring the measured response of jets to that of particle level jets on average. In situ
measurements of the momentum balance in dijet, photon+jet, Z+jet, and QCD multijet events (events composed of jets
produced through the strong interaction), are used to account for any residual differences in the jet energy scale between
data and simulation [24]. The jet energy resolution amounts typically to 15%-20% at 30 GeV, 10% at 100 GeV, and 5%
at 1TeV [24]. Additional selection criteria are applied to each jet to remove jets potentially dominated by anomalous
contributions from various subdetector components or reconstruction failures.

Additional pp interactions within the same or nearby bunch crossings (pileup) can contribute additional tracks and
calorimetric energy depositions to the jet momentum. The charged hadron subtraction (CHS) and pileup-per-particle
identification (PUPPI) [25,26] algorithms are used to mitigate the effect of pileup. The CHS algorithm removes charged
PF candidates that are associated with a pileup vertex. The remaining pileup is removed with an offset correction after
the jet clustering. Alternatively, the PUPPI algorithm uses local shape information, event pileup properties, and tracking
information to mitigate the effect of neutral pileup at the PF candidate level. A detailed explanation of the PUPPI algorithm
and the comparison to CHS can be found in Ref. [26].

Small-radius jets that originate from a b quark are identified using dedicated jet tagging algorithms. The b-tagging
algorithms used in the analyses presented in this article are CSVv2 [27], DEEPCSV [27], and DEEPJET [28,29]. The working
points used for these algorithms depend on the analysis. For the frequently employed “medium” working point of the
DEEPJET (CSVv2) algorithm, the tagging efficiency is typically 75 (70)% for b quark jets with percent-level misidentification
rate for light quark and gluon jets, but depends on the jet p;. To identify hadronically decaying W, Z, and Higgs bosons
as well as top quarks with high momenta, where individual jets may be merged into a large-radius jet, dedicated
identification algorithms are applied, as discussed in Section 4.1.

Hadronic ¢ lepton decays () are reconstructed from jets, using the hadrons-plus-strips algorithm [30], which
combines 1 or 3 tracks with energy deposits in the calorimeters, to identify the tau lepton decay modes. Neutral pions
are reconstructed as strips with dynamic size in n-¢ (where ¢ is the azimuthal angle) from reconstructed electrons and
photons, where the strip size varies as a function of the p; of the electron or photon candidate. To distinguish genuine
1, decays from jets originating from the hadronization of quarks or gluons, and from electrons, or muons, the DEEPTAU
algorithm is used [31]. Information from all individual reconstructed particles near the t,, axis is combined with properties
of the t;, candidate and of the event. The rate of a jet to be misidentified as t,, by the DEEPTAU algorithm depends on the p;
and quark flavor of the jet. In simulated events from W boson production in association with jets it has been estimated to
be 0.43% for a genuine t,, identification efficiency of 70%. The misidentification rate for electrons (muons) is 2.60 (0.03)%
for a genuine 7, identification efficiency of 80 (>99)%.

The missing transverse momentum vector pr  is computed as the negative vector sum of the transverse momenta
of all the PF candidates in an event, and its magnitude is denoted as p7— [32]. The pr"° is modified to account for
corrections to the energy scale of the reconstructed jets in the event. In analyses that employ the PUPPI algorithm, the
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pileup dependence on the p;"*° observable is removed by computing the p;*°°
probability to originate from the primary interaction vertex [32].

Anomalous high-p7"* events can be due to a variety of reconstruction failures, detector malfunctions, or noncollision
backgrounds. Such events are rejected by event filters that are designed to identify more than 85%-90% of the spurious
high-p7™>* events with a mistagging rate less than 0.1% [32].

The silicon pixel tracker was replaced at the year-end technical stop of the LHC after the 2016 data taking. Among other
improvements, the upgraded detector features an additional barrel layer closer to the beam pipe and additional forward
disks, leading to a better tracking performance and typically improved performance of charged particle reconstruction
and jet flavor identification in the analysis of the data recorded in 2017 and 2018 [33].

The CMS detector will undergo an upgrade, called Phase 2, to take full advantage of the HL-LHC, scheduled to start in
2029. This upgrade will involve improving the rate and latency through the first level hardware trigger upgrade to 750 kHz
and 12.5 us, respectively, and the HLT software trigger is expected to reduce the rate by a factor of 100 to 7.5 kHz. The
silicon pixel and strip trackers will be replaced to increase granularity, lower-density material will be used to reduce the
material budget in the tracking volume, and the geometrical coverage will extend up to || < 4. In addition, the new
strip tracker module design with two closely spaced sensors enables the deployment of a novel track trigger algorithm.
The extended tracker coverage will allow jet identification algorithms for b quarks or other massive SM particles to reach
new regions of the pseudorapidity, improving sensitivity for searches with jets. This new feature of the Phase-2 detector
will be particularly important for HL-LHC VLQ searches.

The ECAL barrel will feature updated front-end electronics that will allow high-precision timing capabilities for
photons, and the HCAL in the barrel region will be read out by silicon photomultipliers. The endcap electromagnetic and
hadron calorimeters will be replaced with a combined sampling calorimeter that will provide highly segmented spatial
information in both transverse and longitudinal directions. The muon system will be enhanced by upgraded electronics
of the existing RPCs, CSCs, and DTs. New muon detectors based on improved RPC and gas electron multiplier technologies
will be installed to add redundancy, increase the geometrical coverage up to |n| < 2.8, and improve the reconstruction
performance and trigger efficiency in the forward region. Upgrading the endcap calorimeter and muon detectors will
improve reconstruction and identification of physics objects at high ». This will benefit searches for heavy fermions that
are accompanied by high-7 jets, such as t-channel single VLQ production or vector boson fusion production of HNLs.

Additionally, a new timing detector for minimum ionizing particles will be added in both the barrel and endcap regions,
allowing for the four-dimensional reconstruction of interaction vertices, which will disentangle the approximately 200
nearly simultaneous pp interactions per bunch crossing. The ability to maintain adequate pileup mitigation during HL-LHC
luminosity conditions is critical for the next generation of heavy fermion searches, as all high-level physics objects become
more difficult to reconstruct as the number of pileup interactions increases. Heavy fermion searches at the HL-LHC will
also benefit from the expected 14 TeV collision energy and unprecedented integrated luminosity.

The detailed description of the CMS Phase-2 upgrade is presented in Refs. [17,34-39], and the expected performance
of the reconstruction algorithms and pileup mitigation with the CMS Phase-2 detector is presented in Ref. [40].

from the PF candidates weighted by their

3. Data set and simulation

Run 2 of the LHC began in 2015 and continued through 2018, with pp collisions at /s = 13TeV. The CMS detector
recorded data corresponding to integrated luminosities of 2.3, 36.3, 41.5, and 59.8 fb~' in 2015, 2016, 2017, and 2018,
respectively [41-43]. Many searches presented in this report were published with partial Run 2 data collected in 2015
or 2016. The most recent searches combine data collected in 2016-2018, corresponding to an integrated luminosity of
138 fb™". The 2016-2018 data set is referred to as the “full Run 2 data set”, and data from an individual year are referred
to as, for example, “the 2016 data set”. Sets of simulated samples are created for each year of data taking separately to
match the appropriate detector operation conditions and calibrations.

The simulations for pair production of vector-like T and B quarks discussed in Section 5.2 are predominantly created
at leading order (LO) in perturbative quantum chromodynamics (QCD) using MADGRAPH5_aMC@NLo [44]. The simulated
samples for VLQ pair production cover a mass range from 0.9 to 1.8 TeV, all featuring a narrow decay width of 10 GeV.
Decays of the T and B quarks to SM particles are modeled using PYTHIA 8 [45], with events distributed evenly across the
third-generation decay modes. The loss of chirality and spin dependence in the decays is not significant for the observables
employed in the T and B quark pair production searches. Pair production of X;,; quarks decaying to tW is generated
at LO in QCD using MADGRAPH5_aMc@NLo, with the decays of the t quark and W boson performed using MADSPIN [46].
This process is generated separately for left-handed and right-handed X;,; quarks. Additionally, for the EW production of
single VLQs, discussed in Section 5.2 as well, MADGRAPH5_aMC@NLO at LO is used as the Monte Carlo (MC) event generator.
These simulations consider different width hypotheses for the VLQs, including narrow-width samples with a fixed relative
width of approximately 1% and large-width samples with relative widths of 10, 20, and 30%. Decays of the single VLQs to
SM particles are modeled using MADGRAPH5_amMc@NLo. The VLQ pair and single production cross sections are computed
to next-to-next-to-leading order (NNLO) and LO in QCD, respectively, as discussed in Section 5.3.

Vector-like lepton samples in the minimal model [47-53] and the 4321 model [54-57] as discussed in Section 7.1 and
Section 7.2, respectively, are created with MADGRAPH5_aMc@NLo at LO. The production cross sections used to investigate
the minimal VLL model are calculated at next-to-leading order (NLO) precision [53]. The VLL production in the 4321 model
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is restricted to using only SM EW couplings. In the simulated samples, the couplings of the leptoquark are set to zero for
all first- and second-generation SM fermions. The masses of the leptoquarks are always taken to be 3.5 TeV and the masses
of the two third-generation VLLs are always taken to be equal to each other. The simulated model parameters in the 4321
model, including the leptoquark and Z’ boson masses, are taken from benchmark scenarios proposed to explain the lepton
flavor universality [58]. However, due to the much lighter mass scale of the VLLs, the results are mostly insensitive to the
values of the boson masses.

Signal events in Type I seesaw models [59], described in Section 9.1, are simulated at NLO precision using MAD-
GrAPH5_aMc@nto for the HNL particle in a mass range from 50 GeV to 25TeV, with the mixing element V,\ fixed to
1. Signal events in the Type IIl seesaw model [60,61], described in Section 9.2, are generated with MADGRAPH5_aMC@NLO
at LO. The production cross sections within the Type III seesaw signal model are calculated at NLO plus next-to-leading
logarithmic precision, assuming that the heavy leptons are SU(2) triplet fermions.

Signal events in left-right symmetric models (LRSMs), described in Section 9.3, are simulated using MAD-
GRAPH5_aMC@NLo at LO, for various right-handed (RH) W boson mass hypotheses in the range from 500 to 6000 GeV
with heavy neutrino (N) masses ranging from 100 GeV up to the Wy mass. The production cross sections are scaled
to NLO in perturbative QCD using K factors obtained from the same generator. A few other LRSM searches utilize
MADGRAPH5_aMc@NLo at NLO to generate signal samples assuming a Z' boson mass in the range from 400 to 5000 GeV
with a choice of heavy neutrino mass from 100 GeV to m,//2. In the generation, the Wy boson mass is assumed to be
5TeV, so that heavy neutrinos are always lighter than the Wy boson.

The MADGRAPH5_aMC@NLO generator program is used at LO to simulate Drell-Yan and W boson production, production
of QCD multijet events, and processes involving a single top quark and an EW or Higgs boson, two top quarks and two
bosons, or three top quarks. Additionally, the MADGRAPH5_aMC@NLO generator is used at NLO to simulate tZ, ttW and
ttZ (ttV), tttt, WW, Zy, WZ, and triboson (VVV) production, as well as single top quark s-channel production. Some
searches utilize POWHEG [62-64] to simulate WZ and ZZ contributions from quark-antiquark annihilation production [65,
66], whereas the contribution from gluon-gluon fusion production is generated at LO using McFm 7.0.1 [67]. The POWHEG
generator is used to simulate tt [68], ttH, and most single-top quark production processes [69,70] at NLO. The top quark
mass used in all simulations is 172.5 GeV. The SM processes involving Higgs boson production are generated using POWHEG
and JHUGEN 7.0.11 [71-74] at NLO, for a Higgs boson mass of 125 GeV.

The parton distribution functions (PDFs) NNPDF3.0 NLO or LO [75] and NNPDF3.1 NNLO [76] were used to generate
all background and signal samples in the analyses presented in this report. To perform the parton showering, fragmen-
tation, and hadronization of the matrix-level events in all samples, PYTHIA 8 was used with the underlying-event tune
CUETP8M1 [77], CUETP8M2T4 [78], or CP5 [79], depending on the analyses. The MLM [80] or FxFx [81] matching schemes
are used to remove double-counted partons between the matrix element calculations and parton shower, in LO and NLO
setups, respectively. The simulation of the response of the CMS detector to incoming particles is performed using the
GEANTY4 toolkit [82]. Pileup collisions are simulated and incorporated in the simulated event samples, with a frequency
distribution matching the one observed in collisions data (with an average of 23 collisions in 2016 and 32 in 2017-2018).

4. Common experimental strategies

Many of the searches for VLQs, VLLs, and HNLs described in this review face common challenges. For instance, the
decay products of heavy fermions may be highly Lorentz boosted, resulting in characteristic signatures in the detector. The
dedicated algorithms developed and employed to identify boosted bosons and t quarks experimentally are discussed in
Section 4.1. Afterwards, commonly used methods for the estimation of background process contributions using simulation
or from control regions (CRs) in data are outlined in Section 4.2. Finally, common statistical methods to quantify the
presence or absence of a signal are discussed in Section 4.3.

4.1. Boosted objects and taggers

If a resonance is much heavier than its decay products, the decay products are highly Lorentz boosted. This results in
very collimated sprays of particles from those decay products, where hadronic decays of heavy SM particles cannot be
reconstructed in individual small-radius jets, but are merged into the same large-radius jet. In these so-called “boosted”
final states, one may attempt to identify W, Z, and Higgs bosons as well as t quarks with high transverse momenta
(pr > 200 GeV for W, 7, and Higgs bosons, and p; > 400 GeV for t quarks). These particles have a large branching fraction
into hadrons; therefore, considering hadronic final states increases the sensitivity of searches significantly if these decays
can be discriminated from QCD multijet production.

The angular distance (AR = v (An)2 + (A([))Z) between the quarks from the decay of the W, Z, and Higgs bosons or
the t quark depend on the mass and the momentum of the parent particle. Hadronic decays of these particles are captured
using large-radius jets. One challenge posed by the use of large-radius jets is that the underlying-event activity and pileup
contribute significantly to the jet energy, which results in a worsening of the jet energy resolution. Pileup mitigation, as
discussed in Section 2, and jet grooming techniques are crucial for the usage of large-radius jets.

In order to remove soft and wide-angle radiation captured by the rather large jet area of large-radius jets, jet grooming
techniques, such as pruning [83] and soft drop (SD) [84], are applied. For pruning, all jet constituents of the large-radius jet
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are reclustered with the Cambridge-Aachen algorithm [85,86]. In each step the two requirements for angular separation
between jet constituents i and j (AR; < m;;/pr;4;) and soft splitting (min(pr;, Prj) < ZprunePr.i+j) are checked, where
m and pr are the mass and transverse momentum of the jet constituents or their combination, and z,.,e = 0.1. If
both requirements are fulfilled the two constituents are combined; otherwise, the softer constituent is discarded. The SD
algorithm removes soft and wide-angle radiation from the jet by reclustering the large-radius jet with the Cambridge-
Aachen algorithm and testing the SD requirement min(pr;, prj) > ZeuPri +j(ARl-j/R)ﬂ in each declustering step. The
standard parameters used in the CMS experiment are z.,, = 0.1 and 8 = 0. The hardest branch is followed until the
SD requirement is fulfilled, where the procedure stops. As a consequence, at most two SD subjets are defined by this
procedure. The mass is calculated by the invariant mass of the two subjets and is called the SD mass (mgp).

In addition to the mass of the jet, its “prong count” is a relevant property for boosted object identification. The two-
prong W /Z/Higgs boson decays into a pair of quarks usually results in two distinct regions of high energy density in the
jet substructure. Similarly, the three-prong t quark decay into bqq’ typically results in a distinct signature, while jets that
originate from light quarks or gluons are expected to have only a single region of high energy density, i.e., a single prong.
The prong count of the jet is measured with the N-subjettiness [87],

1
Iy ———
N ZkPTA,kRo

where N is the number of axes considered, k is the number of constituents of the given jet, and R is the jet radius. A low
value of 7y means that all radiation is aligned with the candidate subjets, while a high value means that the radiation is
not aligned. The CMS Collaboration typically uses two ratios of N-subjettiness: for two-prong tagging (W /Z/Higgs bosons),
T,; = T,/ 7 is used, and for three-prong tagging (t quarks), t3, = t3/7, is used. Requirements on the N-subjettiness ratios
can lead to the shaping of the jet mass distribution of the QCD multijet background. This is especially a challenge if the
background estimation is based on a smoothly falling function, whereas a selection based on 1,; or t3, can introduce a
peak in the jet mass distribution close to the signal mass peak. To avoid this behavior, the designed decorrelated taggers
(DDT) [88] technique was developed, which is a transformation of the variable 7,; to rleDT = 1y, — clog(psp), where
psp = Mgp/pr and c is a constant determined from the t,; distribution as function of pg; in bins of pr.

For Z — bb and H — bb, as well as for t quark tagging, the identification of a subjet that originates from a b
quark (via the CSVv2 or DEEPCSV algorithms [27]) can improve the performance. In addition, a dedicated double-b tagging
algorithm [27], based on a boosted decision tree (BDT), has been developed using observables associated with the lifetime
and mass of the b hadrons to identify H — bb. Generally, the identification of boosted objects is done by defining
“taggers”, which are a set of requirements on the jet mass and substructure information of the jet.

The use of taggers based on neural networks (NNs), such as DEEPAK8, IMAGETOP, or the boosted event shapes tagger
(BEST) [89], offer higher background rejection than the selection-based taggers described above. The first technique,
DEEPAKS, is a deep NN (DNN) that uses low-level input features such as the four-momenta of the constituents of a jet and
information about secondary vertices (SVs). It offers the possibility to classify the different large-radius jets in the event
by one classifier instead of applying different selection-based taggers that might overlap. The IMAGEToP algorithm is an
image recognition technique based on a convolutional NN. The jet energy density is displayed in a two-dimensional image
where the jet energy deposit is pixelized, with the jet axis building the center of this picture. In addition, the image is
rotated such that the major principal axis is vertical. The IMAGEToP algorithm is trained to distinguish jets originating from
t quarks from jets initiated by light quarks or gluons. Both networks can be trained such that the resulting discriminators
are not correlated to the jet mass. For searches that rely on the jet mass distribution, this training method reduces any
bias in the mass of light quark or gluon jets.

The BEST algorithm is designed to identify six types of jets: light-quark/gluon, b quark, t quark, and W, Z, and Higgs
boson jets. The core of the algorithm targets the fundamental difference between the potential jet parent particles: the
mass of the particle, characterized by BEST through Lorentz boosts of the jet along its centroid axis into several hypothesis-
based frames. The principal idea is that the boost hypotheses that do not correspond to the true parent particle of the jet
will result in “under-" or “over-boosted” topologies. The network uses information about these event shapes to provide
a class prediction for each jet. A total of 59 input features are calculated for each jet using a mixture of Lorentz-boost
invariant and frame-dependent observables. Invariant features include the traditional jet substructure in the lab frame,
such as jet mgp, N-subjettiness, and subjet b tagging scores. Frame-dependent observables such as Fox-Wolfram moments
and sphericity tensors aim to describe the event shape of the transformed jet constituents.

The calibration of these algorithms for t quark and W boson jets is performed using data passing a single-muon trigger
by selecting a tt-enriched region with one t quark decaying semileptonically and one t quark decaying hadronically. Pass
and fail regions are defined based on the jet originating from the hadronically decaying t quark passing or failing the
tagger requirement. A template fit is done for each specific tagger and working point to extract a factor that corrects for
differences in tagging efficiency between data and simulation. A detailed description and comparison of the performance
of all the taggers described here can be found in Ref. [89].

Especially in signatures with boosted t quarks, it may happen that a lepton from the semileptonically decaying t
quark overlaps a large-radius or small-radius jet in the event. If the lepton is within AR < 0.8 of the large-radius jet,
the large-radius jet is discarded. However, if a semileptonically decaying t quark is reconstructed by a lepton, p7 ", and
a b jet, and the t quark has high momentum, the lepton and the b jet may overlap. Requiring either an isolated lepton

> premin (AR, ;. ARy, ... ARy ) | (1)
K

K
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or discarding the small-radius jet that overlaps with the lepton within AR < 0.4 may lead to significant inefficiencies.
Therefore, the lepton is removed from the small-radius jet, and its four-momentum is subtracted from the small-radius
jet four-momentum. Both objects are kept if their p; passes a given threshold after the removal. The lepton must pass a
custom isolation criterion for boosted t quarks, such that the relative transverse momentum of the lepton to the nearest
small-radius jet (p}"‘l) or the angular distance between the lepton and the nearest small-radius jet are larger than certain
thresholds, determined according to the needs of a specific analysis.

4.2. Common strategies for background estimation

Accurate modeling of SM background processes is essential to all searches for new fermions. The dominant background
processes depend strongly on the selected objects, particularly leptons, py ", and b quark jets or jets from boosted particles.
Background estimation strategies are always tailored to an individual search, typically as a variation of one or more of

the following common methods.

Simulation. Many SM processes are simulated at NLO, which provides a strong basis for background estimation. For
processes such as W /Z+jets production that are often simulated at LO, ratios of cross sections at NLO to LO can be used
to weight simulated events to reproduce predictions of distributions at NLO. In final states with charged leptons, for
which QCD multijet production is unlikely to be a significant background, simulation is a common choice. Additionally,
all searches for new fermions utilize simulation to model the signal process under consideration.

Simulated events are weighted so that the efficiencies of certain selections in simulation match those observed in
data. These corrections are referred to as “scale factors” (SFs). Common SFs in searches at the CMS experiment correct
for differences in the number of pileup interactions, efficiencies of trigger selections, efficiencies of charged lepton
identification and isolation selection criteria, and efficiencies of various jet identification selection criteria. A detailed
set of corrections for the jet energy scale and resolution are computed for simulated events such that the response of the
jet reconstruction algorithms is consistent between observed data and simulation. Searches may also develop correction
formulas to correct for observed mismodeling of data by simulation in certain distributions of interest. A common
correction of this type is to reweight the reconstructed t quark p; spectrum, since the NLO t quark pair simulations
tend to overpredict the rate of high-p; t quark pairs [90,91]. Each correction applied to simulation carries an uncertainty
that is taken into account in the statistical methods of signal extraction.

Tight/loose or “matrix” methods. Searches that select multiple charged leptons often have considerable background from
events in which “nonprompt” leptons are selected. Nonprompt leptons are leptons not originating from the primary
interaction vertex, either because they are produced from the decay of particles with significant lifetimes, such as b quarks
or tau leptons, or because their tracks are misreconstructed. One method to estimate contributions from these events is
to measure how often known prompt leptons, typically from the decay of Z bosons, and known nonprompt leptons,
typically from a sample of QCD multijet events, pass a certain set of lepton selection criteria. A Z boson sample is created
in data by selecting events with two same-flavor opposite-sign (OS) leptons whose invariant mass lies very close to the
Z boson mass. One lepton, known as the “tag”, is selected using very high-purity selection criteria, giving confidence that
the other “probe” lepton is indeed a prompt lepton. The efficiency for the “probe” lepton to pass any criteria of interest
can then be measured in this sample. In the context of this background estimation method, the efficiency of the analysis
selection criteria is referred to as the “prompt rate” p. A QCD multijet sample can be created by selecting events that pass
a low-momentum, low-purity, single-lepton trigger, but otherwise exhibit no strong signs of the lepton arising from a
SM boson decay. The rate at which these leptons pass the analysis selection criteria can be measured, and is referred to
as the “nonprompt” rate f. Both of these rates describe how often either prompt or nonprompt leptons that pass some
baseline “loose” selection also pass the “tight” selection criteria used in the analysis.

For searches that probe final states with two charged leptons, the probabilities for any prompt or nonprompt lepton to
enter the sample must be considered together to develop a background distribution. The number of events with leptons
passing the tight and/or loose criteria may be observed, in particular the number of events with two tight leptons, N; one
tight and one loose lepton, Ny; and two loose leptons, N;. The prompt and nonprompt rates may then be used to convert
those observations into numbers of events with two prompt leptons, Ny,,; one prompt and one nonprompt lepton, Np;
and two nonprompt leptons, N [92]:

Ny P’ pf f? Npp
Ny ) =1 20(1—p) f(A—-p)+p(1—-f) 2f(1—-f) Npe ) - (2)
Ny (1-pf  A-p-f) - ) \Na

A matrix inversion provides formulas to calculate N, and Ni; from the observed number of events with leptons of varying
quality. For a search selecting two tight leptons, the background from events with nonprompt leptons will be given by

Npg = PfNpe +f *Ngr. This method can be extended to searches targeting final states with more than two charged leptons
by expanding the probability matrix.
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Fig. 2. Examples of either four (left) or six (right) selection regions used in the ABCD background estimation method. The region for which both
criteria are satisfied is the SR. Expanding beyond four regions provides at least one “validation region” (VR).

Transfer factors. In many searches, one important selection criterion serves as the primary distinction between a
background-dominated CR and a region with good signal sensitivity, called the signal region (SR). A “transfer factor”
or “transfer function” that describes the efficiency of this principal selection criteria can be derived and applied to the
observed data in the CR in order to estimate the background present in the SR.

The transfer function can be computed in multiple waxs. Some searches use simulation for this purpose. The number

of background events in the SR, NG, is calculated as N8 = NERP(NSR" /NER™), where N&% is the number of observed
collision events in the CR, N&" is the number of simulated events in the SR, and Ngg" is the number of simulated events

in the CR. The transfer factor from simulation, Ngz" /Ngg', can be computed in any bin of an observable or parametrized
with a fit, so the shape as well as the rate of background in the SR may be obtained.

Other searches measure transfer factors using observed data in selection regions that are distinct from the primary
SR and CR, in which case the method might be referred to as the “ABCD” method. Four selection regions in the observed
data are involved, formed by events either passing or failing either of two selection criteria, as shown in Fig. 2 (left). The
number of background events in the SR (region D), Np, is calculated from observations in regions A, B, and C as Ny(N¢/Ng).
This method may also be used in any bin of an observable to obtain a shape-based prediction for the background. The
ABCD method requires that the selection criteria are statistically independent in order to produce unbiased predictions.

If some background sources are well modeled by simulation, these contributions may be subtracted from the observed
data in each region before computing and applying the transfer function N./Ng. More than four regions may be used to
incorporate a method for validation into the procedure, as shown in Fig. 2 (right). The number of background events in
the validation region (VR) X is estimated from the observations in regions A, B, and Y as N,(Ny/Ng), and if region X has a
suitably low rate of expected signal events, the observed data in this VR can be compared to the background prediction,
to test the validity of the prediction method. Some searches divide each of the two axes in three parts, resulting in a total
of nine regions, and often regions close to the SR are included in signal extraction fits to better constrain the uncertainties
associated with the background prediction.

Sideband fits. In many searches, the observable most sensitive to the signal is a reconstructed mass or jet mass
distribution, in which the signal is expected to be resonant while the dominant background processes are nonresonant.
The shape of the background distribution may then be predicted by fitting a smooth functional form to the observed
data on either side of the region in which the signal distribution is expected to peak. This method may be used in
multiple dimensions for signals that feature more than one resonance. When multiple functional forms offer adequate
fits to the observed data, an F-statistic may be used to compare the residual sums of squares for two formulas and
determine whether a formula with more parameters provides a significantly better fit than an alternate formula with
fewer parameters (known as the Fisher F-test [93]).

4.3. Common statistical techniques

All searches for new fermions determine an observable or set of observables that is used to measure the potential
presence of signal events, such as the reconstructed mass of the new fermion, a machine-learning (ML) discriminant, or
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another observable that highlights unique features of the signal process. Searches prepare information about the observed
data, the signal prediction, and the background predictions using one or more of the following forms:

e Cut-and-count: the number of events passing the same set of final selection criteria are counted for observed data,
signal, and background.

e Histograms: histograms of the chosen observable are created for data, signal, and background. Each bin of the
histogram serves as an independent set of information.

e Functional forms: fits may be used to describe any distribution according to a functional form, rather than using a
histogram. This method is particularly useful for smoothing tails of distributions where few events are predicted,
and for interpolating signal predictions between simulated mass points.

