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Abstract

®

CrossMark

The production of a pair of T leptons via photon—photon fusion, yy — 717, is observed for the
first time in proton—proton collisions, with a significance of 5.3 standard deviations. This
observation is based on a data set recorded with the CMS detector at the LHC at a
center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb~!.
Events with a pair of T leptons produced via photon—photon fusion are selected by requiring

them to be back-to-back in the azimuthal direction and to have a minimum number of charged
hadrons associated with their production vertex. The T leptons are reconstructed in their leptonic
and hadronic decay modes. The measured fiducial cross section of yy — TT is

oggs = 12.43 213 fb. Constraints are set on the contributions to the anomalous magnetic moment

(a-) and electric dipole moments (d-) of the T lepton originating from potential effects of new

physics on the yTT vertex: ar = 0.00091'8:832% and |d.| < 2.9 x 10~ ecm (95% confidence

level), consistent with the standard model.

Keywords: CMS, exclusive production, taus

1. Introduction

The production of lepton pairs via photon—photon fusion in
proton—proton (pp) collisions draws significant interest since
it is a pure quantum electrodynamics (QED) process at leading
order, for which the theoretical cross section can be calculated
with uncertainties below 1% [1]. If both protons remain intact

Original Content from this work may be used under the

BV terms of the Creative Commons Attribution 4.0 licence. Any
further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

after their electromagnetic interaction, the final state has a par-
ticularly clean topology characterized by two leptons emit-
ted back-to-back in azimuth and without any hadronic activ-
ity surrounding it. Although the photon-fusion production of
dileptons in hadronic collisions has been measured precisely
for electrons and muons [2-8], a similar experimental preci-
sion is lacking for T leptons [9, 10]. The photon-fusion channel
has long been proposed to probe the Y — T coupling at hadron
colliders [11-14], because the short T lepton lifetime makes
other measurements difficult.

The most general form of photon—lepton coupling (iel'*)
satisfying Lorentz invariance is:

v
a'q,

I =y F (¢*) + [iF2 (¢*) +F3(q*)vs], (D)
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where o = i[y,,,y,]/2 is the spin tensor proportional to the
commutator of the gamma matrices, ¢ is the momentum trans-
fer between incoming and outgoing leptons of mass m, and
Fi(¢*) (i =1,2,3) are form factors that contain the complete
information about the electric and magnetic couplings of the
lepton. Beyond serving as a sensitive test of QED interactions,
the photon—photon production process also offers insights
into the anomalous electromagnetic moments of the lepton
(U=e,u,1),F,(0)=ay=(g¢—2)/2and F3(0) = —2md; /e,
and is a powerful probe of physics beyond the standard
model (BSM). In this expression, the gyromagnetic ratio gy
is a constant term that relates the magnetic moment of the
lepton to its spin, and d, is the lepton anomalous electric
dipole moment. The one-loop contribution to a, is equal
to the so-called ‘Schwinger term’, which is common to all
leptons [15]:

ar = = ~0.00116, )
27

where « is the fine-structure constant.

The anomalous magnetic moment of the electron has been
measured to agree with the standard model (SM) with an
impressive precision of twelve significant digits [16, 17].
Measurements of a,, by the Muon g-2 Collaboration reach a
precision of ten significant digits and appear in conflict with
certain theoretical predictions [18-20]. If BSM effects scale
with the squared lepton mass, deviations of a. from the SM
predictions would be more than two orders of magnitude larger
than they are for a,,. The photon-fusion production of a pair of
T leptons probes the TTy vertex and can be used to measure a-,
which is predicted to be a = 1.17721 £0.00005 x 1073 in
the SM [21]. This same process can also be studied to constrain
d-, which, since there is no appreciable violation of charge-
conjugation and parity symmetries in the charged lepton sector
of the SM, is predicted to have a nonzero but tiny value [22].

The signal in this analysis is pp — p*)ttt=p*), where
p™) denotes a final-state proton that stays intact or fragments
after the photon emission. When both protons radiate coher-
ently a photon and remain intact after their interaction, the
process is called exclusive or elastic. Since the protons do
not dissociate, these events are characterized by the absence
of any hadron produced, other than those from the T lepton
decays. The photons emitted in the elastic processes are almost
on-shell, limiting their virtuality to small values (> — 0) [1],
and the produced T leptons are back-to-back in the azimuthal
direction. When one or both incoming protons fragment as a
result of photon emission, the process is called either single-
or double-dissociative. Single- and double-dissociative events
can also give rise to an elastic-like signature when the pro-
ton remnants are not reconstructed because they fall outside
of the detector acceptance. Figure 1 shows the three diagrams
considered here, contributing to the yy — TT process in pp
collisions.

The vy — TT process has been observed by the ATLAS
and CMS Collaborations in ultraperipheral collisions of lead
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Figure 1. Feynman diagrams for the production of T lepton pairs by
photon—photon fusion. The exclusive (upper), single proton

dissociation (middle), and double proton dissociation (lower)
topologies are shown.

P —>

ions [9, 10], and used to set constraints on a.. The observa-
tion was driven by signal events with a di-T invariant mass,
m+r, typically below 20 GeV. This paper describes the first
measurement of the photon-fusion production of a pair of T
leptons in pp collisions. Because of the trigger requirements,
experimentally accessible signal events have m.r > 50GeV.
The Tt production in this phase space has a much lower
cross section, but the integrated luminosity is much higher
than the one achievable with heavy ion collisions at the LHC.
Additionally, BSM effects from new heavy particles [23] are
enhanced at high mass, and the phase space accessible in pp
collisions is more sensitive to BSM scenarios with non-SM
a- and d. values than that accessible in ultraperipheral colli-
sions of lead ions. Outside of LHC experiments, constraints
on a. were previously set by the DELPHI, OPAL, and L3
experiments [24-26]. Constraints on d. were determined by
the Belle, L3, OPAL, and ARGUS Collaborations [25-28].
This paper is based on pp collision data at /s = 13 TeV col-
lected with the CMS detector in 2016-2018, corresponding to
an integrated luminosity of 138 fb~!. To select the signal, we
apply so-called exclusivity criteria, which rely on the kinemat-
ics of the di-T system and on the activity in the tracker part of
the detector around the di-t vertex. In particular, by select-
ing events with no track within 0.1 cm of the di-t vertex, we
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can reduce the background contributions by about three orders
of magnitude for a signal efficiency of around 50%. Such a
strategy has been used previously to identify similar photon—
photon processes in pp collisions [8, 29-33]. Four different
final states, corresponding to different decay modes of the T
leptons, are studied to measure the signal strength: ey, ety,
WTh, and T, Ty, Where Ty, denotes a T lepton decaying hadron-
ically. Events with two reconstructed muons are used to derive
corrections to the simulated samples. The visible mass of the
T candidates, m,js, computed as the invariant mass of the vis-
ible decay products of the two T leptons, is used as a biased
estimator of m. to extract the significance of the signal and
set constraints on a. and d-. Tabulated results are provided in
the HEPData record for this analysis [34].

2. The CMS detector

The central feature of the CMS apparatus is a superconducting
solenoid of 6 m internal diameter, providing a magnetic field
of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calor-
imeter (ECAL), and a brass and scintillator hadron calori-
meter (HCAL), each composed of a barrel and two endcap
sections. Forward calorimeters extend the pseudorapidity cov-
erage provided by the barrel and endcap detectors. Muons are
measured in gas-ionization detectors embedded in the steel
flux-return yoke outside the solenoid. A more detailed descrip-
tion of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables,
is presented in [35].

Events of interest are selected using a two-tiered trigger
system. The first level, composed of custom hardware pro-
cessors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within
a fixed latency of 4 us [36]. The second level, known as the
high-level trigger, consists of a farm of processors running a
version of the full event reconstruction software optimized for
fast processing, and reduces the event rate to around 1 kHz
before data storage [37].

