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Abstract

A search is performed for dark matter (DM) produced in association with a single top
quark or a pair of top quarks using the data collected with the CMS detector at the
LHC from proton-proton collisions at a center-of-mass energy of 13 TeV, correspond-
ing to 138 fb−1 of integrated luminosity. An excess of events with a large imbalance
of transverse momentum is searched for across 0, 1 and 2 lepton final states. Novel
multivariate techniques are used to take advantage of the differences in kinematic
properties between the two DM production mechanisms. No significant deviations
with respect to the standard model predictions are observed. The results are inter-
preted considering a simplified model in which the mediator is either a scalar or
pseudoscalar particle and couples to top quarks and to DM fermions. Axion-like par-
ticles that are coupled to top quarks and DM fermions are also considered. Expected
exclusion limits of 410 and 380 GeV for scalar and pseudoscalar mediator masses,
respectively, are set at the 95% confidence level. A DM particle mass of 1 GeV is as-
sumed, with mediator couplings to fermions and DM particles set to unity. A small
signal-like excess is observed in data, with the largest local significance observed to be
1.9 standard deviations for the 150 GeV pseudoscalar mediator hypothesis. Because
of this excess, mediator masses are only excluded below 310 (320) GeV for the scalar
(pseudoscalar) mediator. The results are also translated into model-independent 95%
confidence level upper limits on the visible cross section of DM production in associ-
ation with top quarks, ranging from 1 pb to 0.02 pb.
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1 Introduction
Astrophysical observations point to the existence of dark matter (DM) [1]. Its existence has
been inferred from gravitational effects on galaxies and other large-scale objects. While the
nature of DM remains elusive, there are many models suggesting that DM could be explained
in the context of particle physics [2]. In a large class of these new theories, DM is made of stable
weakly interacting massive particles that interact with the standard model (SM) constituents
through mediator particles, and hence may be produced at colliders, such as the CERN Large
Hadron Collider (LHC). The DM particles are effectively invisible to the detectors located at
the LHC interaction points, traversing these experiments undetected and leaving behind an
unbalanced momentum in the plane transverse to the proton beams.

A convenient approach to model the coupling mechanisms between the SM and DM sectors is
provided by simplified models, which can cover the main kinematic features exhibited in more
complex ones. One possible simplification assumes the existence of either a new neutral scalar
(ϕ) or pseudoscalar (a) particle that can interact with both the SM fermion sector and a new
fermionic Dirac DM particle (χ) [3, 4]. This construction involves a Yukawa-like coupling of
the new mediator to fermions.

The Lagrangians of these models can be expressed as follows [4]:

Lϕ = LSM +
1
2
(∂µϕ)2 − 1

2
m2

ϕϕ2 + iχ̄∂
/

χ − mχχ̄χ − gχϕχ̄χ − ϕ√
2

∑
q=u,d,s,c,b,t

gqyqqq̄, (1)

La = LSM +
1
2
(∂µa)2 − 1

2
m2

aa2 + iχ̄∂
/

χ − mχχ̄χ − igχaχ̄γ5χ − ia√
2

∑
q=u,d,s,c,b,t

gqyq q̄γ5q, (2)

where LSM is the SM Lagrangian, and yq is the SM Yukawa coupling, normalized to the Higgs
vacuum expectation value as yq =

√
2mq/υ. There are only four additional parameters that

control the kinematic properties or cross section: the mass of the DM particle (mχ), the mass
of the mediator (mϕ/a), the universal quark-mediator coupling (gq), and the DM-mediator cou-
pling (gχ). Under these conditions, the mediators would couple preferentially to heavy third-
generation quarks, which motivates the focus on DM particles produced in association with a
top quark pair (tt+DM events) or a single top quark (t/t+DM events) [5]. The main processes
involving the tt+DM and t/t+DM production in the context of this simplified model are shown
in Fig. 1.
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Figure 1: Principal production diagrams in the context of the simplified model with a
scalar/pseudoscalar (ϕ/a) mediator for the associated production of a pair of DM particles (χ)
with a top quark pair (left) and a single top quark in both t-channel (center), and tW-channel
(right) production modes. The additional quark q in the t-channel diagram is often produced
at high pseudorapidity.
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Complete models can also lead to enhanced couplings between the heavy quarks and the var-
ious DM mediators. One such case is the type II two-Higgs doublet model extended by an
additional light pseudoscalar boson a (2HDM+a) [6, 7], featuring a differentiable coupling of
scalar or pseudoscalar mass eigenstates to up-type and down-type fermions for a type II 2HDM
configuration, and in which, for relatively low values of tan β, the production of top quarks ac-
companied by DM particles is favored. This scenario is characterized by a higher number of
parameters that control the kinematic properties with respect to the simplified model presented
above and it is not considered in this paper. The simplified model considered in this analysis
has a similar behavior to the 2HDM+a model in the limit of high additional Higgs boson masses
when the charged Higgs bosons are completely decoupled.

Further models that could provide a mediator to the dark sector are those that propose axions
or axion-like particles (ALPs, denoted as A in the following), which are spin-0 particles that do
not interact with the SM gauge groups. The ALPs are a common feature in many extensions
of the SM, where they emerge as pseudo-Nambu-Goldstone bosons because of an approximate
axion shift symmetry. This symmetry allows for the masses of ALPs to be significantly smaller
than the energy scale of the underlying ultraviolet model, making them promising candidates
for studies at the LHC. Initially, axions were proposed as a solution to the strong-CP prob-
lem [8–11]. The ALPs are also promising candidates for mediators to the dark sector [12–15].
These models often feature a Dirac fermionic DM candidate χ and a pseudoscalar mediator A
that interact with SM fermions. Since the couplings of ALPs to fermions are typically propor-
tional to the fermion masses, the ALP coupling to top quarks becomes particularly significant.
In this paper, we also exploit our analysis to search for ALPs as DM mediators using a La-
grangian of the form:

LA = LSM +
1
2
(∂µA)(∂µA)− 1

2
m2

AA2 + iχ̄∂
/

χ − mχχ̄χ − ict
mt

fA
t̄γ5 t A − icχ

mχ

fA
χ̄γ5χ A , (3)

where fA denotes the ALP decay constant, ct the ALP coupling to top quarks, and cχ its cou-
pling to DM particles. The similarity of this Lagrangian to the one in Eq. (2) ensures that the
DM signatures considered in Fig. 1 can also be interpreted in terms of models with an ALP
mediator A.

Searches for DM in signatures containing a top quark pair or a single top quark have been pre-
viously carried out by the ATLAS and CMS Collaborations at a center-of-mass energy of 13 TeV.
The CMS Collaboration has performed a search that specifically targets the tt+DM production
mode using the data set collected in 2016–2018 (Run 2) and covering all three commonly ex-
plored lepton categories (considering only muons and electrons) [16]. These lepton categories
are named in some previous works as 0ℓ, 1ℓ, and 2ℓ channels; here they will be referred to as
all-hadronic (AH), single-lepton (SL), and dileptonic (DL) channels, respectively. The ATLAS
Collaboration has delivered a combination across all channels using Run 2 data and consid-
ering both the tt+DM and t/t+DM production modes, optimizing for tt+DM topologies [17],
with a further combination with an update to the SL channel, only considering the tt+DM sig-
nal [18]. Further, ATLAS analyses have searched for t/t+DM final states, in boosted topologies
predicted by 2HDM+a models [19, 20]. The work presented in this paper improves upon the
constraints set by the CMS Collaboration with 2016 data from Run 2 on the combination of
both the tt+DM and t/t+DM modes [21]. Various analysis improvements, as explained in later
Sections, and the new dileptonic final state introduced lead to improved results of about 20%
with respect to the increase in sensitivity from solely adding the data available from 2017 and
2018.

The analysis described in this paper is performed using the data collected with the CMS de-



3

tector in 2016–2018, corresponding to an integrated luminosity of 138 fb−1. Although it probes
similar signal topologies to the searches described above, the analysis includes considerable
differences in strategy for some of the channels. In this work, a search optimized for both
tt+DM and t/t+DM processes mediated by the presence of a neutral spin-0 particle is per-
formed across all channels. The analysis makes use of dedicated search strategies for both DM
production mechanisms to further enhance the separation power against the SM background.
Novel multivariate techniques are employed using characteristic features of both signal pro-
duction modes. An interpretation in the context of the spin-0 simplified DM model for both
types of mediators is provided.

The paper is organized as follows: a brief introduction of the CMS detector and event recon-
struction is presented in Section 2, followed by a description in Section 3 of the data and of the
simulated samples used. The event selection is presented in Section 4, while Section 5 is dedi-
cated to the treatment of experimental and theoretical systematic uncertainties in the analysis.
The signal extraction methodology is discussed in Section 6, and the results obtained after this
procedure are shown in Section 7. The paper is summarized in Section 8. Tabulated results are
provided in the HEPData record for this analysis [22].

