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Abstract

Inclusive and differential cross sections for Higgs boson production in proton-proton
collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected
with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity
of 34.7fb~!. Events with the diphoton final state are selected, and the measured in-
clusive fiducial cross section is 03 = 74 + 11 (stat)fi (syst) fb, in agreement with the
standard model prediction of 67.8 &= 3.8 fb. Differential cross sections are measured
as functions of several observables: the Higgs boson transverse momentum and ra-
pidity, the number of associated jets, and the transverse momentum of the leading jet
in the event. Within the uncertainties, the differential cross sections agree with the
standard model predictions.
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1 Introduction

The Higgs boson (H) was discovered in 2012 by the ATLAS [1] and CMS [2, 3] Collaborations
using proton-proton (pp) collisions at the CERN LHC [4]. Since then, many properties of the
Higgs boson have been examined [5, 6]. The large amount of data collected since the obser-
vation permits detailed testing of the standard model (SM) with differential measurements.
Whereas measurements in the simplified template cross section scheme target the different
production modes and their differential properties, the fiducial inclusive and differential cross
sections account for the sum of all production mode contributions to the fiducial phase space
and are hence less model dependent [7].

The ATLAS and CMS Collaborations measured fiducial inclusive and differential cross sections
at the centre-of-mass energies of 7, 8, and 13 TeV in the H — vy [8-11], H — ZZ — 4/ [12-15],
H — WW — ¢¢'vv' [16-20], and H — 77 [21, 22] decay channels. The measurements in the
diphoton, four-lepton, and WW decay channels by the ATLAS [10, 14, 23] and CMS [11, 15, 20]
Collaborations at 13 TeV reach a relative uncertainty of 8-11%. The combination of the ATLAS
measurements in the H — yy and H —+ ZZ — 4/ decay channels under the SM assumptions
results in an uncertainty of 7% in the total cross section for Higgs boson production [24].

In 2022, the Run 3 of the LHC started at the increased centre-of-mass energy of 13.6 TeV, provid-
ing the opportunity to extend Higgs boson cross section measurements to the increased energy
and further test the SM predictions. Inclusive fiducial cross sections for Higgs boson produc-
tion were measured at /s = 13.6TeV in the H — vy and H — ZZ — 4/ decay channels
by the ATLAS Collaboration with relative uncertainties of about 17 and 26%, respectively [25].
The CMS Collaboration measured the inclusive fiducial cross section in the H — ZZ — 4/
decay channel at 13.6 TeV with a relative uncertainty of ~ 20% [26]. In addition, differential
fiducial cross sections were measured as a function of the transverse momentum (pt) and ab-
solute value of the rapidity of the Higgs boson, denoted by p? and |y!|, respectively. This
paper presents inclusive and differential measurements of the Higgs boson production in the
H — 77 channel from the CMS experiment at /s = 13.6 TeV. The measurements use data
recorded with the CMS detector [27, 28] in 2022 and are performed in a fiducial phase space
defined at the particle level with improved perturbative convergence of the theoretical calcula-
tions [29].

Although the H — <+ decay has a branching fraction (B) of ~ 0.227% [7], the excellent en-
ergy resolution of the CMS electromagnetic calorimeter (ECAL) yields a narrow peak in the
invariant-mass distribution of the two photons, ., . The analysis follows the strategy used in
previous measurements in this channel [9, 11, 30]. Events are selected with two reconstructed
photons with m.,, € [100,180] GeV, i.e. in a range around the Higgs boson mass of ~ 125 GeV.
The background and signal contributions are then estimated from a combined fit of a smoothly
falling and a peaking function to the m,, distribution, reducing the reliance on Monte Carlo
(MC) simulations for background modelling. The background function and its parameters
are determined from the fit to data. The signal function is estimated from MC simulations
corrected using Z — ee decays, taking advantage of the similarity of electron and photon elec-
tromagnetic showers. To improve the measurement sensitivity, events are categorized based
on a per-event m, ., resolution estimate. A combined fit to all categories is performed to ex-
tract the number of signal events. Compared to the previous measurement of fiducial inclusive
and differential cross sections by the CMS Collaboration, which used 137 fb™" of pp collision
data at /s = 13TeV [11], this analysis contains several improvements. In particular, a novel
approach based on a neural network is used to correct the modelling of photon identification
variables and the estimate of the per-photon energy resolution in MC simulations, so that their



distributions agree better with those observed in data.

