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The study of entanglement and magic properties in topologically frustrated systems suggests
that, in the thermodynamic limit, these quantities decompose into two distinct contributions. One
is determined by the specific nature of the model and its Hamiltonian, and another arises from
topological frustration itself, resulting in being independent of the Hamiltonian’s parameters. In
this work, we test the generality of this picture by investigating an additional quantum resource,
namely quantum coherence, in two different models where topological frustration is induced through
an appropriate choice of boundary conditions. Our findings reveal a perfect analogy between the
behavior of quantum coherence and that of other quantum resources, particularly magic, providing
further evidence in support of the universality of this picture and the topological nature of this

source of frustration.

I. INTRODUCTION

Although many-body quantum mechanics is known to
exhibit a significantly richer phenomenology than its clas-
sical counterpart, the application of concepts borrowed
from classical statistical mechanics has led to notable
successes. Thus, following Landau’s approach, phases
have been classified based on quantities such as correla-
tion functions and local order parameters [I]. However,
the breadth of the phenomenology of many-body quan-
tum systems is too broad to be fully described by such an
approach. A prominent example of a phenomenon that
eludes such a classification is the existence of topological
phases. Such phases are characterized by discrete-valued
nonlocal quantities that remain invariant under continu-
ous deformations in the parameter space [2]. This phe-
nomenon can be understood, for instance, in terms of
the presence of one or more topological defects, which
can be localized at the edges, such as the Majorana zero
modes in the Kitaev wire [3], or can propagate freely in
the bulk in the form of topological solitons, as in the
fractional quantum Hall effect [4, [5].

Since their discovery, several models have shown phe-
nomenologies, often very different from each other, which
can be encapsulated into the class of topological ef-
fects. Among them, the topologically frustrated (TF)
models have attracted considerable interest in recent
years [6HI4]. This phenomenon was first identified in
one-dimensional antiferromagnetic spin chains (AFMs)
with nearest-neighbor coupling and frustrated boundary
conditions (FBCs) [14], 15]. FBCs occur when periodic
boundary conditions (PBCs) are imposed on a system
with an odd number of spins. This configuration breaks
the periodicity of the AFM interaction, introducing a
delocalized excitation into the system. A similar phe-
nomenology has also been identified in chains with even-
number sites and tuning the frustration on and off by
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switching between periodic and anti-periodic boundary
conditions [16]. As a result of the presence of this excita-
tion, the static [17, [I8] and dynamical [19] properties of
TF systems acquire distinctive and universal behaviors
that can be exploited for quantum technological applica-
tions [8| 10} 20]. Moreover, this phenomenology extends
far beyond the original class of models in which it was
first discovered. A prominent example is the ANNNI
model [2I], which features competing interactions be-
tween spins located at nearest and next-nearest neighbor
sites along the lattice. In this system, topological frus-
tration arises under periodic boundary conditions when
the total number of spins is even but not divisible by
four, leading to the appearance of two delocalized exci-
tations [22].

Among the various effects of imposing topological frus-
tration on a one-dimensional system, one of the most sur-
prising involves two fundamental quantum resources [23]
such as the entanglement [24] and the non-stabilizerness
(also known as magic) [25]. Specifically, in the frustrated
phase [0, [I5], 26], as the chain length diverges, the values
of these resources can be decomposed into two distinct
contributions. The first is a somewhat local term, and
stays unchanged even if the topological frustration is re-
moved, i.e., when a different set of boundary conditions
is applied to the system. In contrast, the second term has
a topological nature and, therefore, remains independent
of the specific Hamiltonian parameters. Thus, its value,
which remains constant throughout the phase, can be
evaluated near the classical point, namely the point at
which the Hamiltonian reduces to a sum of mutually
commuting terms, and the ground state can be calcu-
lated perturbatively. This contribution to the quantum
resources can be attributed to the presence of delocal-
ized excitations induced by TF, which are known to be
responsible for the topological nature of the TF phase,
as proved through the Disconnected Entanglement en-
tropy (DEE) [27]. A finite DEE is a unique signature of
the long-range correlation typical of topological phases,
although a characteristic topological invariant has not
been identified yet for TF.
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It is therefore natural to ask how general this picture
is and whether it extends to other quantum resources.
Unfortunately, various quantum resources can have dif-
ferent structures with few points of contact, and thus it
does not seem feasible to provide a general proof of this
property or to perform a broad analysis. For this reason,
in this paper we test the hypothesis of the generality of
this picture by focusing on a further resource: Quantum
Coherence (QC) [28, 29]. The choice of the QC is not
accidental but takes into account its relevance in several
fields of research. Indeed, QC plays a fundamental role
across multiple areas of quantum physics. In quantum
information, QC is a key resource for quantum compu-
tation and communication, enabling quantum speed-ups
and secure protocols [28,[30]. In quantum thermodynam-
ics, QC influences work extraction, quantum fluctuation
theorems, and the fundamental limits of energy transfer
in nanoscale systems [31H34]. In quantum many-body
systems, its analysis can underlie the presence of quan-
tum phase transitions, and the emergence of macroscopic
quantum phenomena [29] B5H38]. Moreover, QC is es-
sential for understanding the interplay between entan-
glement and non-classical correlations in open quantum
systems [39].