2 The CMS detector and event reconstruction
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detec-
tors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke
outside the solenoid. A more detailed description of the CMS detector, together with a def-
inition of the coordinate system used and the relevant kinematic variables, can be found in
Ref. [23].

Events of interest are selected using a two-tiered trigger system [24]. The first level, composed
of custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a time interval of less than 4 µs. The second
level, known as the high-level trigger, consists of a farm of processors running a version of the
full event reconstruction software optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage.

The particle-flow (PF) algorithm [25] aims to reconstruct and identify each individual particle
in an event, with an optimized combination of information from the various elements of the
CMS detector. The energy of photons is obtained directly from the ECAL measurement. The
energy of electrons is obtained from a combination of the electron momentum at the primary
interaction vertex as determined by the tracker, the energy of the corresponding ECAL clus-
ter, and the energy sum of all bremsstrahlung photons spatially compatible with originating
from the electron track. The muon track is obtained from the combination of central tracker
and muon system information, and its curvature provides an estimate of the momentum. The
energy of charged hadrons is determined from a combination of their momentum measured
in the tracker and the matching ECAL and HCAL energy deposits, corrected for the response
function of the calorimeters to hadronic showers. Finally, neutral hadrons are identified as
HCAL energy clusters not linked to any charged-hadron trajectory, or as a combined ECAL
and HCAL energy excess with respect to the expected charged-hadron energy deposit.
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The primary vertex (PV) is taken to be the vertex corresponding to the hardest scattering in the
event, evaluated using tracking information alone, as described in Section 9.4.1 of Ref. [26]. For
each event, hadronic jets are clustered from the particles reconstructed with PF (PF candidates)
using the infrared- and collinear-safe anti-kT algorithm [27, 28] with a distance parameter of
0.4. The jet momentum is determined as the vector sum of all particle momenta in the jet and
is found from simulation to be within 5–10% of the parton’s generated momentum over the
entire pT spectrum and detector acceptance. Additional proton-proton (pp) interactions within
the same or nearby bunch crossings (pileup) can contribute with additional tracks and calori-
metric energy depositions to the jet momentum. To mitigate this effect, tracks identified as
originating from pileup vertices are discarded and an offset correction is applied to correct for
remaining contributions [29]. Jet energy corrections are derived from simulation and applied
to calibrate the jet momentum. In situ measurements of the momentum balance in dijet, pho-
ton+jet, Z+jets, and multijet events are used to account for any residual differences in jet energy
scale in data and simulation [30]. Additional selection criteria are applied to each jet to remove
jets potentially dominated by anomalous contributions from various subdetector components
or reconstruction failures [30].

The deep neural network (DNN)-based combined secondary vertex algorithm (DeepCSV) is
used to identify jets originating from the hadronization of bottom quarks [31], denoted in the
following as “b-tagged jets”. At the operating point of the tagging algorithm chosen for this
analysis, the efficiency of identifying b quark jets in simulate tt events is about 75%, averaged
over all pT, and the misidentification rate for light-flavor quark and gluon jets is about 1%. Scale
factors are applied to the simulated samples to reproduce the b tagging efficiency measured in
data.

The missing transverse momentum vector p⃗ miss
T is defined as the negative vector pT sum of all

PF particles originating from the primary vertex; its magnitude is defined as pmiss
T . Jet energy

scale and resolution corrections are also propagated to the p⃗ miss
T calculation.

3 Data and simulated samples
The data used in this search were collected by the CMS detector in 2016–2018 and correspond
to an integrated luminosity of 138 fb−1. Several triggers were used to collect the data, either re-
quiring large pmiss

T or the presence of one or two leptons (electrons or muons). The pmiss
T -based

triggers are employed to select events that do not contain leptons (i.e., for the AH channel)
if they have pmiss

T and missing hadronic activity Hmiss
T [24] both above 120 GeV, where miss-

ing hadronic activity is defined as the negative vector sum of jet transverse momenta. These
triggers are nearly 100% efficient for events with pmiss

T of at least 250 GeV. A second set of
triggers, used in the SL channel, requires the presence of at least one isolated electron (muon)
with pT > 27 (24) GeV. The corresponding trigger efficiencies are above 90% for leptons with
pT > 30 GeV. The last set of triggers, for the DL channel, uses a combination of single- and di-
lepton triggers to maximize the efficiency, which is on average 98% for events with two leptons
with pT > 25(20)GeV.

Monte Carlo (MC) simulated samples of the main SM backgrounds and of the signal processes
are used to optimize the event selection and to improve the background estimation. The SM
processes with the largest contributions to the background in the various final states are tt,
W+jets, and Z+jets production, although the precise composition depends on the specific chan-
nel under consideration. Simulated events of tt production and single top quark processes (t-,
s-, and tW-channel) are generated at next-to-leading order (NLO) in quantum chromodynam-
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ics (QCD) using the POWHEG v2 [32–37] event generators. For the tt process, the top quark
pT distribution is reweighted to match next-to-NLO (NNLO) theoretical computations [38].
The samples for top quark pair associated production with a W boson (tt+W) and a Z boson
(tt+Z) plus up to two additional partons are generated based on the NLO ME calculations im-
plemented in MADGRAPH5 aMC@NLO and the FxFx [39] prescription to merge multileg pro-
cesses. Samples of Z+jets and W+jets are generated using leading order (LO) predictions with
up to four partons in the final state using MADGRAPH5 aMC@NLO [40] (v2.2.2 in 2016, v2.4.2
in 2017 and 2018) with the MLM prescription [41] for matching jets from the matrix element
(ME) calculation to the parton shower description. Dedicated electroweak [42–47] and QCD
(calculated with MADGRAPH5 aMC@NLO) LO to NLO corrections (K factors), parameterized
as functions of the generated boson pT, are applied to Z+jets and W+jets events. Multijet events
are simulated at LO either using PYTHIA or MADGRAPH5 aMC@NLO event generators, making
use of the MLM matching for the latter case. Other processes with a smaller contribution, such
as diboson production, are generated at NLO using either MADGRAPH5 aMC@NLO using FxFx
matching or with POWHEG v2 and normalized to the most accurate cross section calculations
available [48, 49].

The tt+DM and t/t+DM signal processes are simulated at LO with MADGRAPH5 aMC@NLO

v2.6.1 with one and zero additional partons, respectively, in the matrix element calculations
using the simplified model referenced in Section 1. The benchmark values chosen for the cou-
pling parameters are gχ = gq = 1, following the recommendations of the LHC Dark Matter
Working Group [50]. In addition, the mass of the DM candidate is set to mχ = 1 GeV as a bench-
mark point, taking into account that for the on-shell production of the mediators, the impact of
the DM mass in the pmiss

T distribution is irrelevant. For the off-shell production of ϕ/a, there is
typically a moderate change in the distribution. However, these scenarios are not considered
in this study because of their highly suppressed cross sections. The parameter scan focuses on
variations of the parameter mϕ/a , chosen from the following list of mass points (for both type
of mediators and both tt+DM and t/t+DM production modes): 50, 100, 150, 200, 250, 300, 350,
400, 450, and 500 GeV.

The initial-state partons are modeled with the NNPDF 3.0 [51] parton distribution function
(PDF) set, of the same order in QCD as was used for the matrix element calculation for the
samples corresponding to the 2016 period, while the NNPDF 3.1 NNLO [52] PDF set is used
for the 2017 and 2018 samples. Parton showering and hadronization are handled by PYTHIA

v8.226 (8.230) [53] using the CUETP8M1(2) underlying event tune [54] for samples in the 2016
period, and the CP5 tune [55] for most samples corresponding to the 2017 and 2018 periods. All
signal and background samples are processed using GEANT4 [56] to provide a full simulation
of the CMS detector, including a simulation of the previously mentioned triggers. The effects
of additional pp interactions in the same or adjacent bunch crossings, referred to as pileup,
are included in all simulation samples. To match the simulation distribution of genuine pileup
interactions with the one observed in data, a reweighting procedure is implemented. Correc-
tion factors are derived and applied to the simulated samples to match the trigger efficiencies
measured in data. Additional corrections are applied to cover remaining residual differences
between data and simulation that arise from the lepton identification and reconstruction effi-
ciencies, as well as from b-tagged jet identification efficiencies.