Signal extraction is based on maximum likelihood fits that compare “data” (either collision data or pseudodata sampled
from a test distribution) to the signal (s) and background (b) predictions, with signal scaled by some unknown ratio .
A value of u = 1 represents the signal prediction according to the physics model being considered in the search. The
likelihood is assumed to follow a Poisson distribution, and all predictions are subject to various nuisance parameters, 6,
that are given default values 6 and assigned probability density functions (p). The likelihood function can be written as:

£(data|u, 8) = Poisson(data|us(0) + b(6))p(816). (3)

Systematic uncertainties are incorporated into the fit as nuisance parameters. Log-normal probability distributions are
assigned to uncertainties that affect only the normalization of a histogram or rate of a predicted event yield, and
Gaussian probability distributions are typically assigned to uncertainties provided as histograms that affect the shape of
a distribution. Nuisance parameters can also be assigned a Gamma probability distribution. Where predictions are taken
from simulation, the primary uncertainty that affects only the normalization is the integrated luminosity: the integrated
luminosities for the years 2015, 2016, 2017, and 2018 have 1.2-2.5% individual uncertainties, and the total integrated
luminosity of 2016-2018 has an uncertainty of 1.6% [41-43]. Uncertainties in the cross sections of background processes
may also be modeled as normalization uncertainties. Common shape-based uncertainties for simulated processes include
uncertainties in the pileup modeling, lepton and photon SF, jet flavor tagging SFs, jet energy scale and resolution
corrections, and choices of PDF and renormalization and factorization scales in simulation. Histograms are typically created
for these uncertainties by repeating the event selection process with each uncertainty source shifted up or down by one
standard deviation. Background predictions that are modeled from observed data are affected by uncertainties in the value
of each parameter in a functional form, or perhaps uncertainties due to limited event counts in the CRs used to determine a
transfer function. If a search combines multiple channels or multiple years of collision data, uncertainties pertinent to each
individual channel or data set may enter the fit as either fully correlated or as independent. Uncertainties due to limited
event counts in simulated samples are included as Poisson-distributed nuisance parameters using the Barlow-Beeston
method [94,95].

Observed and expected limits in the signal strength u are extracted by comparing the compatibility of the observed
data with a background-only (« = 0) hypothesis as well as with a signal+background hypothesis. Some early searches
based on 2016 data compute Bayesian credible intervals to set 95% confidence level (CL) upper limits on the signal
production cross section, assuming a flat prior distribution for the signal cross section. For most of the searches presented
in this report, the CL; method [96,97] is used to obtain a limit at 95% CL using the profile likelihood test statistic [98],
often in the asymptotic approximation. The cOMBINE [99] software framework used by the CMS experiment to compute
limits is built on the RooFIT and RooSTATs packages [100] and implements statistical procedures developed for combining
ATLAS and CMS Higgs boson measurements [101].

5. Theoretical motivation for vector-like quarks
5.1. Motivation

In order to address the hierarchy and naturalness problems of the SM, several extensions have been put forward that
introduce the existence of new heavy quarks [102-106]. These hypothetical spin-1/2 particles are vector-like in nature,
which means that their left- and right-handed components transform in the same way under the EW gauge symmetry
group. The search for VLQs is strongly motivated because, unlike chiral fourth-generation quarks [107], they are not
constrained by current Higgs boson cross section measurements as their masses do not arise from Yukawa couplings [9].

The phenomenology of VLQs is typically described in a simplified model [9], describing interactions of VLQs via the
SM gauge bosons. In ultraviolet-complete models, however, VLQs are accompanied by new gauge bosons resulting from
symmetry requirements. These may be spin-1 resonances, as for example in models with extra dimensions [4], where the
lightest Kaluza-Klein excitation of the gluon can couple to the lightest fermionic resonances, which are VLQs [108-110].
In minimal composite Higgs models [6,7], VLQs are introduced together with new electrically neutral and charged spin-1
resonances [ 111-113]. In general, phenomenological models accommodating a Higgs boson with a mass of 125 GeV require
fermions with masses of ©(1TeV) [114,115], which are usually lighter than the hypothetical spin-1 resonances.
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Fig. 3. Representative LO Feynman diagrams for pair production of VLQs via the strong interaction (upper row) and single production of VLQs via
EW processes (lower left) or via new interactions (lower right). Here, Q stands for either VLQ flavor.

5.2. Production and decay modes

Generally speaking, the phenomenology of VLQs depends on several parameters, such as the couplings to the SM quark
generations and EW bosons, the particle mass and width, and the multiplet representation in SU(3)c x SU(2). x U(1)y. As
singlets, the VLQs T and B are introduced with electrical charges of +2/3 and —1/3, respectively. Doublets and triplets
incorporate two additional particles denoted by X;,; (charge +5/3) and Y 5 (charge —4/3).

At the LHC, VLQs may be produced in pairs via the strong interaction, or singly in EW processes. Representative LO
Feynman diagrams are shown in Fig. 3. The pair production is dominant at low VLQ masses (<1TeV) but the cross section
decreases rapidly as a function of mass [116]. The single production cross section is larger for high VLQ masses but is
more model dependent, particularly for the chosen values of the couplings to SM quarks and EW bosons and of the
VLQ width [117]. This means that for single production, model-independent limits can only be set on the product of the
cross section and branching fraction (B) for the different VLQ masses, as opposed to limits on the VLQ mass itself as
done in pair production scenarios. The NLO QCD corrections can have an effect on the cross sections for pair and single
production, as well as on the shapes of key kinematic distributions, as discussed in Refs. [118,119]. Besides via strong and
weak interactions, VLQs could also be produced via new interactions mediated by a heavy W’ or Z’ boson, which will be
discussed in more detail in Section 6.4.

In many models (e.g., Ref. [9] and references therein), VLQs decay into an SM quark plus either a W, Z, or Higgs
boson. It is usually assumed that the VLQs couple only to the third-generation SM quarks [120]—the specific branching
fractions depending on the multiplet—and that they have a narrow width (this assumption is referred to as the narrow-
width approximation, NWA, and remains valid up to a width-to-mass ratio of approximately 10%-15%). The allowed decay
modes for each of the VLQs are then:

T—)bW+, T —>tZ, T —>tH
B—tW , B—bZ, B — bH
)(5/3—>tVVJr
Y3 = bW

In scenarios where VLQs are introduced as singlets, their branching fractions into qW, qZ, and qH are typically assumed
to be 50, 25, and 25%, respectively. In scenarios where VLQs are introduced as doublets, a branching fraction of 50% for
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Fig. 4. Cross sections for the production of VLQs at /s = 13TeV as a function of the VLQ mass. Pair production cross sections via the strong
interaction are computed to NNLO, using the models and tools from Refs. [127-129] (left). Reduced cross section & for single production via the
EW interaction is computed at LO in EW in the NWA using the models and tools from Refs. [118,128,130,131] (right). The shaded bands indicate
PDF, renormalization scale, and factorization scale uncertainties associated with the predictions.

qZ and qH is assumed for one partner in the doublet and a branching fraction of 100% to qW for the other partner in
the doublet. A T quark most naturally forms an up-type doublet with stronger mixing between t and T quarks than
the mixing between b and B quarks, resulting in B(T — tZ) = B(T — tH) = 50% and B(B — tW) = 100%. A
down-type doublet with stronger mixing between the b and B quarks, resulting in B(B — bZ) = B(B — bH) = 50% and
B(T — bW) = 100%, is not natural in view of the mass hierarchy m, > m, . Exotic non-SM decays of VLQs are allowed
as part of nonminimal extensions, with decay chains such as X;,; — o't — whHt [121,122], or T — ta, where
a represents a new scalar or pseudoscalar particle [123-125]. Exotic VLQ decays through higher-dimensional operators
have also been proposed [126].

5.3. Cross sections

Predictions for the VLQ production cross sections at the LHC are given in Fig. 4. The pair production cross section is
computed to NNLO in QCD [127] using the model of Ref. [128] and the ToP++2.0 program [129], and independently of
the VLQ flavor. The single production cross section is computed at LO in the NWA using the simplified approach from
Refs. [128,130,131]. In this model-independent framework, the cross section does not depend on the chirality of the VLQ.
The total cross section for a VLQ Q decaying to a specific final state may be written as:

o(Cy, Gy mg, Tg) = C1C6(mq, Ty), (4)

where C; indicates a production coupling parameter (e.g., C; = ¢y, for T quarks produced in association with a b quark),
G, indicates a decay coupling parameter, and ¢ is the reduced cross section for an arbitrary VLQ width I',. The VLQ width
is small compared to the experimental mass resolution if the coupling between the VLQ and the relevant SM particles
is <0.5. As the I'y /mq ratio drops, the production and decay contributions to the cross section can be factorized such

that o = C12 0B, where ¢ is the reduced cross section in the NWA, and B is the branching fraction for the VLQ to decay
to the final state under consideration. The couplings C; and C, are chosen as appropriate from ¢y, ¢, and ¢y, which
in turn depend on « values that are related to the mixing angles between VLQs and the corresponding SM quarks. The
computation of & is carried out using a UFO-based model [132] of Ref. [118] with MADGRAPH5_aMc@NLo adapting the
approach of Ref. [131]. The reduced cross sections 6 and coupling factors are given in Fig. 4 and 5, respectively. For the
searches in the CMS experiment described in this report, the cross section calculation assumes kyy, = kg = ky = K
for a singlet scenario and k; = k, and ky = 0 for a T in an up-type doublet scenario. The coupling factor « is then
determined for a fixed VLQ mass and total width. An alternative approach is to fix the branching fractions of VLQ decay
modes and subsequently compute the individual coupling factors for the VLQ interactions with heavy SM bosons (e.g.,
used in Ref. [133]). The collective coupling strength is then derived using Eq. (2.20) of Ref. [ 134]. Both approaches describe
the same physics and converge to the same results when compared in the regime beyond the validity of the NWA.
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Fig. 5. Coupling factors for single VLQ production via the EW interaction in the narrow-width approximation as a function of the VLQ mass, using
the models and tools from Refs. [118,128,130,131]. Coupling factors in single production of T (upper left), B (upper right) in the singlet (solid lines)
and doublet (dashed lines) scenarios. Coupling factors in single production of X5 5 (lower left), Y,/5 (lower right) in doublet scenarios.

6. Review of vector-like quark searches
6.1. Overview of the CMS search program

Using data collected in 2010-2012 at /s = 7 and 8 TeV, known as the Run-1 data set, the CMS Collaboration combined
10 individual searches for VLQ pair production with decays to heavy quarks into results for TT production [135] and BB
production [136]. Exploiting different final-state topologies, all final states for the VLQs were explored including scans
over a wide range of possible branching fractions. Another search was conducted for single or pair production of VLQs
coupled only to light-flavor quarks [137] in events with at least one lepton (electron or muon) in the final state.

The Run-1 studies have been followed up by an extensive search program for VLQs using data collected during Run
2. The CMS experiment has carried out searches for both pair and single production of VLQs of all flavors, as well as
for production of T and B through heavy resonance decays. For pair production, the adopted search strategies utilize
sophisticated analysis techniques, such as boosted object identification and/or multiclassifier tools to correctly identify
the objects in the event. These strategies have the advantage that they are simultaneously sensitive to all decay modes
of the VLQ. In single-production searches, different widths are considered—ranging from the NWA to 30% of the VLQ
mass—as well as different settings of the coupling «, because for single production the cross sections depend on the VLQ
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Table 1

List of VLQ searches performed by the CMS experiment grouped by production mode. In this table, £ denotes an electron or a muon. Additional
jets in the final state are not explicitly listed in the table. The 0¢ channels correspond to the all-hadronic final state. For the 2¢ channels, it is
indicated whether the leptons have opposite-sign (OS) or same-sign (SS) charges. For single VLQ searches, the channels are indicated through the
decay products of the W, z, and Higgs bosons, and t quarks.

Production mode Decay mode Channel Section Refs.
TT bW, tH, tZ 0¢, 1¢, OS 2¢, SS 2¢, 3¢ 6.2.2 [138-141]
BB tW, bH, bZ 0¢, 1¢, 0S 2¢, SS 2¢, 3¢ 6.2.3 [140-142]
X5/3X5/3 tW 1€, SS 2¢ 6.2.1 [143]
Ya/3Y4/3 bW 1 6.2.2 [138]
T tZ bqq €, baqbb, baqvv 6.3.1 [144-146]
tH bqq Yy, bqq bb 6.3.2 [145,147,148]
bw b lv 6.3.3 [149]
B bH bbb 6.3.4 [150]
tW baq v, blv qq, baqqq 6.3.4 []51—153]
X5/3 tW bqq €v, bfvqq, bqqqq 6.3.4 [151,153]
Y3 bW blv 6.3.3 [149]
7z’ — TT bW 0¢ 6.4.1 [154]
tH, tZ 1€ [155]
W' — Tb tH, tZ o¢ 6.4.2 [156,157]
w’' — Bt bH, bZ 0¢ [156,157]

flavor, mass, and width, and range from several hundred fb for low masses near 600 GeV to just fractions of a fb at masses
near 1800 GeV.

A summary of all the explored channels and final states for VLQ searches by the CMS experiment is shown in Table 1.
Specific details on the various analyses are briefly outlined in Sections 6.2-6.4. Their complementarity, and the statistical
combination of some of the results, are discussed in Section 6.5. Finally an outlook for future VLQ searches is given in
Section 6.6.

6.2. Pair production

Pair production of T, B, X553, and Y 4,3 via gluon fusion has been studied in various searches with data collected in Run
2. Analysis strategies for VLQ pair production typically exploit the presence of t quarks and W, Z, or Higgs bosons in the
decay chain, as well as the high Lorentz boost of the decay products for high VLQ masses. The searches performed in Run
1 with a data set corresponding to an integrated luminosity of 19.7 fb~! resulted in lower mass limits of 880 GeV for Xs/3
(tWtW decays), 920 GeV for Y, 3 (bWbW decays), 720-920 GeV for T quarks, and 740-900 GeV for B quarks [135,136].

The Run 2 analyses use data sets corresponding to 36 fb'or138fh ", representing an increase of a factor of 1.8 or 7 with
respect to Run 1, respectively. The sensitivity of the CMS experiment to VLQ production has increased dramatically as a
result of the higher energy, larger data sets, and more advanced analysis techniques. In the following, a search for X, /3§5 /3
is discussed first, followed by searches for TT and BB. Some of the searches for TT (BB) production are equally sensitive
t0 Y ,/3Y /3 (X5/3X5,3), since the selection criteria and primary observables are largely independent of the chirality of the
VLQ. These interpretations are therefore discussed in the same sections.

6.2.1. Search for Xs3Xs /3 production

The search for pair produced X; 5 quarks in Ref. [143] was one of the earliest searches for VLQs at the CMS experiment
in Run 2. The search uses the 2016 data set. It is assumed that X;,; decays to a t quark and a W boson with 100%
branching fraction. Two channels were considered: the single-lepton channel and the same-sign dilepton channel (SSDL),
where “lepton” refers to an electron or a muon. In the single-lepton final state, one of the W bosons decays to a lepton
and neutrino, while all the other W bosons decay hadronically and form jets. However, in the SSDL final state, two W
bosons decay leptonically, giving rise to a pair of same-sign (SS) leptons, a signature that is enhanced in tWtW decays
compared to SM processes. The X;,; decays in both channels produce a large number of jets. In the SSDL channel,
background processes can be separated into three categories: SS prompt leptons (“SSP”), opposite-sign (OS) prompt
leptons (“ChargeMisID”), and SS nonprompt leptons. Here, a prompt lepton refers to one that originates from a W or Z
boson decay. The SSP background processes are modeled using simulation. The ChargeMisID background is estimated by
measuring the rate at which Z boson decays in a control sample are reconstructed as SS lepton events, and scaling the OS
lepton events passing all other analysis selection criteria by this rate. The nonprompt-lepton background is estimated
using the matrix method described in Section 4.2. In the single-lepton channel, all backgrounds are modeled using
simulation.

For the SSDL final state, events are required to pass triggers based on two electrons, two muons, or one electron and
one muon. Different lepton p; selections are used according to the trigger era corresponding to the data-collection period.
Events are further required to have two SS tight leptons and at least two small-radius jets. The invariant mass of the lepton
pair must be greater than 20 GeV, and events are removed if they contain an OS, same-flavor (OSSF) lepton pair having
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Fig. 6. Distributions of observables used to maximize the X;,3X;5,5 signal significance for the SSDL (left) and single-lepton (right) final states. The

left figure shows the Hf" distribution after the SS dilepton selection, Z boson and quarkonia lepton invariant mass vetoes, and the requirement of
at least two small-radius jets in the event, for a combination of ee, ep, and pup channels. The right figure shows the min M(¢, b) distribution in
events with >1 t-tagged jet, >1 W-tagged jets, and >2 b-tagged jets for the combined electron and muon samples in the SR. The distribution has
variable-size bins such that the statistical uncertainty in each bin is less than 30%. The lower panel in each plot shows the difference between the
observed and the predicted numbers of events divided by the total uncertainty.

Source: Figures taken from Ref. [143].

an invariant mass within 15 GeV of the mass of the Z boson mass. Similarly, events with an SS electron pair having an
invariant mass within 15 GeV of the Z boson mass are removed to eliminate Drell-Yan (DY) or charge misidentification
events. Two selection criteria are used to maximize the signal significance. First, the number of constituents (Nqps ), which
is the number of small-radius jets plus the number of additional tight leptons beyond the SS pair, must be greater than
four. Second, H}ep, which is defined as the scalar sum of the p; of all constituents and the SS lepton pair, as shown in
Fig. 6, must be greater than 1200 GeV.

For the single-lepton final state, events are required to pass single-electron or single-muon triggers and contain exactly
one high-quality isolated lepton with p; > 80 GeV. A veto on additional looser-quality leptons is applied to ensure that
the channels are mutually exclusive. Events are required to have at least four small-radius jets, with the leading jet p;
greater than 450 GeV and the subleading jet p; greater than 150 GeV. At least one of the jets must be b tagged. Events
must also have p7">° > 100 GeV, representing the presence of a neutrino, and an angular separation of AR > 1.0 between
the lepton and the subleading jet, which typically emerges from the X;,; that decayed hadronically. Large-radius jets are
used to tag hadronically decaying t quarks or W bosons, using jet grooming techniques (mgy and pruning, respectively)
and the N-subjettiness observable, as described in Section 4.1.

The discriminating observable used to suppress the background contribution is the mass reconstructed from the lepton
and b-tagged jet, M(£, b). If an event has more than one b jet, the smallest M(£, b), min M(£, b), is used. When the lepton
and b quark emerge from the same t quark, this distribution peaks sharply just below the t quark mass, but in signal
events the lepton can emerge from the W boson daughter of an X;,; quark, leading to a broad distribution of events
above the t quark mass, as shown in Fig. 6 (right). The events are separated into 16 categories based on lepton flavor (e,
w) and the number of t-tagged, W-tagged, and b-tagged jets.

The search is performed using min M(£, b) histograms in the 16 lepton-flavor and jet-tag categories of the single lepton
final state, as well as the number of events in the three lepton-flavor categories of the SSDL final state. For both final
states, no statistically significant excess was observed above the SM prediction. Upper limits are set on the production
cross section at 95% CL. The combination of the final states sets a lower observed (expected) limit of 1.33 (1.30) TeV and
1.30 (1.28)TeV on the mass of the X;,; with RH or LH couplings to the W boson, respectively. The limits are shown in
Fig. 7.

The searches described below in Sections 6.2.3 and 6.5.3 for BB production also provide sensitivity to X; ; production
when the tWtW decay mode is considered. With the full Run 2 data set and more advanced NN jet identification
techniques, the lower mass limits for this decay mode reach up to 1.56 TeV.

6.2.2. Searches for TT production
The search for pair-produced T quarks is a cornerstone of the VLQ search program of the CMS experiment, and several
publications were released over the course of Run 2.
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Source: Figures adapted from Ref. [143].

TT — bqq bev. The first search for pair production using the 2016 data set was a search for TT or Y4/3?4/3 decaying to
bWbW in the single-lepton final state [138]. This search used a kinematic fit procedure to reconstruct T quark candidates
from one isolated charged lepton, p7 ", and at least four small-radius jets, including the subjets of at least one large-radius
jet consistent with a boosted W boson decay (60 < mg, < 100 GeV). The kinematic fit constrains the lepton-neutrino pair
and a quark-quark pair to be consistent with the W boson mass, and constrains the two T candidate masses to be equal.
The fit minimizes a XZ metric that compares the observed kinematic properties of the lepton and jets with the fitted
kinematic quantities required to meet the constraints. This fitting technique yields many permutations for each event,
since jets may be assigned to various quarks in the decay chain. Information about jet W and b tagging is considered to
reject certain permutations, and the fit with the highest Xz probability is selected. The T quark mass can be reconstructed
with approximately 7% resolution using this method. No excess beyond the simulated SM background estimate is found.
A lower limit on the T quark mass is set at 1.30 TeV. Since the analysis does not discriminate between jets from b and b
quarks, the signal process may be interpreted as either TT or Y,/3Y /3 production. Therefore, this search also excludes
Y,/5 quarks up to a mass of 1.30 TeV.

TT — tZ + qX,Z — ¢££. Another search for TT (or BB) production using the 2016 data set that utilized early
jet substructure identification techniques, considered an OS dilepton final state from the decay of one VLQ into a Z
boson [139]. The W, Z, or Higgs boson produced by the other VLQ is reconstructed as a jet with a two-prong substructure,
particularly for VLQs with a high mass. Two electrons with p; > 120 GeV and p; > 25 GeV, or two muons with p; > 45 GeV
and pr > 24 GeV, are required. The invariant mass of the dilepton pair must be within 15 GeV of the Z boson mass, and
the p; of the pair must be above 100 GeV. Large-radius jets are identified as originating from W, Z, or Higgs bosons using
the pruned mass, the N-subjettiness 7,; observable, and b tagging algorithms applied to the subjets. Small-radius jets
are also included in the reconstruction process as b quark jets, or quark jets from resolved W, Z, or Higgs boson decays.
Events are categorized based on the jet types observed, and CRs with either zero b-tagged jets or one b-tagged jet but
a total hadronic energy of less than 1TeV are formed to compute a correction to the simulated Z+jets background using
experimental data. Other backgrounds are modeled using simulation. No excess of events with respect to the estimated
background is observed, and exclusion limits were derived on TT production for T decays with at least 20% branching
fraction to tZ. Assuming 100% tZ decays, a lower mass limit at 95% CL of 1.28 TeV is derived for T quarks.

Two subsequent general searches for TT and BB production adopted deep ML algorithms for jet identification to
enhance sensitivity to VLQ decays. In one search, using the 2016 data set, events with a hadronic final state [140] are
selected, and the use of the BEST tagger, discussed in Section 4.1, is pioneered for identifying large-radius jets. In the
other search, the full Run 2 data set is used, and events in a variety of leptonic final states [141] are selected. In this
search, the flavors of large-radius jets are identified using the DEEPAK8 algorithm. Both searches consider the T and B
quarks separately and scan over the various possible branching fractions for decays to W, 7z, and Higgs bosons. The analysis
strategies and results for TT production are presented here, and the BB interpretations are presented in Section 6.2.3.

TT — Hadrons. The search of Ref. [140] in the all-hadronic final state is an inclusive search considering energetic four-jet
events classified into categories with two methods. In the novel “NN-based” method, the jets are classified using the BEST
algorithm into one of the 126 possible multiplicities of four jets with six classes. The other, more traditional, “selection-
based” method helps to verify the results of the NN-based method. This search targets VLQs in the TeV mass range,
such that the SM decay products (b/t, W/Z/H) acquire a significant momentum. Therefore a high threshold of 400 GeV is
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imposed on the p; of each of the four jets. The scalar sum of p; of these jets, Hr, is larger than 1600 GeV, hence H; is used
for triggering and for event selection, and as the observable of interest to search for the VLQs. In addition, a lepton veto
is applied in these analyses, such that the event selection criteria are mutually exclusive with the criteria in the leptonic
final state search of Ref. [141], described later in this section.

In the NN-based method, each of the four jets is tagged as either a boson (W, Z, or H), or a quark (t, b, or light
flavor/gluon). The hypothesis with the largest score from BEST is assigned as the classification of the jet. The overall
multiplicity of the tags in a given event determines the SR into which the event is sorted. The dominant multijet
background is estimated by measuring tagging efficiencies in experimental data, in a multijet-rich three-jet CR in data.
The same jet selections as in the SR are applied, apart from the jet multiplicity (N;) requirement, which is modified to
N; = 3. In this CR, the impurity from other background processes is below 1%, so BEST classification rates in multijet
events can be measured in bins of jet pr. Across a range of jet p; from 400 to 3000 GeV, the misidentification rates for W,
Z, and Higgs bosons are 3%-7%, and for t quarks this rate is 7%-10%. The misidentification rate for b quarks is ~15% for
jets with a p; of about 400 GeV and rises to ~265% for jets with a p; in the range of 2000-3000 GeV. Jets from light-flavor
quarks or gluons, which make up the vast majority of the measurement sample, are accurately classified by BEST at a
rate of ~65% for jets with a p; of about 400 GeV, falling to ~6% for jets with a p; in the range of 2000-3000 GeV. This
measurement shows that the BEST algorithm provides a very strong multijet background rejection for VLQ decay modes
with heavy SM particles, but is not optimized for decay modes with b quarks, such as T — bW. The background from
multijet events in each of the 126 SRs is determined by summing up the product of the four jet classification rates over
all relevant jet permutations in an event, and over all selected four-jet events.

The observable of interest for each of the SRs is Hy, where the signal is expected to populate the tail of the distributions.
In the categories where the yield is too low to produce a meaningful distribution in Hr, a simple event counting experiment
is performed. Fig. 8 (left) shows a representative Hy distribution for events with > 1 t quark tag.

The selection-based analysis in Ref. [140] targets the T — bW decay, with two W boson jets and two b quark jets, to
maximize performance. Two large-radius jets are selected first, each with p; > 200GeV and |n| < 2.4. In addition, two
small-radius jets with p; > 30GeV and || < 2.4 are required that do not overlap the large-radius jets. Large-radius jets
are taken as W boson candidates and are paired with a small-radius jet (b quark candidate) such that the mass difference
(Am) between the resulting VLQ candidates is minimal. Events with Am/m < 0.1 and H; > 1200 GeV are selected to
reject background events and to ensure a high trigger efficiency. The events are divided into six SRs based on the W tag
and b tag multiplicity. A W tag is defined as a large-radius jet with 7,; < 0.55 and mg, € [85, 105] GeV, and a b tag is
defined as the operating point of the CSVv2 algorithm with a misidentification rate of 1%. The background estimate for
the multijet contribution is determined from data using an ABCD method fit to linear functions in each tagging category,
with non-overlapping CRs obtained by inverting the Am and H; requirements. Just as in the NN-based analysis, the Hy
distribution in the SRs is used to search for the presence of a T quark signal. Fig. 8 (right) shows the H; distribution in
the SR with two W-tagged and two b-tagged jets. In figures taken from Ref. [140], the selection-based analysis is labeled
“cut-based analysis”.

In both analyses, a simultaneous fit is performed across the 126 or six SRs by computing Bayesian credible intervals to
set 95% CL upper limits on the TT production cross section. No significant excess above the SM prediction is observed.
The observed lower limits on the T quark mass are shown in Fig. 9 as functions of the T quark branching fractions to tH
and bW, for both NN-based (left) and selection-based (right) approaches. The NN-based analysis shows more sensitivity
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Table 2
Summary of event selection criteria for the primary CRs and SRs in the three leptonic search channels. The phrase “max MLP” refers to the largest
score from the single-lepton multilayer perceptron network.
Source: Table taken from Ref. [141].
Channel Event selection
Overall CR SR

1 tight ¢ — _
pr(€) > 55 GeV — _
0 other loose ¢, pr > 10 GeV - —

1¢ Y™ > 50Gev - -
>3 large-radius jets — —
— max MLP not VLQ max MLP is VLQ
- 2 VLQ candidates

2 tight SS ¢ - _
pr(€) > 40 GeV, 30 GeV — _
>4 small-radius jets — _
M(££) > 20GeV - _
M(ee) outside 76-106 GeV — —

SS 2¢

- HIP < 1000 GeV HI* > 1000 Gev
pr(€) > 30GeV -
M(OSSF ££) > 20 GeV - -
30 PP > 20GeV - -
>1 b-tagged jet — —
pr(b jet) > 45 GeV — —
- 3 loose ¢ >3 tight £ GeV
— 2 small-radius jets >3 small-radius jets

to T — tZ and T — tH decay modes, excluding T quark masses below 1260 and 1370 GeV, respectively. The selection-
based analysis offers stronger sensitivity for the T — bW decay mode, because it uses a dedicated b quark tagger with
a higher efficiency than the BEsT algorithm achieved. The NN-based analysis excludes T quark (or Y, 3 quark) masses
below 1030 GeV.

TT — Leptons. InRef.[141], a search for pair production of T and B quarks is presented using the full Run 2 data set. This
search includes three final states containing charged electrons or muons: a single-lepton channel, an SS dilepton channel,
and a “multilepton” channel with at least three leptons. The three leptonic channels offer sensitivity to different potential
VLQ decays. Table 2 summarizes the main event selection criteria used to form CRs and SRs for the three channels.