This paper presents an analysis based on a DMRG-
driven numerical approach, which employs tensor net-
works to efficiently represent the ground state of the sys-
tem. To construct a compact and accurate representation
of quantum coherence (QC) as a univariate function, we
also make use of the Tensor Cross Interpolation (TCI)
algorithm [40]. As is well established, QC is a basis-
dependent quantum resource. Since it is unfeasible to
analyze all possible bases in the Hilbert space of a large
qubit system, our investigation is primarily conducted
in the computational basis. This choice is motivated by
two main reasons. First: near the classical point and in
absence of topological frustration, the ground state ap-
proaches a GHZ-like form in this basis, where quantum
coherence reaches a minimum. Second: prior studies on
quantum magic in these models have also used the com-
putational basis, allowing for a more direct comparison
between the behavior of coherence and magic. The re-
sults of our analysis are consistent with earlier findings
on entanglement entropy and non-stabilizerness entropy,
suggesting the possibility of a universal structure shared
by entropy-based quantum resource measures.

The paper is structured as follows. In Sec[l} we pro-
vide a brief overview of the numerical approach proposed
in [40] for computing the QC as measured by the Rela-
tive Entropy of Coherence (REC). In Sec. we de-
scribe the models under consideration and summarize
their known phenomenology. Section [[V] presents our re-
sults, demonstrating that, similar to entanglement and
magic, for large systems, the REC in the computational
basis decomposes into two distinct contributions: one is
local, and the other is of topological origin. Finally, in
Sec. [Vl we summarize the results and discuss future de-
velopments. Additional important results are presented

in the appendices. Appendix [A] contains the analytical
computation of the REC in the computational basis for
the ground state of the ANNNI chain near the classical
point. In Appendix [B] we present our numerical analy-
sis considering other bases generated by rigid rotations
and show that our findings, that is the decomposition
of REC between a local and a topological contribution,
are valid beyond the computational basis on which we
concentrated in the bulk of the manuscript. Lastly, Ap-
pendix [C] addresses the numerical challenges associated
with these evaluations.

II. MEASURING QUANTUM COHERENCE

Over the years, several different measures of QC have
been suggested [29], each of them with its positive and
negative sides. Since we are interested solely in pure
states, in this work, we resort to the Relative Entropy of
Coherence (REC) [28]. For a state with a density matrix
p the REC is defined as C(p) = S(paiag) — S(p), where
S(p) stands for the von Neumann entropy and pdiag is
the matrix obtained by p by deciding on a reference basis
frame and setting all off-diagonal elements in this basis to
zero. For a pure state, i.e., for p = |¢)(¢|, S(p) vanishes
and the REC reduces to

2L
Clp) == cllogy ¢ (1)
i=1

where L is the number of qubits in the system, and ¢; are
the coefficients of the state |¢), in the base {|i>}2L1, ie.

i=
) = Zfil ¢i|i). Tt is worth emphasizing that the ex-
pression for REC in clearly shows that, like all other
QC measures, this quantity depends on the chosen basis
for calculation. Throughout this work, we will consis-
tently evaluate REC on the computational basis.
Despite its apparent simplicity, the computation of
Eq. is challenging, and, for large systems, it be-
comes unfeasible without an efficient representation of
lg). But luckily this kind of representation exists and
it is provided by the Matrix Product States (MPS) [41}-
45]. Within such a representation, to evaluate the REC
we observe that it is the sum of the components of the
vector f(cT) = (f(c1),..., f(cn)), obtained by applying
the function f(z) := —x?log, 2 element-wise to the sys-
tem’s ground state. This sum can be evaluated by sam-
pling the set {f(¢;) 22; exploiting the family of tensor
cross-interpolation (TCI) algorithms [46], 47] that allows
us to escape the exponential scaling of the number of co-
efficients with the size of the system L in [48]. Tt is
worth noticing that, TCI algorithms are stable; within a
given tolerance, the system consistently converges after
a sufficient number of function evaluations for a speci-
fied bond dimension [46]. To summarize, to evaluate the
REC we follow a three-step algorithm [40]. At first, we
use a DMRG code to compute the ground state of the



system. Hence, we exploit a TCI algorithm to sample
the function f of the ground state coefficients. Finally,
to evaluate the REC, we contract the MPS resulting from
the TCI decomposition.