3. Signal and background modeling

Signal samples corresponding to the elastic photon-fusion
production of a T lepton pair are generated using the
GAMMA-UPC generator [38], which is implemented in the
MADGRAPH5_aMC@NLO v3.5 code [39-42], including the ini-
tial photon kr effects . The GaMmMA-UPC generator derives
photon fluxes from electric dipole and charge form factors for
protons and ions, and includes realistic hadronic survival prob-
abilities for them.

The photon fluxes used here are those derived from the
elastic charge form factor of the proton. Samples generated
with the SUPERCHIC 4 generator [43] are used as a cross-check,
as described in section 7.

In this analysis, a; and d. are parameterized in
MaDGRrAPH5_aMC@NLO using the SMEFTsim package
[44,45], as suggested in [14]. The corresponding BSM

Lagrangian in the SM effective field theory (SMEFT)
approach consists of two dimension-6 operators modifying
a- and d. at tree level:

Cip—
Lpsm = TTZLLUIWTRHBMV

CTW

+A2

L 0" tga' HW,,, +h.c., 3)

where A is the scale of BSM physics, L; represents the
left-handed T lepton doublet, Tz corresponds to the right-
handed T lepton, H is an SU(2) scalar doublet, B,,,, is the
weak hypercharge field, W’/'W represents the weak isospin
field, and C.p and C.y are the Wilson coefficients. Using
the SMEFTsim_general_alphaScheme_UFO model [44, 45],
after electroweak symmetry breaking, the TTy vertex is para-
meterized as:

. w2 . .

Veey = iey" = 25 [Re [Coy ] 4+ Im [CoyJivs] o, (4)
where Ciy = costwCrp —sinfwCqrw, v~246GeV is the
Higgs vacuum expectation value, and 6y is the weak mixing
angle. Using equations (1) and (4), deviations from the SM
predictions of a. and d. can be expressed as:

_ e Ve 5)

da- A2

and

dd. = %Im [Cry]. (©6)
For simplicity and without loss of generality, since da.
and dd. only depend on the linear combination of Cry and
C+p, we set Cry to O in the signal simulation. The coeffi-
cient Cp alone is modified to simulate different C+,, values,
which can be reinterpreted as linear combinations of C.y and
C.p. The BSM contributions to the Z — Tt vertex cancel for
Cw = —tanfwCp, but other values of C.w would result in
variations in the Drell-Yan (DY) process prediction that are
negligible with respect to the systematic uncertainties of this
background, which are described in section 9. The simula-
tion of different anomalous electromagnetic moments is per-
formed using matrix element reweighting [46], scanning over
a range of C.p values. In the simulation, we set A to 2 TeV,
but the results were verified to be independent of the scale of
new physics. Since the anomalous electromagnetic moments
of the T lepton depend on a linear combination of Cy/A? and
C.p/A?, the analysis results can also be interpreted in this two-
dimensional plane. The form factor formalism of equation (1)
and the SMEFT approach are equivalent assuming ¢> = 0.
The camMA-UPC generator is also used to simulate the
elastic photon-fusion production of pairs of electrons, muons,
and W bosons, which are backgrounds in the signal region
(SR). Single- and double-dissociative processes are not sim-
ulated but estimated from data as described later.
The MADGRAPH5_aMC@NLO 2.6.5 event generator is
used to generate events originating from the Z/y* + jets
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and W +jets processes, as well as from diboson pro-
duction with two leptons and two neutrinos in the final
state. These processes are simulated at next-to-leading order
(NLO) with the FxFx jet matching and merging [41]. The
MADGRAPH5_aMC@NLO generator is also used for the sim-
ulation of the minor contribution from other diboson produc-
tion events, whereas POWHEG 2.0 [47-51] is used for tt and
single top quark production. The generators are interfaced with
PYTHIA 8.240 [52] to model parton showering and hadroniz-
ation, the underlying event activity, as well as the decay of
the T leptons. The pYTHIA parameters affecting the descrip-
tion of the underlying event are set to the CP5 tune [53].
The NNPDF3.1 parton distribution function (PDF) set [54—
56] at next-to-NLO accuracy is used for background simula-
tions. Additional pp interactions per bunch crossing (pileup)
are added to the simulated samples with a distribution that is
chosen to match that observed in the data. Generated events
are processed through a GEANT4 [57] simulation of the CMS
detector.

4. Obiject reconstruction

The global event reconstruction (also called particle-flow
event reconstruction [58]) aims to reconstruct and identify
each particle in an event, with an optimized combination of
all subdetector information. In this process, the identification
of the particle type (photon, electron, muon, charged hadron,
or neutral hadron) plays an important role in the determina-
tion of the particle direction and energy. Photons are iden-
tified as ECAL energy clusters not linked to the extrapola-
tion of any charged particle trajectory to the ECAL. Electrons
are identified as a primary charged-particle track and poten-
tially many ECAL energy clusters corresponding to this track
extrapolation to the ECAL and to possible bremsstrahlung
photons emitted along the way through the tracker material.
Muons are identified as tracks in the central tracker consist-
ent with either a track or several hits in the muon system
and associated with calorimeter deposits compatible with the
muon hypothesis. Charged hadrons are identified from the
charged-particle tracks that are not associated with electrons or
muons. Finally, neutral hadrons are identified as HCAL energy
clusters not linked to any charged-hadron trajectory, or as a
combined ECAL and HCAL energy excess with respect to the
expected charged-hadron energy deposit.

The electron momentum is estimated by combining the
energy measurement in the ECAL with the momentum meas-
urement in the tracker. The momentum resolution for electrons
with transverse momentum pr ~ 45GeV from Z — ee decays
ranges 1.6%-5.0%. It is generally better in the barrel region
than in the endcaps, and also depends on the bremsstrahlung
energy emitted by the electron as it traverses the material in
front of the ECAL [59, 60].

Muons are measured in the pseudorapidity range |n| < 2.4,
with detection planes made using three technologies: drift
tubes, cathode strip chambers, and resistive-plate chambers.
The efficiency to reconstruct and identify muons is greater

than 96%. Matching muons to tracks measured in the silicon
tracker results in a relative pr resolution of 1% in the barrel
and 3% in the endcaps for muons with pt up to 100 GeV [61].

Hadronic T lepton decays (1) are reconstructed from jets,
using the hadrons-plus-strips algorithm [62], which com-
bines 1 or 3 tracks with energy deposits in the calorimeters
clustered as strips. Neutral pions are reconstructed as strips
with dynamic size in 7-¢ (where ¢ is the azimuthal angle
in radians) from reconstructed electrons and photons, where
the strip size varies as a function of the pr of the electron or
photon candidate. The Ty, candidates are reconstructed in four
possible decay modes (DMs): a single charged hadron (h®),
a charged hadron with at least one neutral pion (h* + 79(s)),
three charged hadrons with no neutral pion (h*hTh*), or 3
charged hadrons with at least one neutral pion (h*hTh* 4
70(s)). To distinguish genuine T, decays from jets originating
from the hadronization of quarks or gluons, and from electrons
or muons, the DEEPTAU algorithm [63] is used. Information
from all individual reconstructed particles near the Ty, axis is
combined with properties of the T, candidate in the event.
The tight working point is used to separate T, candidates
from jets; its efficiency is about 65% for T, with 20 < pr <
100GeV [63]. The loosest working point, used in the back-
ground estimation procedure, has an efficiency above 98%.
The rate of a jet to be misidentified as T, by the DEEPTAU
algorithm depends on the pr and quark flavor of the jet. In
simulated events from W boson production in association with
jets, it has been estimated to be below the percent level for the
tight working point. The misidentification rate for electrons
(muons) is 2.60 (0.03)% for a genuine T}, identification effi-
ciency of 80 (>99)%.