The single-lepton channel provides broad sensitivity to all TT decay modes, as well as sensitivity to B quark decays to
tW. In this channel, one of the t quarks or W bosons from a VLQ decays leptonically and produces the charged lepton and
a neutrino, while the other three initial products decay hadronically and result in large-radius jets. The parent particles of
the large-radius jets can be identified using the DEEPAKS algorithm. A densely connected NN in the form of a multilayer
perceptron (MLP) is trained to identify events as tt background, W+jets background, or VLQ signal events. Fig. 10 shows
the strong distinction between the shape of the signal and the background in the VLQ node score distribution in the SR, as
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Fig. 10. Example single-lepton channel TT NN output distributions of the T quark score in the inclusive SR (left) and the W+jets score in the CRs
(right). The observed data are shown using black markers, predicted TT signals with a T mass of 1.2 (1.5)TeV in the singlet scenario using solid
(dashed) lines, and backgrounds using filled histograms. Statistical and systematic uncertainties in the background estimate before performing the
fit to data are shown by the hatched region. The lower panels show the difference between the observed data and the background estimate as a
multiple of the total uncertainty in both sources. The signal predictions in the left distribution have been scaled for visibility by the factor indicated
in the figure.

Source: Figures taken from Ref. [141].

well as the separation between the tt and W+jets background processes in the W+jets node score in the CRs. Events are
categorized by lepton flavor, electron or muon, and then based on the particle identification of the four decay products
of the VLQ candidates. In this channel all background processes are estimated using simulation.

The SS dilepton channel is primarily sensitive to TT production with T — tH (with H — WW™) decays. With up to
six W bosons produced (including those from the t quark decays), two SS W bosons can decay leptonically to produce
two SS leptons in the final state. Events are categorized by lepton flavor combinations. Three categories of background
are considered: prompt lepton, nonprompt lepton, and lepton charge misidentification, as described for the X; /3§5 /3
search in Section 6.2.1. Nonprompt lepton rates used in the matrix method are extracted by fitting the predicted lepton
pr distributions in the multilepton channel CR, through the minimization of the X2 between the observed data and the
total estimated background as the nonprompt lepton rate value is varied.

The multilepton channel is primarily sensitive to contributions from T — tZ decays. Leptonic decays of these Z
bosons, combined with possible leptonic decays of the W bosons from the decay of the t quarks, may produce three or
more leptons—a rare final state in SM processes. The prompt-lepton background is estimated from simulation, and the
nonprompt-lepton background is again estimated via the matrix method, but extended to three leptons. The high-energy
signature of the VLQ signal is used to discriminate the signal from the background in the SS dilepton and multilepton

channels. Following the example of the X;,;X;,; search, the observable Hrp is used in the SS dilepton channel. The

observable St = " Priets + D Prieptons + pr 5 is used in the multilepton channels. Events are categorized by lepton flavor

combinations.

A maximum likelihood fit combining multiple template histograms from the three leptonic channels is used to search
for evidence of signal. Template histograms from a variety of kinematic observables are taken from the SRs of all three
lepton channels, as well as some CRs. In the single-lepton channel, the H; and DEEPAKS jet tag CR distributions are
included in the fit to constrain uncertainties in the background modeling. In the SR, the VLQ score from the NN is used
to form template histograms for both high-purity events, in which both VLQ candidates contain the expected particle
labels, and for low-purity events, which have at least one VLQ candidate without the expected particle labels. The SR data
are subdivided into 24 exclusive categories based both on the lepton flavor and the set of DEEPAKS jet tags observed. In
the SS dilepton channel, the H}ep distribution is used to form template histograms in the three lepton flavor categories
for 2017 and 2018 data. In the multilepton channel, the S; distribution is fit in the four lepton flavor categories for all
data-taking periods. Representative H}ep (left) and Sy (right) distributions from the all-muon categories in these channels
are shown in Fig. 11. In both of these channels the template histograms from 2016 data are reproduced from Ref. [158].
No significant excess of data over the SM background estimate is observed in any channel.

The dominant uncertainties in the single-lepton background predictions are the renormalization and factorization scale
uncertainties, and the signal predictions are most sensitive to the DEEPAK8 heavy-particle misidentification uncertainties.
The dominant background uncertainties in the SS dilepton and multilepton channels are those affecting the nonprompt-
lepton background estimation. The searches for each VLQ flavor are independent, with only one flavor considered in
the signal templates. Fig. 12 shows the 95% CL expected (left) and observed (right) lower limits on the mass of pair-
produced T quarks for many possible branching fraction combinations, varying branching fractions in steps of 0.1 and
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Source: Figures adapted from Ref. [141].
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Fig. 12. The 95% CL expected (left) and observed (right) lower mass limits on pair-produced T quark masses, from the combined fit to the three
leptonic channels, as functions of their branching fractions to Higgs and W bosons. Mass contours are shown with lines of various styles.
Source: Figures adapted from Ref. [141].

requiring that B(qW )+ B(qH) + B(qZ) = 1. For branching fractions dominated by W boson decays, several single-lepton
SR categories show a slight deficit of data after the fit, but the expected and observed limits are consistent within two
standard deviations. From the scan, T quarks with masses below 1.48-1.54TeV are excluded at 95% CL, depending on the
branching fraction. From considering the 100% bW branching fraction limit, Y,,; quarks are excluded with masses below
1.54 TeV. For both VLQs the strongest sensitivity is to decay modes with multiple t quarks: TT — tHtH. The sensitivity of
the search is dominated by the single-lepton channel, with important contributions derived from the multilepton channel
in branching fraction scenarios with significantly large t+Z decay rates. The strength of the Run 2 TT search compared to
its predecessors shows the power of the expanded data set alongside advances in NN jet classifiers.

6.2.3. Searches for BB production
Many of the searches for TT production presented in Section 6.2.2 also study the case of BB production, using the
same analysis strategy.

BB — Leptons. The OS dilepton analysis of Ref. [139] categorized events differently to search for BB production with
its different decay topology. That search excluded B quarks with a mass below 1.13 TeV for B(bZ) = 100%. The leptonic
search of Ref. [141] using the full Run 2 data set has strong sensitivity to B — tW decays. In the single-lepton channel,
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where events are categorized based on the set of DEEPAKS jet tags observed, only 18 SR categories are formed for the BB
interpretation, since BB events with B — bZ or B — bH decays have a low selection rate in this channel. Fig. 13 shows
the lower limits on the B quark mass derived for pair production as a function of the branching fractions to bH and tW.
This search excludes B quarks with masses below 1.12-1.56 TeV, and offers the strongest sensitivity to BB — tWtW
decays. The tWtW decay mode can also arise from X;,; production, which is excluded below 1.56 TeV.

BB — Hadrons. The NN- and selection-based analysis approaches in the hadronic pair production search using the 2016
data set [140] are interpretable in the BB VLQ model. For the selection-based approach, the difference is simply in
reinterpreting the W tagger as a Z boost tagger to target the B — bZ channel. This analysis also benefits from using
the CSVv2 algorithm to identify b quarks in the B — bZ and B — bH channels. The NN-based approach requires no
modifications, though different tag multiplicity categories are the most signal enriched compared with the TT search.
The fit is rerun over all six or 126 SRs for the selection-based and NN-based analyses, respectively. No significant excess
above SM predictions is observed, and lower mass limits are calculated as functions of the B quark branching fractions
to bH and tW, as shown in Fig. 14. The NN-based analysis excludes B quark masses below 1230 GeV for the B — tW
decay mode based on the strong performance of the BEST algorithm for identifying t quarks. The selection-based analysis
with its stronger b quark identification excludes B quark masses below 1000 GeV for B — bZ decays and below 980 GeV
for B — bH decays.

BB — 0¢,0S 2¢. Another search for BB production was developed that specifically targets B — bz and B — bH
decays [142], using the full Run 2 data set. This analysis is based on the strategy of an earlier search (Ref. [159]) that
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Table 3

Summary of channels considered for each category and jet multiplicity in the search for BB production that specifically
targets B — bz and B — bH decays.

Source: Table adapted from Ref. [142].

Jet Leptonic All-hadronic

multiplicity category category

3 bHbZ, bZbZ -

4 bHbZ, bZbZ bHbH, bHbZ, bZbZ

5 bHbZ, bZbZ bHbH, bHbZ, bZbZ, bHtW, bZtW
6 — bHbH, bHbZ, bZbZ, bHtW, bZtW

focused on B — bH and B — bZ decays in the hadronic final state. However, the search using the full Run 2 data set
expands on its predecessor analysis by considering B — tW decays of one B quark in the pair, and by including an OS
dilepton final state optimized for B — bZ decays to a pair of leptons.

The bosons produced in the B quark decay often have a high Lorentz boost, so the two jets produced in a hadronic
W, Z, or Higgs boson decay may be reconstructed into a single merged jet. Similarly, in the tW decay mode the entire
decay of the t quark may be reconstructed as a single merged jet. As a result, each decay mode may be represented by
events with different jet multiplicities, depending on the number of large-radius jets. In the leptonic category, also events
with additional jets from initial-state radiation (ISR) or final-state radiation (FSR) are included. Events are divided into
channels corresponding to the category, decay mode, and jet multiplicity, as summarized in Table 3.

The principal background in the leptonic category is DY dilepton production in association with jets, whereas in the
all-hadronic category the background is predominantly from QCD multijet events. In all cases, potential signal events
are distinguished from background events by requiring: the jets are consistent with production from a W, Z, or Higgs
boson; the dilepton pair in leptonic events is consistent with a Z boson decay; the two reconstructed VLQs have consistent
masses; and some jets are b tagged.

Small-radius jets are required to have p; > 50 GeV and large-radius jets p; > 200 GeV, with |n| < 2.4 in both cases.
For the large-radius jets, the SD algorithm is used to estimate the mass of the parent W, Z, or Higgs boson. The DEEPJET
algorithm is applied to small-radius jets to obtain single b tags, whereas for merged jets containing bb pairs the double-b
algorithm is applied to large-radius jets.

In the leptonic channels, electrons or muons are selected with p; > 50 GeV, |5| < 2.4, loose identification requirements,
and a loose isolation requirement for muons. Events are required to have two OSSF leptons with an invariant mass in the
range 80 < m,, < 102GeV, and three to five small-radius jets, at least one of which must be b tagged according to
the DEEPJET operating point with a 1% misidentification rate. In the hadronic channel, events must have no leptons, four
to six small-radius jets, and H; > 1350 GeV. Each channel carries a different requirement for the number of single- and
double-b tags to be consistent with the decay mode hypothesis. One double-b tag is typically required in bHbH or bHbZ
categories with only four or five small-radius jets. After the event selection, masses of VLQ candidates and their decay
products are computed from the SD mass of large-radius jets, and/or the invariant mass of combinations of small-radius
jets.

The reconstruction of events and assignment of jets to parent particles is performed using a modified X2 metric, Xf—.od,
that compares the mass of each reconstructed hadronically decaying t quark and W, Z, or Higgs boson with the average
values found in simulation. The sznod formula also includes a term to compare the mass difference between VLQ candidates
with the average value from simulation. The decay mode hypothesis with the smallest er,od /ndf value, where ndf is the
number of degrees of freedom, is used both to determine the assignment of jets and the overall event mode. In the leptonic
case, the lemd /ndf value is also used to identify additional jets that are likely to be from ISR and FSR. Since the x7 odq/ndf
values tend to be lower for signal events than background events, an upper threshold is set for the minimum y,,4/ndf
to provide background rejection. The threshold is optimized separately for each category and channel to maximize the
sensitivity of the analysis.

To estimate the background in the hadronic channel, a “preselection” sample of events passing all selection require-
ments except for b tagging is defined, and the distribution of the VLQ candidate mass in this sample is fitted with an
exponential function. The background estimate is constructed by multiplying the fitted function by the “background jet-
tagged fraction”, which is determined in a low-mass sideband region and corrected for any mass dependence using a
region with large Xriod /ndf. In the leptonic category, the SR is defined as events with X,ﬁod /ndf < 5 with a b-tagged jet
directly originating from the B quark candidate, so the CR consists of events that fail this b tagging requirement. The
VLQ mass distribution in the CR is fitted with an exponential function over the mass range 800 < my;q < 2000 GeV,
and this distribution is propagated to the SR using a transfer factor: the ratio of b-tagged events to b-vetoed events with
450 < myq < 900 GeV. For the estimated background distributions, uncertainties in each fit parameter and normalization
factor are propagated to the final background distribution. Fig. 15 shows the distribution of the reconstructed VLQ mass
for the observed data, expected background, and simulated signal events for one hadronic and one leptonic category.

No statistically significant excess of the observed data over the background expectation is observed, and lower limits at
95% CL are set on the B quark mass as a function of B quark decay branching fractions, combining the full Run 2 hadronic
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Source: Figures taken from Ref. [142].
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Fig. 16. Expected (left) and observed (right) lower limits on the B quark mass at 95% CL from the combination of the full Run 2 hadronic and OS
dilepton channels, as a function of the branching fractions B(B — bH) and B(B — tW), with B(B — tW) = 1— B(B — bH) — B(B — bZz).
Results in the gray region, where the lower limit is less than 1.0 TeV, are omitted.

Source: Figures adapted from Ref. [142].

and OS dilepton channels. Fig. 16 shows the expected and observed lower limits, respectively, on the B quark mass as
a function of B(B — bH) and B(B — tW), omitting scan points for which the exclusion limit is less than 1000 GeV.
Compared with the previous result by the CMS experiment [159], the limits on the B quark mass have been increased
from 1570 to 1670 GeV, 1390 to 1560 GeV, and 1450 to 1560 GeV in the 100% B — bH, 100% B — bZ, and BY 4,5 doublet
cases, respectively.

6.3. Single production

Analysis strategies for singly produced VLQs typically exploit the presence of a jet in the forward direction of the
detector, originating from the quark produced in association with the VLQ, as seen in Fig. 3 (middle), as well as the high

592



The CMS Collaboration Physics Reports 1115 (2025) 570-677

Lorentz boost of the decay products for high VLQ masses. In the following, searches for singly produced T quarks are
discussed first, followed by searches for singly produced Y3, X5,3, and B quarks.

Single T quark decays to T — tZ and T — tH are discussed in Sections Section 6.3.1 and 6.3.2, respectively. As
mentioned in Section 5.3, the strength of the EW production cross section depends on the coupling of the T quark to
third-generation quarks, denoted by «.. The value of this coupling may vary significantly depending on the mass and
decay width of the T quark. The analyses are designed using different width approximations, including the NWA and
width approximations of 10, 20, and 30%, while considering different values for «.. Beyond the range of validity of the
NWA, the large width of the T quark and the interference of single T quark events with SM background events become
significant factors that must be considered in the analyses [117,160].

631.T— tZ

In this section, the studies are discussed in which the decay of the T to a top quark and a Z boson were probed via
various leptonic and hadronic decays of the Z boson and the t quark. Depending on the T quark mass, the top quarks are
produced with a high Lorentz boost and collimated decay products. Thus, different reconstruction strategies for the top
quark are used for different mass ranges of the T quark. The quarks from the top quark decay tend to be reconstructed as
individual, small-radius jets for T quark masses lower than ~1TeV. However, for higher masses, the decay products of the
boosted top quark become highly collimated, producing overlapping jets. In this case, the analysis employs substructure
techniques to study large-radius jets and identify those originating from the top quark or the W boson, which enhances
the sensitivity of the analysis. The top quark may be detected through three distinct methods: fully merged, partially
merged, or resolved, depending on whether a large-radius t jet is identified; a large-radius W jet and a small-radius b jet
are identified; or three small-radius jets are reconstructed, respectively. A particular feature of the direct production of a
single T quark is the presence of an additional jet that is produced in the forward direction. Below we describe analyses
that have focused on searches in specific channels, where the Z boson decays into two OS leptons, neutrinos, or undergoes
a fully hadronic decay.

tZ — bqq L. The search in Ref. [144] targets the detection of T — tZ where the Z boson decays into a charged-
lepton pair, using the 2016 data set. The events are selected based on the presence of two OS leptons, which can be
either muons or electrons, with an invariant mass within the range of 70 to 110 GeV. The forward jet is reconstructed
as a small-radius jet and is required to have py > 30GeV and 2.4 < |n| < 5.0. Furthermore, in the partially merged
and resolved categories, the presence of at least one b-tagged jet, using the medium DEEPCSV working point, is required
for the top quark reconstruction. The two leptons from the Z boson decay must be spatially close to each other, with
a distance metric of AR < 0.6-1.4, depending on the category. Moreover, the leading-p; lepton, either a muon or an
electron, must have a p; greater than 120 GeV. When more than one medium b-tagged jet is present in the event, the one
with the largest reconstructed top quark pr is selected for further reconstruction. Additionally, in the resolved categories,
the two jets with the lowest b tagging discriminant out of the three jets forming the top quark candidate must have a
dijet invariant mass below 200 GeV. The signal is expected to accumulate as an excess over the background events in the
mass spectrum of reconstructed T quark candidates, m, . In this strategy, the main background process is Z/y" + jets
events, constituting over 80% of the total background. Smaller contributions originate from other sources like ttV, tZq,
tt, single t quark, and VV diboson production. Fig. 17 shows distributions of the reconstructed mass m,, of the T quark
for the observed data, the background estimates, and the expected signal for categories targeting the reconstructed T
quark in the resolved topology. The events in this category involve the Z boson decaying into muons and no forward jet
(left) and at least one forward jet (right). Additional distributions of observed data, background estimates, and expected
signal processes for various categories based on different T quark reconstruction topologies are reported in Ref. [ 144].

No significant deviation of the data from the expected background is observed in any of the search channels. Upper
limits are set on the product of the cross section and branching fraction of a T quark decaying to tZ. In Fig. 18, the
observed and expected upper limits from the combined ten categories in the search for singly produced T quarks in the
Z — eTe /utu” channels are shown for the singlet LH T quark production in association with a b quark (left) and
doublet RH T quark production in association with a t quark (right) in the NWA hypothesis. In this case, LH T quarks
produced in association with a b quark and with ¢y, = 0.5 are excluded for masses in the range of 0.7-1.2 TeV. However,
the limits on the production of a doublet RH T quark in association with a t quark do not impose constraints on the
T mass parameter. Similar exclusion limit results are presented in Ref. [144] as a function of width and mass of T in
the ranges from 10 to 30% and 0.8 to 1.6 TeV, respectively. The results are interpreted using the model constructed in
Refs. [118,134,161], and an LH T quark signal (in association with a b quark) was excluded at 95% CL for masses below
values in the range 1.34-1.42 TeV, depending on the width, whereas an RH T quark signal (in association with a t quark)
was excluded for masses below values in the range 0.82-0.94 TeV.

tZ — bqqvv. The search for singly produced T quarks in the mode T — tZ with Z boson decays into neutrinos [146]
also exploits the aforementioned three different top quark candidate reconstruction strategies. Events are selected from
the full Run 2 data set with p™* > 200GeV, at least one small-radius jet with p; > 30GeV and |n| < 4.0, and at
least one top quark candidate constructed from small- or large-radius jets with |n| < 2.4. To reduce the number of QCD
multijet background events, the angular separation A¢ s between each small-radius jet and the ﬁT""SS vector must

exceed 0.6. Events with identified electrons or muons are excluded. Additional requirements are imposed on events in
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Fig. 17. Distributions of the reconstructed T quark mass, m,, for the observed data, the background estimates, and the expected signal for the two
categories where the singly produced T quark is reconstructed in the resolved topology for events with the Z boson decaying into muons and no
forward jets (left) and at least one forward jet (right). The background composition is taken from simulation. The expected signal is shown for two
benchmark values of the width, for a T quark produced in association with a b quark: NWA and 30% of the T quark mass. The lower panel in each
plot shows the ratio of the observed data to the background estimation, with the hatched band representing the uncertainties in the background
estimate.

Source: Figures taken from Ref. [144].
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Fig. 18. Observed and expected upper limits on the product of the cross section and branching fraction for singlet LH T quark (left) and doublet
RH T quark production (right) in association with a b quark and a t quark, respectively, in the NWA hypothesis. The T quark decays to tZ with
a branching fraction B(T — tz) of 0.25 (0.5) for the left (right) figure. The red lines represent theoretical cross sections calculated at NLO in
perturbative QCD, whereas the inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the
distribution of limits expected under the background-only hypothesis.

Source: Figures taken from Ref. [144].

the resolved category to increase the sensitivity of the analysis: p; > 250 GeV for the resolved top quark candidate; and
the event H; greater than 200 GeV. Each event that passes the selection criteria is categorized into one of six groups based
on the type of reconstructed top quark candidate (merged, partially merged, or resolved) and the presence or absence of
at least one forward jet. When more than one type of top quark candidate is reconstructed, the event is assigned to a
single category based on a hierarchy established through an optimization procedure aimed at obtaining the best expected
exclusion limit across the entire mass range: first the merged category, followed by the partially merged category, and
lastly the resolved category. After the event selection, the major sources of background are tt+jets, W+jets, and Z+jets
events where the Z boson decays to neutrinos. Due to differences in the amount of observed data in the CRs and to
mismodeling corrections, different methods for determining the correction factors are used for the resolved, merged, and
partially merged categories. The signal extraction is based on a simultaneous fit to the transverse mass of the top quark
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Fig. 19. Distributions from the 2018 data set of the transverse mass of the reconstructed top quark and p; ~ system, for the selected events in the
resolved categories, for events with no forward jet (left) and at least one forward jet (right). The distributions for the main background components
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fit to data, whereas the distributions of signal processes are represented according to the expectation before the fit. The lines show the signal
predictions for three benchmark mass values (0.8, 1.2, and 1.6 TeV) for a T quark of a narrow width.

Source: Figures taken from Ref. [146].
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candidate and p;  system, M; = \/ 2prpr (1 —cos A, 5 miss ), in the six analysis categories. Fig. 19 displays the My
distributions for the observed data in 2018 and for the predicted backgrounds for events selected within the resolved
categories with no forward jet (left) and at least one forward jet (right). The distributions for the merged and partially
merged categories, as well as various data collection scenarios from different years, are reported in Ref. [ 146].

Observed combined upper limits are derived for the product of the single production cross section for the singlet T
quark and the T — tZ branching fraction, for the six event categories in the Z — vv channel combined. The result is
presented as a function of the T quark mass mr, and for several width hypotheses, as shown in Fig. 20. These results set
the lower limits on the T quark mass in the singlet model for various resonance width hypotheses: values of T quark
mass lower than 0.98, 1.1, 1.3, and 1.4 TeV are excluded for resonance widths 5, 10, 20, and 30% of the mass, respectively.
As the cross section rises with assumed width according to Eq. (4), the constraints get stronger for larger relative width
scenarios up to 30%.

tZ — bqq bb. Analogous to the previously described analyses, search strategies for single T in the all-hadronic channel
with H/Z — bb are defined based on the quarks resulting from the top quark and Higgs/Z boson decays: a low-mass
search and a high-mass search [145,148]. The event selection criteria are based on the properties of the signal final state,
specifically with t — bW and H/Z — bb decays.

The low-mass search of Ref. [148] uses the full Run 2 data set. The final state comprises two jets from the W boson
decay and three b jets (two from the H or Z bosons and one from the top quark decay). Events are selected if they contain
at least six small-radius jets with p; > 40 GeV and |n| < 4.5, in order to maintain high efficiency for selecting all the jets
from the T quark decay. Tighter p; thresholds are imposed on the first three leading jets to select objects consistent with
the decay of a high-mass resonance. Finally, three of the small-radius jets are required to lie in the central region of the
detector and be b-tagged using the tight DEEPCSV working point. The main variable used in the low-mass search strategy is
the reconstructed five-jet invariant mass from small-radius jets. A multistep Xz minimization algorithm is used to identify
the jet combinations that reconstruct the best Higgs or Z boson, W boson, and top quark candidates. Additional criteria
are applied to optimize the signal reconstruction based on the individual X2 scores, the angular separation between the
selected objects, and the fraction of momentum carried by the decay products of the T quark. These criteria are described
in detail in Ref. [148] and are defined to ensure that the five-jet invariant mass distribution is a smoothly falling spectrum.
The dominant background processes are QCD multijet production and top quark pair production, and their contributions
are evaluated from the observed data using CRs with relaxed b tagging requirements.

In Ref. [148], the high-mass search strategy is also performed using the five-jet invariant mass as the main observable
and hence focuses on T masses below 1.2 TeV. An earlier search performed by the CMS Collaboration [145], using the
2016 data set, applies a different strategy for the high-mass regime, in which the invariant mass of the T — tH and
T — tZ candidates is reconstructed using two large-radius jets. This strategy is effective for T masses of 1TeV and
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Fig. 20. Observed 95% CL upper limit on the product of the single production cross section for a singlet VLQ T quark and the T — tZ branching
fraction, as a function of the T quark mass m and width I, for widths from 5 to 30% of the mass. A singlet T quark that is produced in association
with a bottom quark is assumed. The solid red line indicates the boundary of the excluded region (on the hatched side) of theoretical cross sections
multiplied by the T branching fraction.

Source: Figure taken from Ref. [146].
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Fig. 21. Background-only postfit distributions of ., the adjusted T mass sensitive observable defined in Ref. [145], of the observed data for the
SR of the T — tZ (left) and T — tH (right) channels, respectively, for the high-mass search. The dashed red histogram in each case represents an
example signal for the tZbq or tHbq process with a T quark mass of 1.2 TeV and a relative width of 30%. The lower panels of the plots display the
ratio of observed data to the fitted background for each bin. The error bars on the data points correspond to the 68% CL Poisson intervals, whereas
the light blue band in each ratio panel represents the relative uncertainties in the fitted background.

Source: Figures taken from Ref. [145].

above. Jet substructure techniques are used to reconstruct the top quark and H/Z jets. The presence of a forward jet is
also required with a minimum AR of 1.2 from the leading large-radius jets. After event selection, the dominant background
contributions, as in the low-mass search, are tt and QCD multijet production. The reconstructed mass of the T candidate
from the large-radius dijet system is adjusted for deviations of the individual large-radius masses from the known top

quark and an H or Z boson, and used as the main observable. Details on the adjusted T mass sensitive observable, -, can
be found in Ref. [ 145]. The resulting postfit . distribution of the observed data based on the background-only hypothesis
for T — tZ is shown in Fig. 21 (left). Similar plots for other CRs may be found in Ref. [ 145].

As the Z — bb channel is merged with the H — bb channel, the limits are presented jointly in the following
Section 6.3.2 in Figs. 23 and 24. The exclusion limits derived from the Z — bb channel alone is reported in Refs. [ 145,148].
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blue region represents the uncertainty in the fitted background estimate. The expected signal distributions (scaled for visibility) for a 700 GeV and
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Source: Figures adapted from Ref. [148].

6.32. T— tH

In this section, we discuss the searches for singly produced T quarks, assumed to decay into a top quark and a Higgs
boson, considering various leptonic and hadronic channels for the top quark decay, and two photons or bb for the Higgs
boson decay.

tH — bqq bb. The full Run 2 search for singly produced T quarks involving the Higgs boson decays to bb from Ref. [148]
follows a similar strategy to that used for the T — tZ, Z — bb channel. However, in the T — tH channel, the
reconstructed invariant mass of the bb system must be greater than 100 GeV, whereas for the Z — bb channel, it must
be less than 100 GeV. The resulting postfit distributions of reconstructed T mass sensitive observables in the observed
data based on the background-only hypothesis for T — tH are shown in Fig. 21 (right), and in Fig. 22 for the low-mass
(left) and high-mass (right) selections.

Upper limits are set on the cross section for the pp — Tbq production mode for the two decay channels (tH and tZ)
individually as well as for their sum (tH+tZ). Both analysis strategies used in Refs. [145,148], described in Section 6.3.1,
derive the limits for a singlet T quark with a I"/m+ of 1%. The low-mass search optimized in Ref. [148] gives a better
sensitivity for T quark masses below 1TeV whereas for higher masses the reconstruction based on large-radius jets used
in Ref. [145] yields more stringent limits, as seen in Fig. 23.

Fig. 24 shows the upper limits on the cross section of Thq production after combining the tHbq and tZbq channels.
The different figures correspond to different relative widths of 10, 20, and 30%. Similarly, in Ref. [145] analogous results
for Ttq production are presented in the tHtq and tZtq channels, along with their sum. These results are also given for
narrow relative width I /m < 5% and relative widths of 10, 20, and 30%.