The paper is structured as follows: the CMS detector is briefly introduced in Section 2. The data
and simulation samples are described in Section 3. The event reconstruction, and the event se-
lection and categorization are presented in Sections 4 and 5, respectively. The fiducial phase
space and the observables for the differential measurements are introduced in Section 6. The
statistical analysis and the systematic uncertainties are described in Sections 7 and 8, respec-
tively. The results are presented in Section 9, followed by a summary in Section 10. Tabulated
results are provided in the HEPData record for this analysis [31].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal ECAL, and a brass and scintillator hadron calorimeter, each
composed of a barrel and two endcap sections. The ECAL consists of 75848 lead tungstate
crystals, which provide coverage in pseudorapidity |17| < 1.48 in the barrel region (EB) and
1.48 < |n| < 3.0 in the two endcap regions (EE). Preshower detectors consisting of two planes
of silicon sensors interleaved with a total of three radiation lengths of lead are located in front
of each EE detector. Forward calorimeters extend the pseudorapidity coverage provided by the
barrel and endcap detectors. Muons are reconstructed using gas-ionization detectors embed-
ded in the steel flux-return yoke outside the solenoid.

Events of interest are selected using a two-tiered trigger system. The first level, composed of
custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a fixed latency of about 4 us [32]. The second
level, known as the high-level trigger (HLT), consists of a farm of processors running a version
of the full event reconstruction software optimized for fast processing, and reduces the event
rate to around 5 kHz before data storage [33, 34].

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Refs. [27, 28].

3 Data samples and simulated events

This analysis uses pp collision data, collected in 2022 at /s = 13.6 TeV, corresponding to an
integrated luminosity of 34.7 fb ! [35]. The data were selected using a diphoton HLT [33] with
pr thresholds on the highest pr (leading, ;) and second-highest p (subleading, y,) photon of
30 and 22 GeV, respectively. Additionally, it is required that m,, > 90 GeV. Both photons were
required to pass loose identification criteria on the amount of surrounding energy deposits in
the calorimeters and on variables that characterize the photon shower in the ECAL (shower
shape variables) [36].

The four main Higgs boson production modes are gluon-gluon fusion (ggH), vector boson
fusion (VBF), associated production with a W or Z boson (VH), and with a top quark pair (ttH).
Samples for these processes are generated with MADGRAPH5_aMC@NLO (version 2.9.9) [37] at
next-to-leading order (NLO) in perturbative quantum chromodynamics using the NNPDF3.1
NNLO [38] set of parton distribution functions (PDFs). The FxFx merging scheme [39] is used
to match jets from matrix element calculations to those from parton shower for the ggH, VH,
and ttH production processes. Events in the ggH production mode are weighted to match
the predictions from the NNLOPS generator [40—42] as a function of the Higgs boson pr and



the number of jets in the event. The samples are normalized to the cross sections provided by
the LHC Higgs Working Group for /s = 13.6 TeV [43], based on an interpolation procedure
using cross sections computed for the centre-of-mass energies of 13 and 14 TeV [7, 43], using
the results from Refs. [44-65].

The main backgrounds are the irreducible background from non-resonant diphoton (y7y) pro-
duction and the reducible background from -y + jet production, where a jet is misreconstructed
as a photon. Multijet production accounts for an additional and smaller contribution in the
reducible background. For the measurement of the inclusive and differential cross sections, the
normalization and the shape of the ., background distribution are estimated from the data.
Simulated events for v and v + jet production are only used to optimize the event selection
and categorization. Diphoton production is simulated with SHERPA (version 2.2.12) [66] at
leading order (LO). The gluon-induced box process is simulated without additional final-state
partons in the matrix element, whereas the quark-induced and quark-gluon-induced Born pro-
cesses include up to three additional partons in the final state. The production of 7 + jet events
is simulated with PYTHIAS8 [67] (version 8.306) as a 2 — 2 LO process at the matrix-element
level.

Several corrections are applied to the simulation samples or to the data to either assess and
address mismodelling in the simulation or to improve the data calibration. These corrections
are inferred from a comparison of data and simulation in events with Z — ee and Z — ppu<y
decays and are validated with these samples. In data, Z — ee events are collected using a
single-electron trigger with a p threshold of 30 GeV and a double-electron trigger with pr
thresholds of 23 and 12 GeV for the leading and subleading electron, respectively [33, 34, 36].
Events with a radiative Z — puy decay are recorded with dimuon triggers with py thresholds
of 17 and 8 GeV for the leading and subleading muon, respectively [33, 34, 68]. The simulation
samples used for these corrections are generated with MADGRAPH5_aMC@NLO.