The missing transverse momentum vector p** is computed
as the negative vector pr sum of all the particle-flow candid-
ates in an event, and its magnitude is denoted as s [64].
The ps is modified to correct the energy scale of the recon-
structed jets in the event. Anomalous high-p''s events can be
due to a variety of reconstruction failures, detector malfunc-
tions or noncollision backgrounds. Such events are rejected by
event filters that are designed to identify more than 85%-90%
of the spurious high-pi* events with a mistagging rate less
than 0.1% [64].

Tracks with pr > 0.5GeV and |n| < 2.5 are used in this
analysis to measure the hadronic activity in the event. The sil-
icon tracker used in 2016 measured charged particles within
the range |n| < 2.5. For nonisolated particles of 1 < pr <
10GeV and |n| < 1.4, the track resolutions were typically
1.5% in pr and 25-90 (45-150) um in the transverse (lon-
gitudinal) impact parameter [65]. At the start of 2017, a new
pixel detector was installed [66]; the upgraded tracker meas-
ured particles up to |n| < 3.0 with typical resolutions of 1.5%
in pr and 20-75 pm in the transverse impact parameter [67]
for nonisolated particles of 1 < pr < 10GeV.

During the 2016-2017 data taking, a gradual shift in the
timing of the inputs of the ECAL first-level trigger in the
region at |n| > 2.0 caused a specific trigger inefficiency [68].
For events containing an electron (a jet) with pr larger than
~50 GeV (=100 GeV), the efficiency loss is ~10%—-20%
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Table 1. Baseline selection criteria used in the different final states. The electrons, muons, and Ty, are required to be well identified and
isolated. The pr and pseudorapidity ranges correspond to different sets of triggers, and different data-taking periods.

eu €Th MTh ThTh b
% (GeV) >15/24 >25-33 — — —
[n°] <25 <2.1-2.5 — — —
Pr (GeV) >24/15 — >21-29 — >26-29/10
[n*] <24 — <2.1-24 — <24
1 (GeV) — >30-35 >30-32 >40 —
[n™] — <2.1-2.3 <2.1-2.3 <2.1 —
my, (GeV) — — — — >50
oS yes yes yes yes yes
|d.(¢,£")] (cm) <0.1 <0.1 <0.1 <0.1 <0.1
AR(L,£") >0.5 >0.5 >0.5 >0.5 >0.5
mr(e/upr, P (GeV) — — <75 <75 — —

in the region 2.5 < |n| < 3.0, depending on pr, 7, and time.
Correction factors were computed from data and applied to
the acceptance evaluated by simulation.

5. Event selection

Events in the SR are selected in the ey, ety, pTh, and Ty
final states, which account for 94% of the possible final states
with a pair of T leptons. The ee and pu final states have the
lowest branching fractions for di—T events and suffer from
large background contributions from the photon-fusion pro-
duction of electron and muon pairs, Yy — ee and yy — pp.
Therefore, they are not considered as part of the signal.
However, the pu final state, which, in comparison to the ee
final state, benefits from lower pr thresholds at trigger level
and higher lepton reconstruction and identification efficien-
cies, is used to derive corrections to:

e The pileup track density in all simulations, described in
section 6.1;

o The hard scattering track multiplicity in the DY and diboson
simulations, described in section 6.2;

o The elastic photon-fusion simulations to include dissociat-
ive contributions, described in section 7;

e The acoplanarity distribution in the DY simulation,
described in section 8.1.

In the ey final state, events are recorded with a combina-
tion of triggers requiring an electron and a muon, with a pr
threshold of 23 GeV for the leading lepton, and 8 (12) GeV
for the subleading muon (electron). Offline, the leading (sub-
leading) lepton is required to have pr > 24 (15) GeV. The sub-
leading lepton pr threshold is chosen to reduce background
processes with misidentified jets. In the ety () final states,
events are recorded with single-electron (single-muon) trig-
gers with pr thresholds ranging between 25 and 32 (24 and
27) GeV depending on the data-taking year. Additional events
with e or upr as low as 24 (19) GeV and || < 2.1 can be selec-
ted using triggers requiring also the presence of a Ty, candid-
ate with pr > 20 (27) GeV and |n| < 2.1. In these two final
states, the Typr is required to be above 30 GeV offline and the

background from W + jets is reduced by requiring the trans-
verse mass mt between the e or pupr and ﬁ‘{‘iss to be less than
75 GeV. The events in the T, 7T, final state are selected with
triggers requiring the presence of two loosely isolated T, can-
didates with pr > 35-40 GeV, depending on the data-taking
year, and |n| < 2.1. The offline thresholds are pr > 40GeV
and || < 2.1 for all the data-taking periods. A trigger requir-
ing a single muon with pr > 24-27 GeV is used to select
events in the pu final state. Offline, the leading (subleading)
muon is required to have pr > 26-29 (10) GeV and || < 2.4.
The invariant mass of the two muons, m,,,,, must be greater
than 50 GeV.

In all final states, the two objects are required to be well-
identified and isolated, to have opposite sign (OS) charge, to
be separated from each other by AR =V (An)? + (A¢)? >
0.5, and to satisfy |d (¢,¢")] < 0.1cm, where |d,(¢,¢")] is the
difference in the longitudinal impact parameters of the two
objects. In each final state, we veto events that have additional
identified and isolated electrons or muons, such that one event
can enter at most one final state.

The criteria listed above and summarized in table 1 con-
stitute the baseline selection. Additional requirements are
applied to define the SR or the control regions (CRs) used
to derive corrections. Additional requirements increasing the
signal-to-background ratio in the SR using the characteristics
of the exclusive process signature are described in the follow-
ing paragraphs.

The acoplanarity, defined as:

A=1-]8¢(6,0")|/m, ™)
is typically small for events from the elastic photon-fusion pro-
duction, for which the leptons are produced back-to-back. In
the case of T leptons, A is computed using the visible decay
products, which are closely aligned with the original T lepton
before decay, especially at high pt. In the SR, the events are
required to have A < 0.015. This requirement has a signal effi-
ciency ranging from 95% in the ey final state to >99% in the
T, Ty, final state.

Elastic signal events are also characterized by a low track
multiplicity (Nyqacks) at the dilepton vertex. The dilepton ver-
tex position along the z axis is calculated as the average z of
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the two objects. The variable Ny,cks 1s estimated by counting
the number of tracks that have a z coordinate within a 0.1 cm
wide window centered around the dilepton vertex, removing
the tracks that were used to build the lepton candidates. The
window size is chosen such that about 50% of the signal events
have Niyacks = 0. This fraction is larger far from the beamspot
position (zps), where the contribution from pileup tracks is less
important. The SRs are defined with Nyas = 0 or 1. About
25% of the signal events have Nyacks = 1.

A low pileup activity in the tracker, corresponding to low
Niacks Values at the interaction vertex, impacts the identific-
ation of electrons, muons, and Ty, candidates, typically lead-
ing to a higher identification and isolation efficiency. Scale
factors are computed to match the simulated efficiencies to
the observed efficiencies for objects surrounded by a low track
activity at their vertex.

6. Corrections to the simulated track multiplicity

The simulations are corrected to accurately describe Nycs-
We derive corrections for two sources of tracks: tracks origin-
ating from the pileup (section 6.1) and tracks originating from
the hard scattering and underlying event activity (section 6.2).
They are derived from the dimuon CR and applied to simula-
tions in the SRs.