For T masses below 1TeV, the models describing pp — Tbq production are strongly constrained by the observed
limits from the low-mass search signature, which are generally more stringent than expected above 0.75 TeV; for the
T singlet model, masses in the range 0.70 to 1TeV are excluded at 95% CL for relative widths between 5 and 30%. The
models corresponding to the associated production with a top quark have lower cross sections with a median expected
sensitivity for T quark masses within the (TB) doublet model of 0.82 TeV for the largest relative width of 30%. However,
for this model, no range of masses is excluded at 95% CL for any of the masses and relative widths considered here.

tH — bqqyy. All previously mentioned searches for singly produced T quarks have primarily relied on the reconstructed
T quark invariant mass or transverse mass as the primary observable to search for the presence of a signal. However, the
analysis in Ref. [147] is designed to utilize the high-resolution reconstruction of the Higgs boson mass in the diphoton
decay channel, with a precision of 1%-2%, to search for a signal that exhibits a peak at the Higgs boson mass above the
smoothly decreasing diphoton mass background. The analysis uses the full Run 2 data set, and is aimed to specifically
target the detection of the two photons originating from the decay of the Higgs boson resulting from the decay of the T
quark. The event selection process involves the use of diphoton triggers, which require a minimum of two photons with
asymmetrical conditions on their transverse momenta: p;(y;) > 30GeV and p;(y,) > 18 or 22 GeV, depending on the
data taking period. Additionally, selection criteria [162] are applied based on the shape of the electromagnetic shower
and based on the isolation in the calorimeter. The diphoton invariant mass (m,,) must be greater than 90 GeV to pass
the HLT to ensure that both photons originate from the PV. For efficient selection of photons associated with the PV, a
separate multivariate analysis (MVA) known as the “photon ID MVA” [162] is utilized in the offline event selection. This
MVA relies on observables such as the isolation and the shape of the photon shower in ECAL. The events must have a
minimum of two photons selected by the ID MVA within the ECAL and the fiducial region of the tracker (with || < 2.5,
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Fig. 23. Observed and median expected upper limits at 95% CL on the cross sections for single T quark production associated with a b quark, for
the sum of tHbq and tZbq channels, as a function of the assumed values of the T quark mass. The inner (green) band and the outer (yellow)
band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. The left
figure corresponds to the analysis strategy described in Ref. [148], based on the five-jet invariant mass reconstruction of the T. The figure on the
right corresponds to the analysis strategy in Ref. [145], which employs different reconstruction algorithms for the low- and high-mass searches. The
vertical dashed lines represent the crossover point in sensitivity for the low-mass and high-mass selections.

Source: Figures adapted from Refs. [145,148].
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Fig. 24. Observed and median expected upper limits at 95% CL on the cross sections for single T quark production associated with a b quark, for
the sum of tHbq and tZbq channels, as a function of the assumed values of the T quark mass. The inner (green) band and the outer (yellow) band
indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. The results
are given for relative widths of I"/m, = 10 (upper left), 20 (upper right), and 30% (lower). The vertical dashed lines represent the crossover point

in sensitivity for the low-mass and high-mass selections.
Source: Figures adapted from Ref. [145].
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Fig. 25. Distributions of the observed data (black dots) and m,, signal-plus-background model fits (red line) for a T quark signal with my of
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background component of the fit. The peak in the background component shows the considered irreducible SM Higgs boson contribution (ggH, VBF,
VH, ttH, and tH). Here, i is the best fit value of the signal strength parameter u, which is zero for the two my values considered. The lower
panel shows the residuals after the subtraction of the background component.

Source: Figures adapted from Ref. [147].

excluding the ECAL barrel-endcap transition region, 1.44 < |n| < 1.57). Additionally, the photon pair has to meet the
following criteria: the invariant mass of the photon pair must be between 100 and 180 GeV, the transverse momentum
of the leading photon (p(y,)) divided by m,, must be greater than 1/3, and the transverse momentum of the second
photon (pr(y,)) divided by m,, must be greater than 1/4. If multiple diphoton pairs exist, the pair with the highest pr(yy)
is chosen [162]. The events are categorized based on the leptonic or hadronic decays of the top quark. Events including
a pair of photons, at least one electron or muon, and a b-tagged jet, are categorized as the leptonic category. Those with
zero leptons, a pair of photons and three jets, including at least one b-tagged jet, are assigned to the hadronic channel.
Events with two leptons from the DY processes are rejected.

At this level of the event selection, Higgs boson production associated with a top quark pair (ttH) with H — vy
is the dominant background among all SM Higgs boson production processes, since it also leads to a peak in the m,,
spectrum at the Higgs boson mass. The m,, spectrum from the T quark signal also peaks at my due to the T — tH
decay. To separate the T signal from the SM Higgs boson background processes, MVA discriminants based on BDTs are
implemented [163] separately for each category (BDT-SMH). Furthermore, an additional BDT (BDT-NRB) is trained to
suppress the sizeable nonresonant background contributions (tZ, ttX, Wy, QCD multijet, y+jets, and yy+jets and Zy)
in the hadronic category. Higgs bosons from both SM processes and T decays are expected to peak on a smoothly
falling m,, distribution in the range 100 < m,, < 180GeV. Models of the signal and ttH background processes are
obtained by fitting the m,, distributions in simulation with a sum of at most five Gaussian functions, separately for
each category. The models used to describe the nonresonant background processes are extracted from the observed
m,, spectrum in the region m,, € [100, 180] GeV using a discrete profiling method [164]. This technique estimates the
systematic uncertainty in the background estimate associated with choosing a particular analytic function to describe
the m,, spectrum. The chosen functions are from a list of families of functions: exponentials, power laws, polynomials,
and Laurent series [ 164]. However, the degrees of freedom for these functions are decided in each case using a detailed
F-test [93] with a loose requirement on the goodness of fit. Fig. 25 displays the observed data distributions, with the
corresponding signal-plus-background model fit to the m,, distribution, for m values of 900 and 1200 GeV.

No statistically significant excess above the SM backgrounds in any channels or mass ranges is observed. Upper limits
on the signal strength modifiers (o5 = Ogps/0th AN feyp = Oexp/Own, are derived for different assumed my values, using
a maximum likelihood fit of the m,, distributions, keeping the my; parameter of the model fixed at 125 GeV. Finally, the
upper limits on s and pey, are translated into upper limits on oy, B(T — tH), as displayed in Fig. 26 together with
the theoretical cross sections for the singlet T production process with representative « values fixed at 0.1, 0.15, 0.2,
and 0.25 (for I'/m < 5%). Assuming a coupling to third-generation quarks of x = 0.25 and a relative decay width of
I' /my < 5%, the EW production of a singlet T quark is excluded up to a mass of 960 GeV at 95% CL.
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Fig. 26. Expected (dotted black) and observed (solid black) upper limits at 95% CL on ory,,B(T — tH) are displayed as a function of mr,
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respectively, of the distribution of limits expected under the background-only hypothesis. The theoretical cross sections for the singlet T production
with representative x values fixed at 0.1, 0.15, 0.2, and 0.25 (for I"/my < 5%) are shown as red lines.

Source: Figure adapted from Ref. [147].
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6.3.3. T/Yy35 — bW

bW — bev. A search for singly produced VLQs that decay to bW, sensitive to both T and Y3 quarks, is performed in
the £+jets channel using the 2015 data set [ 149]. Events are selected if they contain exactly one charged lepton (electron
or muon), with py > 30GeV and |n| < 2.1. The presence of at least two small-radius jets is required, one b-tagged jet
(pr > 200GeV and || < 2.4) and one forward jet (p; > 30GeV and 2.4 < |5| < 5.0), as well as p7° > 50 GeV to account
for the neutrino from the W boson decay. Additional event selection criteria are imposed to suppress the contribution
from the dominant background processes, tt and W +jets; the transverse mass My of the lepton-p7 system is required to
satisfy My < 130 GeV whereas the scalar sum Sy of the transverse momenta of the lepton, b jet, and p7"° is required to be
St > 500 GeV. The VLQ signal is expected to show as an excess in the invariant mass m;,, distribution reconstructed from
the lepton, the b jet, and the neutrino four-momenta. A binned likelihood fit is performed to the observed m;,, spectrum.
No significant deviations from the SM predictions are observed. Upper limits at 95% CL are set on the cross sections for
the single production of Y,,; and T in the mass range from 0.7 to 1.8 TeV, assuming a narrow decay width and ¢, = 0.5.
In this model, for a Y,,; — bW branching fraction of 100%, Y,,; masses between 0.85 and 1.40 TeV are excluded at 95%
CL. Similar exclusion limits are achieved for T also for a branching fraction T — bW of 100%.

6.3.4. B quark production
tW — bqqLv or bevqq. A search for B/X;,; — tW was carried out in the £+jets channel [151] using the 2016 data
set. The charged lepton may originate either from a t — Wb — £vb decay, or from the W boson from the B/X; /3
decay. Leptons (electrons or muons) are selected with p; > 55 GeV, and are identified with a two-dimensional isolation
requirement in order to achieve a high selection efficiency for decays of high Lorentz boosted t quarks. The analysis uses
W and t tagging, based on the SD jet mass, 7,5, T3,, and subjet b tagging. Selected events are attributed to five categories,
defined by the presence of either a t tag, a W tag, or two, one, or no b-tagged small-radius jets. Large-radius jets are used
to identify the hadronic decays of highly boosted top quarks and W bosons. For top quark jets and W boson jets, a pt
greater than 400 GeV and 800 GeV is required, respectively. In the t tag category, the VLQ mass (m,,) is reconstructed
from the four-momenta of the t-tagged jet, the charged lepton, and p;" . In all other categories, it is reconstructed using
combinations of small-radius jets, where the best combination is chosen based on a X2 estimator. The data sample is
divided into an SR with a forward jet and a CR without one. The background distribution in the reconstructed VLQ mass
in the SR is estimated from the corresponding distribution in the CR. This allows for a background estimation from data
of all SM backgrounds in this search. Residual differences in the shapes of these distributions in the signal and CRs may
arise from different background compositions due to the presence of a forward jet. The observed differences are small,
with average values of 10%, and are corrected by using factors derived from simulation.

The distribution of the reconstructed B mass is shown in Fig. 27 (left) for the t tag category in the p+jets channel.
The signal distributions for a B quark with RH couplings, produced in association with a b quark are shown as well, for
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Fig. 27. The distribution in the reconstructed B quark mass in events with one t-tagged jet and a forward jet, where the SM background is obtained
from a CR without a forward jet (left). The product of the observed upper limits on the cross section and B(B — tW) as a function of my;q for
different relative decay widths of the B quark (right), for single B quark production in association with a b quark.

Source: Figures taken from Ref. [151].

two different values of my,;, with an assumed production cross section of 1pb. Upper limits on the product of the cross
section and B(B — tW) on the single-production processes bb and X; 5t are derived by combining the five categories
measured in the muon and electron channels. The observed (expected) upper limits for bb production with LH couplings
and in the NWA are between 0.04 (0.04) pb and 0.3 (0.2) pb for my;q = 1.8 and 1.0 TeV, respectively. A comparison of
the observed exclusion limits of bb production with LH couplings for relative VLQ widths of 10, 20, and 30% is shown in
Fig. 27 (right). Similar exclusion limits are obtained for X;,;t production.

A more recent search using data the full Run 2 data set targets the single production of an excited b quark (b*) [153].
The dominant decay through the weak interaction, b* — tW, results in the same final state as for a B quark. However,
because the b* is predominantly produced through the strong force, no forward jet is expected in this search, and thus
the analysis is designed to be inclusive in the number of forward jets. The signal is reconstructed with an isolated lepton
from the W boson decay, and with a t-tagged jet. The analysis uses the HOTVR algorithm [165] for the reconstruction and
identification of the boosted t quark. The variable size of the HOTVR jets allows for an efficient reconstruction of boosted
t quarks starting at pr > 200 GeV [89], such that a single analysis strategy may cover mass range from 0.7 up to 4 TeV.
Two signal categories are defined, based on the number of b-tagged small-radius jets. The 1b category shows the highest
sensitivity, whereas the 2b category serves to constrain the dominant background from tt production. The background
from processes without t quarks, originating from misidentified t jets, is obtained from data by an extrapolation from
events with no b-tagged jets. The distribution in the reconstructed mass of the tW system is used to set upper limits on
the product of the cross section and branching fraction.

tW — bqqqq. The b* — tW signal is also searched for in an analysis in the all-hadronic final state [152] using the
full Run 2 data set. The analysis uses two large-radius jets with p; > 400GeV and a A¢ > 7 /2 to ensure a back-to-back
topology of the two jets. Because of the high jet p; threshold, the analysis is only sensitive to masses larger than 1.2 TeV.
The SR is defined by the presence of a W- and a t-tagged jet [84]. The analysis is performed in two dimensions, where
the distribution in the plane (m,, m, ), with m, the reconstructed top quark mass, is probed for a potential signal. This
allows for the use of a novel method to construct the multijet background template, which relies on a parametrization
of the pass-fail ratio as a function of m,. The distribution in the (m,, m,, ) plane of multijet events passing the t-tagging
requirement is calculated by multiplying the distribution of multijet events failing the requirement by a pass-fail ratio.
The two-dimensional pass-fail ratio is obtained from data in the sideband regions, and forms a surface parametrized by
the product of a second-order polynomial in m, and a first-order polynomial in m, ;. The advantage of this method is
that it interpolates the pass-fail ratio into the SR from the enclosing sidebands, such that the analysis may be fully tested
and verified before including the observed data in the SR. Once the observed data in the SR is examined, the predicted
pass-fail ratio may be compared with the observed one to validate the multijet background estimation in the SR. Besides
the multijet background, tt production is an important background in this search as well. In order to validate the modeling
of this background, a dedicated CR is included.

The analyses in the £+jets and all-hadronic final states are combined [153] to obtain upper limits on the product of
production cross section and branching fraction for B — tW, as shown in Fig. 28. In the mass range probed by both
analyses, between 1.4 to 1.8 TeV, very similar sensitivity is observed, resulting in a combined limit significantly stronger
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Fig. 28. Upper limits on the product of the production cross section and branching fraction to tW of the bb (left) and bt (right) production modes
at 95% CL. Colored lines show the expected limits from the £+jets (dotted) and all-hadronic (dash-dotted) channels, where the latter start at B
masses of 1.4 TeV. The observed and expected limits from the combination are shown as solid and dashed black lines, respectively. The inner (green)
band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of the limits expected under the
background-only hypothesis. The theoretical cross sections are shown as the red and blue lines, where the uncertainties due to missing higher orders
are depicted by shaded areas.

Source: Figures adapted from Ref. [153].

than the limits from the individual analyses. The limits in the range 0.7-1.4TeV are obtained from the ¢+jets analysis
only. Compared with the previous analysis in the £+jets channel [151], the exclusion limits in this mass range are about
10%-30% better for bb production. At high my, where both analyses contribute, the limits are up to 75% better. For bt
production, the limits at low masses cannot be improved because of the second b jet, which results in most signal events
being reconstructed in the 2b category of the £+jets search. At high m, the combination improves the previous limits
by about 50%.

bH — b bb. The CMS Collaboration has also performed a search targeting the single production of B quarks with decays
to bH, based on the 2016 data set [150]. The search is carried out in the all-hadronic final state, and is optimized for the
B — bH channel, where the H — bb decay is reconstructed by an H-tagged large-radius jet. The H jets are defined by
the pruned jet mass in the range 105-135 GeV and by two b-tagged subjets, where the subjets have been obtained with
the SD algorithm. Events in the SR require an H jet balanced by a high-p; b-tagged small-radius jet. Trigger requirements
lead to a selection of H;y > 950 GeV, calculated from all small-radius jets with p; > 30 GeV. Events are sorted into four
categories, based on the presence of a forward jet and the value of H;. The low-mass category with Hy < 1250 GeV shows
higher sensitivity for signals with mz < 1500 GeV, whereas the multijet background is reduced in the high-mass category
by imposing Hy > 1250 GeV, resulting in a better sensitivity for signals with myz > 1500 GeV. The main background in
this search is multijet production, with only 5%-7% from tt production. Other SM processes give negligible contributions.
The multijet background is estimated from three sideband regions, obtained by requiring only one b-tagged subjet and/or
changing the SD jet mass to 75 < mj,, < 105GeV or mj, > 135GeV. For a reliable extrapolation of the background
to the SR, the subjet b-tagging has to be uncorrelated from the SD jet mass, which has been verified using simulation.
The analysis excludes the products of cross sections and branching fractions above 0.07 and 0.4 pb for my = 1.8 and
1TeV, respectively. The limits worsen by factors between 1.3 for my = 1TeV and 2.1 for mz = 1.8 TeV, when increasing
the relative decay width of the B quark from 1% (NWA) to 30%. The observed and expected 95% CL upper limits for the
product of the production cross section of B and the branching fraction to bH in the NWA hypothesis, is shown in Fig. 29,
whereas the similar plots for the production of B under the larger width approximations can be found in Ref. [150].

6.4. Production through heavy resonance decays

Several models predict new heavy spin-1 resonances, generically denoted as the z’ and W’ bosons, that may decay
into VLQs. In cases where the mass of the heavy resonances would be larger than 2my,, decays into pairs of VLQs are
allowed. These may occur with branching fractions of 60% and higher [110]. The additional decay channel results in large
decay widths of the heavy resonances, such that exclusion limits on pair production of VLQs may be reinterpreted to
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Fig. 29. Observed and expected 95% CL upper limits on the product of the B quark production cross section and branching fraction to bH, as a
function of the signal mass, under the NWA. The results are shown for the combination of 0 and > 0 forward-jet categories. The continuous red
curves correspond to the theoretical expectations for singlet and doublet models.

Source: Figure taken from Ref. [150].

probe these models [166]. If the mass of the heavy resonance is smaller than 2my,q but larger than myq + m,, “heavy-
light” decays into a VLQ and a SM quark with mass m, may have sizeable branching fractions [167]. For the electrically
charged resonance W', these heavy-light decays include W' — Tb and W — tB, complementing the “light-light”
decays W' — tb and “heavy-heavy” decays W' — TB. Although the light-light and heavy-heavy decays are covered
by searches for tb resonances and VLQ pair production, dedicated searches are needed for heavy-light decays. For the
electrically neutral Z’ the situation is similar, where the heavy-light decays Z' — Bb and Z' — TT are not covered by
searches for tt resonances and VLQ pair production.

6.4.1. Production via the Z' boson

The case of a large coupling between the Z’ boson and up-type quarks may be investigated in searches for pp —
7' — Tt. A promising decay channel is Wb Wb [168], which differs from the kinematics of the z2' — tt — WbWb
resonance search in two important aspects. The large mass of the T quark results in very different boosts of the two Wb
systems. The t quark from the z’ boson decay may receive a large Lorentz boost if the mass difference m,, —my is large,
whereas the boost of the T quark will be moderate at most for m, in the range 1.5-4.0TeV and my between 0.7 and
3.0 TeV. When considering the constraint m,, < 2my, Lorentz factors not larger than y = 1.5 are realized for the T, such
that the Wb system from its decay cannot be reconstructed in a single jet. However, the W boson and b quark will be
approximately back-to-back, with large p; in the laboratory rest frame. The second aspect is that the Wb system from
the T quark decay will have a mass close to m, > m,, such that the usual selection employed in tt resonance searches
will result in a rejection of these events. Both aspects, the different boosts and different masses of the two Wb systems,
result in an insensitivity of earlier searches to this signal, despite the same final state.

A dedicated search has been carried out by the CMS Collaboration in the all-hadronic final state using the 2015 data
set [154]. The analysis selects events with a three-jet topology, with one large-radius t-tagged, one large-radius W-tagged,
and one small-radius b-tagged jet. The t and W tagging rely on 73, and t,;, respectively, in conjunction with mgp. The b-
tagged small-radius jet must not overlap with the two large-radius jets. Two SRs are defined, depending on the presence of
a b-tagged subjet in the identified ¢ jet. Both SRs have approximately the same signal efficiency, with different background
efficiencies and compositions. The subjet b tag reduces the multijet background by a factor of about four, such that the
corresponding SR has better sensitivity than the one without a subjet b tag. However, the latter still contributes to the
overall sensitivity of this search and validates the multijet background estimation, which is obtained from sideband regions
with vetoes on b-tagged jets and subjets. The uniquely identified decay particles of the signal decay chain allow for a
reconstruction of m,, and my, where both masses can be determined in case a potential signal in the data is observed.

The distributions in m,, and my for the SR with a subjet b tag are shown in Fig. 30. The relative mass resolution for
signal events is about 15%, such that pronounced peaks on the falling background would be visible. Since both distributions
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Fig. 30. Reconstructed m,, (left) and my (right) distributions obtained in a search for pp — z' — TT in the all-hadronic final state. The z’

boson is reconstructed using a t-, a W-, and a b-tagged jet, whereas the T quark is reconstructed using the latter two jets. The lower panels
show the difference between the data and the estimated backgrounds divided by the sum in quadrature of the statistical uncertainties in data and
backgrounds, and the systematic uncertainties in the estimated backgrounds.

Source: Figures adapted from Ref. [154].

are obtained from the same events in the observed data, only the distribution in m_/ is used to extract upper cross
section limits on a potential signal. Upper limits on the cross section range from 0.13 to 10 pb, depending on the chosen
hypotheses.

Since the all-hadronic search achieves high sensitivity for T — Wb decays, the channels T — Ht and T — Zt have
been targeted in a dedicated search in Ref. [155] optimized for pp — Z' — Tt — Htt and Ztt. The search has been
carried out by the CMS Collaboration in the ¢+jets final state using the 2016 data set. The presence of t quarks, a Higgs
boson or a Z boson, and W bosons in the decay chain makes this search special in terms of single VLQ searches, where
usually only two of these particles are produced in a given channel. The analysis considers events with one high-p; lepton
and a V- or H-tagged jet. In addition, events in the SR are categorized depending on the presence of a t-tagged jet. The
substructure taggers rely on the mgy of large-radius jets, where the mass regions for V, H, and t tagging are 60-115,
100-150, and 150-220 GeV, respectively. The V-tagged jets must fulfill 7,; < 0.5, t-tagged jets 73, < 0.57, and H-tagged
jets must have either one (H,, ) or two (H,, ) subjet b tags. The overlap between the V and H taggers is resolved by giving
priority to the H tagger for jets that fulfill both criteria, which results in an overall better sensitivity of this search.

One t quark decay is reconstructed using the lepton, pr ', and an additional jet. The possibility to reconstruct the other
t quark decay with a t jet depends on the boost of the two t quarks in the event, and thus on m and the difference
m, —mq. Events without a t-tagged jet are reconstructed using a combination of small-radius jets, not overlapping with
the V- and H-tagged large-radius jet. All possible assignments of jets to the leptonic and hadronic t quark decay cascades
are considered, and the hypothesis with the smallest difference of reconstructed and expected m, is chosen. In the Htt and
Ztt channels there is an ambiguity concerning which t quark is emitted in the Z’ boson decay, such that the m+ observable
cannot be reconstructed. The reconstruction of m, is achieved by summing the four-momenta of the chosen tt system
and the tagged V or Higgs boson. Six SRs are defined for each lepton flavor, categorized by a V-, Hy,-, or H,, -tagged jet
and the presence or absence of a t-tagged jet, resulting in a total of 12 SRs. The background is estimated from simulation,
necessitating the measurement of efficiencies and misidentification rates of the three substructure taggers used. These
measurements are performed in samples enriched in tt and multijet events. Differences in efficiencies between data
and simulation are used to derive correction factors, which are generally found to be compatible with unity within the
uncertainties.

In addition to these measurements, CRs enriched with the two main backgrounds, tt and W+jets, are used to validate
the simulation and constrain systematic uncertainties in the modeling of these backgrounds. Two reconstructed m,,
distributions in the u+jets channel are presented in Fig. 31, where the signal predictions for m = 1.3 TeV are overlaid.
The Ztt channel with a V tag and a t tag is shown (left), as well as the Htt channel with an H,, tag without a t tag
(right).

In the Ztt channel, the signal efficiency for m,, = 1.5TeV is smaller than for signals with higher 7z’ boson masses

because of the small mass difference m,, — my. This results in a t quark emitted from the 7' boson decay nearly at
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Fig. 31. Reconstructed m,,, distributions obtained in a search for pp — 7' — TT in the ¢+jets final state, in events with a V- and a t-tagged jet

(left) and in events with an H-tagged jet (right). The lower panels show the ratio of the observed data to the background prediction.
Source: Figures adapted from Ref. [155].

rest, such that only the t quark and Z boson from the T — Zt decay receive a large boost. Compared with signals with
m,, = 2.0 and 2.5TeV, there is only one boosted t quark instead of two, thus the selection efficiency is reduced by a
factor of two in this category.

In categories without a t-tagged jet, the efficiency is comparable for m,/ between 1.5 and 2.0 TeV. The efficiency for
m,, = 2.5TeV is smaller, because events with a t-tagged jet are more frequent and are reconstructed in the corresponding
category. This search achieves the best sensitivity to production of T — Ht in a resonance decay and similar sensitivity
to T — Zt as a nonresonant single VLQ search by the CMS Collaboration in the dilepton channel [144], discussed in
Section 6.3.1, which may be interpreted in this model as well. Upper limits on the product of the cross section of the
process pp — 7' — Tt and the branching fraction B(T — Ht, Zt, Wb) are derived. The simultaneous sensitivity to
T — Ht and T — Zt results in the most stringent constraints to date on models with a heavy gluon and on composite
Higgs models, predicting z' — Tt decays.

6.4.2. Production via the W' boson

A search for the heavy-light decay of a W’ boson has been performed by the CMS Collaboration in the all-hadronic
final state, using the 2016 data set [156]. The search has been optimized for W — Bt and W' — Tb, which both result
in the tHb final state for the decays B — Hb and T — Ht [169]. The analysis targets high m s and myq, such that
the Higgs boson and t quark are produced with large Lorentz boost and may be reconstructed using large-radius jets.
The smallest mass difference considered in this search is m s — my;q = 200GeV. In W' — Tb decays, even this mass

difference results in high momenta for the b quark, t quark, and H boson. In W' — Bt decays, this mass difference will
result in low-momentum t quarks that cannot be reconstructed in a single large-radius jet. In this regime, the analysis
loses sensitivity because the two decays W — Tb and W — Bt are assumed to happen with the same frequency [169].
The H and t tagging algorithms select jets with mgp in the range 105-135 and 105-210 GeV, respectively. In addition, H
jets have to pass a selection based on the discriminator from the double-b tagger and t jets must have 73, < 0.8 and a
subjet b tag. The SR is defined by events with an H-, t-, and b-tagged jet.

The distribution in the reconstructed W’ boson mass is used to search for a signal, obtained from the four-vector sum
of the three identified jets in the event. Sideband and validation regions are used to estimate the multijet background.
These are obtained by inverting the b tag discriminant, t tag 5,, or H tag jet mass requirements. The multijet background
in the SR is predicted from data in events passing the inverted H tag, weighted by a transfer function that describes the
ratio of probabilities for a jet to pass the H- or inverted H-tagging selections. The transfer function is calculated using
events passing the inverted t-tagging requirements. This approach is validated in simulation and in a dedicated validation
region in data. This method has the distinct advantage that it provides the background estimation for any distribution,
such that the background model may be checked thoroughly. In the SR, the multijet background constitutes about 70%
of the total background, the remaining part originating from tt production. No significant deviation from the background
prediction is observed in the data and cross section upper limits on W' boson production in the tHb decay mode are
reported as a function of m/, for several my;, hypotheses, though no exclusion is found.
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Fig. 32. Reconstructed W' boson mass distributions obtained in a search for pp — W' — Tb /Bt in the all-hadronic final state, in events with a
t-, H- and b-tagged jet (left). Upper limits at 95% CL on the product of the cross section and branching fraction for the production of a W’ boson
with decays to Tb and Bt (right).

Source: Figures adapted from Ref. [157].

An extension of the heavy-light W’ boson analysis includes B — Zb and T — Zt decays, such that the final state is
complemented by the signature tZb. The analysis is carried out in the all-hadronic final state as well, and extends the
earlier analysis [156] by including additional sideband and validation regions, and uses the full Run 2 data set [157]. An
increase in sensitivity is achieved by updating the t tagging algorithm to use the jet-mass-decorrelated IMAGEToP [89]
method, described in Section 4.1. This allows for an unbiased selection in mgp, which is important for the employed
background estimation method to work. The H jets are selected using the double-b tagger, and Z jets need to have
751 < 0.45. The SR is defined by the presence of a t jet, an H or Z jet, and an additional small-radius b jet.

The t, H, and Z jets are defined by a selection based on mgp, where mutually exclusive regions are defined such that
two SRs, tHb and tZb, are measured. The multijet background is estimated by an extension of the method used in the
previous analysis, where additional validation regions are used to confirm the validity of the method. The reconstructed
mass distribution in the tHb SR is shown in Fig. 32 (left).