III. MODELS

Using REC, we tested our hypothesis on quantum re-
sources of two different one-dimensional models that can,
under suitable conditions, show the presence of TF. Both
these models can be obtained for a particular choice of
parameters, from the following Hamiltonian

L L L
H=JY ool +2Y oioi,+h> of. (2
=1 =1 =1

In Eq. oy with a = z, y, z stand for the Pauli opera-
tors acting on the i-th spin of the system, J; and Js are,
respectively, the next-neighbor and the next-to-nearest
neighbor interactions, and h is a local transverse field.
Unless stated otherwise, we assume periodic boundary
conditions, i.e. of =0of, .

Setting Jo = 0 we recover the well-known Ising model
with a transverse field [49] [B0] that shows a quantum
phase transition at |h| = h, = 1. Choosing J; > 0 and
imposing FBCs, for 0 < |h| < he, the system is in a topo-
logically frustrated phase with a gapless energy spectrum
in the thermodynamic limit. For h = 0 (the classical
point mentioned above), there are 2L exactly degener-
ate lowest energy states, namely the mutually orthogonal
kink states |kT) and |k~), which are individually separa-
ble and incoherent in the computational basis. Indeed,
because of PBCs and L being odd, it is impossible to
have perfect Neel (staggered) order and therefore these
states present a magnetic defect, i.e. two parallel aligned
neighboring spins, which can be placed on any bond of
the ring. Hence |k™) and |k™) are the two states with the
defect between the k-th and the k 4 1-th sites and differ
from each other by the orientation of the defect. Switch-
ing on a finite magnetic field (i.e., setting h > 0) leads to
a hybridization of these states, thereby lifting their de-
generacy and giving rise to the resulting (gapless) energy
band. In particular, in the limit A~ — 0T the GS is given

by |g) = % Z,’;‘:lﬂk*‘) +1]%7)) and the whole band can

be characterized as a single delocalized kink excitation
with some momentum.

On the contrary, considering Jy > 0, we recover the so-
called ANNNI model in which, independently of bound-
ary conditions and the sign of Jy, there is always geomet-
rical frustration induced by the competition between the
two interactions. The phase diagram of this model is rich,
featuring four distinct phases that depend on the domi-
nant interaction and the value of the magnetic field [21].
Among these, one of the most peculiar is the so-called
antiphase which can occur when x = |J1|/J2 > 1/2. In
such a phase, TF can be induced considering a ring made

of an even number of spins that is not an integer mul-
tiple of four (L = 4n 4+ 2,n € N). On the classical line
h = 0, the presence of TF increases the degeneracy of
the ground state manifold, which goes from a dimension
equal to 4 (in the absence of TF) to L?/2 if J; # 0 or to
L? in the limiting case J; = 0, where the chain decom-
poses into two independent subchains for the even and
odd sites. Turning on a small transverse field, the degen-
eracy is lifted and the system admits a unique ground
state given in Eq. (A1), that can be described in terms
of a distance-modulated superposition of kink states [22]
(see Appendix [A] for details). Regardless of the presence
or absence of the TF, by fixing the value of the ratio x and
further increasing the value of h, the system undergoes
two successive phase transitions. In the first, the sys-
tem exits the antiphase and enters the so-called floating
phase, whose nature has not yet been fully understood.
It is characterized by a violation of the area law in terms
of entanglement and is conjectured to be in a Luttinger
liquid phase with algebraic correlations. Subsequently,
the second transition marks the passage from the float-
ing phase to a paramagnetic phase, where the dynamic
is dominated by the transverse field.

IV. RESULTS

Having introduced the models under consideration and
the TCI-based method for computing the REC, we now
proceed to present and discuss our results. In this sec-
tion, we focus specifically on evaluating the REC in the
computational basis, while a generalization to a broader
class of bases is provided in Appendix The compu-
tational basis comprises states that are tensor products
of the eigenstates of o7, where ¢ labels the sites of the
system. Accordingly, each basis state can be expressed
as |¢) = ®f\i1 |¢:), with each |¢;) equal to either |1;) or
[4:). Once the RECs have been evaluated, we test our hy-
pothesis that, in the thermodynamic limit, any quantum
resource computed for the ground state of a TF model
decomposes into a sum of a local term and a topological
term, the latter independent of the specific Hamiltonian
parameters. To this end, we employ the same approach
previously used in [26] for Entanglement Entropy and
in [6l [7] for the Stabilizer Rényi Entropy. This method
involves analyzing the ratio

_ C(pfr) - C(punfr)

Clpp=") = Clphat?™)’
where pg and pynfr denote the ground state density ma-
trices of the topologically frustrated and unfrustrated
models, respectively, characterized by having the same
correlation length. According to our hypothesis, these
two states share an identical local contribution to the
QC in the thermodynamic limit, while differing in their
topological terms. Thus, subtracting one from the other
isolates the difference between the topological contribu-