4 Event selection
This search defines several orthogonal signal regions (SRs) that are statistically combined in
a simultaneous global fit of the pmiss

T spectrum of the events in those regions. Control regions
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(CRs) enriched in the major background processes are included in the fit for each channel to im-
prove the estimates of the SM contributions. Events are classified into three mutually exclusive
“channels”, based on the number of leptons in the final state: the AH channel, which contains
events with no electrons or muons with pT > 10 GeV; the SL channel, which contains events
with one lepton with pT > 35(30)GeV for electrons (muons) and with no other lepton with
pT > 10 GeV; and the DL channel, which contains events with one lepton with pT > 25 GeV, a
second lepton with pT > 20 GeV, and no other lepton with pT > 10 GeV.

In the AH CRs and SL channel, electrons are selected if they have pT > 35 GeV and |η| <
2.1, and muons are selected if they have pT > 30 GeV and |η| < 2.4. For the DL channel,
electrons and muons are selected if they have pT > 20 GeV and |η| < 2.4. In all channels,
events containing additional leptons with pT > 10 GeV and |η| < 2.4 are vetoed. To ensure that
candidate leptons are well measured, identification requirements based on hit information in
the tracker and muon systems and on energy deposits in the calorimeters are imposed. Leptons
are further required to be isolated from hadronic activity to reject leptons within jets that could
arise, for example, from the decay of b quarks. A relative isolation quantity is defined as the
scalar pT sum of all PF candidates within a ∆R =

√
(∆η)2 + (∆ϕ)2 cone of radius 0.3 (0.4)

centered around the electron (muon) candidate, where ϕ is the azimuthal angle in radians,
divided by the lepton. The requirement put on this relative isolation depends on the pT for
electrons and is on average required to be less than 0.2, while is required to be less than 0.15 for
muons [57, 58].

Each channel SR is further divided based on the number of b-tagged jets (nb) into a region with
exactly one b-tagged jet (1 b), targeting the t/t+DM process, and a region with two or more
b-tagged jets (2 b), targeting the tt+DM process. The regions with exactly one b-tagged jet in
the AH and SL channels are further subdivided into exactly zero or ≥ 1 forward jet regions
(0FJ and 1FJ) to increase the sensitivity to the t-channel t/t+DM process, which tends to have
a forward jet, as shown in Fig. 1. Jet candidates are required to have pT > 30 GeV in the AH
and SL channels, or pT > 20 GeV in the DL channel, and are categorized as “central” if they
lie within |η| < 2.4 and as “forward” if they are within 2.4 < |η| < 4.0. The b-tagged jets are
required to have the same pT threshold and to lie within |η| < 2.4.

In each channel, a set of variables is identified to discriminate between signal and background
events. In the AH and SL channels, a selection on these variables is applied to increase the
signal significance, which is optimized using as a figure of merit the ratio between the number
of expected signal events and the square root of the expected SM background contributions. In
the DL channel, the discriminating variables are employed to train a neural network.

4.1 All-hadronic signal regions

Events categorized into the AH channel are events with no electrons or muons with pT >
10 GeV, at least one identified b-tagged jet, at least three jets with pT > 30 GeV, and pmiss

T >
250 GeV. The dominant background after this selection consists of SL tt (tt(1ℓ)) events, where
the lepton either falls out of detector acceptance or is not identified, providing an additional
source of pmiss

T . To reduce this background, we require the transverse mass mb
T of the p⃗ miss

T

vector and of a b-tagged jet to be greater than 140 GeV. The mb
T variable is defined as:

mb
T =

√
2pmiss

T pb
T[1 − cos(∆ϕ)], (4)

where pb
T is the transverse momentum of the b-tagged jet and ∆ϕ is the opening angle between

the b-tagged jet direction and the p⃗ miss
T in the transverse plane. For tt background events, mb

T
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tends to have values below or around the top quark mass in the case where the b-tagged jet
belongs to the top quark decay chain and the lepton is not identified. For the calculation, we
choose the b-tagged jet with the highest DeepCSV discriminant value if there is more than one
candidate.

Studies have shown that to further reduce the tt(1ℓ) background, together with that from Z →
νν events, an effective variable to use is pT(j1)/HT, which is defined as the ratio of the leading
pT jet in the event to HT, the scalar pT sum of all reconstructed jets in the event with pT > 30 GeV
within |η| < 2.4. The tt+DM process, which has six jets at the ME level, tends to have lower
values of this observable than the tt(1ℓ) and Z → νν backgrounds, which have fewer jets. We
require pT(j1)/HT < 0.5 in the nb ≥ 2 category. The t/t+DM events, which have fewer central
jets, tend to exhibit a distribution similar to that of the background, so no such requirement on
the pT(j1)/HT is applied in the nb = 1 category.

Another background in this channel is QCD multijet production. For this process, no in-
trinsic pmiss

T is expected, so the observed pmiss
T is mostly the result of jet mismeasurements.

For these events, p⃗ miss
T is often aligned with one of the leading jets. As a result, the mini-

mum opening angle between each of the two leading jets and the p⃗ miss
T is required to satisfy

min ∆ϕ(j1,2, p⃗ miss
T ) > 0.8 radians to reduce this background.

The dominant backgrounds after the selection presented in Table 1 arise from tt, W+jets, and
Z → νν processes, with QCD multijet events, single top quark, Drell–Yan (DY), and diboson
production giving smaller contributions.

4.2 Single-lepton signal regions

Events in the SL channel are selected by requiring the presence of one electron (muon) with
pT > 35(30)GeV, ≥1 identified b-tagged jets, at least two jets with pT > 30 GeV, and pmiss

T >
250 GeV. After this selection, the dominant backgrounds are from tt and W+jets processes.

To reduce the dominant backgrounds and improve the signal sensitivity, we impose a require-
ment on the transverse mass mT, which is calculated as:

mT =

√
2pmiss

T pℓT[1 − cos(∆ϕ)], (5)

where pℓT is the transverse momentum of the lepton and ∆ϕ is the opening angle between the
lepton direction and the p⃗ miss

T in the transverse plane. The mT variable is expected to be less
than the W boson mass for leptonic on-shell W decays in tt and W+jets events, while for signal,
off-shell W decays, and dileptonic decays of tt , the mT variable is expected to exceed the W bo-
son mass because of the additional pmiss

T in the event. A requirement of mT > 140 GeV reduces
the background contributions from single-lepton events and enhances the analysis sensitivity
to the DM signal.

After applying the mT selection, the remaining tt contributions are primarily from events with
both top quarks decaying leptonically (tt(2ℓ)) and with one lepton not identified. This back-
ground can be further reduced by making use of the mW

T2 variable [59], which is defined as
the minimal value of the mass of a particle assumed to be pair produced that decays to a W
boson and a b quark jet. The W bosons are assumed to be produced on-shell and to decay
leptonically, where one of the two leptons is not detected. Based on the variable definition, in
tt(2ℓ) events the mW

T2 distribution has a kinematic end point at the top quark mass for perfect
detector response, while this is not the case for signal events, where two additional DM par-
ticles are present. The calculation of mW

T2 requires two b-tagged jets, where one comes from
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the same decay chain as the reconstructed lepton. If only one b-tagged jet is present in the
event, each of the first three (or two in three-jet events) leading non-b-tagged jets is assumed as
the second b-tagged jet in the calculation. The mW

T2 is then evaluated for all possible jet-lepton
combinations and the minimum mW

T2 value is considered to discriminate between signal and
background events.

If two or more b-tagged jets are identified in the events, mW
T2 is calculated using all possible

jet-lepton combinations. The smallest of all the mW
T2 values is taken as the event discriminant.

A requirement of mW
T2 > 180 GeV is applied in the analysis.

In addition, jets and the p⃗ miss
T vector tend to be more separated in the transverse plane in sig-

nal events than in tt background processes. To improve the search sensitivity, the minimum
opening angle min ∆ϕ(j1,2, p⃗ miss

T ) in the transverse plane between the direction of each of the
first two leading-pT jets with |η| < 2.4 and the p⃗ miss

T vector is required to be greater than 0.8
radians.

To reduce the tt background further, the transverse mass mb
T is required to be greater than

140 GeV.

To reject the tt(2ℓ) background, the modified topness variable t [60] is introduced. Unlike mW
T2,

which minimizes the transverse mass of the invisible particles, the modified topness minimizes
the reconstructed center-of-mass energy of the event, subject to the conditions that both top
quarks and W bosons are on shell. It is defined as:

t = ln(min S) (6)

with

S =
(m2

W − (pν + pℓ)2)2

a4
W

+
(m2

t − (pb + pW)2)2

a4
t

, (7)

where p and m denote the four-momentum and mass of the particles involved, respectively.
The minimization of the variable S is done with respect to all components of the three mo-
mentum p⃗W and the component of the three momentum p⃗ν along the beam line. The sum is
performed over all five assumed final-state particles from the top quark and W boson decays.
The aW = 5 GeV and at = 15 GeV parameters determine the relative weighting of the mass
shell conditions. The inputs to the calculation of S are two jets, a lepton, and the pmiss

T . The
value of t quantifies how well an event is compatible with the tt(2ℓ) hypothesis. Rather than
defining a single selection criterion on this variable, we split all the SRs in the SL channel into
two further categories t ≤ 0 (T1) and t > 0 (T2).