The background is composed of about 50% multijet production, and 50% tt production. Other SM processes have a
negligible contribution in this SR. The value of my,q is chosen to be myq = 2/3m, for the signals displayed here, but

choices of my,q = 1/2m,s and my,q = 3/4m,,,/ have also been analyzed. The resulting upper limits on the production

of a W’ boson with consecutive decay to Tb or Bt are shown in Fig. 32 (right) for Myq = 2/3m,,. Here, a branching
fraction of 50% into the tHb and tZb final states is assumed. A relaxation of this assumption is also probed, where the
limits are most stringent for a pure tHb final state, because of a better background suppression for H-tagged jets. A W'
boson with a mass below 3.1TeV is excluded at 95% CL for my, = 2/3m,;,s and equal branching fractions into tHb and
tZb. The analysis places the most stringent limits to date in this model.

6.5. Combinations and summaries of search channels

Collectively, the search program of the CMS experiment for VLQs provides a comprehensive look at VLQ decays to
third generation quarks, with lower mass limits generally extending above 1TeV, and towards 1.6 TeV for some signal
hypotheses. Here we present two combinations of searches described earlier: in Section 6.5.1, we describe a combination
of BB searches, and in Section 6.5.2, a combination of single T quark searches is discussed. Finally, in Section 6.5.3,
summary plots are presented showing comparisons of the results of many individual searches.

6.5.1. Combination of BB searches

The BB searches that utilize the full Run 2 data set were designed to have mutually exclusive lepton selection criteria.
Combining the searches of Refs. [141,142], both described in Section 6.2.3, brings together hadronic, single-lepton, dilepton
(SS and 0S), and multilepton final states. The hadronic and OS dilepton channels from Ref. [ 142] are sensitive to B — bZ
and B — bH decays, whereas the other leptonic channels from Ref. [141] are sensitive to B — tW decays. The
combination is performed by simultaneously fitting all template distributions from the various individual final states
to determine a common signal strength parameter. Many of the background estimates in these channels are derived from
the observed data and therefore have independent uncertainties. Uncertainties in the signal hypothesis were correlated

606



The CMS Collaboration Physics Reports 1115 (2025) 570-677

138 b (13 TeV) 138 b (13 TeV)
= T T T T T = R B R B B U
=) CMS 95% CL upper limits i o L CMS 95% CL upper limits
o 1 —e— Observed 5 o 15 —e— Observed
B(tW) = 2B(bH,bZ) =0.5 ....... Median expected 7 m | BbH)=BbZ)=05 . Median expected
‘b’ all channels I 68% expected ] ‘O’ - all channels I 68% expected
10" [ 95% expected N 10 1 95% expected

{8 pp — BB (theory) {3 pp — BB (theory)

1072 3 102

1073 = 10_3§
Lo v b by b e by v b v b0 0 1 :H..\...\I.H.I\...\...\I.H.IH..\
11 12 13 14 15 16 1.7 18 11 12 13 14 15 16 17 1.8
B mass [TeV] B mass [TeV]

Fig. 33. Observed (solid lines) and expected (dashed lines) 95% CL upper limits on BB production as a function of the B quark mass for the singlet
(left) and doublet (right) branching fraction scenarios, from the combination of two searches for BB production. Predicted cross sections are shown
by the red line surrounded by a band representing energy scale and PDF uncertainties in the calculation.
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Fig. 34. Expected (left) and observed (right) lower limits on the B quark mass at 95% CL from the combination of two searches for BB production.
The limits are shown as a function of the branching fractions B(B — bH) and B(B — tW), with B(B — tW)=1—B(B — bH) — B(B — bZ).

across all channels and all years of data collection, with the exception of the jet energy scale and resolution uncertainties,
which were left uncorrelated due to different treatments of data collection years across the two searches. Limits on the
production cross section for BB reflect the separate strengths of the input searches in cases of 100% B — bZ, B — bH, or
B — tW branching fractions, and become stronger than either individual search in the case of heavily mixed branching
fractions. Fig. 33 shows the upper limits on the production cross section of B quark pairs in the singlet and doublet
branching fraction scenarios. Fig. 34 shows the B quark lower mass limits as a function of the B quark branching fractions
to bH and tW. Pair production of B quarks decaying to any third-generation quark is excluded for B quark masses below
1.49TeV, a significant increase in the general lower mass limit compared to both the strongest Run-1 limit of 900 GeV,
and any of the individual Run 2 searches. The limits on BB production from this combination show similar sensitivity
across all branching fractions to the limits on TT production from Ref. [141], which excludes T quarks below 1.48 TeV
for all third-generation decays.

6.5.2. Combination of single T quark production searches

A statistical combination has been performed of three searches for single T quark production in different final
states [146-148], which have been described individually in Sections 6.3.1 and 6.3.2. The decay modes that have been
considered are tH, with Higgs boson decays into bb or yy, and tZ, with Z boson decays into bb or vv. All the final
states combined here are defined as mutually exclusive such that they could be considered statistically independent
observations.

The combined exclusion limit calculations include the full correlation of the systematic uncertainties obtained for
individual channels and for each year of data taking. Nuisance parameters related to the same underlying effect, such as the
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Fig. 35. Observed and expected 95% CL upper limits on the production cross section of a single T quark in association with a b quark in a singlet
scenario, versus the T quark mass. Theoretical predictions for relative widths of 1 and 5% of the mass are shown as red solid line and red dashed
line, respectively.

uncertainty in the theoretical prediction or the energy scale uncertainty in the final-state objects, are correlated across the
different channels. Uncertainties common to all input analyses in the combination, such as in the integrated luminosity,
pileup, and PDF uncertainties, are assumed to be correlated across all analyses. In contrast, all other uncertainties are
treated as uncorrelated in the combination, as the analysis channels are assumed to be independent of each other. The fit
of the inclusive combined signal strength (u) involves a total of ~600 nuisance parameters. More details on the categories
that are combined, which are created according to various criteria such as signal-to-background ratios, mass resolutions,
and multiplicities of physics objects, are reported in the references to the individual analyses.

As previously discussed in Section 6.3, in the searches for singly produced T quarks, the analyses are designed using
different decay width approximations, including NWA and relative width approximations of 10, 20, and 30%. In case
of the NWA, the combination of searches for single T quark production in the H — vy [147], Z/H — bb [148], and
Z — vv [146] channels, using the full Run 2 data set, could potentially result in the most stringent exclusion limits on
the T quark mass. For the other width approximation scenarios, no combination is carried out and the existing analysis
in the Z — vv channel provides the most stringent exclusion to date. Fig. 35 shows the cross section exclusion limit as
a function of the T quark mass under the NWA, compared to theory predictions corresponding to width scenarios with
I'/m; = 1 and 5%. Fig. 36 illustrates the most stringent T quark mass exclusion under various width approximations.
Assuming a relative decay width of I'/m =5, 10, 20, and 30%, the EW production of a singlet T quark is excluded up
to a mass of 1.20, 1.06, 1.25, and 1.36 TeV, respectively, at 95% CL. In the following section, we discuss how these limits
translate to constraints on the coupling strength.

6.5.3. Summary of searches

We conclude the section on VLQ results by comparing the sensitivity of the various VLQ searches in terms of limits on
cross sections in pp collisions at 4/s = 13 TeV and model parameters. Since the sensitivity depends on assumptions on
the production and decay of the VLQs, we compare them in representative benchmark scenarios. Overall, no significant
deviation of the observed limits from the expected limit by more than two standard deviations was found. We thus report
the observed and median expected cross section limits, while omitting bands indicating the regions containing 68 and
95% of the distribution of limits expected under the background-only hypothesis.

The upper limits on the cross section as functions of the VLQ mass for TT and BB production via the strong interaction
are presented for three benchmark scenarios. In Figs. 37 and 38, a branching fraction of 100% for all VLQ decay modes is
assumed. Although this scenario does not represent a realistic model, since branching fractions sum up to more than 100%,
it allows us to compare the sensitivity of the searches within each decay mode. The crossing point of the predicted cross
section and the upper limit on the cross section corresponds to the maximal mass excluded if the VLQ solely decayed
through a single decay mode. For all decay modes of T, the >1{+jets search [141] contributes most to the sensitivity.
This search is better because of the larger full Run 2 data set and advanced NN-based t tagging techniques, compared to
the earlier 0¢+jets T'T search [140] using the 2016 data set. Among the three decay modes, tZ, tH, and bW, analyses
targeting tH yield the strongest expected constraints. However, the strongest observed constraint comes from bW. For
the decay modes of B — bZ and bH, the sensitivity of the BB combination is dominated by the 0¢/2¢+jets search [142],
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Fig. 36. Expected (left) and observed (right) 95% CL upper limits on the product of the single-production cross section and the T — tZ/H branching
fraction for a singlet T quark, as a function of the T quark mass m and width I, for relative widths from 1 to 30% of the mass. A singlet T
quark that is produced in association with a b quark is assumed. The solid red line indicates the boundary of the excluded region (hatched area)
of theoretical cross sections.

whereas for the B — tW decay mode the >1¢+jets [141] channel dominates. Both searches benefit from the larger data
set, compared to the 0£+jets search [140]. Although the expected sensitivity of the BB combination is always better than
the 0¢+jets BB search [159], the latter happens to give the most stringent observed limits in the bH decay mode. Among
the three decay modes to bZ, bH, and tW, analyses targeting bH yield the strongest constraints. While the results for
X535 and Y43 pair production are not explicitly shown in these summaries, the sensitivity to their production is solely
driven by the searches targeting the tW and bW decay modes, respectively, since none of these searches rely on charge
information to interpret the VLQ signal.

In Fig. 39, branching fractions corresponding to a singlet and a doublet scenarios are assumed. The crossing point of
the predicted cross section and upper limit on the cross sections correspond to the lower limit on the mass in these
scenarios. In the singlet scenario, the >1¢+jets [141] search contributes most to the sensitivity. In the doublet scenario,
the 0¢/2¢+jets [142] contributes most to the sensitivity at high masses. For BB and TT production, constraints on the
doublet scenario are stronger than for the singlet scenario, since the experimentally better constrained decay modes to
bH and tH have larger branching fractions.

The upper limits on the cross section as a function of VLQ masses for single T quark and B quark production via the
EW interaction are shown in Figs. 40 and 41. In Fig. 40 (upper), the searches for a single T quark in association with a
b quark are compared with cross section predictions in a singlet scenario assuming two different scenarios for the VLQ
decay width. For a relative width assumption of 5%, multiple searches contribute with similar sensitivity to the mass
exclusion limit. The combination of single T quark searches, described in Section 6.5.2, thus significantly improves the
sensitivity. Fig. 40 (lower) and Fig. 41 cover more single production modes for VLQs.

The upper limits on the cross section can be translated into upper limits on the coupling parameter « as functions of
the VLQ mass. The results are shown in Figs. 42-44 for singlet and doublet scenarios. For single T quark in the singlet
scenario, couplings larger than 0.4 are excluded at 95% CL across the entire mass range, and at the lowest mass of 0.6 TeV,
couplings as low as 0.15 are excluded.

In data collected from 2022-2025, known as Run 3, VLQ searches will benefit from a slight increase in the collision
energy to 13.6 TeV, which increases the cross section for VLQ production. Algorithms for identifying jets of various flavors
continue to improve, as do analysis techniques for reconstructing VLQ decays and the theoretical models used to simulate
VLQ production. For standard decays of VLQs to third generation particles, Run 3 is expected to push the sensitivity to
VLQs toward the 2 TeV range. The CMS experiment is also beginning to explore exotic decays of VLQs, as introduced in
Section 5. Run 3 will offer a rich data set from which to extract new information about VLQs with a broad variety of
decays.

6.6. Future prospects for VLQ searches at the HL-LHC

The physics capabilities of the Phase-2 upgrade of CMS for the HL-LHC have been studied by projecting many existing
searches to /s = 14 TeV pp collisions, and assuming a final integrated luminosity of 3000 fb~"'. Searches for VLQs typically
rely on identifying b quarks and hadronic decays of boosted particles within jets, all of which incorporate track and vertex
information. Future VLQ searches could benefit from the expanded coverage of the CMS tracking detector.

A single-lepton search for T quarks originally performed using the 2016 data set [158] has been projected to HL-LHC
conditions, considering the operational conditions of the CMS Phase-2 detector [170].

To study signal and background processes with HL-LHC conditions, pp collision events are simulated using the
MADGRAPH5_aMC@NLO 2.6.5 [44] event generator, interfaced with PYTHIA 8 [45] for parton showering. Signal event samples
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Fig. 37. Observed and expected 95% CL upper limits on the production cross section of a pair of vector-like T quarks decaying to t+Z (upper left),
tH (upper right), and bW (lower), as a function of the T quark mass, obtained by different analyses: 0¢+jets (NN, selection-based) [140], and
>1£+jets [141]. A theory prediction at NNLO in perturbative QCD of the pair production cross section in the NWA is superimposed. Searches using
data corresponding to an integrated luminosity of 36 fb~", rather than the full Run 2 integrated luminosity of 138 fb~", are indicated with a spade
symbol in the legend.

are simulated assuming T quark masses between 1000 to 3000 GeV, with equal branching fractions for each third-
generation decay mode, such that all decay modes are well populated by simulated events. The DELPHES 3 [171] program
is used to simulate the Phase-2 CMS detector response. Since the decay mode could not be accessed in the DELPHES 3
simulations, this projection is performed using the assumption of equal branching fractions for each third-generation
decay mode.

The DELPHES 3 program uses the anti-k; algorithm [22] to cluster hadronic jets, with distance parameters of 0.4 and 0.8,
similar to the treatment used in the reconstruction in the CMS experiment. The DEEPJET b tagging algorithm was emulated
in DELPHES 3 by providing the efficiency for light, ¢, or b quark jets to be identified as b-tagged jets. In this analysis, a
small-radius jet is considered b tagged if it passes the emulation of the medium DEeePJET working point. A large-radius jet
is identified as originating from the hadronic decay of a W boson if it has p; > 200 GeV, mgp ranging from 60 to 110 GeV,
and an N-subjettiness ratio of 7,; < 0.55. Large-radius jets are identified as H tagged if they have p; > 300 GeV, mgp
ranging from 60 to 160 GeV, and at least one small-radius jet that overlaps with the large-radius jet is b tagged.

Selected events must have exactly one high-quality, isolated electron or muon, zero additional looser-quality leptons,

and pr™>° > 75GeV. Three or more small-radius jets are required, with p; > 300, 150, and 100 GeV, and at least one
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Fig. 38. Observed and expected 95% CL upper limits on the production cross section of a pair of vector-like B quarks decaying to bz (upper left), bH
(upper right), and tW (lower), as a function of the B quark mass, obtained by different analyses: 0¢+jets (NN) [140], 0€+jets [159], >1£+jets [141],
0¢/2¢+jets [142], and the BB combination of Section 6.5.1. A theory prediction at NNLO in perturbative QCD of the pair production cross section in

the NWA is superimposed. Searches using data corresponding to an integrated luminosity of 36 fb~', rather than the full Run 2 integrated luminosity
of 138fb~", are indicated with a spade symbol in the legend.

jet must be b tagged. If no W- or H-tagged jets are found in the event, an additional small-radius jet is required with
pr > 30GeV. Two or more large-radius jets are required, and the SR contains events in which the minimal angular
separation between the highest p; large-radius jet and another large-radius jet is AR < 3, excluding many background
events with a back-to-back topology of AR = 7.

Events are categorized into eight different SRs based on the number of b-tagged, W-tagged, and H-tagged jets. Events
with H-tagged jets are further separated based on the number of b-tagged subjets of the H-tagged jet. Fig. 45 (left) displays
the S; distributions for signal and background events in the eight SRs combined.

Following the Yellow Report of Ref. [172], experimental uncertainties for signal and background yields are included.
Using a simultaneous maximum likelihood fit of the S; distribution in the eight SRs for each of the T quark mass
points under consideration, upper limits on the TT production cross section are calculated. The results are displayed
in Fig. 45 (right). Fig. 46 displays the expected significance as a function of the HL-LHC integrated luminosity, as well as
the integrated luminosity required for the discovery of the T quark at an expected significance of three and five standard
deviations.
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Fig. 39. Observed and expected 95% CL upper limits on the production cross section of a pair of vector-like T or B quarks, as functions of their
mass, obtained by different analyses: 0¢+jets [159], >1£+jets [141], 0¢/2¢+jets [142], and the BB combination. A theory prediction at NNLO in
perturbative QCD of the pair production cross section in the NWA is superimposed. Branching fractions of a singlet (upper and lower left panel)
and doublet (upper and lower right panel) are assumed.

At the HL-LHC, with 3000fb™" of data, the discovery of the T quark with a significance of five standard deviations
significance may be achieved for masses up to 1440 GeV. In the absence of signal, this study projects a 95% CL exclusion
for T quarks with masses below 1750 GeV. Compared to the expected lower mass limits from the original 2016 search
of Ref. [158], the limits derived in this projection study are more stringent by approximately 600 GeV. The TT searches
summarized in Section 6.2.2, particularly the single-lepton search of Ref. [141], already show significant increases in
sensitivity due to jet tagging algorithms using ML techniques, as well as other analysis improvements developed during
Run 2. This projection therefore provides insight into how the reach of those searches might improve in the future with
the HL-LHC data taking.

7. Theoretical motivation for vector-like leptons

Vector-like leptons (VLLs) are color-singlet counterparts of VLQs, i.e., leptons with left- and right-handed components
transforming in the same way under the EW gauge symmetry group. Such new states arise in a wide variety of
BSM scenarios, including but not limited to supersymmetric models [104,106,173-175], models with extra spatial
dimensions [5,176], and grand unification [177-179]. Expansions of the SM with one or more vector-like fermion families
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analyses: T — bW — bqq {v/blvaqq [149], T — tZ — bqq £{ [144], T — tH+tZ — bqq bb (merged-jet) [145], T — tH — blv/bqqyy [147],
T — tZ — bqqvv [146], T — tH+tZ — bqq bb [148], and the single T quark combination of Section 6.5.2. Only the three analyses using the full
Run 2 data set are included in the single T quark combination. Two theory predictions at LO in perturbative QCD are superimposed, corresponding
to different VLQ widths. Searches using data corresponding to an integrated luminosity of 2.3fb™" and 36 fb~!, rather than the full Run 2 integrated
luminosity of 138 fb~", are indicated with a heart and spade symbol, respectively, in the legend.

may provide a dark matter candidate [180-183], and account for the mass hierarchy between the different generations of
particles in the SM via their mixings with the SM fermions [8,184,185]. Furthermore, VLLs are also among the proposed
solutions [174,186-189] to the observed tensions between the experimental measurements and the SM prediction of the
anomalous magnetic moment of the muon [190,191].

Vector-like leptons may be SU(2) doublets L (E,N) or singlets E, where E and N denote the electrically
charged and neutral states, respectively. These heavy lepton states are independent of possible neutrino mass generation
mechanisms [175]. In the doublet models, the E and N are mass-degenerate at tree level and may be pair produced,
pp — EE/NN, or produced in association, pp — EN/EN. Only the pp — EE production mode is available for the singlet
model.

Prior to direct searches at the LHC, a lower bound of about 100 GeV was placed by the L3 Collaboration at the CERN
LEP collider on such additional heavy lepton states [192].
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Fig. 41. Observed and expected 95% CL upper limits on the production cross section of a single B quark in association with a b quark (upper row)
or a t quark (lower) in a singlet (upper left and lower) and doublet (upper right) scenario, versus the B quark mass, obtained by different analyses:
B — tW — bqq{v/qq [153], B > tW — bqq{v/blvqq [151], and B — bH — bbb [150]. Two theory predictions at LO in perturbative QCD
are superimposed, corresponding to different VLQ widths. Searches using data corresponding to an integrated luminosity of 36 fb~!, rather than the
full Run 2 integrated luminosity of 138 fb~", are indicated with a spade symbol in the legend.

7.1. Minimal models with VLLs

In minimal extensions of the SM with VLLs, the newly introduced states are assumed to mix through Yukawa
interactions with the leptons of the SM and decay into SM boson-lepton pairs [47-53]. Electroweak precision data
allows the mixing angle between VLLs and SM leptons to be 51072, permitting prompt decays for mass values in the
neighborhood of the EW scale [193,194]. In the doublet model, these decay modes are E — Z¢ and H{, and N — W[,
with the branching fractions of E dependent on the mass mg. Similarly, E in the singlet model may decay to Z¢, H¢, and
Wy, with the branching fractions also governed by my.

An example of a complete decay chain for the associated production in the doublet scenario is NE — W' ¢ HeT —
¢*ve bbe™ and for the pair production in the singlet scenario would be EE — W vz¢™ — o'qvete ¢, Fig. 47
illustrates these two decay chains, which exemplify the production and decay of VLL pairs that result in multilepton final
states.
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Fig. 42. Observed and expected 95% CL upper limits on the coupling strength « for single T quark production in a singlet (upper) and doublet (lower)
scenarios as functions of the T quark mass, obtained by different analyses: T — tH +tZ — bqq bb (merged-jet) [145], T — tZ — bqq ££ [144],
T — bW — bqq¥lv/blvqq [149], T — tZ — bqq{l [144], T — tH — blv/bqqyy [147], T — tZ — bqqvv [146], T — tH +tZ —
bqq bb [148], and the single T quark combination of Section 6.5.2. Only the three analyses using the full Run 2 data set are included in the single
T quark combination. Two theory predictions at LO in perturbative QCD are superimposed, corresponding to different VLQ widths. Searches using
data corresponding to an integrated luminosity of 2.3 fb~! and 36fb~", rather than the full Run 2 integrated luminosity of 138fb™", are indicated
with a heart and spade symbol, respectively, in the legend.

7.2. The 4321 model with VLLs

The 4321 model [54-57] is an ultraviolet-complete (UV) model that extends the SM gauge groups to a larger
SU(4) x SU(3) x SU(2), x U(1)’ group, which then gives rise to the apparent groups in the SM after spontaneous symmetry
breaking. The lightest new particles in this model are the VLLs. The model furthermore contains additional heavier gauge
boson Z’ and vector leptoquark U states.

In addition to the EW production modes through their couplings to the SM W and Z/y bosons, the VLLs in the 4321
model may also be produced via interactions with the new Z’ boson. Conversely, these VLLs are expected to decay
primarily through their interactions with the vector leptoquark in the model, to two SM quarks and one lepton. Examples
of diagrams showing the EW pair and associated production of VLLs, as well as diagrams of the VLL decays are shown in
Fig. 48.
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Fig. 43. Observed and expected 95% CL upper limits on the coupling strength « for single B quark production in a singlet (upper) and doublet
(lower) scenarios as functions of the B quark mass, obtained by different analyses: B — tW — bqq¥fv/qq [153], B - bH — bbb [150], and
B — tW — bqq{v/blvqq [151]. Two theory predictions at LO in perturbative QCD are superimposed, corresponding to different VLQ widths.

Searches using data corresponding to an integrated luminosity of 36 fb~", rather than the full Run 2 integrated luminosity of 138 fb~", are indicated
with a spade symbol in the legend.

The 4321 model provides a quark-lepton unification at the TeV scale, while simultaneously respecting many other
measurements that are in agreement with SM expectations and lepton flavor universality [195-202]. Additionally, the
4321 model can be used as a benchmark UV-complete model [55,58] and allows one to fully explore the resulting
phenomenology at the LHC.

8. Review of vector-like lepton searches
8.1. Overview of the CMS search program

The CMS Collaboration has carried out three direct searches targeting extensions of the SM with VLLs in the /s =
13TeV pp collision data set. In the first of these efforts, multilepton final states with electrons and muons were probed
using a data set collected during 2016 and 2017, and the first direct constraints were set on doublet models with
vector-like leptons coupled to third-generation SM leptons in the mass range of 120-790 GeV [203]. This result has been
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Fig. 44. Observed and expected 95% CL upper limits on the coupling strength « for single X5 (left) and Y, 5 (right) production as functions of the
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are indicated with a heart and spade symbol, respectively, in the legend.
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Fig. 45. Distributions of the S; observable for signal and background processes (left), with signal distributions scaled by factors of 20, 2000, and
200000, depending on the T quark mass, and expected upper limits at 95% CL on the TT production cross section (right). The inner (green) and
the outer (yellow) bands indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only
hypothesis.

Source: Figures adapted from Ref. [170].

superseded by a second search targeting both doublet and singlet models, conducted with the larger full Run 2 data set
with additional multilepton final states including hadronically decaying tau leptons (t;,) [204]. The third search performed
by the CMS Collaboration probes a non-minimal SM extension involving VLLs and other BSM states in the context of the
4321 model in an all-hadronic final state involving multiple jets and hadronically decaying tau leptons [205]. The latter
two searches are detailed below.
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Fig. 46. Expected significances for T quark pair production as a function of the integrated luminosity at the HL-LHC, assuming equal branching
fractions for T — bW, tZ, tH decays (left). Discovery potential at three and five standard deviations for T quark pairs, as a function of the T
quark mass and the integrated luminosity (right).

Source: Figures adapted from Ref. [170].

Fig. 47. Example processes illustrating production and decay of doublet (left) and singlet (right) VLL pairs at the LHC that result in multilepton final
states.

q L q N F F

zZ/y w*

q L d E b t

Fig. 48. Example diagrams showing s-channel EW production of VLL pairs through SM bosons, as expected at the LHC (left two diagrams). In these
diagrams, L represents either the neutral VLL, N, or the charged VLL, E. The VLL decays are mediated by a vector leptoquark U (right two diagrams).
In the 4321 model, these decays are primarily to third-generation leptons and quarks.

8.2. Search for VLLs in the minimal model in multileptonic signatures

Using the full Run 2 data set, the CMS Collaboration has performed a search for an SU(2) doublet (E;, N) and singlet
(E4) VLL extension of the SM with couplings to the third-generation SM leptons [204]. All charged and neutral lepton
decay modes are considered, namely E; — Zt, Ht, and N; — Wt in the doublet model, and Zt, Ht, Wv in the singlet
model.
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Fig. 49. The L; distribution in 3e/fu, 2efilty, and lefu2t, events (left), and the invariant mass distribution of the OS different-flavor (mggpg) light
lepton and tau lepton pair in 2e/ult, and lefi2t;, events (right). The rightmost bin contains the overflow events. The lower panel shows the
ratio of observed events to the total expected background prediction. The gray band on the ratio represents the quadratic sum of statistical and
systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting
the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of vector-like leptons coupled to
third-generation SM leptons in the doublet scenario for a VLL mass of 1TeV, before the fit, is overlaid. The signal yield is scaled by a factor of 10
for visualization purposes.

Source: Figures adapted from Ref. [204].

The search probes multilepton events, which are categorized in seven orthogonal channels based on the number of
light charged leptons (electrons or muons) and hadronically decaying tau leptons, defined as:

at least four light leptons and any number of 1, candidates (4e/t),
exactly three light leptons and at least one 1, candidates (3efu1ty),
exactly three light leptons and no t, candidates (3e/t),

exactly two light leptons and at least two t,, candidates (2e/u21,;,),
exactly two light leptons and exactly one t;, candidates (2e/u17y),
exactly one light lepton and at least three t, candidates (1ef3t,,), and
exactly one light lepton and exactly two t;, candidates (1e/u2t)).

In the 4e/u channel, only the leading four light leptons in p; are used in the subsequent analysis. Likewise, in the 3efi1ty,
2eMu2ty, and lefu3ty, channels, only the leading one, two, and three 1, are used, respectively.

The SM background processes, such as WZ, ZZ, ttZ, and tt W production in which three or more reconstructed charged
leptons originate from decays of SM bosons contribute mostly to the irreducible background in various channels of this
search. A smaller background contribution arises from ISR or FSR photons that convert asymmetrically such that only
one of the produced electrons is reconstructed in the detector, or from misidentifying on-shell photons as electrons.
The dominant source of such backgrounds, collectively referred to as the conversion background, is DY events with an
additional photon (Zy). These backgrounds are estimated using simulation normalized to observed data in the dedicated
CRs. Another important background component is the misidentified lepton background due to jets being misidentified as
leptons, which is estimated using control samples in data via the matrix method (Section 4.2).

Selected events in the seven channels are further categorized in a model-independent way, based on the characteristics
of the SM backgrounds, or in a model-dependent way, based on the output of BDTs trained to identify the signal against
the SM backgrounds, to define a number of SRs. The model-independent SRs are defined by splitting the channels into
various regions based on the charge, flavor, invariant mass of lepton pairs, and kinematic properties of leptons, jets, and
pr°, as well as multiplicity of b-tagged jets. The observable L; is defined as the scalar p; sum of all charged leptons that
constitute the channel. For example, in the 4e/u channel, L; is calculated from the four light leptons leading in py, while
for the 3efult, channel, it is calculated from the three light leptons and the leading t;, candidate. The observable Hy is
defined as the scalar p; sum of all jets. Additionally, the scalar sum of Ly, Hy, and p m'ss is defined as S;. In each region, the
St distribution is probed as the VLL signals are expected to produce broad enhancements in the tails of this observable.
This scheme gives 805 independent SR bins in each year of data taking in Run 2, a detailed breakdown of which may be
found in Ref. [204]. Fig. 49 illustrates example L; and dilepton invariant mass distributions, together with the expected
signal distribution for a 1TeV VLL mass.