All simulated events are interfaced with PYTHIA for the simulation of the parton shower, frag-
mentation, and hadronization, using the CP5 underlying event tune [69]. The PYTHIA gener-
ator is also used to simulate additional pp interactions occurring in the same or neighbouring
bunch crossings (pileup). Simulated events are reweighted to reproduce the distribution of
the number of interaction vertices observed in the data. The average number of interactions
per bunch crossing in 2022 data is 46, assuming a total inelastic pp cross section of 80 mb at
Vs = 13.6 TeV. For all processes, the response of the CMS detector is simulated using a de-
tailed description of the CMS apparatus based on the GEANT4 package [70].

4 Event reconstruction

The primary vertex is taken as the vertex corresponding to the hardest scattering in the event,
which is defined as the vertex that maximizes the p% sum of reconstructed particles, evaluated
using tracking information alone [71]. A particle-flow (PF) algorithm [72] aims to reconstruct
and identify each individual particle in an event (PF candidate), with an optimized combina-
tion of information from the various elements of the CMS detector.

Following a power cooling issue in September 2022, about 7% of the ECAL channels in one
of the EEs were disabled [73]. Events with at least one jet with py > 30GeV in this region
are removed to prevent biases that could affect the cross section measurements reported in
this paper. Simulation samples are split into two periods to reflect the detector conditions
before and after the issue and are weighted according to the integrated luminosities of the
corresponding data sets.



4.1 Photon reconstruction and identification

Energy deposits (clusters) in the ECAL form the basis of the photon reconstruction [36]. The
ECAL clusters with energy well above the electronics noise level are combined if they are com-
patible with originating from the same photon, resulting in a so-called supercluster. Super-
clusters are selected as photons not matched to charged-particle trajectories associated with a
reconstructed hard-scattering vertex. Photons in the transition regions between the barrel and
the endcaps (1.4442 < |57| < 1.5660) are not considered.

An energy resolution of ~ 1% is achieved in the EB for unconverted or late-converting photons
in the tens of GeV energy range. The energy resolution for other photons is ~1.3% up to
|7] = 1and =~ 2.5% up to || = 1.44 in the EB. In the EE, the energy resolution is ~ 2.5% for
unconverted or late-converting photons, and between 3 and 4% for other photons.

Not all the photon energy is deposited in the operational ECAL crystals or accounted for in
the clustering. This is mainly due to lateral and longitudinal shower leakage, intermodule
gaps, unresponsive channels, or energy thresholds used to mitigate the noise in the cluster
reconstruction. To improve the energy measurement, a dedicated simulation-based parametric
regression is used. This method also provides a per-photon estimate for the energy resolution,
og. The input variables to the regression include the location of the supercluster and its seed
(the crystal with the highest energy), and a range of shower shape variables. The relative
energy resolution of photons with generated transverse momenta in the range of 1 to 100 GeV
and with |77| < 1.0 improves from about 1.3 to 0.9% when the regression is applied. In the
outer EE (2.0 < || < 2.5), the relative resolution for photons in the same momentum range
improves from approximately 3.1 to 2.4%.

Differences between data and simulation in the energy scale and resolution are addressed by
residual corrections. Electrons from Z — ee decays that are reconstructed and calibrated with
the photon algorithms described above, except for the track-based veto, are used. The correc-
tions are derived from a comparison of the dielectron invariant mass distribution in data and
simulation [74]. The scale calibrations are applied to data and are derived from the positions of
the Z boson peak in data and simulation as functions of time, the gain from the photodetector
readout of the supercluster’s seed crystal, as obtained from its multigain preamplifier [75], the
photon energy, the supercluster 1, and the Rg variable. The Ry variable is defined as the energy
deposited in the three-by-three crystal matrix around the seed divided by the total uncorrected
energy of the supercluster [36] and is useful to discriminate converted from unconverted pho-
tons. The resolution corrections broaden the width of the distribution in simulation, such that
it corresponds to that observed in the data, and depend on the photon energy, the supercluster
1, and Rg.