6.1 Tracks originating from pileup

While the pileup multiplicity in simulation is reweighted to
match that observed in the data, the pileup track density along
the z axis in simulation needs to be corrected to better describe
Niracks at the dilepton vertex. First, the simulations are cor-
rected, independently for each data-taking period, such that
the zgs and beamspot width (ogg) distributions are similar
to the observed ones. In data collected between 20162018,
zgs (oBs) is approximately in the range between —0.5 and
+1.2 cm (3.1 and 4.2 cm). The pileup tracks are redistributed
accordingly along the z axis, as explained below. Simulated
events originally all have ogs = 3.5 cm, whereas the observed
ops distribution is spread between about 3.0 and 3.8 cm.
Simulated events are assigned randomly corrected beamspot
properties, zgg' and ogg", following the corresponding profiles
in data. The z positions of pileup tracks, identified as such
using generator-level information, are corrected for beamspot
effects:

o
sim
sim (Z —ZBS ) : ®)

BS

ZCOIT — Z%Ol‘l‘ +

A residual correction to the pileup track density is derived
inaZ — pp CR, defined with the selection criteria for the pp
final state detailed in section 5, with the additional require-
ment that m,, is within 15 GeV of the Z boson mass, mz.
The track multiplicity is counted in data and in simulation in
windows of 0.1 cm along the z axis, for windows centered

at least 1 cm away from the reconstructed dimuon vertex,
as illustrated in Figure 2. This last requirement ensures that
all tracks in the windows come from pileup and not from
the hard-scattering interaction. Weights are derived as func-
tions of the pileup track multiplicity and window z posi-
tion so as to match the Ny, distribution of the observed
events. Distributions of the number of pileup tracks, N0,
are shown for the measured events, and for the uncorrected
and beamspot-corrected simulations in figure 3, for windows
with different z positions. About one third of the windows situ-
ated at the beamspot center do not have any pileup track. This
fraction reaches about 50 (80)% one (two) beamspot width(s)
away from the beamspot center. The correction to the simu-
lated event weight is in the range 0.89—1.00 (0.93—1.16) for
NPUL =0 (NPY, = 1) over the whole z axis and data-taking

periods. It is evaluated at the z position of the selected dilepton
candidate.

6.2. Tracks originating from the hard scattering and
underlying event activity

The only major background in the SR estimated using simu-
lation is the DY production of a lepton pair. The number of
tracks coming from the hard scattering interaction is not well
described in the simulation, and corrections are derived from
the same Z — pp CR, in which m,,, is required to be within
15 GeV of mz, by comparing the number of tracks around the
reconstructed dimuon vertex between data and simulation.

As shown in figure 4, the simulation is split into
several components depending on the number of tracks
with pr>0.5GeV and |n| <2.5, identified as originat-
ing from the hard scattering interaction using generator-
level information, and not matched to the selected muons.
The total number of reconstructed tracks, excluding the
two muon tracks, is the sum of these tracks and those
associated with pileup interactions: Nygeks = NS, -+ NPU,
Events from the exclusive photon-fusion production of a
pair of muons or W bosons, which contribute signific-
antly only at low Nyqcks, are estimated from simulation and
subtracted.

The pileup track density is first corrected with the weights
described in section 6.1, whereas the reweighting factors for
each DY component with a given number of Nfrlfcks is determ-
ined iteratively by matching the simulation to the observed
data, starting from events with Nyacks = 0, to which only the
simulated component with N3, = 0 contributes. The correc-
tions are determined separately for the different data-taking
years. We checked that the requirement for m,,,, be compatible
with my introduces a bias for events with large dilepton mass,
which is negligible with respect to other systematic uncertain-
ties described in section 9. The event weight correction is as
low as 0.61 +0.04 (0.76 £0.04) for N5, =0 VI, =1).
This correction is also applied to the minor diboson back-
ground with 2 leptons and 2 neutrinos in the final state, which

has the same generator settings as the DY simulation.
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Figure 2. Schematic view of the 0.1 cm wide windows probed along the z axis to derive corrections to the pileup track density in
simulation. Windows within 1 cm from the dimuon vertex, illustrated with the red box, are discarded so as not to count tracks from the
hard-scattering interaction. The green curve indicates the probability distribution of z-coordinates for PU vertices in the beamspot.

7. Signal estimation

The signal is modeled using events of elastic pp scattering. The
semidissociative and fully dissociative production modes are
much less likely to satisfy the acoplanarity and N,k require-
ment, but they contribute a nonnegligible number of events to
the SRs because of their larger cross sections.

The prediction from the elastic photon-fusion production
is rescaled to account for the semidissociative and fully dis-
sociative contributions. The scaling factor comes from data
observed in a yy CR, defined with the baseline selection sum-
marized in table 1 and Ny, = 0 or 1 and A < 0.015 as addi-
tional requirements. To perform this measurement, the inclus-
ive backgrounds, dominated by the DY production of a muon
pair, are estimated together from observed events. Their m,,,
distribution is taken from observed events with 3 < Nicks <
7. These thresholds ensure that the photon-fusion contribu-
tions are negligible, while preserving the m,,,, distribution. The
compatibility of the m,,,, distributions in inclusive events with
Niacks < 2 and 3 < Nyacks < 7 was verified in simulation. The
m,,, distribution is scaled so that the inclusive background
normalization in the range |m,,, — mz| < 15GeV matches the
event count observed in the same range. The yy — pu predic-
tion for the elastic production is then rescaled to match the dif-
ference between the experimental data and the inclusive back-
grounds away from the Z peak region, as shown in figure 5.

Assuming no dependence on the dilepton mass, my,, the
scaling factor to include the dissociative contributions is
2.70 £0.04 (2.71 £ 0.10) for Nyacxs = 0 (1), where the uncer-
tainty is statistical only. This is compatible with the value
predicted by the SUPERCHIC generator, using the same aco-
planarity requirement A < 0.015. The scale factor is also fit-
ted as a linear function of m,,, which demonstrates a bet-
ter 2, and, in that case, is equal to 2.36 + 0.0034 mW/GeV
(2.3840.0032 m,,,,/GeV) for Niacks = 0 (1). The fit probab-
ility is also better with a linear function for the predictions of
the SUPERCHIC generator, and a comparable parameterization
is obtained. A linear dependency of the scaling factor with
myy 1s assumed as a nominal correction in the SRs, whereas
the flat value is considered as a systematic uncertainty as
detailed in section 9. Elastic events in the SR, coming from the
Yy — 1t/ee/pupn/WW simulations, are all rescaled with this

correction as a function of the dilepton or diboson mass, to
include semidissociative and fully dissociative contributions.

8. Background estimation

In the SR, the dominant backgrounds are the DY produc-
tion of a lepton pair and processes with a jet misidenti-
fied as an electron, a muon, or a T, candidate, collect-
ively denoted as ‘jet mis-ID background’. This background
is dominantly composed of W + jets and quantum chromo-
dynamics (QCD) multijet events. The photon-fusion produc-
tion of a pair of W bosons is reduced with the acoplanar-
ity requirement, and is significant only in the ey final state,
where its expected contribution is about 4% of the exclus-
ive di-t production. The photon-fusion production of an elec-
tron (muon) pair is about 50 (4)% of the expected sig-
nal contribution in the ety (uth) final state. When there
is no exclusivity requirement relying on A or Niyqcks, the
tt, inclusive diboson, and single top quark processes also
contribute.

8.1. Drell-Yan background

The DY background is estimated using simulation. The cor-
rections described in section 6 are applied to improve the
description of N°U, and NS, . The acoplanarity is observed
to be mismodeled by simulation in a pp CR, defined with the
baseline selection criteria from section 5 and further enriched
in DY events by requiring |m,,, —mz| < 15GeV. An aco-
planarity correction, measured in two-dimensional bins of the
pr of both muons, is derived in this CR by matching the sim-
ulation to the observed data. The correction is obtained by
fitting the ratio of data-to-simulation with a polynomial for
A < 0.35. For illustrative purposes, the distributions and cor-
rection obtained for all muon pr bins merged together are
shown in figure 6, using data collected in 2018. This acoplanar-
ity correction is applied to simulated DY events in the SR on
the basis of the generated T lepton pr before their decays.
The size of the DY simulation in the final state of a pair
of electrons, muons, or T leptons is limited, and large stat-
istical uncertainties arise when requiring Nygeks = 0 or 1. To
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Figure 3. Distribution of Nhu,, in windows of 0.1 cm width along
the z axis for the observed events (black), uncorrected simulation
(red), and beamspot-corrected simulation (blue) for data collected in
2017. The windows shown here are located at the beamspot center
(upper), and one (middle) or two (lower) beamspot widths away
from the center. The ratio of beamspot-corrected simulation to
observation (lower plots) is taken as a residual correction to the
simulations. The last bin includes the overflow. Similar distributions
and corrections are derived independently for the other data-taking
periods.
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Figure 4. Distribution of the number of reconstructed tracks in a
0.1 cm wide window in the z direction, centered on the dimuon
reconstructed vertex, for acoplanarity A < 0.015, in data collected in
2017. The DY simulation is split into several components based on
the number of reconstructed tracks originating from the hard
interaction. The red line shows the simulation before the correction.
The black points show the observed data after subtracting the
expected background contribution from the yy — pp and

vy — WW processes (dashed orange line). The last bin includes the
overflow. Similar distributions and corrections are derived
independently for the other data-taking periods. The ratios between
the observed data, from which the exclusive background
contributions have been subtracted, and the DY prediction before
(red) and after the corrections (black), are shown in the lower panel.
The region with the selection requirement Nycks = 0 or 1 used in
the SR is highlighted with the orange shaded area in the lower panel.