Similarly, pﬁ‘”ﬁ and pﬁ;f*rw correspond to the

(3)

tions.
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FIG. 1: (a) Quantum Coherence of the ground state of
the TF Ising chain (red full markers) and of the
corresponding unfrustrated FM model (blue empty
markers) as a function of the magnetic field and for
different values of the system size. (b) The same
quantities are plotted as a function of the system length
for different values of the magnetic field. (c¢) The ratio
R in eq. for the Ising model as a function of the
magnetic field and for different system sizes.

respective ground state density matrices near the classi-
cal limit, as h — 0%, where the Hamiltonian comprises
mutually commuting terms. If our hypothesis holds, the
difference in coherence between these two states should
likewise capture just the difference between the topolog-
ical components. As a result, the ratio defined in Eq. (3

compares two independent estimates of the same topo-
logical difference. If this difference is indeed topological
in nature, the ratio should remain invariant under vari-
ations of the system parameters, provided the system
stays within the same macroscopic phase. Therefore, if
our hypothesis is valid—mnamely, that in the thermody-
namic limit the QC of a topologically frustrated system
splits into local and topological contributions—then the
ratio in Eq. should converge to 1 throughout the topo-
logically ordered phase.

In Fig[l] we present our findings for the Ising model
(J2 = 0). In this case, to guarantee that the topologically
frustrated and non-frustrated models share the same cor-
relation length, it is sufficient to consider systems with
periodic boundary conditions (PBC), composed of the
same odd number of spins, subject to the same value of
h, but with opposite values of J — specifically, +1 for
the frustrated model and —1 for the non-frustrated one.
In the upper panel, we display the raw data obtained
for the REC as a function of the applied magnetic field,
both with and without TF. Although our data are de-
rived from systems of finite sizes, two distinct behaviors
corresponding to the two phases of the model are observ-
able. For large magnetic fields h, the REC of the TF and
non-TF Ising model converges to the same value. On the
other hand, when the interaction term dominates over
the external field, the behaviors differ significantly, and
the difference increases with the system size. In particu-
lar, the limit h — 0T is of special interest in this region.
For the unfrustrated system, as h approaches zero, C(p)
becomes independent of L and tends to 1, consistent with
the fact that the ground state can be well approximated
by the GHZ state |¢) = J5(|1)*" + [1)®"), where |1)

and |]) are the eigenstates of o* with eigenvalues +1 and
—1, respectively. In contrast, with TF, for h — 0% the
REC tends to 1+ log,(L), consistently with what can be
inferred from the expression for the ground state of the
TF Ising model presented in the previous section.
Increasing h but remaining in the same phase, the in-
dependence on the size disappears and the QC in the
unfrustrated system shows a volume-law, which recalls
the behavior of magic, as measured by the stabilizerness
Rényi entropy [6], as can be seen in the middle panel of
Fig.[l} The analogy between the stabilizer Rényi entropy
and the REC holds in TF systems as well, where both
exhibit a volume-law behavior in the large-size limit, al-
though with a significant correction for smaller systems.
The bottom panel of Fig[l]shows our numerical results
for R in the case of the Ising model as a function of the
magnetic field. Consistent with our working hypothesis,
we observe that, as L diverges, the value approaches 1
throughout the whole topological phase and zero in the
paramagnetic phase. The speed at which these values
are reached depends on the ratio between the correlation
length and the system size. Since the correlation length
diverges at the phase transition, finite-size effects vanish
more rapidly the further one moves away from h = 1. We
can then write the REC in the thermodynamic limit as
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FIG. 2: (a) Quantum Coherence of the ground state of
the TF ANNNTI chain (red full markers) and of the
corresponding unfrustrated OBCs model (blue empty
markers) as a function of the magnetic field and for
different values of the system size. (b) The same
quantities are plotted as a function of the system length
for different values of the magnetic field. (¢) The ratio
R in eq. for the ANNNI model as a function of the
magnetic field and for different system sizes.

the sum of the topological term and the magnetic one.
Let us now consider the ANNNI model by introduc-
ing an antiferromagnetic next-to-nearest-neighbor inter-
action (Jz > 0). Even if the two models seem not so dif-
ferent from each other, the ANNNI model is much more
complex to analyze, and several technical challenges must
be addressed. The first problem arises when trying to as-
sociate the specific non-TF model with its TF equivalent,

i.e., when we try to select the two states (one frustrated
and one unfrustrated) that share the same correlation
length. For the Ising model, this link is natural. Indeed,
assuming periodic boundary conditions (PBCs) and an
odd number of spins, transitioning between TF and non-
TF Ising systems can be achieved simply by inverting the
sign of J;. This approach does not apply to ANNNI mod-
els. Specifically, when PBCs are imposed and the number
of spins is even but not an integer multiple of 4, the pres-
ence of the TF is unaffected by the sign of J;. On the
other hand, by changing the sign of Js, we not only re-
move TF but also the extensive frustration characteristic
of the model, thereby fundamentally altering the prop-
erties of the system. Therefore, according to [22], this
comparison is done by opening up the ring and moving
from PBCs to open boundary conditions (OBCs). This
introduces finite-size effects in the unfrustrated system,
which are expected to become irrelevant in the thermo-
dynamic limit.