A boosted decision tree (BDT) is trained to define photon identification (ID) criteria [73] in a
similar way as described in Ref. [36]. The BDT score is used to separate prompt photons that are
produced at the primary vertex and non-prompt photons, which mostly stem from collimated
diphoton decays of neutral mesons, such as 7 and 7, inside hadronic jets. As input, the model
uses shower shape variables, isolation variables built from the pr of tracks and PF objects near
the photon candidate, and the ratio of the energy deposited in the hadronic calorimeter behind
the photon supercluster to the supercluster energy (H/E). The BDT is implemented in XG-
BOOST [76] and is trained on prompt and non-prompt photons from simulated 7 + jet events.
Besides the discriminant features, the energy and 7 of the photon supercluster as well as p,
defined as the median of the transverse energy density in the event, are also used as input fea-
tures. The BDT scores of prompt and non-prompt photons from simulated y + jet events are
shown in Fig. 1 for reconstructed photons with p7 > 25GeV. The leading and the subleading
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Figure 1: Normalized distributions of the photon identification BDT scores for prompt (blue)

and non-prompt (orange) photons from 7 + jet simulated events. The shaded region indicates
the photons that are rejected by the photon preselection requirement of > — 0.9.

photon are included in the distributions. Prompt photons accumulate at high values of the
BDT score, whereas the distribution of non-prompt photons is steeply falling towards larger
values. The photon preselection used in this analysis rejects photons with a BDT score smaller
than —0.9, as indicated by the shaded region. This requirement is highly efficient for selecting
prompt photons and rejects a large fraction of non-prompt photons, reducing the number of
possible diphoton pairs.

Electron background contributions are reduced with a conversion-safe electron veto algorithm [77].
This veto rejects the photon candidate if its supercluster is close to a track compatible with an
electron, unless the track is matched to a photon conversion vertex.

4.2 Corrections to simulated photons

Photon mismodelling in the simulation is a non-negligible source of systematic uncertainty in
H — v fiducial cross section measurements. This holds in particular for shower shape and
isolation variables [9], but also for the per-photon energy resolution estimate, cz. Sources of the
mismodelling include the imperfect description of the material budget in the simulation, the
modelling of noise, and the time evolution of the detector response, in particular due to radia-
tion damage [11, 36]. Shower shape and isolation variables, as well as o, are hence corrected
using probe electrons reconstructed as photons (7 pobe, o) With the tag-and-probe method [78]
in Z — ee events. A first correction method, called “chained quantile-regression”, was devel-
oped in Ref. [11] for the analysis of the Run 2 data. It involves the training of a large number of
BDTs and was used to successfully correct shower shape and isolation variables.

In this analysis, a new method based on normalizing flows [79] is used for a more efficient
derivation of the corrections. It takes as input the variables that are used for the photon iden-
tification BDT, as well as the per-photon estimate of the energy resolution, and provides as
output per-photon corrections for all of these variables. Hence, the method does not only cor-



rect these values but also their correlations. The basis of the method is that normalizing flows
are able to learn a high-dimensional mapping from a distribution of interest, in our case the
BDT input variables and ¢, to a simpler distribution of same dimension, often a multivariate
Gaussian. We use a simple but efficient solution with one normalizing flow [80] trained on
both data and simulation. It is parametrized as a function of an MC/data binary variable, as
well as the pr, 77, and the azimuthal angle ¢ of the 7, o, and p. To perform the correction,
the mapping to the multivariate Gaussian is performed for simulated photons, the MC/data
boolean is flipped, and the inverse transformation provides the corrected values. The model is
an autoregressive normalizing flow [81] and consists of five neural spline transformations [82]
with ten spline bins, implemented using the PYTORCH [83] and ZUKO [84] libraries.

Before deriving these corrections, the distributions of the conditional variables p, pt, 77, and ¢
are reweighted in simulation to match the data distributions. In addition, the isolation vari-
ables, which show a discontinuous behaviour with a peak at zero followed by a continuous tail
due to pt thresholds on PF candidates and energy depositions in the calorimeters, are trans-
formed to a continuous distribution [80]: isolation values in the peak are resampled to populate
the gap between the peak and the start of the continuous tail.