Though significantly reduced by these selections, tt production, in particular tt(2ℓ), remains
the dominant background in this channel, followed by W+jets, single top quark, diboson, and
DY production.

4.3 Dileptonic signal regions

Events in the dileptonic channel are selected by requiring at least two leptons with pT > 25
and 20 GeV, and at least one b-tagged jet with pT > 30 GeV. The invariant mass mℓℓ of the two-
lepton system is required to satisfy mℓℓ > 20 GeV to suppress light resonances, and for the case
of two electrons or two muons, the region 76 < mℓℓ < 106 GeV is also excluded to suppress
DY production. This selection gives a region that is dominated by tt processes, which, because
of the presence of two neutrinos in the final state, has a fairly hard pmiss

T spectrum that cannot
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be simply removed with a pmiss
T requirement. A selection is therefore imposed on mℓℓ

T2 [61, 62],
which is defined as:

mℓℓ
T2 = min

p⃗T,ν̄+ p⃗T,ν= p⃗ miss
T

[max{MT(mℓ , mν̄ , p⃗T,ℓ , p⃗T,ν̄), MT(mℓ , mν , p⃗T,ℓ , p⃗T,ν)}], (8)

with
MT(m1, m2, p⃗T,1, p⃗T,2) =

√
m2

1 + m2
2 + 2(ET,1ET,2 − p⃗T,1 · p⃗T,2), (9)

where mi, p⃗T,i, and ET,i correspond to the mass, transverse momentum vector, and transverse
energy of the particle i respectively, while p⃗ miss

T is the measured missing transverse momentum
vector. This variable offers information on the mass of pair-produced particles in situations
where both particles decay to a final state with undetected particles, as in the case of two lep-
tonically decaying W bosons produced from top quark pairs. If the visible components in the
decay chain are measured correctly, this variable has a kinematic endpoint at the W boson mass
for the tt processes but not for signal, because of the additional pmiss

T from DM.

After requiring mℓℓ
T2 > 80 GeV, the main remaining backgrounds are from the tt production

because of pmiss
T mismeasurements, tW production, DY, and ttZ events, where the Z boson

decays to neutrinos (ttZ → ttνν ), giving a very similar signature to the signal process. Most of
the backgrounds in the DL channel are well modeled by the MC simulation. However, the DY
process is difficult to model as it normally only enters the selection if pmiss

T , and hence the mℓℓ
T2,

are significantly mismodeled. The DL signal regions are therefore split by lepton flavor into
same-flavor (SF) regions with two electrons or two muons, which will be relatively enriched
in the DY process, and different flavor (DF) regions with one electron and one muon, which
will be depleted in DY events. A method is then used to estimate the DY in the more enriched
t/t+DM SF region (as discussed in Section 4.4.3), based on control samples in data.

4.3.1 Neural network optimization

As previously mentioned, for the DL channel the pmiss
T distribution alone does not provide

a strong discrimination of the signal from the background. The signal sensitivity in the DL
channel can be improved by employing a neural network (NN) trained on a number of dis-
criminating variables. A separate NN is trained in each of the 1 b tag and 2 b tag regions (the
SF and DF lepton regions are combined to maximize the number of events used for the train-
ing) and for each of the mediator hypotheses (scalar or pseudoscalar). Regarding the t/t+DM
and tt+DM processes, both types of signals are considered in the 1 b tag and 2 b tag SRs since
a large fraction of tt+DM events can contribute to the 1 b tag region if one of the b jets is not
tagged. Only one NN is trained for all mediator mass hypotheses since the performance of the
NN is found not to significantly improve when training on a single mass point compared to
the ensemble of all mass points.

Various distributions are considered as inputs for the NN, and the following variables are
found to improve the signal sensitivity (in addition to pmiss

T and mℓℓ
T2, mentioned previously):

• |∆ϕ(ℓ, ℓ)|, the opening angle between the two leptons. Since top quarks decay to
a b quark and a W boson before hadronization, the spin information is propagated
to the W boson and thus to the angular distribution of the leptons. For t/t+DM
tW-channel processes, the (pseudo)scalar mediator is radiated from the top quark,
affecting the final top polarization and therefore the correlation with the W boson.
This observable contains information regarding the polarization correlation of the
two particles and helps in separating the tW+DM from the SM single top quark tW
production because of the effect of the mediator coupling to top quarks.
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• |∆ϕ( p⃗ miss
T , ℓℓb)|, the opening angle between the two-lepton plus (leading) b-tagged

jet and p⃗ miss
T . This variable allows differentiation of t/t+DM events from the domi-

nant tt background since in t/t+DM events the ℓℓb system is expected to be back-
to-back with respect to p⃗ miss

T . This is not the case for the tt production, which has
another b jet present.

In the 2 b tag region, the four-momenta of the top quarks can be reconstructed from all the
visible decay products of the tt system. This can be achieved by constraining the neutrino
four-momenta using the on-shell conditions for the top quarks, W bosons, and neutrinos along
with the fact that the pmiss

T for tt processes should correspond to the sum of the transverse
momentum of the neutrinos. While this condition is valid for tt processes, it does not hold
for the tt+DM signal where the DM particles produced also contribute to the total pmiss

T in the
event. Therefore, a variant of traditional kinematic reconstruction algorithms [63] is used. This
algorithm first applies the on-shell conditions to limit possible neutrino solutions to ellipses
in momentum space and then attempts to assign the neutrino momenta as closely as possible
to pmiss

T . If the entire pmiss
T can be assigned to neutrino momenta, the ellipses for the neutrino

and anti-neutrino will intersect, and the point of intersection with the smallest mtt is taken as

a solution for the neutrino momenta. Otherwise (as is usually the case because of the mℓℓ
T2 >

80 GeV selection), the ellipses do not intersect, and the point of closest approach is taken as
a solution. Events that fail this kinematic reconstruction (which only happens if the on-shell
conditions are not satisfied and represents about 5% of signal and background events) are not
considered in this region. This reconstruction of the top quarks allows the use of additional
discriminating variables in the 2 b tag region based on the top quark kinematic properties:

• pdark
T : this variable defines the amount of pmiss

T that cannot be assigned to the neutri-
nos in the top quark kinematic reconstruction, i.e., the distance of closest approach
of the ellipses. This variable tends to have higher values for tt+DM events with re-
spect to tt production because of the additional source of genuine pmiss

T from DM
particles.

• chel: the angle between the two leptons when boosted back into the rest frame of
their parent top quarks. This quantity is sensitive to spin correlations.

• |∆ϕ(t, t)|: the top quark and antiquark are expected to be approximately back-to-
back in the azimuthal plane for tt production, while for tt+DM events they are ex-
pected to recoil against the DM mediator.

The NNs were trained using Keras with a Tensorflow backend. Each contained three densely
connected hidden layers using Recified Linear Unit (ReLU) activation function, and an output
layer with nodes for signal and background using the “softmax” activation function. Categor-
ical cross-entropy was used for the activation function, and the network was trained for 50
epochs. The MC data sets were split into training, validation and test data sets; no evidence
was observed for overtraining between the training and validation data sets, and no signifi-
cant difference in the final distributions was observed between the test and training data sets.
The NN score was used in the signal extraction, explained in more detail in Section 6, with a
binning designed to maximize sensitivity while keeping a minimum of 5 expected background
events in each bin.

4.4 Control regions

After the event selection presented in Table 1 is applied, the leading SM background contribu-
tions in the different regions are evaluated. For the AH regions, the main backgrounds arise
from single-lepton tt and W+jets events in which the lepton is not identified, and Z boson pro-
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Table 1: Final event selection requirements for the AH, SL, and DL SRs. For the SL channel, a
categorization in terms of modified topness, with bins of t ≤ 0 and t > 0, is also applied after
the event selection. The DL channel is split into SF e+e−/µ+µ− and DF e±µ∓ regions.