The results for REC in the ANNNI model are shown
in Fig. [2l In analogy with the Ising model, the presence
of TF induces, in the limit A — 07, a dependence of
REC on L that is directly related to the dimension of
the ground state manifold at the classical point. In this
case, it is possible to show (see Appendix that, in
the limit ~ — 0%, the REC of the TF system becomes
equal to C(p?ﬁ'ﬁ) =logy[L(L + 2)] — logy(e). On the
contrary, without topological frustration, the system al-
lows a ground state that is a homogeneous superposition
of four elements of the computational basis, and hence
C(pﬁn_f)rm) = 2. As h increases, the difference between
the REC for the TF and non-TF models decreases, un-
til, in the floating phase, the REC for the non-TF model
becomes larger than that for the TF model. This behav-
ior appears to be a characteristic feature of the floating
phase and could serve as a starting point for future in-
vestigations of this elusive phase of the model.

The bottom panel of Fig[2] shows the behavior of the
ratio in as a function of h for a fixed value of
k = |J1|/J2 > 1/2 and allows us to test our working hy-
pothesis. As we can see, despite the relatively small size
of the system considered, constrained by the large bond
size in the DMRG algorithm required to obtain an ac-
curate estimate of the ground state, the thermodynamic
behavior is evident. In the TF phase, the ratio Eq.
approaches 1 while, in the paramagnetic phase, it drops
to 0 in a complete analogy with the Ising model.

V. CONCLUSIONS AND OUTLOOK

In summary, we examined quantum coherence in
two one-dimensional models—the Ising and the ANNNI
model—comparing its behavior in the presence and ab-
sence of topological frustration. In both cases, we found
that in the paramagnetic phase, quantum coherence re-
mains unaffected by this source of frustration in the ther-
modynamic limit. However, in the frustrated phase,



topological frustration—though not the only source of
frustration in the ANNNI model—introduces a correc-
tion that scales logarithmically with the system size.

Our findings confirm that, at least in one-dimensional
models, topological frustration induces in quantum co-
herence the same structural behavior previously identi-
fied in entanglement and magic. This leads to a clear
separation between two contributions: a local term de-
pendent on the Hamiltonian parameters and a topologi-
cal term that remains constant throughout the phase.

Leveraging its phase invariance, and drawing parallels
with other quantum resources, we analytically derived
the expression for the contribution associated with topo-
logical frustration using the explicit ground state near
the classical point. This separation is further empha-
sized by the distinct scaling behaviors of the two terms:
for quantum coherence, as in magic [6], the local con-
tribution scales extensively, while the topological com-
ponent follows a logarithmic dependence on system size,
reflecting the dimension of the ground state manifold at
the classical point. In contrast, for entanglement, the
local term follows an area law, remaining independent
of system size L, whereas the topological term depends
on the logarithm of the ratio between the length of the
subsystem M and L.

At this point, a natural question arises: should the be-
havior observed for quantum coherence, entanglement,
and magic be regarded as a universal feature of all quan-
tum resources when evaluated on the ground states of
topologically frustrated systems in the thermodynamic
limit? While identifying multiple cases where this pat-
tern holds does not constitute a formal proof, the fact
that all analyzed quantum resources exhibit the same
behavior strongly supports this conjecture.

Let us comment that a decomposition of any entropic
resource into the sum of local and topological contribu-
tions would follow if it was possible to effectively write
the ground state of a TF chain as |0) (0| ® |kink) (kink|,
where |0) is the ground state of the non-frustrated system
and |kink) is the state containing the delocalized kink ex-
citation(s) observed close to the classical point. Clearly,
such an expression is mathematically ill-defined (for in-
stance, the Hilbert space dimension is mismatched), but
expresses the physical intuition that TF is able to in-
ject into a system stable topological excitations which, in
the thermodynamic limit, propagate over an unaffected,
unfrustrated substrate. To make mathematical sense of
this intuition, a possible avenue to prove the decomposi-
tion of resources could involve extending the result pre-
sented in [51] for mutual information, already used in
[27] to prove the topological nature of the TF phase. In
both cases, a crucial role is played by the possibility to
link the Rényi entropy of order 2, there used to quan-
tify entanglement, to the swap operator. In this way,
the (entropic) resource is written as the log of the trace
of reduced density matrix times an operator. Such for-
mulation allows one to invoke a (generalized) adiabatic
evolution and proves that a decomposition of the resource

into the (topological) contribution close to the classical
point and local one due to the local deformation of the
state reflecting the local correlations. To generalize such
an approach, one would need to know that all entropic
resources can be written as expectation values of some
operator with respect to a density matrix and to prove
that the adiabatic continuation and decomposition would
apply with any such representation. We hope to be able
to provide such construction in the future but have to
admit that for now, rigorous and general proof of our
hypothesis remains an open question.