In the model-dependent approach, a set of BDTs are trained using both doublet and singlet VLL scenarios targeting three
signal mass windows (low, medium, high) exploiting up to 48 physics object- and event-level observables. Using the BDT
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Fig. 50. The VLL-H BDT regions for the four-lepton channels for the full Run 2 data set. The lower panel shows the ratio of observed events to the
total expected background prediction. The gray band on the ratio represents the quadratic sum of statistical and systematic uncertainties in the SM
background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only
hypothesis. For illustration, an example signal hypothesis for the production of the vector-like leptons coupled to the third generation SM leptons
in the doublet scenario for a VLL mass of 900 GeV, before the fit, is overlaid. The signal yield is scaled by a factor of 10 for visualization purposes.
Source: Figure adapted from Ref. [204].
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score, a number of variable-width regions is defined for each of the combined three-lepton and four-lepton channels in
each data-taking year. These define the BDT regions for all three signal mass windows in which an analysis is performed
using only the number of observed events, i.e., not using shape information of the distributions of observables. Example
BDT region distributions for the high-mass BDTs (VLL-H BDT) for the four-lepton channels (4e/t, 3e/ulty, 2e/u2ty, Tefu3ty)
with the full Run 2 data set for the doublet VLL model are shown in Fig. 50.

Fig. 51 shows the observed and expected cross section limits for the doublet and singlet VLL models. In the doublet
model, vector-like leptons coupled to third-generation SM leptons with masses up to 1040 GeV are excluded, while the
expected mass exclusion is at 970 GeV. The most stringent limit for VLL masses below 280 GeV is given by the model-
independent scheme, and by the model dependent BDT regions for VLL masses above 280 GeV. In the singlet model, the
most stringent limits are given by the model-independent scheme over the entire mass range. The expected exclusion for
the singlet model is only at a VLL mass ~150 GeV, while the observed exclusion is in the VLL mass range of 125-170 GeV.
These are the most stringent limits on this model from the LHC. The model-dependent SRs are typically more sensitive
than their model-independent counterparts, except for the lowest signal masses. This is because at low masses, the BDT
training process is degraded by the low signal yield. The less stringent constraints observed in the singlet model arise
from the notably lower cross section of VLL pair production, which proceeds exclusively through the pp — Z/y — EE
and involves a weaker gauge coupling strength compared to the doublet scenario. Additionally, the prevalent E — Wv
decay mode in the singlet model might not result in energetic charged leptons in the final state.

These bounds apply to all vector-like leptons coupled to third-generation SM leptons that undergo prompt decays in
the detector; and aside from this assumption, the analysis is insensitive to the precise values of the mixing angles.

8.3. Search for VLLs in the 4321 model in hadronic signatures

The first search for VLLs in the context of the 4321 model was performed using the 2017 and 2018 data sets,
corresponding to an integrated luminosity of 96.5 b’ [205]. The analysis targets VLL decays via their couplings to SM
fermions through leptoquark interactions, resulting in third-generation fermion signatures. The primary signature for this
model is a final state with four b quarks and two charged third-generation SM leptons accompanying multiple light-flavor
jets. Events with at least three b-tagged jets and varying t lepton multiplicities are selected, where the hadronic tau lepton
decay channels are targeted. The 2016 data set is not considered in the analysis, as it predates the tracker upgrade [206]
that significantly improves the b jet identification performance crucial to the online event selection. In addition, it was
subject to statistical limitations in the estimate of the misidentified tau lepton background from control samples in data,
performed separately for each data-taking period. Therefore, this data set was deemed not to contribute significantly to
the analysis compared to the 2017 and 2018 data. Similarly, VLL signal masses below 500 GeV are not targeted in this
analysis to be compatible with the online event selection requirements.

Events are categorized into Oty, 1ty,, and 27, categories, each with dedicated background estimation and signal
optimization. The data are also split by the data-taking year, either 2017 or 2018, to reflect the different accelerator
and detector conditions. A simultaneous binned maximum likelihood fit is performed over all categories to extract the
VLL signal.
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Fig. 51. Observed and expected upper limits at 95% CL on the production cross section for the vector-like leptons coupled to third-generation SM
leptons in the doublet model (left) and singlet model (right). For the doublet vector-like lepton model, to the left of the vertical dashed gray line,
the limits are shown from the model-independent scheme, while to the right the limits are shown from the model dependent BDT regions. For the
singlet vector-like lepton model, the limit is shown from the model-independent scheme for all masses.

Source: Figures adapted from Ref. [204].

In all categories, tt and QCD multijet production are the primary sources of background. A number of CRs enriched in
the backgrounds are used to help constraining the background estimates using data.

In the Oty category, the primary background is from QCD multijet events, and is estimated using an ABCD method.
This method uses py°° and a graph-based DNN [207] output trained to distinguish signal from QCD multijet background
as the two independent axes. In this category, tt events, including those with an additional b quark pair (ttbb) or an
additional boson (ttX) form a smaller, but still relevant background. The distribution of the number of jets, which tends
to be higher for the signal, is then used in the fit for this category.

In the 11, and 21, categories, the primary background is tt events. In both categories, contributions from events, which
include misidentified t, leptons are estimated separately for QCD multijet, and tt events using control samples in data.

In the 11, category, QCD multijet events with misidentified ¢, leptons, and tt (including ttbb and ttX) production
with real t;, leptons are the primary backgrounds, while tt events with misidentified <, leptons play a smaller role. In the
21, category, tt events with misidentified 1, leptons are the primary background, and tt events with two real t;, leptons
also make an important contribution, whereas QCD multijet events do not contribute significantly.

The same graph-based DNN architecture used in the Ot category is used in the 1t and 2t categories, but is trained
to discriminate signal from tt using all final state objects (jets and t,, leptons) as inputs. For each object, its n, ¢, pr, mass,
charge, and the value of its DEEPJET score [28,29] are passed to the NN. For jets, the charge entry is always set to zero.
For 1, candidates, the DEEPJET score is always set to zero, which corresponds to an extremely low probability of being a
b jet.

The NN is trained to discriminate tt from the signal hypothesis, using a mix of VLL signal masses in the range 500-
1050 GeV, and its output distribution is used as input to the fit. Data and postfit expectations for the 1t, and 2t;, channels
for the 2018 data set are shown in Fig. 52. The Or;, channel, which is less sensitive, is not shown, nor is the 2017 data
used in the fit, which shows very similar trends.

The observed data show mild excesses in the highest DNN bins for the 1t, and 21, categories for both 2017 and 2018
compared to the background-only hypothesis. The magnitude of the combined excess is independent of the assumed mass
hypothesis. Across the mass range, the largest local significance of 2.8 standard deviations is observed at the VLL mass
point of 600 GeV. No excess is visible in the less sensitive Ot, category for either year. Accordingly, the observed exclusion
limits on the signal cross section are above the expected limits, as shown in Fig. 53. Upper limits at 95% CL on the product
of the VLL pair production cross section and their branching fraction to third-generation fermions are set between 10 and
30 fb, depending on the assumed VLL mass hypothesis. This is the first direct search for VLLs in the context of the 4321
model at the LHC.

8.4. Future prospects for VLL searches

Vector-like leptons appear in a variety of BSM models, as described in Section 7. While vector-like leptons coupled
to third-generation SM leptons have already been probed, no CMS searches have probed vector-like leptons coupled to
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Fig. 52. Postfit distributions for the 2018 data set in the 11, (left) and 2t, (right) channels. The upper row shows the background-only fit and the
lower row shows the fit including the signal. Not shown here, but included in the fit, are the 2017 data and the Or,, channel.
Source: Figures taken from Ref. [205].

first- and second-generation SM leptons with the Run 1 or Run 2 data sets. In the minimal model of VLLs, the newly
introduced final states are assumed to mix through Yukawa interactions with the same generation of the SM leptons and
decay into SM boson-lepton pairs. Model independent SRs of the seven multilepton channels from the search discussed

in Section 8.2 may be utilized to extrapolate the sensitivity for these three generations of VLL models (both singlet and
doublet scenarios) to the HL-LHC with a total integrated luminosity of 3000 fb™" at /s = 14 TeV. The physics observable
L; + P in the SR of all seven channels is used to project the sensitivity for these models.

In order to utilize these Run 2 analysis results to project the sensitivity to the HL-LHC, individual background yields in
each SR bin of the analysis using all of the Run 2 data are scaled to 3000 b~ of integrated luminosity. In addition, prompt
background (WZ, ZZ, tt W, or ttZ) yields already take into account the enhancement due to the higher center-of-mass

energy. The signal acceptance is estimated from simulated samples of all three coupling scenarios with Run 2 detector
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Fig. 53. Expected and observed 95% CL upper limits on the product of the VLL pair production cross section and the branching fraction to third-
generation quarks and leptons, combining the 2017 and 2018 data and all 7, multiplicity channels. The theoretical prediction in the 4321 model
for EW production of VLLs is also shown.

Source: Figure adapted from Ref. [205].

conditions. The cross section for the VLL signal is calculated at LO for /s = 14TeV, and is then corrected to NLO using a
correction factor derived at 13 TeV.

Following the Yellow Report on BSM physics at the HL-LHC and High-Energy LHC [172], experimental uncertainties for
signal and background yields were taken into consideration. Fig. 54 shows the expected upper limits on the cross section
at the HL-LHC for the production of vector-like leptons coupled to first-, second-, and third-generation SM leptons. Both
the singlet (E;) and the doublet (E;, N;) scenarios are considered, where i = 1, 2, 3 denotes VLLs coupled to first-, second-,
and third-generation SM leptons, respectively. For the doublet model, the VLLs are expected to be excluded at 95% CL up
to a mass of 1600 GeV (E,, N;), 1630GeV (E,, N,), and 1150 GeV (E;, N;). The singlet VLLs are expected to be excluded
up to a mass of 600 GeV (E, ), 640 GeV (E,), and between a mass of 150 and 395 GeV (E;). The weaker cross section limits
obtained for the singlet model follow the same reasons mentioned in Section 8.2. These projected sensitivities using
model-independent SRs are better by a factor of approximately 2-3 in the upper limit of the cross section compared to
the Run 2 results discussed in Section 8.2. The Run 2 results used a BDT to enhance sensitivity, whereas the HL-LHC will
provide a much larger data set and there will be the opportunity for more advanced ML techniques and optimization.
Thus the eventual reach in terms of VLL mass is expected to be higher than the projected sensitivities here.

9. Theoretical motivation for heavy neutral leptons

Unlike charged leptons and quarks in the SM, which can have both LH and RH chiralities, neutrinos are observed as
exclusively LH. Neutrinos were initially believed to be massless due to their chiral nature, since the interaction between a
particle and the SM Higgs boson flips its chirality. However, the revelation of neutrino oscillations [2], wherein neutrinos
change flavor as they propagate, conclusively demonstrated that neutrinos possess mass, albeit on a scale remarkably
smaller than other particles in the SM. In fact, neutrinos are more than 5 million times lighter than electrons. Physics
beyond the minimal SM is required to explain the origin of neutrino masses.

The inability of the minimal SM to account for the observed neutrino masses and oscillations underscores its
limitations. Heavy neutral leptons, also known as RH neutrinos, provide a possible extension to the SM. With an RH
nature complementing the predominantly LH nature of SM neutrinos, HNLs emerge as an alternative or complementary
mechanism to the SM Higgs boson Yukawa couplings, responsible for neutrino mass generation involving the mixing [ 10-
12] in most theoretical models.

The presence of matter in the universe today implies an asymmetry between matter and antimatter in the early
universe, known as baryon asymmetry. The exact cause of this imbalance remains an open question in cosmology. In
the framework of baryogenesis via leptogenesis [208,209], HNLs could potentially contribute to the matter-antimatter
asymmetry through CP-violating decays in the early universe.
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Fig. 54. Expected HL-LHC exclusion limits for vector-like leptons coupled to first-generation (upper row), second-generation (middle row), and
third-generation SM leptons (lower row) in the doublet model (left) and the singlet model (right). For both models, limits are calculated using

Ly + Py from the model independent SRs for all masses.

624



The CMS Collaboration Physics Reports 1115 (2025) 570-677
q £ /v
W+/7 /v
N q///£//$/yll
W= /7

e}

q/// / E”i /ﬁ"

Fig. 55. Representative Feynman diagram of a Majorana HNL, labeled as N, produced through the decay of a W or z boson.

In Sections 9.1-9.4, we describe various mechanisms for HNL production. We explore various theoretical models aimed
at explaining HNL and SM LH neutrinos mass patterns and the matter-antimatter asymmetry. These models serve as a
benchmark, and include Type I and Type IIl seesaw mechanisms, the left-right symmetric model (LRSM), and composite
models.

9.1. Production of HNLs in the Type I seesaw model

Neutrinos, being electrically neutral, may exhibit a Dirac or a Majorana nature, determining whether they are distinct
from or the same as their antiparticles. The Type I seesaw mechanism [210-213] involves adding predominantly weak-
isospin singlet HNLs to the particle content of the standard model to explain the smallness of neutrino masses. In addition
to Majorana mass terms for the RH fields, it includes Yukawa couplings between the LH neutrinos, the RH neutrinos, and
the Higgs field, i.e., the Dirac mass terms. These couplings allow for a mixing between the light, LH neutrinos and the
HNLs. As a result of these Yukawa couplings, the observed neutrino mass patterns emerge. The masses of the light, LH
neutrinos are suppressed by the heaviness of HNLs, leading to small masses for the neutrinos.

A prominent theoretical framework is the neutrino minimal standard model (vMSM) [214]. The vMSM incorporates
three HNLs into the SM. It extends the SM Lagrangian density by the Type I seesaw mechanism. In addition to providing
a solution to the origin and smallness of neutrino mass, this model may also explain other enigmas in the universe, such
as dark matter and the matter-antimatter asymmetry.

The search program of the CMS experiment focussing on the Type I seesaw mechanism involves a comprehensive
investigation of the HNL production. This includes the search for both Dirac and Majorana HNLs, leading to processes
involving lepton number conservation (LNC), as well as those involving lepton number violation (LNV). Within these
scenarios, production and decay, within a single generation and across generations, are probed. This approach allows for
the exploration of lepton flavor conservation and the search for lepton flavor violation.

A crucial characteristic of HNLs, labeled as N, to consider is their lifetime, 7. Depending on two main factors, namely
their masses and mixing with the three lepton generations, HNLs may exhibit a wide range of lifetimes, varying from
short-lived to long-lived states. The proper lifetime of an HNL may be described by the following equation:

1
a:Rot(mN7VeN*VuN7VTN):Fe+[‘u+[‘t’ (5)
where I, is the total decay width of an HNL; I',, I',, and I are the partial widths for the decay to an electron, a muon,
and a tau lepton, or to their respective neutrino partners, respectively; my is the HNL mass; and V,y, V,x, and V¢ are
the mixing matrix elements of the three lepton generations. The I}, may be expressed as

T & Gemy Y Ven I, (6)

l=e,u,t

with G being the Fermi coupling constant. The proper lifetime of the HNLs, measured in seconds, is inversely proportional
to I, as expressed in Eq. (5). Specifically, the lifetime is proportional to 1/m15\I Z[:C.M Vix *. This means that for a fixed

value of |V, |?, smaller masses correspond to longer lifetimes.

By probing these different properties of the HNLs, the CMS experiment attempts to cover a broad spectrum of
interactions and potential signatures, as discussed next.

The primary production of HNLs considered is through the decay of a W boson due to its particularly high production
cross section [215-217]. The decay of the W boson yields a charged lepton and a neutrino. The charged lepton arising from
the W boson decay is an important component in the trigger strategy of various analyses. The final states considered in
each analysis, depend on the HNL decay process. The Feynman diagram depicted in Fig. 55 encapsulates the full spectrum
of possible decay scenarios in the context of HNL production through the W and Z boson decays.
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Fig. 56. Representative Feynman diagram of a Majorana HNL, labeled as N, produced through the Wy fusion process and with two charged leptons
and jets in the final state.
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Fig. 57. Representative Feynman diagram showing the semileptonic decay of a B meson into the primary lepton (¢p), a hadronic system (X), and
a neutrino, which contains the admixture of an HNL. The HNL propagates and decays weakly into a charged lepton £* and a charged pion n7.

The decay channel N — Eiqa/, with N a Dirac HNL, is dominant with an approximate branching fraction of 50%, while
the N — ¢*¢Fv decay channel follows closely with a branching fraction of around 23%. Another significant decay channel
is N — vqq’, accounting for an approximate branching fraction of 18%.

Fig. 56 shows a hypothetical production mode of HNLs via Wy fusion [218,219], which has been considered in one
of the searches to enhance the sensitivity to HNLs with masses above several hundred GeV. This t-channel process is
complementary to the search for HNLs in the s-channel shown in Fig. 55.

An additional HNL production process is searched for in the decays of B mesons [220]. This is interesting to probe as B
mesons are produced in pp collision events with a much higher rate than W bosons, and are therefore a more prominent
source of neutrinos. A representative Feynman diagram of this process is shown in Fig. 57.

A Majorana HNL in the context of the Type I seesaw model would also induce a process where two SS W bosons fuse
and lead to the production of a pair of SS leptons [215,221], notably with the absence of neutrinos in the final state as
illustrated in the Feynman diagram in Fig. 58 (left).

It is worth noting that the cross section of this kind of t-channel processes (processes characterized by the exchange
of a virtual particle) is less sensitive to the mass of the intermediate particle compared with s-channel quark-antiquark
annihilation processes discussed previously and shown in Fig. 55. The Vector Boson Fusion (VBF) processes, presented in
Fig. 58 (left), may complement searches for heavy Majorana neutrinos in the t-channel at the TeV mass scale.

Additionally, these VBF-type processes are analogous to the VBF processes induced by the dimension-5 Weinberg
Operator [222]. This operator is proposed [223] to extend the SM Lagrangian with terms of the form

el
L5 =——[o -L][L, @] 7

where ¢ and ¢’ are different lepton flavors (electrons, muons, or tau leptons); A is the energy scale at which the particles
. . .. ¢ . . -
responsible for neutrino masses becomes a non negligible parameter; Cé is a flavor-dependent Wilson coefficient; L, =

(v, £) is the LH lepton doublet; and @ is the SM Higgs doublet with a vacuum expectation value v = V2(®) ~ 246 GeV.

The Weinberg operator provides a natural formalism for generating neutrino masses as shown in Eq. (8), where m,/
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Fig. 58. Example Feynman diagrams of VBF processes with heavy Majorana neutrino production (left) and processes mediated by the Weinberg
operator (right).

represents the effective dilepton mass:
el o
m,,=GC v /A (8)

This mechanism introduces LNV, as the Majorana neutrino is its own antiparticle. This mechanism shares similarities with
the process of neutrino double beta decay.

9.2. Production of HNLs in the Type Il seesaw model

In contrast to the Type I seesaw mechanism (Section 9.1), where heavy states of mass my involving weak-isospin
singlets were introduced, the Type IIl seesaw mechanism introduces an SU(2) triplet of heavy leptons [12]. The neutrino
masses are generically reduced relative to charged-fermion masses by a factor v/my, where v is the vacuum expectation

value of the Higgs field. For sufficiently large my (of the order of 10" GeV), small neutrino masses are generated even for
Yukawa couplings of ~1. Smaller Yukawa couplings are required to obtain small neutrino masses while keeping my close
to a few hundreds of GeV, such that these heavier lepton states may be produced at the LHC. These new triplet states
may be produced through gauge interactions, such that the possible smallness of the Yukawa couplings does not affect
the production cross section of the heavy states.

Within the Type Ill seesaw model, these massive leptons are two heavy Dirac charged leptons (Ei) and a heavy
Majorana neutral lepton ():0). These heavy leptons may be pair-produced through LO EW interactions in charged-charged
():i)f) and charged-neutral (Z+):0 or 2_20) modes. The seesaw leptons are assumed to mix with the SM leptons, and
decay to a W, Z, or Higgs boson and an SM lepton (v, or £ = e, u, t). The three production modes, combined with the
nine possible combinations of boson-SM lepton decay, yield 27 distinct signal production and decay modes. An example
of the complete decay chain that may yield multiple leptons in the final state is 20 5 wEWHT S eFevetveT
Two diagrams exemplifying the production and decay process of T pairs that may result in multilepton final states are
shown in Fig. 59.

The total width of these new heavy-lepton states and their decay branching fractions to SM leptons of flavor ¢
(B) are proportional to |V(|2/(|Ve|2 + |VM|2 + |V1|2), where V, is the heavy-light lepton mixing angle. If all three V,

values are less than ~10°°, the T states may have sufficiently long lifetimes to produce leptons at secondary vertices.
Electroweak and low-energy precision measurements enforce an upper limit on the mixing angles of 10* across all
lepton flavors [224,225]. This bound allows for prompt decays of heavy leptons in the mass ranges accessible to collider
experiments [175,226-231]. The heavy-lepton states are assumed to be degenerate in mass and their decays are assumed
to be prompt in the corresponding analysis discussed later in Section 10.2. The £ decay branching fractions to different
bosons are determined solely by their masses.

9.3. Production of HNLs in the left-right symmetric model

The LRSM is a renormalizable framework that is constructed by addmg the SU(2) gauge group to the SM, introducing
the heavy partners of the SM W and Z bosons, namely WR and 7' bosons [232,233]. This naturally embeds the seesaw
mechanism, providing answers for the small SM neutrmo masses with a heavy Majorana-type particle N. The LRSM may
be directly tested by searching for the postulated WR and 7’ bosons at the LHC [234-236]. The searches are focused
on cases where N couples exclusively to leptons with one single flavor, assuming three RH neutrinos (N, N, and N.)
with different masses. As a result of the nature of Majorana-type particles, the N allows for a lepton number violation
by two units. The production process for N at the LHC may either be mediated by the Wy boson with a charged lepton,
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Fig. 59. Example Feynman diagrams illustrating production and decay of Type Il seesaw heavy lepton £ pairs at the LHC that may result in
multilepton final states.

Fig. 60. Representative Feynman diagrams for the production of a heavy Majorana neutrino, labeled as N, via the decay of a W (left) and z’
boson (right).

or a resonant Z' boson that produces a pair of HNLs, as shown in Fig. 60. As the W and Z’ bosons are assumed to be
heavy, such production channels of the N yield various interesting event topologies. For parameter points in the my -
My, OF My =M, plane, large mass gaps between the mediating heavy gauge boson and the N (i.e., my /mWR < lor
my /m,, < 1) are likely to induce a large Lorentz boost for the N. Because of the collimation of the decay products of the
boosted HNL, jet substructure is a powerful tool to distinguish HNL decays from QCD multijet background in this channel.

9.4. Production of HNLs in composite models

In the context of the composite-fermion theory [237-241], quarks and leptons possess an internal substructure that
manifests itself at a sufficiently high energy scale A, the compositeness scale. A relevant phenomenological feature
of the compositeness scenarios is the existence of excited states of quarks and leptons, with masses lower than or
equal to A, interacting with SM fermions via effective field theory (EFT) interactions [242-245]. A particular case of
such excited states is an HNL (N,, £ = e, p, t) [246-249]: a composite Majorana fermion often associated with the
observed baryon asymmetry in the universe. Such composite Majorana neutrinos would also lead to detectable effects
in neutrinoless double beta decay experiments [247,249]. As a general phenomenological framework, we consider the
composite neutrino model given in Ref. [250], in which two types of effective interactions, the gauge interaction (GI) and
the contact interaction (CI), enter into both the production and decay mechanisms and are governed, respectively, by the
Lagrangian densities:

gf _
Lo = ENGW(BMWU)PLZ +hc,
2 9)
8

n_ —
Lo = 7q,J/MPLqu/LPL€ + h.c.
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Fig. 61. The fermion interaction as a sum of gauge (center) and contact (right) interaction contributions.
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Fig. 62. Example diagrams for the decay of a heavy composite Majorana neutrino to £qq .

Here N, ¢, W, and q are the N, charged lepton, W boson, and quark fields, respectively; P; is the LH chirality projection

operator; and g is the SU(2), gauge coupling. The effective coupling for contact interactions, gf, takes the value 47 [250].
The factors f and n are additional couplings in the composite model; they are taken here to be unity, a choice that
is commonly adopted in phenomenological studies and experimental analyses of composite-fermion models. The total
amplitude for the production process is given by the coherent sum of the gauge and contact contributions, as shown in
Fig. 61, together with the decay modes shown in Fig. 62. The production process is dominated by the CI mechanism for
the entire parameter space probed at the LHC, while for the decay, the dominant interaction changes depending on A
and the N, mass [250].

10. Review of heavy neutral lepton searches

In the preceding section, we outlined the theoretical foundations of HNL models and their potential role in addressing
the enigma of neutrino masses within various theoretical frameworks. In this section, we review the experimental efforts
at the CMS experiment aimed at uncovering the existence of these hypothetical HNL particles. The results from searches
for HNLs in the context of the Type I seesaw model are discussed first in Section 10.1. Afterwards a review of the searches
for HNLs in the Type Il seesaw model is presented in Section 10.2, followed by a review of results in the LRSM model in
Section 10.3. Finally, the searches for heavy composite Majorana neutrinos are presented in Section 10.4.

10.1. Searches for HNLs in the Type I seesaw model

In this section, we summarize the experimental searches for HNLs within the framework of the Type I seesaw model,
taking into account their mass and lifetime parameters. As discussed in Section 9.1, HNLs may exhibit different lifetimes
based on their mass and mixing parameters.

For the high-mass regime, typically above ~15 GeV, HNLs are expected to have a relatively short lifetime. Searches
for short-lived (prompt) HNLs benefit from standard detector reconstruction techniques to capture their signatures in the
CMS detector. On the other hand, in the low-mass regime, typically below ~15 GeV, HNLs are anticipated to be long-lived.
In this scenario, searches for HNLs with long lifetimes rely on innovative techniques to reconstruct the displaced decays
of the HNLs. The successful implementation of challenging reconstruction methods for the detection of long-lived HNLs
have significantly increased their discovery potential at the LHC.

By presenting both prompt and long-lived HNL searches, we offer a comprehensive perspective on the distinct
challenges and methods associated with each category, covering a complementary parameter space of searches for HNLs.
First, the CMS experiment results on prompt HNLs are discussed, followed by an overview of the long-lived HNL searches.
In this theoretical framework, the HNL mass and mixing are free model parameters, leading to the presentation of
exclusion limits in two-dimensional planes of mass versus squares of mixing matrix elements.
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10.1.1. Searches for prompt HNLs

Several prompt HNL analyses are reviewed. We organize the review by prompt HNL decay channel, starting with
semihadronic decays N — £*qq’, followed by the leptonic decays corresponding to N — *eFvand N — ¢ty [251].

First, we review a search for HNL production through the decay of W boson as illustrated in Fig. 55 where N decays
into a lepton and a W boson [252]. The W boson, in turn, further decays into two quarks. This series of production and
decay processes results in the presence of two leptons and jets in the final state. This search uses the 2016 data set.

This search considers cases where the N inclusively mixes with either electron (e) or muon (u) flavor SM neutrinos.
Additionally, since the N is a Majorana particle, it allows for processes with LNV. Consequently, the analysis examines
the final state consisting of an SS lepton pair in conjunction with jets. In addition to the s-channel production mode of
the N, this study introduces the Wy VBF channel shown in Fig. 56. The inclusion of the Wy VBF channel enhances the
sensitivity of the search, particularly for a larger N mass range, where it becomes the dominant production mechanism
for HNLs. In this analysis, the mass range covered extends from 20 up to 1600 GeV, providing an exploration of prompt
HNLs across a broad spectrum of masses.

Compared to an earlier analysis at /s = 8TeV performed at the CMS experiment [253], in which events were
selected with two SS leptons and two small-radius jets, this search adds two additional SRs to compensate for the signal
acceptance loss in both small and large my regions. For my below 80GeV, an SR with one small-radius jet is added
to increase the signal acceptance of the restricted phase space of jets. For larger masses, especially above 500 GeV, the
signal acceptance is shown to be recovered by taking into account the event topology where the decay products of the
W boson are merged into a large-radius jet. Three potential sources of background events that are specifically related to
the SS dilepton final state are considered: SM physics processes that are able to produce two prompt SS leptons; events
that arise from misidentification of leptons; and lastly, OS lepton pairs in which one of the charges is mismeasured.
This last source is shown to be negligible for the up and ep channels. Backgrounds with prompt SS leptons mainly
arise from events with two vector bosons (W wEwz, 77), and these contributions are estimated using MC simulation.
Events containing objects misidentified as prompt leptons constitute the most important background for low-mass signals,
and they originate from b hadron decays, light-quark or gluon jets. The simulation is not reliable in estimating the
misidentified-lepton backgrounds, and we therefore estimate these backgrounds directly from collision data by calculating
lepton misidentification probabilities. The last background category is from lepton sign mismeasurements in events with
jets and two opposite-sign leptons. The probability of mismeasuring the sign of a prompt electron is obtained from
simulated Z — e“e™ events and is parametrized as a function of the electron py.