reduce this effect, the DY contribution in the SR is estim-
ated from simulated events with N,cks < 10, which constitute
about 10% of the total number of DY events. The upper bound
ensures a similar event topology as in the SR, ensuring that no
bias is introduced to the m... distributions, as verified in sim-
ulation. The distribution derived with Ny, < 10 is scaled to
predict the DY events with Ny,cxs = 0 or 1. The scale factors
are derived in the ey final state with a simulation with a large
number of Z /y* — TT events with only leptonic T decays. All
the corrections described in section 6 are applied to predict the
DY yield in the eu final state with Nyaexs = 0, 1, or <10. The
scale factors are equal to (2.48 4 0.05)% and (5.10 +0.07)%,
for Nyacks = 0 and 1, respectively. In the eu final state, the large
simulation with leptonic T decays is used instead of reweight-
ing events with Nyexs < 10.

8.2. Backgrounds with misidentified jets in the ety and uty,
final states

The mis-ID background with a jet misidentified as a T, candid-
ate is estimated from the experiment. In the et and pty final
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Figure 5. Measurement of the scale factor for the elastic exclusive
signal in g events for Niyacks = 0 (upper) or 1 (lower), and

A < 0.015. The shape of the inclusive background (blue) is
estimated from the observed data in the 3 < Nyaceks < 7 sideband,
and rescaled to fit the observed data in 75 < m,,;, < 105GeV. The
scale factor is fitted in the lower ratio panel with constant (red) and
linear (blue) functions. The vertical error bars indicate the statistical
uncertainty in the number of observed events.
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Figure 6. Acoplanarity distribution for the observed events and in
DY simulation before correction, in the 2018 data-taking period.
The background prediction is normalized to match the observed
yield and only the statistical uncertainty is shown. The
data-to-simulation ratio is fitted with a polynomial to obtain the
correction. The selection criterion A < 0.015 used in the SR is
highlighted with the orange shaded area in the lower panel.

states, the dominant processes contributing to the mis-ID back-
ground are W + jets and QCD multijet events. The jet misiden-
tification factors (MFs) depend on the process because of dif-
ferent topologies and jet flavors, and they are therefore meas-
ured in two different CRs. A CR enriched in W + jets events is
built by requiring mt > 75GeV, whereas a QCD-enriched CR
is obtained by requiring the two objects to have same-sign (SS)
charge. There is no requirement on N,k at this stage. In these
CRs, the MFs are measured for each data-taking period, sep-
arately for each T, DM (DM™), by taking the ratio of events
in which the Ty, candidate passes the SR 1y identification cri-
teria, to events in which the 1y, candidate fails these criteria but
passes looser ones. Events where the T, candidate is genuine or
corresponds to a misidentified electron or muon are evaluated
using simulation and subtracted from the CR. The MFs are fit-
ted as functions of the t,pr and range from about 0.03 for the
hTh¥h* + 7%s) DM, to about 0.40 for the h* DM. The MFs
are measured in events recorded with single-electron or -muon
triggers. The triggers that select T, candidates in addition to
electrons or muons, called ‘cross-triggers’, apply loose isol-
ation requirements to the T, candidates at trigger level, such
that the MFs are modified. The MF measured in events selec-
ted with cross-triggers is measured to be 1.7 times higher than
the average MF in events selected with single-lepton triggers,
and this factor is applied as a multiplicative correction to the
MFs for events recorded with a cross-trigger.
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Figure 7. Multiplicative Ny, cks-dependent corrections to the T,
MFs, w(Niacks, DM™), in the ety final state, in the high-mr (upper)
and SS (lower) CRs, for the h* + 7°(s) DM. The purple shaded area
corresponds to the fit uncertainty. The vertical error bars indicate the
statistical uncertainty in the MF correction factors measured in
individual Nycks ranges.

The track activity around the di-T system impacts the cal-
culation of the Ty, isolation, which enters the Ty, identification
discriminator, such that the MFs are expected to depend on
Niracks- For each 1, DM, the MFs determined for given ranges
of Niracks are divided by the average MF measured inclusively
in Niycks to obtain a multiplicative Ny,cks-dependent correc-
tion, w(Niracks, DM™), to the pr- and decay-mode-dependent
MFs determined previously. The corrected MFs can then be
written, for each CR, as:

MEeor (PT Th , DM™ , Viracks )

= MF (pr™, DM™) w (Nygeks, DM™) . ©)
The w(Niracks, DM™) corrections are measured for the com-
bination of the different data-taking years. Because statistical
uncertainties are large at 1ow Nyacks, W(Nygacks, DM™) is fit-
ted with an exponential function for Ny,s less than 10 or
15, depending on the T, DM, as shown in figure 7 for the
h® 4 7%s) DM in the ey, final state.

The total MF, MF', is computed as a weighted average of
the MFs determined in the high-mt and SS CRs, according to
the expected relative fraction of W 4 jets and QCD multijet
events:

corr
high-m>

MF*' = x%PMFQ" + (1 —x¥P)M (10)
where xQP = NQCD /(NQCD 4+ NW) The number of W + jets
events passing the baseline selection, NV, is determined from
simulations, whereas the same quantity for QCD multijet
events, NOCP | is taken as the difference between data and sim-
ulated predictions for other processes in the SS CR.

To estimate the mis-ID background in the SR in the ety
and Ty, final states, events passing the SR selection with the
exception that the T, candidate fails the T, nominal identi-
fication but passes looser criteria, are reweighted with MF'',
Contributions from events with real Ty, electrons, or muons
are estimated from simulation and subtracted from the anti-
isolated region.

8.3. Backgrounds with misidentified jets in the t,t, final state

In the T, T, final state, the mis-ID background is mostly com-
posed of QCD multijet events and the MFs are determined in
a single CR where the T, candidates have SS charge. The MFs
for the leading (subleading) Ty, are measured in events in which
the subleading (leading) T, passes or fails the tight identifica-
tion criteria. They are in the range 0.05-0.38 depending on the
Th DM.

The Nyacks-dependent correction is derived in a similar way
as in the ety and pty, final states, and is between 1.8 and 2.3 for
events with Ny = 0. In the T, Ty, state, the number of events
selected at low Nycks 1S larger because of the inversion of the
isolation of both T, candidates, and contributions from exclus-
ive dijet production become significant in the lowest Nyycks
bins, such that no fit is performed to the w(Nigcks, DM™) dis-
tributions. The values for Ny.cs = 0,1 are used without con-
straints events with Ny,cxs > 1.

In the SR, events in which the leading (subleading) T is a
misidentified jet are estimated by scaling by the MFs events
where the leading (subleading) Ty, is anti-isolated and the sub-
leading (leading) T, is isolated. These contributions include
events where both the leading and subleading T, candidates are
misidentified jets. To remove the double counting, events with
two misidentified jets are estimated by scaling events where
the two Ty, candidates are anti-isolated with the product of the
MFs for each object, and are subtracted.