The analysis carried out in this work was made possible
by using the algorithm introduced in [40] to calculate the
relative entropy of coherence. This method leverages the
efficient MPS representation of the system’s ground state
in combination with the TCI algorithm class to perform
measurements. By adopting this approach, it is possible
to overcome the challenge of the exponential growth of
the system’s Hilbert space, hence exploring larger system
sizes. Furthermore, this technique is sufficiently general
to compute a wide range of observables and quantum re-
sources, offering the potential to further investigate the
properties of topologically frustrated systems in the ther-
modynamic limit, a direction we plan to pursue in future
work.
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Appendix A: Quantum Coherence of ANNNI
ground state near the classical point

In this Appendix, we compute analytically the quan-
tum coherence of the ground state of the TF ANNNI
chain made of a number of spins that is even but not an
integer multiple of four near the classical point. To do
this, we will exploit the ground state expression achieved
in [22] using perturbation (and graph) theory valid for
h<1

p—Fk+1)Lw
L+2

AZ Z sin

L k+Lj2-1 [

} (kp)). (AL

Here A = 2/\/L(L+2) is the normalization constant,
while [¢(k,p)) = [2k —1,(=1)%) |2p, (=1)P1) are or-
thonormal states made of the tensor product of two kink
states. The first of the two kink states lives in the sub-
lattices made by the even spins while the second in the
orthogonal sublattice. The two indices in each kink state
refer, respectively, to the position of the kink in the sub-
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FIG. 3: Comparison of the different results for the REC
close to the classical point of the ANNNI model. The

black line stands for the analytic expression in Eq.
The blue circular points indicate the results obtained
from the exact diagonalization of the ANNNI in the

first-order perturbation theory (h — 07). The red
squares indicate the results of a numerical analysis that
exploit the procedure outlined in Sec. [l with
Hamiltonian parameters equal to A = 1073, x = 1.0 and
tolerance set equal to e = 10712

lattice and to the sign of the kink where +1 (-1) stands
for 11 (1),

Applying eq. to the state in eq. (Al)), the quantum
coherence becomes

X _
O(pgﬁo) - L+ZZSIH a(r+1)] x

X log, [L(L4+2) sin® [a(r + 1)]| (A2)

where @ = Lw/(L + 2). To obtain a closed form, we
start splitting Eq. in two terms separating the L
contribution in the logarithm from the sin function. The
first term is given by

Ly
—4 3 L(L+2)
L+2log2[ L(I+2 ]Z sin? [a(r41)] = log, [4}

where we have explicitly taken into account that the num-
ber of sites is even. The second term does not admit a
simple closed form. To handle it we consider its thermo-

dynamic limit (L — o0)
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where we averaged the integral in parentheses over a long
interval, which we can safely replace with an average over
the period [0, 27r]. Combining the two contributions, we
finally find in the L — oo limit

C(p) = logy[L(L + 2)] — logy (e). (A3)
In Fig. 3] we compare this formula with the numerical
results obtained through the procedure outlined in Sec-
tion [[] finding good agreement even for small systems.
To further support our claim, we also compare our results
with the numerics derived from the exact expression for
the ANNNI ground state, given by Eq., near the

classical point [22].

Appendix B: Basis Dependence of Quantum
Coherence

It is well known that the value of quantum coherence
(QC) is not solely determined by the quantum state it-
self, but also depends on the basis in which the state is
expressed. This naturally raises the question of whether
the decomposition of QC observed in topologically frus-
trated (TF) systems remains valid when the ground-state
density matrix is expressed in a basis different from the
computational one we used the bulk of this paper. In
this appendix, we address this question by analyzing the
Ising limit of the model, obtained by setting J, = 0 in
Eq. .

Given the central role of TF systems in our analysis, it
is natural to classify possible basis transformations into
two categories. The first consists of transformations ob-
tained from the computational basis through local uni-
tary operations of the form:

U=QU. (B1)

These transformations preserve the spatial structure of
the system and, by extension, its topological features.
The second category includes all other (non-local) trans-
formations that do not conform to Eq. , and which



can alter the geometry of the system, potentially desta-
bilizing its topological characteristics.

To maintain clarity and focus, we restrict our analysis
in this appendix to the first category. Additionally, we
assume all local unitaries are identical and given by:

U; =cosf1; +1sinfo?, (B2)

here 6 is a continuously tunable parameter. Although
Eq. does not represent the most general local ro-
tation, it suffices to demonstrate the robustness of our
conclusions. It is important to note that for 6 = nw/2
(with n € N) the resulting basis is equivalent to the com-
putational basis, modulo a permutation of its vectors.
More generally, 8 and 0’ = 6 + nxw/2 (with n € N) define
the same basis, differing only by a reordering of the ba-
sis elements. Therefore, we will limit our analysis in the
interval 6 € [0, 7/2].