The exclusion limits are determined using a cut-and-count method, applied to different SR selections corresponding
to various mass scenarios. The SRs are first categorized into two groups based on the mass scenario of the N, and a
selection tailored to each group is applied: my < 80GeV and my > 80 GeV. Furthermore, within each of these two mass
scenario categories, the SRs are further divided into two separate regions, each targeting a different kinematic phase space.
Regardless of the mass scenario, a first SR dedicated to the resolved kinematic phase space, is defined by requiring at least
two small-radius jets and no large-radius jets. The second SR, designed for the scenario involving high Lorentz boosts, has
different requirements. For the low-mass scenario, exactly one small-radius jet and zero large-radius jets are required,
while for the high-mass scenario, the large-radius jet multiplicity must be at least one. In addition, the SRs are further
categorized based on the flavor combination of the leptons in the lepton pair, leading to events with puy, ee, and ep pairs.
With these three lepton flavor channels, the analysis has a total of 12 separate SRs.

Exclusion limits are derived on HNL masses in the range from 20 to 1600 GeV. Upper limits at 95% CL on mixing
parameters are placed ranging up to 1240, 1430, and 1600 GeV for |VeN|2 =1, |V”N|2 = 1, and |Vel\1VJ1\1|2/(|VeN|2 +

Vi |2) = 1 assumptions, respectively, as shown in Fig. 63.

The second search for HNLs we review is a search in which the same HNL production mode is probed, i.e., s-channel
and Wy VBF (t-channel) processes. Fully leptonic decays of HNLs are considered, where both N — ¢W — ££'v and
N — vZ — v£'¢’ result in final states with three leptons and a neutrino [260]. The full Run 2 data set is analyzed. Events
are selected with three leptons, including for the first time up to one hadronically decaying tau lepton (t;,). The HNL
signal models are considered with an N mixing exclusively to one of the SM neutrino generations: electron, muon, or tau
neutrinos. When only electron (muon) neutrino mixing is assumed, only eee and eep (euu and puu) events are relevant
for the search. On the other hand, when only tau neutrino mixing is assumed, all combinations of three electrons and
muons are important when both tau leptons in the final state decay leptonically, and events with eet,, epty,, and ppty
are relevant when one tau lepton decays hadronically.

Selected events are divided into low- and high-mass regions by requiring the leading lepton p; to be below or above
55 GeV, respectively. The low-mass region targets HNL scenarios with masses below the W boson mass that result in a
compressed lepton momentum spectrum, whereas the high-mass region targets HNL masses above the W boson mass.
In each region, events are further categorized based on whether or not they have an OSSF lepton pair, where events with
an OSSF pair have larger background contributions, but events without are only possible for Majorana HNLs. Events are
then binned into search regions based on kinematic properties of the selected leptons and p7"", to separate signal from
background events, as well as potential HNL scenarios with different masses. The search region categorization is similar
to the previous trilepton search based on the 2016 data set [259].

To further improve the separation between signal and background contributions, an alternative strategy with ML
discriminants based on BDTs is applied as well. The BDTs are trained in the five mass ranges for HNL masses between 10
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Fig. 63. Expected (observed) upper limits at 95% CL shown with a dashed (solid) black line, derived on heavy neutrino mixing parameters |V, y |2,
|VHN|2, and |V n V;‘N \2/(|VeN |2 + [Vun |2) as functions of the HNL mass. The dashed brown line in the upper two figures shows constraints from
Electroweak Precision Data (EWPD) [254] on the |V y \2 and |V, N |2 parameters. The lower figure, reproduced from Ref. [252], does not show the
corresponding EWPD limits. The upper limits from other direct searches at the DELPHI experiment [255], the L3 experiment [256,257], and the
ATLAS experiment [258] are superimposed. Also shown are the upper limits from the CMS experiment at /s = 8 TeV using the 2012 data set [253]
with a solid red line, and the search in the trilepton final state [259] based on the same 2016 data set as used in this analysis with a dashed red
line.

Source: Figures adapted from Ref. [252].

and 400 GeV, separately for the three different mixing scenarios. In addition to kinematic properties of the leptons in the
events, information about reconstructed jets is provided as input to the BDTs as well.

The SM background contributions after the event selection arise mostly from diboson (WZ, ZZ, and Vy) production,
with smaller contributions from nonprompt leptons and rare top quark and Higgs boson production. The nonprompt-
lepton background is estimated with a misidentification-rate method from sidebands in the observed data. Precise
estimations of these backgrounds are important for channels including hadronically decaying tau leptons. All other
backgrounds are estimated from simulation, and the three diboson processes are validated in dedicated CRs, from which
additional simulation correction factors are derived.

For each HNL signal scenario (mixing scenario, mass, and Majorana or Dirac nature), a binned likelihood fit is performed
to the BDT distributions in an optimized combination of SRs. Based on the upper limit on the HNL production cross section
derived from these fits, exclusion limits at 95% CL on the mixing strength as a function of the HNL mass are derived. The
exclusion limits for the case of Majorana HNL are shown in Fig. 64, and cover HNL masses between 10 GeV and 1.5 TeV.
Since the kinematic properties of HNL signal events are different below and above the W boson mass, no interpolation of
limits between the highest evaluated my value with the low-mass strategy and the lowest evaluated my value with the
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are superimposed.

Source: Figures taken from Ref. [260].

high-mass strategy is performed, and exclusion limits are not evaluated for the range 75 < my < 85 GeV. For electron
and muon mixing, the limits improve over the results from Ref. [259] over the full mass range by up to one order of
magnitude. For tau neutrino mixing, previous limits by the DELPHI experiment for HNL masses below the W boson mass
are up to two orders of magnitude more stringent [255], but for masses above the W boson mass, experimental limits
are presented for the first time.

The CMS Collaboration performed another search [262] for Majorana neutrinos and for the signatures related to the
Weinberg operator in the VBF processes [221,222], using the full Run 2 pp collision data set at /s = 13 TeV. The considered
process is the t channel where SS W boson pairs decay into SS lepton pairs via a TeV-scale Majorana neutrino or through
a Weinberg operator process, as discussed in Section 9.1 and illustrated in Fig. 58.

In this search, exclusively muon neutrino mixing with the HNL is considered, hence only events with an SS dimuon pair
in the final state are analyzed. The final state consists of two well-identified isolated SS muons and two Qets with a large
rapidity separation as well as a large dijet invariant mass. To discriminate the signal from the SM EW W w* events, SRs
for the HNL and Weinberg operator analyses are defined in bins of the azimuthal separation observable A¢,, and p7 ",
respectively. Events from the tt process that have only one W boson decaying leptonically are the main source of the
so-called nonprompt-lepton backgrounds, which originate from leptonic decays of heavy quarks or hadrons misidentified
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as leptons. The nonprompt-lepton background is estimated from a data sample by applying weights to events containing
muon candidates that fail the nominal selection criteria while passing a less stringent requirement. To select event samples
enriched in nonprompt leptons, a b tag CR is defined requiring at least one b-tagged jet in addition to the SR selection.
A WZ CR, requiring the presence of three muons in an event, is used to estimate W*Z background contributions. The Z
boson decay product is obtained from the OS dimuon combination with the invariant mass closest to the Z boson mass.
Similarly, the WZb CR is defined by requiring the same selection as for the WZ CR, but requiring at least one b-tagged
jet. The dominant backgrounds in the SR are SM EW wEw* production and the contribution from nonprompt leptons.

Two separate fits are performed: one for the heavy Majorana neutrino analysis using the A¢,, bins in the SR, and
the b-tagged, WZ, and WZb CRs; and a second for the Weinberg operator analysis with the p7° bins in the SR, and
the b-tagged, WZ, and WZb CRs. The normalization factors for the WW, WZ, and tZq background processes, affecting
both the SRs and CRs, are included as free parameters in the fit together with the signal strength. The bin boundaries are
chosen to optimize the signal sensitivity.

The results are found to agree with the predictions of the SM. Using the relationship between the cross section and
the squares of mixing matrix elements for the heavy Majorana neutrino analysis, upper limits at 95% CL are derived
on |VMN|2, as shown in Fig. 65. These results surpass those obtained in previous searches by the ATLAS and CMS
Collaborations [252,259,264,265] for my > 650 GeV, and set the first direct limits for my > 2 TeV. According to Eq. (8), for

/
the ££" = pu channel, a limit on the effective pp Majorana mass Imy, | = C;L”vz//\ is obtained from the limit on |C§£ /A|2
in the Weinberg operator analysis. The observed (expected) 95% CL upper limit on |m,, | is found to be 10.8 (12.8) GeV.
This upper limit on m,, is the first obtained using a collider experiment, and it improves upon a previous limit set by the
NAG62 Collaboration [222,266].

10.1.2. Searches for long-lived HNLs

In this section, we review the searches conducted by the CMS Collaboration for HNLs with displaced signatures, starting
with searches for HNLs produced through W boson decays, specifically focusing on the s channel. First we describe a
search for the HNLs in semihadronic decays, followed by the search in fully leptonic decays. Next, a search for HNLs with
inclusive decay in the muon system is discussed. Finally, we conclude this section with a search for HNLs produced from
the decay of B mesons.

The first search considers a Majorana or Dirac HNL that is produced in association with one charged lepton (¢) and
decays to a second charged lepton (¢') and jets [263], as shown in Fig. 55. Scenarios in the mass range 2 < my < 20GeV,
assuming inclusive coupling to all three lepton generations, are considered. The full Run 2 data set is analyzed, using
events with two leptons (electrons or muons) and one to four jets.

Events are categorized based on the lepton flavor and charge combination, the significance of the impact parameter

of the second lepton track di'yg, and whether the HNL decay products overlap (“boosted”) or not (“resolved”). By
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Source: Figures taken from Ref. [263].

implementing this categorization scheme with a total of 48 SRs, a wide range of the HNL model parameter space is
explored, enabling a comprehensive study for a variety of HNLs scenarios with distinct signatures.

This search employs a model-independent displaced jet tagging algorithm aimed at suppressing the larger number of
background events. The tagger is a DNN developed specifically for maximizing the efficiency for identifying displaced jets.
It utilizes a supervised ML technique to solve a multiclass classification problem. Various output classes are defined to
differentiate between jets from SM processes or generic displaced ones. Furthermore, a domain adaptation technique is
used to ensure accurate performance of the resulting classifier in the observed data and the simulation. An initial version
of this algorithm was developed in Ref. [267].

By requiring that the jet closest to the second lepton passes an optimized threshold on the tagger score, the background
contribution is reduced by a factor of about O( 103) while 10%-20% of signal is retained. The main sources of the remaining
background arise from QCD multijet events and instrumentation effects, such as events with misreconstructed leptons or
incorrectly reconstructed tracks. As these backgrounds are not accurately modeled in simulation, an ABCD method (see
Section 4.2) is used to estimate the background yield from the observed data. The two chosen uncorrelated observables
in this method are the tagger output score and the invariant mass of the tagged jet and the two-lepton system, which
approximates the mass of the on-shell W boson in signal events. The estimated background yields per category are
presented in Fig. 66 and compared to the observed data. The number of observed events agrees well with the expected
background, indicating no evidence for an HNL signal.

The results are used to constrain the parameter space of HNL models by determining an upper limit on the HNL
production cross section for each HNL mass and coupling hypothesis. In Fig. 67, the 95% CL lower limits on Majorana HNL
production for either a fixed proper lifetime or a fixed mass are presented as a function of the relative coupling strengths
to electrons, muons, and tau leptons.

Another search for long-lived HNLs produced in leptonic decays of W bosons [261] has been performed, using the full
Run 2 data set. The postulated HNL may be either Dirac or Majorana in nature and mix exclusively to SM neutrinos from
the W boson decays. The considered signal process is illustrated in Fig. 55. The HNL subsequently decays into either a W
boson and a charged lepton ¢, or a Z boson and a neutrino v. The EW gauge boson then decays leptonically, leading to a
final state with three charged leptons (electrons or muons) and a neutrino (N — ££'¢"v).

The HNL decay width in this final state is generally dominated by the W*-mediated diagrams. This search focuses on
scenarios where the HNL lifetime is such that its decay vertex may be resolved from the pp interaction point. Therefore
¢" and ¢” form an SV and have typically large impact parameters. If the HNL is of Majorana nature, £ and ¢’ (or £ and v /)

may either have the same chirality (LNV) or opposite chirality (LNC). In the case of an HNL decay mediated by a W™ boson,
an LNV decay may lead to final states with no OSSF lepton pairs, namely eici;ﬁ or uipicx. Since the SM backgrounds
in these final states are relatively small, these SRs are very sensitive to HNL signals. In contrast, decays mediated by a
Zi bfsgn and LNC decays are always accompanied by an OSSF lepton pair, resulting in final states such as eieﬂti or
ppte.

Selected events must contain a prompt electron or muon, and two displaced OS leptons in any flavor combination.
Prompt electrons are selected using a multivariate discriminant [19], and prompt muons must pass tight track quality
requirements [21]. Additional selections are applied on the maximum transverse and longitudinal impact parameters
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Source: Figures adapted from Ref. [263].

with respect to the PV and on the lepton isolation. Nonprompt electrons and muons (¢’, £”) are required to satisfy track
quality and isolation requirements. These are optimized using standard sets of sequential requirements used in prompt
lepton identification [19,21], but removing those requirements that may affect the selection efficiency for leptons not
emerging from the PV, such as a veto on photon conversions or the requirements on the number of tracker hits. Such
“displaced” electrons and muons are required to have a transverse impact parameter |d,,| > 0.01cm. Given the purity of
the SR, the selection is a simple set of sequential requirements, exploiting the kinematic properties of a W boson decay
and the small mass of the HNL. The tracks of £ and ¢” are fitted to a common SV using a Kalman filter approach [268].
The transverse distance between the PV and the SV (A,p) is used for the event categorization to maximize the sensitivity
to different levels of displacement.

The main backgrounds in the SR originate from top quark, DY, and W+jets production with misidentified hadrons
or leptons from light- and heavy-flavor hadron decays that pass the displaced-lepton selection. The contribution from
these background leptons is estimated with a “tight-to-loose” method using control samples in data. Samples enriched
with hadronic jets are used to measure the probability for displaced leptons passing a “loose” isolation criterion to also
satisfy the “tight” criterion for selecting £’ and ¢”. A weight based on this probability is then applied to the events
found in a second CR, obtained with a selection similar to that of the SR, but inverting the isolation requirement on
either displaced lepton. Two classes of background leptons are considered: single-background (SB) leptons, i.e., single
reconstructed leptons produced via one of the aforementioned mechanisms; and double-background (DB) leptons, i.e.,
pairs of reconstructed leptons produced in the decay chain of the same hadron or from a quarkonium state. Because
the DB leptons are not independent, the selection probability is estimated for the whole system and not as a product of
two uncorrelated probabilities. The DB leptons from b hadron decays are the dominant background for dilepton masses
m,r,n < 4GeV, while they are negligible above this threshold.

The two main observables used to categorize the selected events and discriminate the hypothetical HNL signal from
the background are A,p and m,/,». The expected and observed yields are shown in Fig. 68, split in four A,, bins for
m,,n < 4GeV (where the DB leptons dominate), and in two A, bins for m,/,» > 4GeV (dominated by SB leptons).
The expected HNL signal events for a selection of representative signal scenarios are also shown. Only scenarios in which
the HNL mixes with a single neutrino flavor are considered in this search, i.e., only one of |V, |2 and [V, |2 is nonzero.

The eeX channels (eee, eie:Fui, and eieip:‘:), shown in Fig. 68 (upper), are sensitive to the |VeN|2 mixing parameter,

while the uuX channels (uup, piuxei, and uiuieﬂ, shown in Fig. 68 (lower), are sensitive to IVHNIZ. The number of
observed events in data is in good agreement with the SM background expectations within the statistical and systematic
uncertainties, and no significant excess is found for any final state or SR bin. Using these distributions, exclusion limits
on [V x |2 and |V, y |2 are derived as a function of my, separately for the cases of Majorana and Dirac HNLs. The limits are
shown in Fig. 69.

A search based on a novel detector signature, known as the muon detector shower (MDS), has been recently developed
for detecting neutral long-lived particles (LLPs) with lifetimes in the range of 0.1 to 10 m [269,270]. The considered
process is shown in Fig. 55 with an inclusive final state. This analysis is sensitive to HNLs with masses ranging from
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Fig. 68. Comparison between the number of observed events in data and the background predictions (filled histograms) in the SR for eeX (upper)
and ppX (lower) final states. The hatched band indicates the total systematic and statistical uncertainty in the background prediction. The lower
panels indicate the ratio between the observed data and the prediction, where missing points indicate that the ratio lies outside the axis range.
Predictions for signal events are shown for several benchmark hypotheses for Majorana HNL production: my = 2GeV and |V, |2 =08x107*
(HNL2), my = 6GeV and |V, |* = 1.3 x 10°® (HNL6), my = 12GeV and |V,n|* = 1.0 x 10~°® (HNL12). Small contributions from background
processes that are estimated from simulation are collectively referred to as “Other”.

Source: Figures taken from Ref. [261].

1 to approximately 3.5 GeV. The full Run 2 pp collision data set is analyzed, corresponding to an integrated luminosity of

137" collected at /s = 13 TeV.
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Fig. 69. The limits at 95% CL on |V, |2 (left) and |V, |2 (right) as functions of my for a Majorana (upper) or Dirac (lower) HNL. The area inside the
solid (dashed) black curve indicates the observed (expected) exclusion region. Results from the DELPHI [255] and the CMS [252,259] Collaborations
are shown as upper limits, i.e., the area above the curves indicates the respective observed exclusion region.

Source: Figures adapted from Ref. [261].

The MDS signature arises when LLPs decay within the muon system of the CMS detector, where the material in the
iron return yoke structure induces a particle shower, creating a geometrically localized and isolated cluster of hits in the
detectors. Because of the shielding in front of the muon system, MDSs are rarely produced by standard model background
processes and can be a powerful signature to search for LLPs. The analysis [270] utilizes the MDS signature to search for
HNLs, which are reconstructed as an MDS. Since the decay products of any hadronic decay modes of the HNL may be
reconstructed as an MDS, the search is sensitive to HNL mixing to all three generations of leptons, including tau leptons.

Jets, with significant energy leakage beyond the calorimeter systems, and bremsstrahlung from muons, are the primary
SM processes that may mimic MDS signatures. The MDS cluster selection is designed to reject such background events.
Those MDS clusters that are matched to jets or muons with sufficiently high p; or specific detector patterns of hits and
segments are vetoed. The presence of the MDS signature along with the associated vetos suppresses SM background by a
factor exceeding 10. In addition to the MDS object, the search selects events with one prompt, isolated lepton (electron
or muon) passing the tight identification requirements. Events are categorized based on the prompt lepton selection and
the subdetector system in which the MDS cluster is reconstructed, namely the DTs (CSCs) in the barrel (endcap) region(s).

The ABCD method is applied to estimate the background, using the number of hits in the MDS cluster and the azimuthal
separation (A¢) between the MDS cluster and the prompt lepton as the two uncorrelated observables. In the prompt-
muon event categories, Z — up events might mimic the back-to-back configuration between the MDS cluster and the
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Fig. 70. Expected and observed number of events in the SR of different event categories. Signal yields of a Majorana HNL with a mass of 2 GeV and
with a proper decay length of 1m are overlaid on top of the expected background estimated using the ABCD method.
Source: Figure taken from Ref. [270].

prompt lepton, when one of the two muons from the Z boson decay undergoes bremsstrahlung in the muon detector
and fails to be reconstructed as a muon object. A dedicated leptonic tt data sample is used to estimate the rate of such
muons passing the SR selections. Fig. 70 shows good agreement between the observed number of events in the SRs and
the background predictions in the different event categories.

Upper limits on the HNL production cross section are determined as a function of the HNL mass for different mixing
hypotheses. Fig. 71 shows the limits on the electron, muon, and tau neutrino mixing parameters as a function of the
HNL mass, assuming mixing of the HNL with only one generation. This search extends the existing limits towards the
parameter space with longer lifetimes or smaller |V, |2.

Finally, we review a search for long-lived HNLs in the leptonic and semileptonic decays of B mesons [220]. The search
probes HNLs with masses in the range 1 < my < 3GeV and mean proper decay lengths in the range 1072 < Ty <

10* mm, and targets HNLs decaying within the CMS tracker volume. A novel and key feature of the search is the use of
a special b hadron enriched data sample, referred to as the B-parking data sample [271-273], which corresponds to an
integrated luminosity of 41.6 fb~! and contains of the order of 10" bb events.

For the first time at the CMS experiment, the decays of B mesons, with B = (B, By, B, B,.), are considered as the
source of signal. This production channel offers complementary sensitivity to that of the other searches for long-lived
HNLs discussed above, which consider decays of W bosons as the source of the heavy neutrinos. Indeed, B mesons are
significantly more abundant in pp collisions than W bosons, and consequently, are potentially a more prominent source
of signal. Moreover, because the B mesons have a lower mass than the W boson, the HNL states produced in B decays
have lower momenta than those produced in W boson decays. For LLP signatures, the softer momentum spectrum is an
advantage as it leads to a higher fraction of HNLs that decay within the CMS tracker volume.

The LO Feynman diagram for the process considered in this search is shown in Fig. 57. The signature of the signal
process is defined as B — ¢pNX, N — Zinf where the leptons £, and ¢ may have same or opposite sign and may be
either a muon or an electron, provided that one of them is a muon passing a B parking trigger. The hadronic recoil system,
X, is treated inclusively and is not reconstructed. Because the HNL is long lived, the decay products ¢* and n* originate
from a vertex displaced with respect to the B decay vertex and reconstructed using a kinematic vertex fit [274]. The
neutral system a7t may be reconstructed to obtain the invariant mass m JE Thus, the strategy consists in searching
for a peak consistent with the expected signal shape in the m, + = distribution. An advantage of this method is that a
large number of mass hypotheses can be tested, in steps of the approximate detector resolution (~10 MeV). This provides
the possibility to directly probe the mass of the HNL if a signal is present.

Events are classified according to 24 exclusive SRs based on (i) the significance of the transverse decay length of the
*n system; (ii) the relative sign of the charged leptons; (iii) the invariant mass of the Epﬁiﬁ system; and (iv) the two
lepton flavor channels, allowing for exactly zero or one electron in the final state, respectively. Backgrounds, which arise
from strong-interaction processes, are suppressed using a parametric neural network [275] that assesses a broad range
of event properties. A search for HNL states is performed using simultaneous maximum likelihood fits to the m,+
distributions in the 24 categories. No significant excess of events over the SM background is observed in any of the fit
regions.
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Fig. 71. Expected and observed upper limits at 95% CL on Majorana HNL production as functions of the HNL mass (my ), and assuming mixing
of the HNL with only one generation. The limits are shown for pure electron mixing (upper left), pure muon mixing (upper right), and pure tau
neutrino mixing (lower). The limits in the tau neutrino mixing scenario are obtained by combining the results from the electron and muon decay
channels of the tau lepton.

Source: Figures adapted from Ref. [270].

The results are interpreted as upper limits at 95% CL on |VN|2 = D e " T|V£N|2 as functions of my, shown for

representative scenarios specified by different values of the mixing ratios r, = |V, |2/|VN |2, r, = 1Vn |2/|VN |2, andr, =
|VTN|2/|VN |2. In Fig. 72, limits are shown for the mixing scenarios (r.,r,,7.) = (0, 1,0) and (r,,1,,1.) = (1/3,1/3,1/3),

erur it
for the separate hypotheses of a Majorana or Dirac particle. The most stringent exclusion |V |2 > 2.0x 10" is obtained for
a Majorana HNL of mass my = 1.95 GeV in the scenario (r,, r,, r.) = (0, 1, 0). Furthermore, the most stringent exclusion

espr it

limits to date are obtained on |V |2 for masses 1 < my < 1.7 GeV from a collider experiment. Finally, lower limits at
95% CL on cty are also presented for 66 combinations of r,, r,, and r,. Fig. 73 shows the limits for my = 1GeV in both
the Majorana and Dirac scenarios. The most stringent limit cty < 10.5m is obtained for a Dirac HNL in the scenario
(re,1,, 1) = (0, 1,0). It is the first time that lower limits on cty in the form of ternary plots for masses my < 2.0GeV
are presented.
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Fig. 72. Expected and observed limits at 95% CL on |Vy |2 as functions of my;, in the Majorana (left column) and Dirac (right column) scenarios.
The limits are shown for the mixing scenarios (r,,r,,r.) = (0, 1,0) (upper row) and (r,,r,,7.) = (1/3,1/3,1/3) (lower row). Results from the
CMS [261,263,270], ATLAS [265], LHCb [276], and Belle [277] Collaborations are superimposed for comparison. The mass range with no results shown
corresponds to a vetoed region around the D~ mass.

Source: Figures taken from Ref. [220].

10.1.3. Summary and complementarity of channels

We conclude the Type I seesaw section by summarizing and comparing these HNL searches. Fig. 74 presents a summary
of the limits on the mixing parameter |V, |2 from prompt and long-lived Type I seesaw HNL searches, covering a broad
mass range from 1GeV to 10 TeV for the pure muon and electron mixing scenarios for both Dirac and Majorana HNLs.

The exploration of long-lived HNLs covers masses my below 20 GeV. Techniques targeting displaced N — £¢v and
N — e*qa’ decays within the tracker volume such as displaced-vertex reconstruction and displaced jet tagging are used,
leading to the most stringent limits in the mass range of 3 to 20 GeV. Notably, for lower masses between 1 to 3 GeV, the
search utilizing muon detector shower signatures results in the strongest bounds. Between 1 to 2 GeV, the search using
the B-parking data set provides the most stringent limits for muon-type HNLs, due to the large cross section of B meson
production. These searches are complementary, with each dominating in a specific mass region. Therefore, a statistical
combination does not provide a significant gain in sensitivity.

For my greater than 20 GeV, in scenarios where N exclusively mixes with muons, the search for prompt N — ¢£v
provides the most stringent limits in the my range from ~20 GeV up to ~100 GeV for both Dirac and Majorana HNLs. In
the higher mass range, the search for prompt Majorana N — ziqa’ exhibits comparable sensitivity despite relying solely
on the 2016 data set. This suggests that expanding this search using the full Run 2 data set and probing Dirac HNLs could
enhance the reach in this parameter space region. Lastly, the VBF search proves valuable in covering the very high mass
region, where it attains the strongest constraints up to my ~ 10TeV.
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associated internal lines on the plot.
Source: Figures taken from Ref. [220].

10.2. Search for HNLs in the Type Il seesaw model

The CMS Collaboration has carried out multiple direct searches for Type IIl seesaw HNLs using the pp collision data sets
collected at +/s = 7 and 13 TeV. In the first search at the CMS experiment for such heavy leptons, a /s = 7 TeV data set
with an integrated luminosity of 4.9 b~ ! was analyzed [278], probing the flavor-democratic scenario (8, = B, = B,), as
well as electron- and muon-only scenarios, targeting final states with three electrons or muons. Subsequent searches with
the 2016 and full Run 2 data sets expand the experimental final states to three and four electrons or muons [279,280].
The latest /s = 13 TeV search by the CMS Collaboration on Type III seesaw HNLs presented in Ref. [204] improves on
these previous results by utilizing three- and four-lepton signatures with electrons, muons, and hadronically decaying tau
leptons, as well as improved analysis techniques, and sets the most stringent limits on such HNLs.

In particular, this most recent search with the CMS experiment on Type III seesaw HNLs [204] considers seven distinct
multilepton final states based on the number of light charged leptons (electrons or muons) and hadronically decaying tau
leptons. These orthogonal channels are defined as:

>4 light leptons and any number of t,, candidates (4e/u),
exactly 3 light leptons and >1 t;, candidates (3efu1ty),

exactly 3 light leptons and no t,, candidates (3e/u),

exactly 2 light leptons and >2 1, candidates (2e/u2t,),

exactly 2 light leptons and exactly one 1, candidates (2efu1t,),
exactly one light lepton and >3 ¢, candidates (1e/u3r,), and
exactly one light lepton and exactly 2 1, candidates (1efi21y).

In the 4e/u channel, only the four light leptons leading in p; are used in the subsequent analysis. Likewise, in the 3efi1ty,
2eMu2ty, and lefu3ty, channels, only the leading one, two, and three 1, are used, respectively.