All-hadronic SRs Single-lepton SRs Dilepton SRs
0ℓ, 1 b, 0FJ 0ℓ, 1 b, 1FJ 0ℓ, 2 b 1ℓ, 1 b, 0FJ 1ℓ, 1 b, 1FJ 1ℓ, 2 b 2ℓ, 1 b 2ℓ, 2 b

nlep =0 =1 =2
njet ≥3 ≥2 ≥1
nb =1 =1 ≥2 =1 =1 ≥2 =1 ≥2
Forward jets =0 ≥1 — =0 ≥1 — — —
pT(j1)/HT — — <0.5 — —
pmiss

T [GeV] >250 >250 —
mT [GeV] — >140 —
mW

T2 [GeV] — >180 —
min ∆ϕ(j1,2, p⃗ miss

T ) [rad.] >0.8 >0.8 —
mb

T [GeV] >140 >140 —
mℓℓ [GeV] — — >20
|mℓℓ − mZ | [GeV] — — >15 (SF)
mℓℓ

T2 [GeV] — — >80
Pass tt reco — — — yes

duction in which the Z boson decays into two neutrinos, leading to genuine pmiss
T . In the SL

SRs, the main backgrounds are dileptonic tt events in which one of the leptons is not identi-
fied, and W+jets events. In the DL SRs, the backgrounds are dileptonic tt and tW events, DY
production, and ttZ → ttνν processes.

To improve the estimation of the backgrounds, control samples in data are used. In the AH
and SL channels, CRs enhanced in the different background sources are used to derive correc-
tion factors as a function of pmiss

T from the comparison of the pmiss
T distribution between data

and simulation. These corrections are extracted simultaneously across the CRs and SRs for
each channel in a global fit, as explained in more detail in Section 6. The residual background
processes are modeled with simulation.

In the DL channel, a validation region (VR) enriched in tt and tW events is used to verify their
modeling for all the input variables used in the NN. These distributions all show good agree-
ment between data and simulations within uncertainties and therefore no correction factor is
used. For the DY and ttZ → ttνν processes, dedicated CRs are used to derive corrections in
the fit. For the DY process, these corrections are derived as a function of the NN score in a
similar way to the AH and SL channels, while for ttZ → ttνν , only an overall normalization
factor is considered.

4.4.1 All-hadronic control regions

For the AH SRs, four independent sets of CRs are defined. The first set of CRs is designed to
isolate single-lepton tt processes by selecting events with exactly one lepton, njet ≥ 3, nb ≥ 1,
pmiss

T > 250 GeV, min ∆ϕ(j1,2, p⃗ miss
T ) ≥ 0.8, and mT < 140 GeV to avoid overlap with the SL SRs.

The second set of CRs is enhanced in single-lepton W+jets processes by selecting events with
exactly one lepton, njet ≥ 3, nb = 0, pmiss

T > 250 GeV, and in order to avoid overlap with the SL
W+jets CR, mT < 140 GeV.

Additional CRs are designed to model the background originating from Z+jets production,
where the Z boson decays into a pair of neutrinos (Z → νν ). Here we use the Z boson decays
to an OS SF dilepton pair (Z → ℓℓ ) as proxy events to emulate the kinematic properties of the
Z → νν process. Events are selected by requiring two leptons with SF (i.e., e+e− or µ+µ−)
and OS that satisfy the requirement 60 < mℓℓ < 120 GeV on their invariant mass. Additionally,
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events must contain at least three jets and events with b-tagged jets are vetoed (nb = 0). To
reproduce the pT spectrum of Z → νν events, the two leptons are added to the p⃗ miss

T , giving a
quantity referred to as hadronic recoil, which is required to be greater than 250 GeV.

The fourth CR is introduced to estimate QCD multijet events from data to reduce their associ-
ated uncertainties. Though QCD multijet events are a minor background in the AH SRs, they
are characterised by large systematic uncertainties. These large systematic uncertainties are due
to the fact that to pass the pmiss

T > 250 GeV selection, they need to have a significant jet mismea-
surement, which is difficult to model accurately in simulation. The associated CR is defined by
requiring zero leptons, njet ≥ 3, nb ≥ 1, pmiss

T > 250 GeV, and min ∆ϕ(j1,2, p⃗ miss
T ) < 0.8. The last

requirement selects events where the pmiss
T is aligned with one of the leading jets, pointing to a

mismeasurement.

A summary of the different AH CRs can be found in the first four columns of Table 2.

4.4.2 Single-lepton control regions

The first set of CRs is designed to estimate dileptonic tt events by requiring exactly two leptons,
njet ≥ 2, nb ≥ 1, and pmiss

T > 250 GeV. Additionally, events are required to have mℓℓ
T2 < 80 GeV

to maintain the orthogonality with the DL SRs. To statistically enhance these CRs, the mT, mW
T2,

and forward jet selections are removed.

The second set of CRs is defined to isolate W+jets events by requiring exactly one lepton, njet ≥
2, nb = 0, pmiss

T > 250 GeV, and mT > 140 GeV. The nb = 0 requirement makes this CR
orthogonal to the SL SRs.

The selection criteria are summarized in the central columns of Table 2.

4.4.3 Dilepton control regions

For the DL channel, a VR is used to check the agreement for the dominant tt background be-
tween data and simulation for the distributions used as input variables to the NN. This region
is defined with the same selections used in the DL SRs (exactly two leptons, at least one jet and
b-tagged jet, mℓℓ > 20 GeV, and outside the Z boson mass window for SF leptons), except for

the inversion of the mℓℓ
T2 selection requirement. No further correction to these processes in the

fit is found to be necessary.

The DY process is found to be not well modeled in simulation. In particular, the pmiss
T distribu-

tion and the mℓℓ
T2 distribution, which are the two most sensitive NN input variables, are not well

described. A CR is defined with an identical selection to the DL SRs (exactly two leptons, at
least one jet and b-tagged jet, mℓℓ > 20 GeV, and mℓℓ

T2 >80 GeV), except only SF (e+e−/µ+µ−)
leptons are considered inside the Z boson mass window 76 < mℓℓ < 106 GeV. Separate CRs
corresponding to the 1 b tag and 2 b tag regions were considered, since this distribution is also
known to be poorly modeled. However, the 2 b tag region was found to not be dominated by
DY events even inside the Z boson mass window. Therefore, a single CR requiring exactly 1
b-tagged jet is used to predict the rate of DY in the 1 b tag SF SR as a function of the NN score.

To model the background originating from ttZ → ttνν production, a CR enriched in ttZ pro-
cesses, where the Z decays into electrons or muons, is used. To reduce the statistical uncer-
tainty, a CR targeting SL tt decays is used, which is defined by requiring exactly three leptons,
with pT > 25, 20, 20 GeV respectively, along with at least three jets with pT > 30 GeV for the
leading jet, pT > 20 GeV for all others, and at least one b-tagged jet. Furthermore, events are re-
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quired to have OS SF lepton pair with |mℓℓ − mZ | < 10 GeV, and the remaining lepton to have
pT > 35 GeV to suppress processes coming from DY with a misidentified lepton. To maximize
the discrimination of ttZ from the remaining backgrounds, the events are binned in terms of
njet and nb , since ttZ has higher multiplicities of both compared to the other backgrounds.

A summary of the DL VR and CRs can be found in the last three columns of Table 2.

Table 2: CRs defined for the main backgrounds of the AH SRs (first 4 columns, tt(1ℓ), W+jets,
Z → ℓℓ , QCD), the SL SRs (central two columns, tt(2ℓ) and W+jets), and the DL SRs (last 2
columns, tt(2ℓ) and ttZ ). To increase the event counts, some selection criteria applied in the
SRs are removed in the related CRs and hence are not listed. The pmiss

T selection for the Z → ℓℓ
CR refers to the hadronic recoil.

AH SL DL
tt(1ℓ) CR W(ℓν) CR Z(2ℓ) CR QCD CR tt(2ℓ) CR W(ℓν) CR tt(2ℓ) VR DY CR ttZ CR

nb ≥1 =0 =0 ≥1 ≥1 =0 ≥1 =1 ≥1
nlep =1 =1 =2 =0 =2 =1 =2 =2 (SF) =3
njet ≥3 ≥3 ≥3 ≥3 ≥2 ≥2 ≥ 1 ≥1 ≥3
pmiss

T [GeV] ≥250 ≥250 ≥250 ≥250 ≥250 ≥250 — — —
MT [GeV] ≤140 ≤140 — — — ≥140 — — —
min ∆ϕ(j1,2, p⃗ miss

T ) [rad.] ≥0.8 — — <0.8 — — — — —
mℓℓ [GeV] — — [60, 120] — — — >20 — —
|mℓℓ − mZ | [GeV] — — — — — — >15 (SF) <15 <10 (OS SF)
mℓℓ

T2 [GeV] — — — — ≤80 ≤80 ≤80 ≥80 —
Included in fit? Yes Yes Yes Yes Yes Yes No Yes Yes

5 Systematic uncertainties
Different sources of systematic uncertainties are considered, in most cases affecting both the
signal and the background. The various sources are implemented in the limit calculation, de-
scribed in detail later. We distinguish between two types of uncertainties, those that only affect
the normalization of a process, and those that in addition affect its distribution.