8.4. Backgrounds with misidentified jets in the ey final state

In the ey final state, the mis-ID background with a jet misid-
entified as an electron or a muon, dominantly composed of
W +jets and QCD multijet events, is estimated from events
where the electron and muon have SS charge. Events passing
the SR selection with the exception that the electron and muon
have SS charge are reweighted with a two-dimensional scale
factor dependent on the electron and muon pr. This factor is
measured by taking the ratio of OS-to-SS events where the
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muon isolation is inverted, subtracting nonjet contributions
estimated from simulation. It is in the range 1.4-2.1, depend-
ing on the lepton pr.

A bias is introduced by the inversion of the muon isolation,
which modifies the background composition, and a correction
to the scale factor is measured by taking the ratio of the scale
factors measured in events where the electron identification is
inverted, and the muon isolation is inverted or not. The cor-
rection ranges between 1.0 and 2.7 depending on the lepton
pr.

A multiplicative correction for the dependency of the scale
factor on Nycks 1S measured by fitting the ratio of the scale
factors in exclusive ranges of Ny, cxs Over the average inclusive
scale factor. At Nyacks = 0, the correction is about 0.89 £ 0.07,
where the uncertainty is mostly from statistical origin.

Although the normalization of the jet mis-ID background is
estimated with the procedure described above, its my;s distribu-
tion is taken from SS data events with N,k < 10, from which
backgrounds other than the jet mis-ID component are subtrac-
ted using their simulated expectations. This method reduces
statistical fluctuations in the m,;s templates.

8.5. Other backgrounds

Minor contributions from diboson events to the SR, mostly
WW events, are estimated from simulation. The exclusive
vy = WW, vy — ee, and yy — uu events, which contribute
mostly to the eu, ety, and pty final states, respectively, are
estimated from the elastic production simulation and rescaled
with the same correction as the signal samples to include the
dissociative components.

The agreement between data and predictions is checked in
events passing the selection without the Ny,cxs and acoplanar-
ity requirements. The single top quark, tt, and Higgs boson
processes, which do not contribute to the SR with Nyaeks < 2,
are included using their prediction from simulation.

9. Systematic uncertainties

Systematic uncertainties are considered as nuisance paramet-
ers in the statistical procedure to extract the signal signific-
ance, the signal strength u, and constraints on a. and d-.
They are treated with either Gaussian (shape uncertainties)
or log-normal (normalization uncertainties) function priors
included in the likelihood function. The signal strength p is
defined as the ratio between the observed cross section of the
YY — TT process to the theoretical cross section predicted by
the GAMMA-UPC generator for the elastic production com-
ponent corrected by the multiplicative experimental scaling to
include dissociative contributions.

The integrated luminosities for the 2016, 2017, and
2018 data-taking years have 1.2%-2.5% individual uncertain-
ties [69—71], whereas the overall uncertainty for the 2016—
2018 period is 1.6%. The uncertainty in the DY (diboson pro-
duction) theoretical cross section is 2 (5)% [72].

The uncertainties in the electron and muon identification,
isolation, and triggering efficiencies are up to 2% per object.

Uncertainties related to the Ty, trigger efficiency depend on
DM™ and are up to 5%. Several uncertainties, stemming from
statistical and systematic sources in the measurement, affect
the T, identification, with different correlations across data-
taking years and various dependencies on the decay mode and
pr of the T, candidate. This uncertainty is up to 5% in the pr
range considered in this analysis, and propagates directly to
the measured signal strength. Electrons and muons misiden-
tified as 1, candidates, coming mostly from the Z/y* — ee
and Z/y* — pu processes, respectively, have normalization
uncertainties on the order of 10%. The uncertainty in the T,
energy scale is up to 1.2%, whereas electrons (muons) misid-
entified as T, have energy scale uncertainties up to 5 (1)%.
Multiplicative corrections to the identification and isolation
scale factors to account for the low-Ny,.s environment are
derived for T, candidates and electrons, as well as electrons
and muons misidentified as T}, candidates. Scale factors for
muons do not need to be adjusted for the 1ow-Nyqcks €nvir-
onment. The related uncertainties are 2.1% and 2.0% for T,
candidates and electrons, and 22% and 15% for electrons and
muons misidentified as T, candidates, respectively.

The uncertainty in the N'Y, = correction amounts to 2%,
which covers the effects of the beamspot width and posi-
tion correction. The uncertainty in the NS, correction is
taken to have the same magnitude as the relative fraction
of vy — pp/WW events in the CR where the correction is
derived, and it amounts to 6.5 (1.5)% in the Nyaes =0 (1)
category. The statistical uncertainty in the correction is neg-
ligible with respect to this systematic component. This uncer-
tainty contributes a 7% effect in the measured signal strength
as shown in figure 8(second line) and is among the leading
systematic uncertainties in this analysis.

The correction to the acoplanarity distribution in simulated
DY events leads to a 5% normalization uncertainty, arising
from the finite granularity used to bin the correction as a func-
tion of the pt of the two leptons. An uncertainty of 2.0 (1.4)%
is associated with the estimation of the DY events in the SR
with Nyacks = 0 (1) from simulated events with Ny < 10.
Uncertainties arising from the renormalization and factoriza-
tion scales, as well as from the PDF set, are also taken into
account for the DY simulation, after propagation to the aco-
planarity correction.

The uncertainty in the predictions of the jet mis-ID back-
ground in final states with T, candidates comes from several
sources:

o Statistical uncertainty in the inclusive MFs, growing linearly
to 50% for p1" = 300GeV, independently for each DM and
data-taking year;

o Statistical uncertainty in the Ny,cks correction, amounting to
18 (16, 6)% in the ety (14Th, ThTh) SRs;

e Systematic uncertainty in the inclusive MFs, coming from
the inversion of selection requirements to define the CRs,
reaching up to 10%;

e Systematic uncertainty in the calculation of the relative frac-
tion of W + jets and QCD multijet events in the ety and pty
SRs, leading to a 9% normalization effect;
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Figure 8. Postfit values of the nuisance parameters (black markers), shown as the difference of their best-fit values, é, and prefit values, 6,
relative to the prefit uncertainties Af. The horizontal error bars indicate the uncertainties in these measured postfit values. The impact Af
of the nuisance parameter on the signal strength is computed as the difference of the nominal best fit value of i and the best fit value
obtained when fixing the nuisance parameter under scrutiny to its best fit value 6 plus/minus its postfit uncertainty (blue shaded area). The
nuisance parameters are ordered by their impact, and only the 20 highest ranked parameters are shown.

e Systematic uncertainty in the N, cxs correction, arising from
the choice of the fit function and fit range, with an effect up
to 10% for Niaeks = 0.

Statistical uncertainties in the OS-to-SS scaling factor used
to evaluate the mis-ID background in the ey final state are
included, independently for each bin in the electron and
muon pr where the measurement is performed. A system-
atic uncertainty of 10% is added to cover for a potential
difference in the background composition in the SR and
CR. The extrapolation of the scaling factor to Ny,cxs = 0 has
a total uncertainty of 8%, arising from the choice of the
fit function and from the limited number of events in the
measurement.

Most theoretical and experimental uncertainties cancel
when renormalizing the signal prediction using the scaling
factor derived from the pp0 CR for the yy — pp process. The
uncertainty in the scaling factor is composed of a normaliza-
tion component of statistical origin, amounting to 1.3 (3.7)%
for Niracks = 0 (1), and a component with a shape dependence
on m. For the latter component, we consider as a 1 stand-
ard deviation (s.d.) effect the hypothesis that the scale factor
does not depend on myy, and is symmetrized with respect to the
nominal hypothesis of a linear dependence with myy. This n-
dependent uncertainty is the leading uncertainty in the meas-
urement of the yy — TT process, as shown in figure 8(first
line), and contributes a 16% uncertainty to the measured sig-
nal strength. Modifying the Ny, range used to extract the
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Table 2. Summary of the systematic uncertainties considered in the analysis. The sources of the uncertainties, the processes they affect, and

their magnitudes are indicated.