We begin our analysis by examining how such local
rotations affect the QC near the classical point, i.e., for
h — 07. Recall that in this limit, in absence of topolog-
ical frustration, the ground state becomes a GHZ state,
while with frustration, it forms an equal superposition
of all kink states. In the computational basis, these
two states exhibit markedly different QC: the GHZ state
yields a constant QC value of 1, independent of the sys-
tem size L whereas the frustrated superposition leads to
QC scaling as log, L + 1.

Upon rotating the basis using Eq. , numerical
analysis reveals a consistent behavior: for all the bases
different from the computational one, independently on
the presence of topological frustration, QC shows a lead-
ing term proportional to L. Nevertheless the difference:

AC(0) = |C(ph=") = C(pld™)

T unfr

that appears in the denominator of Eq. , is governed
solely by subleading contributions, at most scaling as
log, L, as shown in panel (a) of Fig. The figure re-
veals two distinct regimes in the behavior of AC(6) as a
function of lattice size L. In the first regime, ranging ap-
proximately over 0 < 0 < ¢ U 5 S 0 < 7, the difference
scales as log, L. Outside this region, however, the ratio
AC(0)/log, L tends to zero while L increases.
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FIG. 4: (a) Angular plot of the topological contribution
to REC from Eq. , as a function of the rotation angle
f. Shaded areas represent the range of validity for the
ratio in Eq. , that is with a finite denominator: at the
classical point o — 0T (i.e. h = 0.001) the denominator
vanishes for angles between 7/6 < 6 < 7/3. (b) QC as
function of L for the Ising chain with h = 0.5, J = £1
(red and blue respectively), and 6 = 7/8,77/16. Inset
is the corresponding ratio R from Eq. for the same
angles 0 = 7/8,77/16. (c) QC as function of L for the
Ising chain with h = 0.5 and J = £1 (purple and green
respectively) for angles 6 = /5,27 /7. Inset is the corre-
sponding value of |C—¢.5 — Ch=0.001| for J = %1 (purple
and green curves respectively) for the same angles.

Because the two regimes differ qualitatively, we ana-
lyze them separately. In the first regime, AC(8) scales
logarithmically with L, just as it does in the computa-



0 |6C for J = —1|6C for J = +1
/5 |0.045L 4 0.047|0.046L + 0.670
2w /710.049L + 0.026 |0.048L + 0.722

TABLE I: Best-fit parameters of the difference
0C = |Ch=0.5 — Ch=0.001| as a function of the system
size L for both frustrated (J = —1) and unfrustrated
(J = +1) ground states at two representative angles in
the interval § S0 < 3.

tional basis. This indicates that the decomposition of
QC into local and topological components holds through-
out this entire region. Panel (b) of Fig. [4| supports this
conclusion, with a finite size scaling performed for two
representative angles, yielding the same behavior for the
ratio in Eq. we observed in the computational basis.
In the second regime § < ¢ < 7, the picture becomes
more subtle. Here, not only does AC(0) lack a logarith-
mic contribution, but individual QC values for both frus-
trated and unfrustrated states also lack any scaling with
logy(L) as shown in panel (c) of Fig. 4l This complicates
the separation of topological and local contributions, as
both are dominated by linear terms and show subleading
corrections that vanish or remain constant in the ther-
modynamic limit. Moreover, as detailed in App. [C] nu-
merical computations in this regime become increasingly
challenging. To disentangle local from topological contri-
butions under these conditions, we compare the scaling
slopes of QC for different values of the transverse field
h. Since the local contribution to QC depends on h and
vanishes as h — 0", while the topological component re-
mains constant up to the critical point, the local term
can be isolated by subtracting the QC at finite h from
its value in the classical limit. This approach is applica-
ble to both frustrated and unfrustrated systems. If the
local term is correctly isolated, its thermodynamic limit
should match in both cases. This means that, since such
a difference scales with L their slope must be equal, which
is indeed what we observe and can be seen in panel (c)
and the accompanying data table[[] reporting the best-fit
parameters.

Thus, even in this second regime, we can conclude that
the QC in TF systems decomposes into two contribu-
tions: omne local and one topological in nature. Before
concluding this appendix, we highlight an interesting ob-
servation: in the cases we analyzed, the inclusion of the
local term reduces the total QC instead of increasing
it. Although counterintuitive at first glance, this effect
can be understood by noting that local rotations such as
those considered can greatly enhance QC. For instance,
consider the product state |T>®L7 which has zero QC in
the computational basis but reaches the theoretical max-
imum REC value of L for § = w/4. Since this maximum
corresponds to the largest QC achievable for an L-qubit
system, any introduction of correlations—such as those
due to frustration—can only decrease the QC from this
saturated value.