The following uncertainties correspond to constrained normalization nuisance parameters in
the fit discussed in Section 6 (unless otherwise noted, the uncertainty source is applied to all
channels):

• Luminosity: the integrated luminosities for the 2016, 2017, and 2018 data-taking years
have 1.2–2.5% individual uncertainties [64–66].

• Single top quark background normalization (AH and SL channels): an uncertainty of 20%
in the normalization of single top quark processes is considered, accounting for the
uncertainty due to differences in generator predictions and the tt/tW interference
treatment in the predicted cross section.

The following sources of uncertainty affect the distributions as well as the normalization of the
signal and background processes. They are applied to all search channels:

• PDF uncertainties: uncertainties in the choice of PDF are estimated by reweighting
the samples to the NNPDF 3.0 [51] replicas for the 2016 data set and the NNPDF 3.1 [52]
hessian variations for the 2017 and 2018 data sets, which were then combined as de-
scribed in Ref. [67].

• Factorization and renormalization scales: the uncertainties in the choice of the factoriza-
tion and renormalization scale parameters are taken into account by applying a set
of weights that represent a change of these scales by a factor of 2 or 0.5. For processes
where the rate is estimated directly from data in a CR (such as W +jets, Z +jets, and
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QCD), these uncertainties are not considered;

• Parton shower modeling: variations in the parton shower initial and final state radi-
ation (ISR and FSR) scales are also considered by independently varying these up
and down by a factor of 2;

• Pileup modeling: the systematic uncertainty in the pileup modeling is taken into ac-
count by varying the total inelastic cross section entering the calculation of pileup
distributions in simulation by ±4.6% [68];

• Trigger: separate uncertainties are considered for the triggers employed in each chan-
nel. These are estimated using cross-checks of the methods used to compute them
from control samples in data;

• Lepton reconstruction and selection: scale factors are applied to the MC processes to
mimic the measured reconstruction and selection efficiencies of leptons in data. The
uncertainties associated with these scale factors are binned in pT and η and are of
the order of ∼2% for electrons and muons;

• Jet energy scale and resolution: reconstructed jet four-momenta in the simulation are
varied according to the uncertainties in the jet energy scale, which are split into
different uncorrelated sources. Additionally, the pT of the jets is stochastically varied
within the resolution of the detector. These uncertainties are coherently propagated
to all variables, including pmiss

T [69];

• pmiss
T mismodeling: the effects of varying jet uncertainties are propagated to the cal-

culation of the pmiss
T . Additionally, any unclustered energy, mostly coming from

calorimeter deposits not assigned to any object, is varied within the associated mea-
surement uncertainties and the impact of such variations is propagated to pmiss

T ;

• b tagging efficiency scale factors: the b tagging and light-flavor quark/gluon jet mistag
efficiency scale factors and the respective uncertainties are measured in independent
control samples [31] and propagated to the analysis;

• W/Z+heavy-flavor fraction (AH and SL channels): the uncertainty in the fraction of
W/Z+heavy-flavor (HF) jets in W+jets and Z+jets events is taken into account. The
fraction of W/Z+jets events in which the jets include heavy flavour jets is varied
within 20% separately and independently for the one b-tagged and two or more
b-tagged jets cases [70–73].

• Simulation sample size: uncertainties originating from the limited size of the simu-
lated signal and background samples are included by allowing each kinematic bin
used in the signal extraction to fluctuate independently within its statistical uncer-
tainty following Ref. [74];

• Uncertainty related to ECAL mistiming: partial mistiming of signals in the forward
regions of the ECAL endcaps led to a minor reduction in trigger efficiency. Simula-
tions are corrected to reproduce the behavior of the data and the uncertainty in these
corrections is propagated to the distributions used in the signal extraction;

• Electroweak and QCD K factors (AH and SL channels): uncertainties in the LO→NLO
K factors calculated for W+jets and Z+jets processes are included to compensate for
missing higher-order corrections. For QCD processes, the uncertainties arise from
variations related to the factorization and renormalization scales. For electroweak
processes, the magnitude of the missing higher-order corrections is estimated by cal-
culating the difference between applying and omitting the LO→NLO electroweak K
factors.
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• b-tagged jet multiplicity normalization (AH and SL channels): an uncertainty of 5% is
considered for the normalization scale factors applied to both W+jets and Z+jets
processes in 2017 and 2018 to correct the b-tagged jet multiplicity in the AH and SL
channels;

• Top quark pT reweighting (DL channel): differential measurements of the top quark
pT spectrum in tt events [75] show that the measured pT spectrum is softer than in
NLO simulation. Comparisons with NNLO QCD simulation suggest this difference
is mainly due to missing higher-order corrections. A pT-dependent scale factor is
therefore applied to correct the difference between NNLO and NLO simulation in
the DL channel. This correction is not needed in the other channels because of the
pmiss

T -dependent CR corrections factors. A corresponding systematic uncertainty is
estimated by evaluating the difference between applying and omitting the reweight-
ing.

The above sources of systematic uncertainties are considered with various degrees of correla-
tion across the different channels and the data-taking periods. A group of nuisance parame-
ters, such as the theory-related uncertainties, which include the variation in the factorization
and renormalization scales, the PDF choice, the parton showering scales, the uncertainty in the
inelastic cross section, and others, are treated as fully correlated across all channels and peri-
ods of data-taking. Analogously, for the channel-dependent higher-order theory corrections
to W+jets, Z+jets, and tt processes, a commonly associated parameter is assigned across all
periods. Experimental sources of uncertainties such as the lepton identification and isolation
efficiencies, as well as the efficiency of the different triggers used, are also considered fully cor-
related. Similarly, a subgroup of size equal to 13 nuisance parameters out of the 27 sub-sources
affecting the jet energy scale and the parameter associated with the ECAL mistiming uncer-
tainty are assumed to be maximally correlated across all analysis categories. Another group of
nuisance parameters is considered in the fit with a partial correlation scheme. This includes, for
instance, uncertainty sources such as b tagging efficiency, for which a fraction of sub-sources
are considered fully correlated and another fraction completely uncorrelated across data-taking
periods. The remainder (14 parameters) of the group of jet energy scale sub-sources are also
treated as fully correlated, making the jet energy scale a partially correlated uncertainty source
overall. The uncertainty in the integrated luminosity is naturally correlated across channels but
is kept uncorrelated among different data-taking periods. On the other side, among the group
of fully uncorrelated uncertainty sources across periods, one finds the nuisance parameters as-
sociated with jet energy resolution and the unclustered component of the missing transverse
momentum. These two, however, because of their common nature, are kept correlated across
the three channels investigated here.

6 Signal extraction
The DM signal is extracted from a simultaneous fit to the pmiss

T distributions in the AH and
SL channels, and to the NN output distributions for the DL channel. The following results
have been determined using the CMS statistical analysis tool COMBINE [76], which is based
on the ROOFIT [77] and ROOSTATS [78] frameworks. The main SM backgrounds, discussed in
Section 4, are dileptonic tt and W+jets events for the SL channels, single-lepton tt, W+jets, and
Z → νν events for the AH channels, and dileptonic tt , tW, and ttZ → ttνν for the DL case.

The effect of the systematic uncertainties is taken into account by introducing nuisance pa-
rameters. Uncertainties that affect the normalization only are modeled using nuisances with
log-normal probability densities. These parameters are treated as correlated between bins of
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the fit distribution and between the different CRs and SRs within each channel for the same
year. The common sources are correlated across channels, with the exception of the b tagging
efficiency scale factors, which are decorrelated between the AH, SL, and DL channels because
of a significantly different phase space.

To improve the estimation of the primary backgrounds in the SL and AH channels, an uncon-
strained multiplicative parameter is separately assigned to each background for each individ-
ual bin of the pmiss

T distribution. A thorough explanation of this method, typically referred to as
the “transfer factor” method in many other DM searches, can be found in Ref. [79]. Concretely,
the unconstrained parameters tend to adjust the expected contribution of the corresponding
background process as a function of pmiss

T simultaneously in the SRs and CRs for a particular
channel, taking advantage of the similar distributions of the fitting variables across different
regions. For example, in any given pmiss

T bin of the SL channel, a single multiplicative parame-
ter for tt links the tt background in the tt enhanced 2ℓ CR, the W+jets enhanced 1ℓ CR, and the
SRs. This has the advantage that the larger expected sample of tt events in the enhanced 2ℓ CR
provides the primary, though not exclusive, control of the necessary corrections to that given
process in the SR by comparing to the observation in the signal-depleted region. Similarly, a
multiplicative parameter links the rates of the DY process in each NN bin between the DY CR
and the DL 1 b tag SF SR, while an overall normalization parameter is used to link the rate of
ttZ between the ttZ CR and the DL SRs. The rates of processes that do not have a dedicated
CR in the fit are taken from simulation. Potential contributions from DM signals are included
in all CRs and SRs, and scaled by a signal strength modifier µ = σ/σth, i.e. the ratio between
the measured and the theoretical cross sections.