Uncertainty Process Magnitude
Luminosity All simulations 1.6%

DY cross section DY 2%
Inclusive diboson cross section WW, WZ, 77 5%

e ID, iso, trigger All simulations up to 2%

€ ID 1ow-Nyacks correction All simulations 1%

w 1D, iso, trigger All simulations <2%

Th ID All simulations 1%-5%

Ty trigger All simulations up to 5%
e — Ty, mis-ID Z/yx — ee and yy — ee <10%
w— T ID Z/yx — ppand yy — pp <10%

Th energy scale All simulations <1.2%

e — Ty energy scale Z/y* — ee and yy — ee <5%

L — T, energy scale Z/y* — ppand yy — pf <1%

T ID 1low-Nyacks correction All simulations 2.1%

€ ID 1ow-Nyacks correction All simulations 2.0%

e — T ID low-Npaeks correction Z/vyx — ee and Yy — ee 22%

@ —> Th ID low-Nyacks correction Z/vx — ppand yy — pp 15%
NPU reweighting All simulations 2%

NS reweighting DY and inclusive VV 1.5%—-6.5%
Acoplanarity correction DY 5%

DY extrapolation from Nyaers < 10 DY simulation 1.4%-2.0%
MR Uf DY simulation Shape
PDF DY simulation Shape
jet— T MF, extrapolation with p1" jet— T, mis-ID bkg. <50%
jet— Th MF, Nyacks €xtrapolation (stat.) jet— T, mis-ID bkg. 6%—18%
jet— T, MF, inversion of CR selection jet— T, mis-ID bkg. <10%
jet— ™ MF, x9€P fraction jet— T, mis-ID bkg. 9%

jet— th MF, Nicks extrapolation (syst.) jet— t, mis-ID bkg. <10%
jet— e/p OS-to-SS (stat.) jet— e/ p mis-ID bkg. <20%
jet— e/u OS-to-SS (syst.) jet— e/p mis-ID bkg. 10%

jet— e/ 1 OS-t0-SS Niracks extrapolation jet— e/p mis-ID bkg. 8%

Elastic rescaling (stat.) YY = Tt/ pp/ee, WW 1.3%-3.7%

Elastic rescaling (syst., shape)

YY = vt/ pp/ee, WW

Mass-dependent

Limited statistics
Pileup reweighting

All processes
All simulations

Bin-dependent
Event-dependent

inclusive processes in the scale factor measurement has a much
smaller effect and the corresponding uncertainty is neglected.
These uncertainties are also considered for the photon-fusion
WW, ee, and pp production.

Statistical uncertainties in the number of simulated
background events in the SR or observed event yields
in the CRs used to derive the jet mis-ID background
are considered in all bins of the distributions using the
approach from [73]. The systematic uncertainty in the
pileup modeling is included by varying by +4.6% the total
inelastic cross section used to calculate simulated pileup
distributions [74].

The impacts of the leading systematic uncertainties in the
measurement of the signal strength, which is described in
section 10.1, are shown in figure 8. All the systematic uncer-
tainties are summarized in table 2.

10. Results

The significance of the yy — Tt process, as well as the con-
straints on a, and d., are extracted with a binned maximum
likelihood fit from the m,;s distributions in the four final states
and two Nyacks bins, shown in figures 9 and 10. Since the di-
T system is produced centrally for the signal in the fiducial
region, my;s is strongly correlated with the T lepton pr, and
similarly sensitive constraints on a. and d. could be set using
pr distributions. The CMS statistical analysis and combina-
tion tool COMBINE is used [75]. The last bins include events
up to myis = 500GeV, and events at higher my;, are discarded
to ensure a sufficient difference with the A scale used in the
BSM interpretation. This upper threshold removes SM signal
events at the percent level. The lower my;, thresholds depend
on the final state because of different pr thresholds arising
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Figure 9. Observed and predicted m;s distributions in the ey (upper left), et, (upper right), pt, (lower left), and T, T, (lower right) final
states for events with Ny,cks = 0, the lower panels showing the observed/expected ratio. The observed data and their associated Poissonian
statistical uncertainty are shown with black markers with vertical error bars. The minor inclusive diboson background contribution is drawn
together with the DY background in the ey, ey, and pty final states. The predicted background distributions correspond to the result of the
global fit. The signal distribution is normalized to its best fit signal strength. The uncertainty band accounts for all sources of background
and signal uncertainty, systematic as well as statistical, after the global fit. In the fit, ar and d- are fixed to their SM values. The ratio of the
total predictions for an illustrative value of ar = 0.008 to those with SM electromagnetic couplings is shown with a blue line in the lower

panel of each plot.

from trigger requirements. The sources of systematic uncer-
tainties described in section 9 are included in the statistical
procedure as nuisance parameters. The number of data events
in the Nyacks = 0 SRs, with the additional requirement that m,;
is greater than 100 GeV to reduce the DY background contri-
bution, is compared in table 3 to the background and signal
yields in the different final states.

10.1. Observation of yy — Tt

The observed (expected) significance, calculated with the
asymptotic approximation [76] using COMBINE, is 5.3 (6.5)

s.d. for the exclusive yy — 1T process. This constitutes the
first observation of this process in pp collisions. The corres-
ponding observed (expected) significances per final state are
2.3, 3.0, 2.1, and 3.4 (3.2, 2.1, 3.9, and 3.9) s.d. in the ey,
eTh, UTh, and T,T, final states, respectively. We measure a
best fit signal strength of i = 0.751’8:%, where the system-
atic uncertainty dominates over the statistical uncertainty (/i =
0.7570-17(syst) +0.11(stat)). This corresponds to a 1.2 s.d.
with respect to the theoretical cross section predicted by the
GAMMA-UPC generator for the elastic production component
corrected by the multiplicative experimental scaling to include
dissociative contributions.
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Figure 10. Observed and predicted m;s distributions in the e (upper left), et, (upper right), ut, (lower left), and T, T, (lower right) final
states for events with Ny,cks = 1. The description of the histograms is the same as in figure 9.

Table 3. Observed and predicted event yields per final state in the signal-enriched phase space with m,is > 100GeV and Nycks = 0. The
signal and background yields are the result of the global fit including all sources of uncertainties.

Process eu eTh WTh ThTh
Z/y" =1t 32405 82+1.2 16.6 £2.9 18.4£3.1
Z/y* — ee/up — 40+1.2 1.240.6 —

Jet mis-ID 52+0.8 12.3+2.9 159+3.6 17.9+£2.8
Inclusive VV 2.8+0.3 0.23 £0.02 0.33£0.3 —

Yy = ee/pup — 9.242.3 1.340.2 —

Yy > WW 2.7+0.6 0.16 +0.04 0.4+£0.1 —

Total bkg. 13.9+1.3 34.1+4.38 35.7+4.4 36.3+4.2
Signal 9.5+2.0 124426 31.6£6.7 26.1£5.8
Total 234417 46.5+54 67.3+£6.8 62.4+6.2
Observed 24 54 57 70

The Nyacks distribution for events with Ny,s < 10 is  so as to reduce the DY background contribution. The sig-
shown for the combination of final states in figure 11 for nal contribution is visible as an excess of events over
events with A <0.015, as in the SR, and m,;; > 100GeV, the inclusive background in the first bins, whereas the
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Figure 11. Observed and predicted Nyacks distributions for events passing the SR selection but with the relaxed requirement Ny, cks < 10 and
the additional requirement m,;s > 100GeV, combining the ey, eth, (Th, and T, T final states together. The acoplanarity requirement

A <0.015 is applied. The observed data and their associated Poissonian statistical uncertainty are shown with black markers with vertical
error bars. The inclusive diboson background contribution is drawn together with that of the tt process. The predicted distributions are
adjusted to the result of the global fit performed with the m,;s distributions in the SRs, and the signal distribution is normalized to its best fit
signal strength. The lower panel shows the difference between the observed events and the backgrounds, as well as the signal contribution.
Systematic uncertainties are assumed to be uncorrelated between final states to draw the uncertainty band.

agreement between prediction and observation in the other
bins demonstrates a good background modeling, more spe-
cifically in terms of Ny,s corrections to the simulations
and MFs used to predict the background with misidentified
jets.