The level of agreement between selected distributions in data and simulation for g, . from
Z — ee decays before and after the corrections is shown in Fig. 2. The distributions for oy and
for H/E are shown, where H/E serves as an example for the input variables that are used in the
identification BDT with the largest observed data-to-simulation shape disagreement between
data and MC. In addition, the BDT score is shown separately for photons in the EB and in
the EE. After the corrections, the agreement of the BDT score between data and simulation is
significantly improved. The average disagreement is as small as 1.7 (2.0)% in the EB (EE), where
the average is calculated from the absolute difference between data and MC in all bins shown
in Fig. 2 (lower row). The corrections are validated using photons from Z — - events. Data
and simulations are found to agree within the uncertainties for the BDT score and ¢y variables,
which enter the event selection and categorization.

4.3 Lepton reconstruction

Electrons and muons are used for the derivation and validation of corrections in Z — ee and
Z — up<y events and for overlap removal procedures to resolve ambiguities between recon-
structed objects. The reconstruction of electrons is based on charged-particle tracks matched
to ECAL clusters [36]. Superclusters are built in the same way as for photons. The electron
momentum is estimated from a combination of the ECAL energy and the momentum mea-
surement in the tracker. Electrons are required to have pt > 15GeV and have to satisfy loose
cut-based identification requirements with a signal efficiency of ~ 90%. The variables used to
define these identification criteria are described in Ref. [36]. Muons are reconstructed using a
combination of a track in the central tracking system and either a single track or multiple hits
in the muon detectors [85]. Muons are required to have py > 10GeV and they need to pass
tight identification criteria, which are based on the relative isolation with respect to hadrons
and photons in a cone of radius AR = 0.4, where AR = /(A5)? 4 (A¢)? defines the angular
distance, around the muon and the quality of the fit of the muon track. Electrons and muons
have to be separated by an angular distance greater than 0.2 from both of the photons of the
diphoton pair, which is reconstructed as described in Section 5.1, when they are used for over-
lap removal. No requirement on the angular distance to photons is placed when electrons and
muons are used for the derivation of corrections in Z — ee and Z — u <y events.
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Figure 2: Data-to-simulation comparison for o (upper left), H/E (upper right), the photon
identification BDT score in EB (lower left) and EE (lower right) for electrons from Z — ee
decays reconstructed as photons. The uncorrected distributions are shown in blue and the cor-
rected distributions from the normalizing flow are shown in green. The error bars in the ratio
panels include the statistical uncertainty from the data and the uncertainty from the limited
number of simulated events. For the distributions of the photon identification BDT score, the
shaded region corresponds to photons with a BDT score <0.25, which are excluded by the se-
lection applied in the cross section measurements. For the o distribution, the last bin contains
the overflow.



4.4 Jet reconstruction

In this analysis, jets are only used for the differential measurement with respect to the number
of jets. Jets are reconstructed from PF candidates using the anti-kt algorithm [86, 87] with a
distance parameter of 0.4. The pileup-per-particle identification algorithm [88] is used to mit-
igate pileup effects. The algorithm assigns a weight to each particle candidate before the jet
clustering according to the likelihood that the candidate originated from pileup. Jets originat-
ing from noise and reconstruction failures are rejected using criteria on the energy composition
and number of PF constituents of the jets [88].

Jet energy corrections (JECs) are derived from simulation to calibrate the measured jet momen-
tum to that of particle-level jets [89]. In situ measurements in data of the momentum balance in
dijet, v +jet, Z + jet, and multijet events are used to account for residual differences in the jet
energy scale between data and simulation. The jet energy resolution (JER) is found to be worse
in data than in simulation. The resolution in the simulation is hence broadened to agree with
that observed in data.

Jets are required to have pr > 30GeV and |77| < 2.5, as jets in the central part of the detector are
subject to lower systematic uncertainties than in the forward region. Whereas the requirement
on || reduces the efficiency for the VBF process, inclusive Higgs boson production is domi-
nated by the ggH process in the SM. Jets with AR < 0.4 from a photon of the diphoton pair or
a charged lepton are removed.