A simultaneous fit to the binned pmiss
T and NN distributions is performed combining all of the

aforementioned regions for each of the signal points considered. The results obtained for the
fit to the 100 GeV scalar mediator (with best-fit signal strength 0.51σth) are illustrated in Figs. 2,
3, and 4 for the AH, SL, and DL channels, respectively. The lower panels show the ratio of data
and the SM prediction after performing the maximum likelihood fit.

7 Results
The results are interpreted using the signal model for scalar and pseudoscalar mediators with
masses ranging from 50 to 500 GeV, with mχ = 1 GeV and gq = gχ = 1. The results are pre-
sented in terms of the signal strength parameter µ, defined as the ratio between the measured
and the theoretical cross sections for the t/t+DM and tt+DM production modes summed to-
gether. The theoretical cross sections for both signal models are obtained at LO.

The uncertainties from the AH and SL channels are found to be similar and dominate the com-
bination, since these channels are most sensitive to the signal. In particular, the leading uncer-
tainties are the b-tagging scale factor uncertainties (which can affect the number of W+jets and
Z → νν events entering the SRs, and the uncertainties from the per-bin background estimation
parameters, particularly for the tt process. The next most significant uncertainties principally
affect the DL channel: the normalization uncertainties of the ttZ process and the last bin of the
DY process, followed by the jet energy resolution uncertainties, which are observed to affect
the shape of the tt mℓℓ

T2 distribution in particular.

For masses of the mediator particle below 200 (300) GeV for the scalar (pseudoscalar) model,
the leading contribution to the signal sensitivity stems from tt+DM processes because of their
larger cross sections with respect to t/t+DM production. However, the t/t+DM cross section
(pmiss

T distribution) drops less rapidly as a function of the mediator particle mass (pmiss
T ) in
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Figure 2: The main discriminant distribution pmiss
T in the three AH SRs: 1b 0FJ (top left), 1b 1FJ

(top right), and 2b (bottom), after a signal plus background fit across all channels, assuming a
100 GeV scalar mediator. The solid histograms for the simulated SM backgrounds are summed
cumulatively and rescaled to luminosity, while the signal is shown as a dashed pink line. The
grey dashed area in the upper panel represents the total uncertainty in the cumulative sum of
the simulated SM backgrounds and signal, while in the lower panel it represents only the total
uncertainty in the backgrounds. The data are represented by solid points with the horizontal
bar indicating the width of the bin and the vertical one the associated statistical uncertainty.
The last bin contains overflow events. The lower panel shows the ratio of data to post-fit back-
ground.
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Figure 3: The main discriminant distribution pmiss
T in the six SL SRs: 1b 0FJ (t ≤ 0) (top left),

1b 0FJ (t > 0) (top right), 1b 1FJ (t ≤ 0) (center left), 1b 1FJ (t > 0) (center right), 2b (t ≤
0) (bottom left), and 2b (t > 0) (bottom right), after a signal plus background fit across all
channels, assuming a 100 GeV scalar mediator. The solid histograms for the simulated SM
backgrounds are summed cumulatively and rescaled to luminosity, while the signal is shown
as a dashed pink line. The grey dashed area in the upper panel represents the total uncertainty
in the cumulative sum of the simulated SM backgrounds and signal, while in the lower panel
it represents only the total uncertainty in the backgrounds. The data are represented by solid
points with the horizontal bar indicating the width of the bin and the vertical one the associated
statistical uncertainty. The last bin contains overflow events. The lower panel shows the ratio
of data to post-fit background.
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Figure 4: The main discriminant distribution NN in the the four DL SRs: 2b (DF) (top left), 2b
(SF) (top right), 1b (DF) (bottom left), and 1b (SF) (bottom right), after a signal plus background
fit across all channels, assuming a 100 GeV scalar mediator. The solid histograms for the simu-
lated SM backgrounds are summed cumulatively and rescaled to luminosity, while the signal
is shown as a dashed pink line. The grey dashed area in the upper panel represents the total
uncertainty in the cumulative sum of the simulated SM backgrounds and signal, while in the
lower panel it represents only the total uncertainty in the backgrounds. The data are repre-
sented by solid points with the horizontal bar indicating the width of the bin and the vertical
one the associated statistical uncertainty. The last bin contains overflow events. The lower
panel shows the ratio of data to post-fit background.
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comparison to the tt+DM.

Upper limits at 95% confidence level (CL) are computed using a modified frequentist approach
with a test statistic based on the profile likelihood in the asymptotic approximation and the CLs
criterion [80–82]. The results are shown in Fig. 5 in terms of model-independent 95% CL limits
on the production cross section for new physics processes for the DM scalar (left) and pseu-
doscalar (right) models. Cross section values ranging from 0.02 to 1 pb are probed depending
on the assumption of the mediator of each new phenomenon. In terms of the DM model con-
sidered, we expect to exclude mediator masses below 410 (380) GeV for the benchmark cross
sections of the scalar (pseudoscalar) hypothesis.

A signal-like excess is observed in data. This excess is most visible in the AH 2b SR, and three of
the DL SRs. The size of the excess is found to be statistically consistent across all SRs. Because
the signal kinematic properties have limited correlations with the mass of the mediator, this ex-
cess is consistent with all mediator mass hypotheses, with local significances between 1.4 and
1.9 standard deviations. The largest significance is obtained for the 150 GeV pseudoscalar me-
diator. The variations in local significances are understood to come from the differing relative
sensitivities of the lepton channels to the mediator mass hypotheses. In particular, the signal
hypotheses with the lowest mediator masses (50 and 100 GeV) have slightly softer kinematic
properties, which are less consistent with this excess. Because of the observed excess, we only
exclude mediator masses below 310 (320) GeV for the scalar (pseudoscalar) mediator
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Figure 5: The model-independent 95% CL limits on production cross section for new physics
processes for the scalar (left) and pseudoscalar (right) interactions. The expected limit is shown
by the black dashed line with the 68 and 95% CL uncertainty bands in green and yellow, respec-
tively, while the observed limit is shown by the solid black line. Theoretical LO cross section
values for the DM model and their associated uncertainties are also presented (grey line).

As discussed in Section 1, these signatures can also be interpreted in terms of models with
an ALP mediator A. Since the additional pseudoscalar Higgs boson considered in Eq. (2) and
an ALP as introduced in Eq. (3) exhibit the same coupling structure, if the ALP has zero or
negligible couplings to the gluon or electroweak gauge bosons [83], the existing limits on the
production cross section for pseudoscalar interactions as presented in Fig. 5 can be directly
translated into upper limits on the ALP coupling to the top quark ct. Figure 6 shows the re-
sulting limits on the ratio of the top quark coupling ct to the ALP scale fA, as a function of the
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Figure 6: The 95% CL limits on the ratio of ALP-top coupling to the ALP decay constant
(|ct|/ fA) as a function of mediator mass for the ALP mediator model. The expected limit is
shown by the black dashed line with the 68 and 95% CL uncertainty bands in green and yel-
low, respectively, whereas the observed limit is shown by the solid black line.

ALP mass mA, assuming ct = cχ. For ALP masses above 350 GeV, it is possible for the mediator
to decay back to top quarks and hence varying ct will change the branching ratio of the ALP
to DM; to resolve this ambiguity we take the coupling to DM cχ equal to the coupling to top
quarks ct.

8 Summary
A search for dark matter (DM) produced in association with a single top quark or a top quark
pair produced in interactions with a neutral scalar or pseudoscalar mediator in proton-proton
collisions at a center-of-mass energy of 13 TeV has been presented. The search was performed
using data corresponding to an integrated luminosity of 138 fb−1 recorded by the CMS experi-
ment between 2016 and 2018. This is the first search simultaneously optimized for the t/t+DM
and tt+DM phase spaces across the zero lepton, single-lepton, and two lepton final states.
In particular, lower jet multiplicities were considered with respect to the best LHC tt+DM
searches, resulting in an increase in the sensitivity to processes where DM is produced in asso-
ciation with a single top quark.