The fiducial cross section of the yy — TT process is meas-
ured using only the SR with N,k = 0, because it is not pos-
sible to extract the origin of the track in the SR with Nyyexs = 1
given the procedure used to estimate dissociative contribu-
tions. In this measurement, signal events not belonging to the
fiducial region but entering the reconstruction-level categories
are constrained to their expected normalizations and distribu-
tions, within uncertainties. The cross section of the yy — Tt
process is measured in a fiducial phase space defined to be
as close as possible to the reconstructed event selection. All
variables used in the definition of the fiducial region are cal-
culated at the generator level after parton showering and had-
ronization, and the lepton momentum includes the momenta
of photons radiated within a cone of AR < 0.1 centered on
the lepton. The visible T lepton decay products at the gener-
ator level are required to have an acoplanarity A < 0.015 and
an invariant mass less than 500 GeV. The di-T invariant mass,
including the neutrinos, is required to be greater than 50 GeV.
There must not be any stable charged particle with pt >
0.5GeV and |n| < 2.5 outside of the T lepton decay products.
The other requirements depend on the final state. In the ey final
state, the leading lepton must satisfy pr > 24 GeV whereas the
requirement for the subleading lepton is pr > 15GeV. The
electron (muon) must have |n| < 2.5 (2.4). In the ety (uth)

Table 4. Selection criteria to define the fiducial cross section.
Events where the two T leptons decay both to electrons or to muons,
with neutrinos, are considered to be outside the fiducial region. All
requirements are applied using generator-level quantities, as
detailed in the text.

el eTh UTh Th'Th
pr (GeV) >15/24  >25 — —
[n°] <2.5 <2.5 — —
pr (GeV) >24/15 — >21 —
In*| <2.4 — <2.4 —
pr (GeV) — >30 >30 >40
[n" — <23 <23 <23
AR(£,0") >0.5 >0.5 >0.5 >0.5
mr(e/p, Fs) (GeV)  — <75 <75 —
A <0.015 <0.015 <0.015 <0.015
myis (GeV) <500 <500 <500 <500
Niracks 0 0 0 0

final state, the electron (muon) is required to have pr > 25GeV
and |n| < 2.5 (pr > 21GeV and |n| < 2.4), whereas the vis-
ible T, must have pr > 30GeV and || < 2.3. In addition, the
transverse mass mr(e/ 1, prs) must be less than 75 GeV. In
the T, Ty, final state, the pr sum of the visible T, decay products
at the generator level must be greater than 40 GeV for both Ty,
candidates, and the visible momentum vectors must lie within
[n| < 2.3. Other di-r final states are considered to be outside of
the fiducial region. The definition of the fiducial region is sum-
marized in table 4. Using the SRs with N5 = 0, the fiducial
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cross section is measured to be oid. = 12.473 fb. This can be

compared with the prediction from the GaMma-UPC generator
for the elastic production component of the signal, rescaled
by the correction based on control samples in the measured
events to include dissociative contributions: oSfed =165+
1.5fb, where the uncertainty is dominated by the data-driven
correction.

10.2. Constraints on the anomalous electromagnetic
moments of the t lepton

Constraints on a, and d are set independently by performing
a binned likelihood scan with a, and d. as single parameters
of interest. Unlike in section 10.1, a. and d. are allowed to
float, one at a time, whereas the normalization and my;s dis-
tribution of the yy — Tt process under the SM hypothesis is
constrained to its predicted value, estimated from the elastic
production simulation [38] and weighted with the scale factor
from the ppt CR to include dissociative contributions. Varying
a- and d. from their SM values modifies both the normaliza-
tion of the signal process and its my;s distribution. In particu-
lar, the number of predicted signal events increases with my;s
for large |a.| values, as shown in the ratio panels of figures 9
and 10 for an illustrative value of ar = 0.008.

The combination of all final states and years, using
SRs with Nyaeks =0 or 1, gives an observed best fit value
of ax =0.000975001% (syst) 0 00o5 (stat), equivalent to a. =

0.000910-0932, at 68% confidence level (CL). The correspond-

ing expected best fit value is ar = 0.00127090}  as shown

in figure 12(upper). Contrary to the signal strength meas-
urement assuming SM values for a; and d., the statistical
uncertainty dominates in the measurement of a. because the
sensitivity is driven by the high-m,;s bins where BSM effects
could be enhanced. The corresponding observed (expected)
constraint at 95% CL is: —0.0042 < a. < 0.0062 (—0.0051 <
ar < 0.0072). The 68% CL constraint on d- is |d| < 1.7 x
1077 ecm (|d| <2.3 x 1077 ecm), with a best fit value
of dr =0.0 x 10717 ecm, whereas the 95% CL interval is
|de| <2.9 x 1077 ecm (|d.| < 3.4 x 10717 ecm). These res-
ults are derived using events with q2 — 0, which is the kin-
ematic value at which the electromagnetic dipole moments
are defined. They are compared with constraints from other
experiments in figure 13. If the measurement were performed
using information about the my;s distribution and with a
floating normalization for the yy — Tt process, the expec-
ted precision in the measurement of a. would decrease by
about 50%.

The constraints on a.; and d. can be converted to
two-dimensional constraints on the real and imaginary
parts of the Wilson coefficients Crp and C.y divided
by A2, using equation (5). The 95% CL intervals in the
plane of the normalized Wilson coefficients are shown in
figure 14.
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Figure 12. Expected and observed negative log-likelihood as a
function of a- (upper) and d- (lower), for the combination of all
SRs in all data-taking periods.

11. Summary

The photon-fusion production of a pair of T leptons, yy — 7T,
has been observed for the first time in proton—proton colli-
sions, with a significance of 5.3 standard deviations. The T
leptons are reconstructed in their leptonic and hadronic decay
modes. The signal has been identified by requiring low track
activity around the di-t vertex and low azimuthal acoplanarity
between the T candidates. Data in a CR with two muons were
used to determine corrections for the simulations to accurately
model the track multiplicity and to predict the signal contribu-
tion in the final state of two T leptons. The signal strength,
fiducial cross section, and constraints on the anomalous elec-
tromagnetic moments of the T lepton have been extracted using
the di-t invariant mass distributions in four di-T final states.
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Figure 13. Measurements of a (upper) and d (lower) performed
in this analysis, compared with previous results from the OPAL, L3,
DELPHI, ARGUS, Belle, ATLAS, and CMS experiments [9, 10,
24-28]. Confidence intervals at 68 and 95% CL are shown with
thick black and thin green lines, respectively. The SM values of the
T anomalous electromagnetic moments, ar = 1.2 X 1073 and

dr = —17.3 x 1078 ¢cm, are indicated with the dashed blue lines.

The measured fiducial cross section of yy — TT is O'ggs =

12.43:? fb. The anomalous T magnetic moment is determined
tobe a, = 0.00091“8:882%, whereas the electric dipole moment
of the T lepton is constrained to |d.| < 2.9 x 10~!7 ecm at
95% confidence level. They are both in good agreement with
the predictions of the standard model of particle physics, and
the measurements do not show any evidence for the pres-
ence of new physics that would modify the electromagnetic
moments of the T lepton. This is the most stringent limit on
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Figure 14. Expected and observed 95% CL constraints on the real
(upper) and imaginary (lower) parts of the Wilson coefficients Cp
and Cw divided by A?. The SM value is indicated with a cross. The
blue shaded areas indicate excluded regions.

the T lepton magnetic moment to date, improving on the pre-
vious best constraints by nearly an order of magnitude.
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