Appendix C: Details about numerical analysis

In our work, we made a large use of numerical eval-
uations, all of them based on an MPS representation of
the ground state and the corresponding MPS generated
by the TCI algorithm [52]. In fact, although topologi-
cal frustration induces non-local correlations in a system
whose entanglement entropy otherwise obeys an area law,
the ground state can still be represented as a matrix prod-
uct state [26].

As for the DMRG algorithm that provides the ground
state of the system, this has been adapted to the par-
ticular requirements of the systems under analysis. To
handle the requirement of periodic boundary conditions
(PBCs) (for which it is known that periodic DMRG is
not as efficient as the standard OBC case [53]), we add
an extra long-range correlation inside the MPO struc-
ture following [54]. An additional problem we had to
face was the presence of energy gaps that close expo-
nentially with the system size in the ordered phases of
non-frustrated systems. To solve such a problem, we use
a parity projector Py = 1/2 (I + Hm) with II, being
the parity operator along x, to ensure that the result-
ing state is not an unwanted superposition of the two
states with minimal energy in the opposite parity sector.
Extra care is also taken to ensure convergence near the
classical point A — 07, as the variational procedure can
stall in the presence of near-degeneracy, for this reason
we construct the initial MPS using the known analytical
expression of the ground state in this limit, namely GHZ
state for the ferromagnetic case (J = —1) and the kink
state in the antiferromagnetic case (J = +1). Estima-
tion of QC comes in handy as one knows exactly what
the true value of the ground state in this limit should be
(for example in the Ising case as already mentioned ei-
ther 1 or log, (L) +1), which is a more precise measure of
the quality of the state rather than just using energy as
a figure of merit. Once we applied these considerations
to the illustrated problems, we were able to proceed with
our simulations. For all DMRG calculations, ITensor Li-
brary was used [55] with 50 sweeps and maximum bond
dimension capped at ymax = 200, with resulting MPS
not exceeding Xunfr = 100, xg = 150 near critical point
h =1 for J = F1 respectively.

However, the most relevant computational cost then
stems from the bond dimension required to achieve a
given level of accuracy in the MPS produced by the TCI
algorithm [56]. Our procedure for computation of QC ex-
hibits a computational complexity of O(2£2£2x?), where
x and £ denote the bond dimensions of the ground state
MPS and of the functional MPS obtained via the TCI
algorithm, respectively, and £ is the system size [40].
The bond dimension of the MPS generated by the TCI
algorithm is connected to the underlying sampling pro-
cedure. Within a specified tolerance, the system reliably
converges to the desired result after a sufficient number
of function calls. Increasing the precision (i.e., reduc-
ing the tolerance) leads to a larger number of function



FIG. 5: Maximum bond dimension £ of the TCI MPS
required to reach precision e = 1076 for coherence C/(p)
at the classical point h — 0T for J = +1 as a function of
rotation angle  for system sizes L running from 5 to 15.

calls, thereby increasing the computational time required
to reach convergence [57]. From a practical standpoint,
very high precision tolerance € = 10712 and &max = 200
or more is required, particularly for the reliable com-
putation of the ratio in Eq. . Another highlight of
the TCI algorithm is that it can estimate the local ten-
sor error thereby giving the user the information about
how good or bad is the local approximation of the mea-
sured quantity. This provides the relevant information on
whether the allowed maximum bond dimension should be
increased and if the tensor network representation is ef-
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ficiently compressible or not due to bond dimension bot-
tleneck.

The estimation of QC becomes even more challenging
in the case of its evaluation in the rotated bases made
in App. Even though the bond dimension y of the
MPS ground state representation in the new basis re-
mains fixed, since entanglement is not affected by the lo-
cal rotations, the bond dimension & of the functional MPS
tends to increase rapidly due to the exponential number
of terms involved in the superposition that defines the
rotated state. This can be seen even in the classical limit
h — 0% as shown in Fig. [5|for Ising model. The bond di-
mension grows prohibitively, reaching £ > 80 for a small
system as L = 15 in the frustrated case J = +1. Notice
that this explosion of the required bond dimension occurs
in the region where the denominator of the ration R in
Eq. vanishes and even the topological contribution to
QC becomes extensive. This numerical issue signals the
underlying physics and explains why it is hard to cor-
rectly capture the thermodynamic limit behavior of the
systems in this region.

Overall, this discussion highlights that although the
MPS representation effectively captures the entangle-
ment structure, it is not well-suited for representing non-
linear functions of quantum states that cannot be effi-
ciently approximated within a low-dimensional effective
Hilbert subspace. We expect that the same bottleneck
will occur in the case of stabilizer Rényi entropy. Hence
it will require great computational power in order to esti-
mate such entropy up to good precision threshold, which
itself presents an interesting challenge.
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