The results are interpreted within a simplified model in which a scalar or pseudoscalar media-
tor couples to the top quark and subsequently decays into two DM particles. Scalar and pseu-
doscalar mediator masses below 410 and 380 GeV, respectively, are expected to be excluded at
95% confidence level (CL) assuming a DM particle mass of 1 GeV and mediator couplings to
fermions and DM particles equal to unity. This work represents a 40% improvement in sensi-
tivity with respect to the previous combined CMS search for t/t+DM and tt+DM, which was
the best LHC result with 2016 data. Of these improvements, up to 20% comes from analysis en-
hancements and inclusion of the dileptonic final state, and 20% from the larger data sample. A
small signal-like excess is observed in data. Because the signal kinematic properties do not sig-
nificantly depend on the mass of the mediator, this excess is consistent with all mediator mass
hypotheses. The largest local significance for all mediator hypotheses is observed to be within
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two standard deviations. Because of this excess, mediator masses are only excluded below 310
(320) GeV for the scalar (pseudoscalar) mediator. The results are also translated into model-
independent 95% CL upper limits on the visible cross section of DM production in association
with top quarks, ranging from 1 pb to 0.02 pb.

In addition, limits on the coupling of axion-like-particles (ALP) to top quarks are set for the
first time. This is performed in the context of top quark(s) plus invisible signatures where the
ALP couples to SM quarks as a mediator between the SM and fermionic DM particles.
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INFN Sezione di Pisaa, Università di Pisab, Scuola Normale Superiore di Pisac, Pisa, Italy;
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P. Barriaa , C. Basilea,b , F. Cavallaria , L. Cunqueiro Mendeza,b , D. Del Rea,b ,
E. Di Marcoa ,b , M. Diemoza , F. Erricoa,b , R. Gargiuloa ,b, E. Longoa,b ,
L. Martikainena,b , J. Mijuskovica,b , G. Organtinia ,b , F. Pandolfia , R. Paramattia,b ,
C. Quarantaa,b , S. Rahatloua,b , C. Rovellia , F. Santanastasioa,b , L. Soffia ,
V. Vladimirova,b

https://orcid.org/0000-0002-2363-8889
https://orcid.org/0000-0002-8300-4124
https://orcid.org/0000-0002-8233-7277
https://orcid.org/0000-0001-5404-543X
https://orcid.org/0000-0003-4296-7028
https://orcid.org/0000-0002-7663-0805
https://orcid.org/0000-0001-9038-4500
https://orcid.org/0000-0002-7275-9193
https://orcid.org/0000-0003-1124-8450
https://orcid.org/0000-0001-9523-6451
https://orcid.org/0000-0002-3061-1553
https://orcid.org/0000-0001-5927-8865
https://orcid.org/0000-0002-8575-7250
https://orcid.org/0000-0001-7375-4899
https://orcid.org/0000-0001-5269-8517
https://orcid.org/0000-0001-8359-3734
https://orcid.org/0000-0002-8184-7953
https://orcid.org/0000-0002-0227-1301
https://orcid.org/0000-0002-3086-8260
https://orcid.org/0000-0002-7497-7450
https://orcid.org/0000-0001-6794-8419
https://orcid.org/0000-0002-0218-4910
https://orcid.org/0000-0002-0782-0883
https://orcid.org/0000-0002-9918-1686
https://orcid.org/0000-0002-8387-762X
https://orcid.org/0000-0003-2461-275X
https://orcid.org/0009-0009-1025-6337
https://orcid.org/0000-0003-2414-4175
https://orcid.org/0009-0002-5210-6213
https://orcid.org/0000-0003-1692-6206
https://orcid.org/0000-0001-8219-2074
https://orcid.org/0000-0001-6262-4685
https://orcid.org/0000-0001-9526-556X
https://orcid.org/0000-0002-8801-9894
https://orcid.org/0000-0003-1327-9058
https://orcid.org/0000-0001-9821-4151
https://orcid.org/0000-0002-3798-1135
https://orcid.org/0000-0001-6471-5492
https://orcid.org/0000-0002-8773-4781
https://orcid.org/0000-0002-0807-8772
https://orcid.org/0000-0001-8348-2962
https://orcid.org/0000-0002-3129-828X
https://orcid.org/0000-0002-2205-5737
https://orcid.org/0000-0002-2359-8477
https://orcid.org/0000-0002-5360-1454
https://orcid.org/0000-0003-3474-2099
https://orcid.org/0000-0001-5924-4286
https://orcid.org/0000-0001-7915-1650
https://orcid.org/0000-0002-8312-1531
https://orcid.org/0000-0002-1659-8727
https://orcid.org/0000-0002-1315-563X
https://orcid.org/0000-0002-7253-2669
https://orcid.org/0000-0001-8791-7978
https://orcid.org/0000-0003-1797-4330
https://orcid.org/0000-0002-5861-8140
https://orcid.org/0000-0002-5441-7755
https://orcid.org/0000-0002-1118-6205
https://orcid.org/0000-0001-7002-2051
https://orcid.org/0000-0003-3466-7500
https://orcid.org/0000-0002-8279-2464
https://orcid.org/0000-0003-4050-1769
https://orcid.org/0000-0001-5140-9154
https://orcid.org/0000-0002-8938-2193
https://orcid.org/0000-0003-4281-4582
https://orcid.org/0000-0003-3953-5996
https://orcid.org/0000-0003-0380-1172
https://orcid.org/0000-0003-3075-2679
https://orcid.org/0000-0002-9606-5604
https://orcid.org/0000-0002-1162-2505
https://orcid.org/0000-0002-7104-257X
https://orcid.org/0000-0001-9647-9420
https://orcid.org/0000-0003-0697-3420
https://orcid.org/0000-0003-0165-3962
https://orcid.org/0000-0001-9207-7256
https://orcid.org/0000-0003-0037-5032
https://orcid.org/0000-0001-9247-7778
https://orcid.org/0000-0002-2726-2858
https://orcid.org/0000-0002-4159-9123
https://orcid.org/0000-0002-0843-4108
https://orcid.org/0000-0002-9007-629X
https://orcid.org/0000-0001-7108-8116
https://orcid.org/0000-0002-9004-735X
https://orcid.org/0000-0002-7676-3106
https://orcid.org/0000-0002-2031-2955
https://orcid.org/0000-0002-9770-2249
https://orcid.org/0000-0002-2991-6384
https://orcid.org/0000-0002-7125-2905
https://orcid.org/0000-0003-0449-4717
https://orcid.org/0000-0003-4981-2790
https://orcid.org/0000-0003-2379-9903
https://orcid.org/0000-0002-1717-5654
https://orcid.org/0000-0003-4298-1620
https://orcid.org/0000-0002-7575-8639
https://orcid.org/0000-0002-6598-6865
https://orcid.org/0000-0002-9930-9299
https://orcid.org/0000-0002-2303-2588
https://orcid.org/0000-0001-7248-2967
https://orcid.org/0000-0003-0146-845X
https://orcid.org/0000-0003-0002-5462
https://orcid.org/0000-0002-0151-4439
https://orcid.org/0000-0002-7342-2592
https://orcid.org/0000-0003-1414-9343
https://orcid.org/0000-0001-7646-4977
https://orcid.org/0000-0001-9428-2296
https://orcid.org/0000-0002-1549-7107
https://orcid.org/0000-0003-2351-0487
https://orcid.org/0000-0003-2514-6930
https://orcid.org/0000-0001-7551-5613
https://orcid.org/0000-0002-3510-4833
https://orcid.org/0000-0003-4671-815X
https://orcid.org/0000-0001-7938-5684
https://orcid.org/0000-0002-9380-8919
https://orcid.org/0000-0002-6361-438X
https://orcid.org/0000-0002-4543-2718
https://orcid.org/0000-0002-0635-274X
https://orcid.org/0000-0001-5742-5593
https://orcid.org/0000-0003-0582-4167
https://orcid.org/0000-0002-4338-6332
https://orcid.org/0000-0001-7962-5203
https://orcid.org/0000-0003-2574-4383
https://orcid.org/0000-0003-2606-9156
https://orcid.org/0000-0002-9395-5230
https://orcid.org/0009-0008-8227-0755
https://orcid.org/0000-0002-0249-4142
https://orcid.org/0000-0002-0042-9507
https://orcid.org/0000-0002-3924-7380
https://orcid.org/0000-0003-4486-6482
https://orcid.org/0000-0002-1061-3877
https://orcid.org/0000-0001-6764-5370
https://orcid.org/0000-0003-0870-5796
https://orcid.org/0000-0002-5920-2438
https://orcid.org/0000-0002-3810-8530
https://orcid.org/0000-0001-8199-370X
https://orcid.org/0000-0001-6238-6787
https://orcid.org/0000-0003-1609-3515
https://orcid.org/0009-0009-1589-9980
https://orcid.org/0000-0002-3229-0781
https://orcid.org/0000-0001-8713-3874
https://orcid.org/0000-0002-0080-9550
https://orcid.org/0000-0002-0042-6891
https://orcid.org/0000-0001-9794-3360
https://orcid.org/0000-0003-2173-7530
https://orcid.org/0000-0003-2505-8359
https://orcid.org/0000-0003-2532-9876


36
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