The SM background processes, such as WZ, ZZ, ttZ, and tt W production in which three or more reconstructed charged
leptons originate from decays of SM bosons, are the largest source of irreducible background in various channels of
this search. A smaller background contribution arises from ISR or FSR photons that convert asymmetrically such that
only one of the resultant electrons is reconstructed in the detector, or from the misidentification of on-shell photons as
electrons. The dominant source of such backgrounds, collectively referred to as the conversion background, is DY events
with an additional photon (Zy). These backgrounds are estimated using simulation and normalized to observed data in
the dedicated CRs. Another significant background component is the misidentified lepton background due to jets being
misidentified as leptons, which is estimated using control samples in data via the matrix method (Section 4.2).

Selected events in the seven channels are further categorized in a model-independent way depending on the dominant
SM background processes, or in a model-dependent way, based on the output of BDTs trained to identify the Type III
seesaw signal against the SM backgrounds. The model-independent SRs are defined by splitting the channels into various
regions based on the charge, flavor, invariant mass of lepton pairs, and kinematic properties of leptons, jets, and p7 ", as
well as the multiplicity of b-tagged jets. In each region, the S; distribution is probed as the HNLs are expected to produce
broad enhancements in the tails of Ly, p7 ", Hy, or dilepton mass observables. This scheme gives 805 independent SR bins
in each data-taking year in Run 2, a detailed breakdown of which may be found in Ref. [204].
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Fig. 74. Summary of searches at the CMS experiment for long-lived HNLs in the Type I seesaw model. The observed limits at 95% CL on the mixing
parameter |V, |2 as a function of the HNL mass my are shown, for Majorana and Dirac HNLs (upper and lower row, respectively), and in the muon
and electron channel (left and right column, respectively).

In the model-dependent approach, separate BDTs are trained for the flavor-democratic scenario and for the B, = 1
scenario. Since this analysis probes a wide mass range of Type IIl seesaw signals, the training is performed in small signal
mass windows (low, medium, and high). The training process considers a combination of up to 48 physics object- and
event-level observables as input features. In the BDT evaluation, the BDT scores in the three-lepton (3eAt, 2eu 11y, Tefu21y)
channels are combined into a single distribution. Similarly, the BDT scores in the four-lepton (4e/u, 3efulty, 2efu12ty,
lefu3ty,) channels are combined into one distribution to further increase the signal sensitivity. Using the BDT score, a
number of variable-width regions is defined for each of the combined three-lepton and four-lepton channels in each
data-taking year. These define the BDT regions for all three signal mass windows in which an analysis is performed
using only the number of observed events, i.e., not using shape information of the distributions of observables. A detailed
breakdown of the BDT regions may be found in Ref. [204]. The model-dependent SRs are typically more sensitive than
their model-independent counterparts, except for the lowest signal masses. This is because at low masses, the BDT training
process is degraded by the low signal yield.

Fig. 75 shows the observed and expected upper limits at 95% CL on the cross section of Type Il seesaw HNL production
in the flavor-democratic scenario. The observed (expected) lower limit on the mass m; of the heavy lepton £ in this
scenario is 980 (1060) GeV. The most stringent expected limit for my < 350GeV is given by the model-independent
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scheme, and by the BDT regions for higher signal mass values. The © decay branching fractions to SM leptons of the
different flavors are free parameters, subject to the constraint that B, + B, + B, = 1. The observed and expected lower
limits on my in the plane defined by B, and B, are shown in Fig. 76. For B, > 0.9, these limits are obtained using the
high mass BDT trained assuming B, = 1, and for the other decay branching fraction combinations, the limits use the
B, = B, = B, BDT. The strongest constraints are obtained assuming B, = 1 (m; > 1070GeV), while the weakest are
obtained assuming B, = 1 (my; > 890 GeV), which is due to the overall higher efficiency of reconstructing and identifying
muons than t,, in the experiment.

10.3. Searches for HNLs in the left-right symmetric model

In this section, we present the experimental outcomes from the CMS Collaboration in the searches for HNLs within
the framework of the LRSM model. Searches considering HNLs produced through the decay of the right-handed W boson,
denoted by Wy, are discussed in Section 10.3.1, and searches for the right-handed Z boson, denoted by 7', are discussed
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Fig. 77. The observed upper limits at 95% CL on the product of the production cross section and the branching fraction of a right-handed W
boson divided by the theory expectation for a coupling constant gz equal to the SM coupling of the Wy boson (g ), for the electron channel
(left) and muon channel (right). The observed exclusion regions are shown for the resolved (solid green), boosted (solid blue), and combined
(solid black) channels, together with the expected exclusion region for the combined result (dotted black). The dash-dotted lines represent the 68%
coverage of the boundaries of the expected exclusion regions. The observed exclusion regions obtained in the previous search performed by the CMS
Collaboration [284] are bounded by the magenta lines. The biggest improvement may be seen in the my < 0.5TeV region, where the new boosted
category greatly improves the sensitivity with respect to the previous result.

Source: Figures adapted from Ref. [281].

in Section 10.3.2. It is assumed that the gauge couplings associated with the left- and right-handed SU(2) groups are equal
and the N, decays are prompt.

10.3.1. Searches for HNLs from right-handed W bosons

A search has been performed for a heavy, RH gauge boson W i, which couples to RH fermions [281], using the full Run 2
data set. This search uses a final state consisting of two same-flavor leptons (ee or pp) and two jets. The search covers two
regions of phase space, one where the decay products of the HNL are collimated into a single large-radius jet (labeled “J"),
and one where the decay products are well separated. By including the regime where the decay products of the HNL are
merged into a large-radius jet, this search probes areas of the phase space where the Wy boson is heavy compared to the
N (ie., My /my > 1). The sensitivity in this regime is increased by identifying the HNL using the lepton subjet fraction
(LSF;) algorithm [282] to determine the consistency of the jet with three subjets, where one subjet is dominated by the
four-momentum of the lepton. These events are referred to as “boosted” events, in contrast to “resolved” events where the
two jets from the HNL decay are reconstructed separately. The dominant SM processes that contribute to the backgrounds
in this search are DY production of lepton pairs with additional jets in the final state, and leptonic decays of pair-produced
top quarks. These backgrounds are estimated from simulation and the modeling is corrected using dedicated CRs for both
backgrounds.

A maximum likelihood fit is performed using the invariant mass distributions (m,,;; for the resolved region or m,; for
the boosted region), simultaneously in the SRs and the CRs. Upper limits are derived on the product of the cross section
for W production and the branching fractions, o(pp — W )B(Wx — ee(un)qq ), for various My and my hypotheses.
The upper limits across the entire my, -my plane are shown in Fig. 77. With my = mWR/Z, the observed (expected)
lower limit at 95% CL on myy, . is 4.7 F5.2)Tev and 5.0 (5.2)TeV for the electron and muon channels, respectively. For
my = 0.2TeV, the limits exclude the phase space up to My, = 4.8 (5.0) and 5.4 (5.3)TeV for the electron and muon
channels, respectively. The local p-value of the signal strength, as a function of my;,  and my, is obtained from fits to the
observed data with the signal strength at each point treated as a free parameter. Tphe most extreme p-value is observed
in the electron channel, at the (my,_, my) = (6.0, 0.8)TeV mass point, with a value 1.58 x 1073, corresponding to a
local significance of 2.95 standard dféviations. The look-elsewhere effect [283] is taken into account by using pseudo-
experiments to calculate the probability under the background-only hypothesis of observing a similar or larger excess in
the electron channel across the full mass range considered in the analysis. This probability is 2.7 x 10~>, corresponding
to a global significance of 2.78 standard deviations.

The LRSM model is also investigated using events with final states with two t leptons in two analyses that consider
different decays of the < pair: one leptonic and one hadronic [285], and both hadronic [286]. For both searches, models that
predict the presence of leptoquarks are included in the comparison to the observed data, but are not explicitly reported
here as they are not directly related to the scope of this section.

A final state with two t leptons and two jets is studied in the context of the search for a W boson, as described in
Ref. [285]. The search follows the decay chain W — TN, where N, — tWz" — 1qq. One t (denoted by t,) decays into

a light lepton (e or p) and a neutrino, leading to p”T’iSS, while the other t (denoted by t,) decays hadronically. The search

644



The CMS Collaboration Physics Reports 1115 (2025) 570-677

— 10 ET T 11 T 1 11 UL 1 11 12-|9|ftl)'1\(1 31 -I-Iel\/)l = 12'9 fb-‘ (13 Tev)
5 3 3 s : ——— e —
K=" o ] o) 8
= [ cMms - Theory (M, = My/2) | G | CMS o
% 3 — Obsetrved ] ‘—z‘. L O
1E = Expected E I -0
Bm E [I 68% expected 3 = Observed o
5 ]95% expected 1 3000~ E ted ?_,)
R § | xpecte =
10 . =
z 0F - E
T B ] 10=
s | f 2
° 1oy
©10%¢ 2000 S
- c
§ il
i 1 S
10°F &
- 7 w
C ] 8
1000 S

1000 1500 2000 2500 3000 3500 4000 3000 4000

M, [GeV] My, [GeV]

Fig. 78. Observed and expected limits at 95% CL on the product of cross section and branching fraction, obtained from the combination of the et
and prty, channels (left), and the observed and expected upper limits at 95% CL on the production cross section as functions of the mass My of
the Wy boson and the mass my, of the HNL (right). The inner (green) band and the outer (yellow) band in the left figure indicate the regions

containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. The dashed dark blue curve in the
left figure represents the theoretical prediction for the product of the W boson production cross section and the branching fraction for decay to
a t lepton and RH neutrino, assuming the mass of the RH neutrino to be half the mass of the Wy boson.

Source: Figures taken from Ref. [285].

utilizes the 2015 data set and part of the 2016 data set, corresponding to an integrated luminosity of 12.9 fb~!, which
was the only available data set at the time of publication. The simulated Wy signal samples cover a mass region ranging
from 1000 to 4000 GeV in steps of 500 GeV.

Several SM processes mimic the signatures explored in this search. The production of top quark pairs is the dominant
background because of the presence of leptons, p7 -, and both light- and heavy-flavor jets. Additionally, W or Z boson
production in association with jets, diboson or single top quark production, and QCD multijet processes also contribute to
the SM background. The results of the analysis are obtained from a binned maximum likelihood fit to the Sy distributions
in the et, and prt, channels simultaneously. The quantity S; is defined as the scalar sum of the pT"" and the p; of the
electron or muon, the t; candidate, and the two jets.

Upper limits on the product of the cross section and branching fraction are set at 95% CL based on the binned
distribution of the S; observable. Fig. 78 (left) shows the observed and expected upper limits on the product of the cross
section and branching fraction for the W — tN_ decay mode. Assuming the mass of the HNL my_ to be half the mass

of the Wy boson My o the observed (expected) lower limit at 95% CL on the mass of heavy right-handed W bosons
is determined to be 2.9 (3.0)TeV. Fig. 78 (right) shows the observed and expected upper limits on the production cross
section as functions of my, . and my_.

Another search in the LRSM context explored the process Wy — t,N. — 1,,(t,qq) where the two tau leptons decay
hadronically [286]. The search is performed using the 2016 data set.

Signal samples are simulated with W masses ranging from 1 to 4TeV, in steps of 0.25TeV. Furthermore, in the
considered mass range, it is assumed that the N, and N, are too heavy to be decay products of Wg, and thus Wy — TN,

and Wy — qq are the dominant decay modes. The branching fraction for the W — TN, decay is approximately 10%-
15%, depending on the Wy and N_ masses. For the W mass range of interest for this analysis, the N, — tqq branching
fraction is close to 100%.

The dominant SM processes that contribute to the backgrounds in this search are, in order of importance: tt production
with a t lepton pair in the final state, QCD multijet production, and Z or W boson production with additional jets. All
these backgrounds are estimated from simulation, except for QCD multijet production, which is estimated from control
samples in data.

The results are presented as upper limits at 95% CL on the signal production cross sections. Maximum likelihood fits
are performed using the final m(ty, ¢, Ty, 5,1, j2s pr ) observable—a partial mass observable constructed from the system
formed by the two tau leptons, the two jets, and the py > —to derive the expected and observed limits. Fig. 79 (left) shows
the expected and observed limits on the cross section, as well as the theoretical signal prediction [287,288] as a function of
My . - For heavy neutrino models with strict left-right symmetry and assuming only the N, flavor contributes significantly
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Fig. 79. Upper limits at 95% CL on the product of the cross section and the branching fraction for the production of Wy bosons decaying to N,
as function of the Wy boson mass (left). The observed (expected) limit is shown as solid (dashed) black lines, and the inner (green) band and
the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only
hypothesis. The theoretical cross section is indicated by the solid blue line. Expected and observed limits at 95% CL on the product of the cross
section and the branching fraction for Wy — Nt as a function of my, . and my_/myy . (right).

Source: Figures taken from Ref. [286].

to the Wy decay width and the N, mass is O.SmWR, Wy masses below 3.50 (3.35)TeV are observed (expected) to
be excluded at 95% CL. This result is the most stringent limit to date in the considered model context. Fig. 79 (right)
shows the upper limits on the product of the production cross section and branching fraction, as a function of my, . and
X = my /mWR. The signal acceptance and mass shape are evaluated for each (mWR, Xx) combination and used in the

limit calculation procedure described above. The lower limits on the W mass depend on the N, mass. Masses below
My, = 3.52 (2.75) TeV are excluded at 95% CL, for the benchmark scenarios assuming the N, mass is 0.8 (0.2) times the
mass of the Wy boson.

10.3.2. Search for HNLs from right-handed Z bosons

In this section, we review the search for pair-produced right-handed Majorana neutrinos from the decay of an
additional heavy neutral gauge boson Z’ introduced in the LRSM, using the full Run 2 data set [289]. The selected events
are first categorized by the flavor of the charged leptons (electrons and muons) mixing with N. In addition, two or more
jets with various combinations of jet cone sizes are selected to exploit the full parameter phase space. These selected
final-state objects are all used to reconstruct the Z' boson, with the aim of searching for an excess of events in its invariant
mass distribution. In this search, the charge of leptons is inclusively considered with no separation between SS and 0S
dilepton signal event yields. The mixing of heavy neutrinos is assumed to only occur with SM neutrinos of the same flavor.

The event topology of this signal process strongly depends on the mass difference between the Z’ boson and the HNL
(N). If the ratio 2my /m,,/ is large enough, i.e,, close to unity, the lepton and two quarks from the decay of the HNL are
spatially well separated, and reconstructed as one lepton satisfying certain quality isolation criteria and two small-radius
jets. In contrast, if the ratio is much smaller than unity, due to the high Lorentz boost of the HNL its decay particles are
collimated, allowing it to be detected as one large-radius jet. In such cases, leptons may be considered either encompassed
in the large-radius jet or as an isolated lepton outside the jet.

Considering all possible event topologies discussed above, three different SRs are defined based on the multiplicity of
large and small-radius jets. The first signal region, SR1, consists of having no large-radius jet present in the event, but
requires the presence of two isolated leptons and at least four small-radius jets. In the second signal region, SR2, one
large-radius jet is required along with at least one isolated lepton and two small-radius jets. The third signal region, SR3,
requires at least two large-radius jets to be present in the event. For all SRs, the analysis is restricted to regions in (my,
m,) where the background is low, namely my > 80 GeV and m,, > 300 GeV.

A binned maximum likelihood fit is performed using the m,,, distribution to extract the signal process. No significant

excess in data with respect to the SM prediction is observed. The upper limits are shown in Fig. 80 in the two-
dimensional my-m, plane for the dielectron and the dimuon channel separately. The signal parameter point (m,/, my) =
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Fig. 81. Summary of searches at the CMS experiment for Majorana HNLs in the context of the LRSM model. The observed limits at 95% CL in the
two-dimensional my -my, plane are shown in the electron and muon channel (left and right, respectively).

(4.6, 0.1)TeV in the dielectron channel corresponds to the maximum local significance of 3.32 standard deviations. The
observed (expected) lower limit at 95% CL on the mass of the Z’ boson is 3.59 (3.90)TeV and 4.10 (3.86)TeV in the
dielectron and dimuon channel, respectively, for scenarios where my = m,,/4. For a small mass my = 100GeV, an
example point in the parameter space in which the HNL is highly Lorentz boosted, the observed (expected) lower limits
are m,» = 2.79 (3.12) TeV in the dielectron channel and 4.38 (4.22) TeV in the dimuon channel. The use of a dedicated SR
for boosted N event topologies provides a significant improvement in the sensitivity. Scenarios assuming My > My in
the ee channel show weak sensitivity. This is because a requirement is placed on the energy fraction between HCAL and
ECAL deposits as part of the trigger used for the electromagnetic objects, to improve selectivity.

10.3.3. Summary and complementarity of channels

Two searches for LRSM HNLs are summarized in Fig. 81: the searches for W — £N and Z' — NN. The Wy search
sets the most stringent limits on my as a function of my; _ thanks to the larger production cross sections. Diagonal lines
represent mass constraints in both channels as the searghes are performed under the assumption that N is produced
on-shell. A weak sensitivity for the parameter space where My > My in the ee channel for the Z’ search is observed
due to trigger requirements.
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10.4. Heavy composite Majorana neutrinos

In this section, we review a search for heavy composite neutrinos N,, introduced in Section 9.4. These HNLs are
produced in association with a charged lepton and decay to a charged lepton and a pair of quarks, leading to the
experimental signature ££qq’, where £ is either an electron or a muon [290]. Because the N, is a Majorana lepton at
the TeV scale, the expected signal is characterized by two leptons ¢ that may be of the same or opposite sign, but are of
the same flavor. The analysis focuses only on the cases in which these leptons are both electrons or both muons, and the
quark pair is detected as a large-radius jet. For gauge-mediated decays of the N,, the fragmentation products of the two
quarks from the W boson decay typically form at least one large-radius jet. In the case of contact-mediated decays, the
two quarks are well separated, but at least one of them will be contained within a large-radius jet. The signal simulation
shows that the efficiency for capturing one or both quarks in the jet is 98% for the Cl-dominated case my ¢ = 5 TeV, and

95% overall for the gauge or contact interaction with my , > 1TeV.

Events are selected with two same-flavor leptons, and jets are reconstructed as large-radius jets (labeled as “J”). The
large-radius jets are required to have p; > 190GeV, |n| < 2.4, and to be separated from leptons by AR > 0.8. Studies
in simulation demonstrate that requiring one or more large-radius jets guarantees high signal efficiency for events with
two leptons and is suitable for N, decays through both the gauge and the contact interactions. The SR for the search for
heavy composite Majorana neutrinos is defined by requiring two leptons, selected without specifying the sign, with the
invariant mass m,, > 300 GeV and at least one large-radius jet. Restricting to the high-mass region allows for reducing
the contributions from DY and part of the tt background processes without affecting the signal acceptance. Evidence of
a signal is searched for by considering the distribution of the mass of the two leptons and the leading-p; large-radius jet,
my, ;. This observable provides good discrimination between the signal and the SM background contributions, but is also
naturally correlated with the mass of the heavy composite neutrino. In addition, two SM-dominated CRs are included
in the maximum likelihood fit that help constrain the major background sources. The DY background contribution is
estimated from simulation, corrected by scale factors that adjust the simulated m,,; shape to match the observed data.
An SF for each m,,; bin and each data-taking year is taken from the DY-dominated m,, region around the Z boson mass
peak, 60 < m,, < 120GeV. A DY CR is then defined that adopts the same criteria as the SR except in an m,, sideband,
150 < my, < 300GeV, that lies adjacent to the SR. This CR provides the validation of the corrected simulation and
improves the precision of the background prediction. The second most important background arises from the leptonic
decays of top quarks from tt and single top quark production. The m,,; shape of this background is taken from the
simulation, with a free normalization parameter in the fit for each year of data taking. To constrain these parameters, a
top quark enriched CR is included in the fit, selecting SR events but requiring one muon and one electron in the final
state. After performing the fit, the data and expected SM background contributions agree well, and no excess of events
above the expected background is observed.

The upper limits at 95% CL on the N, mediated process cross section are derived using the m,,; mass distributions of
the estimated backgrounds, the expected signal, and the observed data. The expected limits for the eeqq’ channel and the
ppqq channel, displayed in Fig. 82, provide an exclusion down to cross sections of the order of 10°* pb for a vast range
of N, signal hypotheses. The limits on the process cross section may also be presented in the two-dimensional plane
my, - A for a more practical comparison with the unitarity restrictions on the parameter space. The results are shown in

Fig. 83 for both channels. For the case of A = my,, the existence of N, (N, ) is excluded for masses up to 6.0 (6.1) TeV at

95% CL, improving by more than 1TeV the world’s most stringent limit on this kind of resonance [291]. These results are
safe from a potential violation of the underlying EFT assumptions. Moreover, the accessible range of A is almost twice
the one reached in the previous search, extending the sensitivity to ~20TeV at lower N, masses.

10.5. Future prospects for HNLs at the LHC

The HNL search program of the CMS experiment offers a comprehensive insight into HNL production, decay, and the
associated experimental constraints. Various theoretical models and several different and novel experimental methodolo-
gies are considered in these searches. In this report, we have reviewed all HNL results using data collected by the CMS
detector during Run 2.

A straightforward and natural way to enhance the reach of HNL searches is to utilize the Run-3 data set collected by
the CMS detector. Combining data from both Run 2 and Run 3 allows for the exploration of a significantly larger parameter
space for prompt HNLs, particularly in searches for prompt N — £qq  decays, given that the existing analysis has been
conducted using the 2016 data set only. Additionally, during Run 3, the search for HNLs in the WW VBF t channel,
analogous to double beta decay, can be expanded using newly developed trigger techniques, called VBF parking [272], to
maximize the efficiency in triggering on VBF events.

Furthermore, HNL production through the decay of Z bosons to active neutrinos, where at least one active neutrino
mixes with the HNL in the N — ££v channel within the Type I seesaw model, remains unexplored. For high masses,
where HNL decays are prompt, missing transverse momentum and lepton triggers can be utilized for this search. Similar
searches exist in the context of the LRSM model, but they probe very high-mass HNLs, starting from 400 GeV, and in the
semihadronic decay channel only.

648



The CMS Collaboration Physics Reports 1115 (2025) 570-677

5 138 fb” (13 TeV) » 138 fb” (13 TeV)
S 10 o e T Ll S I I I I UL IR IS I
[=% E . ] Q E . J
= C ‘C‘MS — Observed ] = C QMS — Observed ]
'% i ' B 68% CL expected | '% i B 68% CL expected |
[ 95% CL expected | | 95% CL expected |
2N . N, (A=13TeV) 3 A N, (A=13Tev) 3
=z ] = r ]
Pl 1 f
8 qo4k E g 10tk E
) E = s} = =
10° 5 10° E
T S S T T I R T N A R B BT I S IR I s

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
my [TeV] my [TeV]

e 0

Fig. 82. Expected (dashed black) and observed (blue solid) exclusion limits for the eeqq’ (left) and puqq (right) channels in the search for heavy
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Source: Figures taken from Ref. [290].
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Source: Figures taken from Ref. [290].

For the long-lived HNL searches, the Z boson decay channel may yield more stringent limits. Despite the lower
production cross section of Z bosons compared to W bosons, this approach has the potential to improve the sensitivity to
HNL production, given the clean signature in the absence of QCD multijet background. This may be achieved by utilizing
dedicated triggers for displaced leptons, as illustrated in Fig. 84.

Finally, a similar signature can be probed through the decay of the Higgs boson to active neutrinos. The Yukawa
coupling within the framework of the Type I seesaw model is very low, of the order of 1077, making this channel
challenging to probe. However, in models where Yukawa couplings are of the order of 1, such as in the inverse seesaw
mechanism [294], the sensitivity to such decay channels increases significantly. This specific channel not only allows for
the search for HNLs but also provides more insight into the relationship between the neutrino and the Higgs boson in
general.

11. Summary

In this report, the physics program of the CMS experiment has been summarized for searches for physics beyond the
standard model (SM) in the context of models that introduce vector-like quarks (VLQs), vector-like leptons (VLLs), and
heavy neutral leptons (HNLs). Each of these three model classes provides a complementary perspective on the origin of
mass of fundamental particles. The VLQs extend the SM with nonchiral partners of SM quarks, and the searches focus
on VLQs that couple to the third-generation quarks. The VLLs, introduced in a class of models that can be particularly
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Fig. 84. Coverage in the (pr, dy) plane for displaced leptons with the 2016 and 2018 triggers, and the new Run-3 triggers, indicated in light blue,
dark blue, and red, respectively [293]. Here, d is the impact parameter of the charged lepton track with respect to the PV in the transverse plane.

sensitive to leptonic anomalies, correspond to an analogous extension of the leptonic sector of the SM. These searches
target charged-lepton partners. The HNLs provide yet another perspective on the interplay between chirality and neutrino
mass-generating mechanisms, and produce distinct prompt and displaced signatures in the detector.

These searches probe unexplored areas of parameter space in several models beyond the SM, using Run 2 proton-
proton collision data sets collected by the CMS detector during the years 2015 to 2018 corresponding to an integrated
luminosity of up to 138 fb~'. Two new statistical combinations of searches for VLQs have been performed. Pair production
of B quarks with mass below 1.49TeV is excluded at 95% confidence level for any third-generation decay of the B quark.
Single production of T quarks in the narrow-width approximation is excluded at 95% confidence level for T quark masses
below 1.20 TeV. No evidence for physics beyond the SM has been observed, and stringent exclusion limits on new fermion
masses and couplings have been placed. One search for VLLs, detailed in Section 8.3, shows a modest excess of the observed
data over the background-only prediction that requires further investigation using more data. No VLQ and HNL searches
report excesses.

Using projections in the context of the future High-Luminosity LHC (HL-LHC) and the corresponding upgrades to the
CMS detector, an increased discovery reach of new fermions well into the TeV energy domain is expected. Although the
environment of the HL-LHC with many simultaneous collisions will present new challenges for particle reconstruction
and identification, searches for new fermions will benefit from the increased collision energy, unprecedented integrated
luminosity, and the planned detector upgrades. Many of the searches presented in this report rely on identifying jets from
the decays of massive SM particles, or feature high-pseudorapidity jets from t-channel or vector boson fusion production
modes. The expansion of the tracker volume and significant upgrades of the endcap calorimeter and muon detectors will
provide improved jet reconstruction and identification at high pseudorapidity in the HL-LHC era.

There are still unexplored regions of parameter space in various models beyond the SM involving VLQs, VLLs, and HNLs
within reach of the LHC, that can yield a first glimpse of new physics in the near or longer term. This includes considering
nonminimal VLQ extensions such as decays of VLQs to scalar or pseudoscalar bosons, exploring VLQ production modes
such as electroweak pair production, and expanding the searches for VLQs assuming a finite decay width. Manifestations
of VLLs in other models and final states than currently probed may also be considered, involving final states with muon
detector shower signatures, final states with highly Lorentz-boosted decay products, or vector boson fusion modes of
VLL pair production. Future runs of the LHC will bring great opportunities to explore new model phase spaces, detector
upgrades will provide improved particle reconstruction, and continued efforts in innovating analysis techniques will
further enhance the potential to discover new physics.
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Appendix A. Glossary of acronyms

BDT
BSM
CHS
cl

L
CMS
cP
csc
CR
DDT
DNN
DT
ECAL
EFT
EW
FSR
HCAL
HL-LHC
HNL
ISR
JER
JES
LH
LHC
LLP
LNC
LNV
LO
LRSM
MC
MDS
ML
MLP
NLO
NN
NNLO
NWA
0S
OSSF
PDF
PF
PUPPI
PV
QCD
RH
RPC
SF
SM

Boosted decision tree

Beyond the standard model
Charged hadron subtraction
Contact interaction
Confidence level

Compact Muon Solenoid
Charge conjugation parity
Cathode strip chamber
Control region

Designed decorrelated tagger
Deep neural network

Drift tube

Electromagnetic calorimeter
Effective field theory
Electroweak

Final-state radiation

Hadronic calorimeter
High-Luminosity Large Hadron Collider
Heavy neutral lepton
Initial-state radiation

Jet energy resolution

Jet energy scale

Left handed

Large Hadron Collider
Long-lived particle

Lepton number conservation (or conserving)
Lepton number violation (or violating)
Leading order

Left-right symmetric model
Monte Carlo

Muon detector shower
Machine learning

Multilayer perceptron
Next-to-leading order

Neural network
Next-to-next-to-leading order
Narrow-width approximation
Opposite sign

Opposite-sign same flavor
Parton distribution function
Particle flow
Pileup-per-particle identification
Primary vertex

Quantum chromodynamics
Right handed

Resistive plate chamber

Scale factor

Standard model
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SR Signal region

SS Same sign

NY% Secondary vertex
VBF Vector boson fusion
VLL Vector-like lepton
VLQ Vector-like quark
2D Two-dimensional
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