5 Event selection and categorization

5.1 Event selection

The event selection retains H — < signal candidates while rejecting as much background as
possible from both prompt and non-prompt photons. Each photon must have a supercluster
with || < 2.5, excluding the ECAL barrel-endcap transition regions of 1.4442 < |y| < 1.5660.
Each photon must satisfy preselection criteria based on its shower shape, isolation and kine-
matic properties. These criteria are described in detail in Ref. [90] and they are defined to
be slightly more stringent than the corresponding trigger requirements. In particular, the re-
quirements p1' > 35GeV and pi? > 25GeV are applied to the pr-leading and -subleading
photons, respectively. Only the pr-leading diphoton system composed of photons satisfying
the preselection requirements is considered. The selection criteria for py/m.,, ., are changed with
respect to previous measurements [11, 91]. Previously, the leading (subleading) photon had to
fulfil pr/m.., > 1/3 (1/4). In this analysis, the requirement for the subleading photon is un-

changed, but a requirement of vV p1' p12/ m,., > 1/3isapplied instead of the above criterion for

the leading photon. This requirement on the scaled geometric mean of p1' and p1? improves
the perturbative convergence of the theoretical calculations [29].

The efficiencies of the diphoton trigger are measured with Z — ee events using the tag-and-
probe method, from which corrections (“scale factors”) are derived for simulated events such
that the efficiencies in simulation match those measured in the data [33]. The measurement
is performed in bins of pt, 17, and Ry. Scale factors for the preselection efficiencies and for
the photon identification efficiency after the application of the normalizing flow correction are
measured in a similar way, whereas the scale factors for the efficiencies of the electron veto
criterion are computed from Z — upy events.
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5.2 Event categorization

In order to maximize the sensitivity to the Higgs boson signal and minimize the dependence on
the underlying model for its production and decay, the selected events are categorized based
on c,,/m [9], i.e. the estimator of the per-event diphoton invariant-mass resolution divided by
m. ... The resolution estimator ¢, is calculated from the per-photon resolution estimator o

7Y
obtained from the energy regression BDT (cf. Section 4.1) for each photon:

On 1 UE, 2 UE, 2
" ‘z\/<a> * <Ez) / @

where the contribution from the photon angles is neglected. The contribution to the mass
resolution from the angular resolution is negligible with respect to the one from the energy
resolution if the chosen Higgs boson decay vertex has |Az| < 1cm, with Az being the difference
of the z-coordinate between the true and the reconstructed vertex. This is referred to as the
correct identification of the vertex, which occurs for ~ 70% of ggH events. The efficiency of the
correct vertex identification increases with higher Higgs boson pr and exceeds 85 (95)% for VH
(ttH) associated production across the entire range.

Since the BDT is trained on simulation and the energy resolution is known to be worse in data
than in simulation, the term that adjusts the energy resolution in simulation (cf. Section 4.1) is
added in quadrature to the value of o from the energy regression BDT before o,,/m is calcu-
lated.

The diphoton mass resolution in H — 7y decays is typically 1-2%, depending on the mea-
surement of the photon energies in the ECAL and the topology of the photons in the event [74].
As the relative energy resolution or / E improves with photon energy, ,,/m is correlated with
the diphoton invariant mass. Hence, a categorization in ¢,,/m can distort the Moo distribution
of the background by depleting the low-mass region in high-resolution categories. The back-
ground distribution, instead, is assumed to be monotonically falling over the selected diphoton
mass range in the statistical analysis. To avoid distortions of the invariant mass distribution, the
mass-resolution estimator is decorrelated from the diphoton invariant mass. This is achieved
with the quantile morphing algorithm described in Ref. [11]. It divides the o,,/m distribu-
tion into bins of m,,, and morphs the cumulative distribution function of ¢,,/m in each bin to
resemble that in a reference mass bin, chosen as [125.0, 125.5] GeV.

The decorrelated mass-resolution estimator is used to categorize the events. Additionally, a
requirement on the photon ID BDT score is placed on both photons to reject background con-
tributions with non-prompt photons. This requirement and the category boundaries are op-
timized simultaneously using simulated events. The signal component is modelled with a
combination of the four main production modes with a Higgs boson mass of 125 GeV, whereas
the non-resonant background is composed of the diphoton and 7 + jet MC samples. Both the
signal and background components are weighted according to the expected number of events
in the selected phase space, assuming the SM cross sections for the Higgs boson production
processes at /s = 13.6 TeV [43] and the LO cross section predictions for the background pro-
cesses. Additional scaling factors for the normalizations of the diphoton and 7y + jet processes
are determined from a fit to the distribution of the lower of the two photon ID BDT scores, re-
stricted to events where the minimum score exceeds zero, in order to improve the modelling of
the invariant mass distribution. The m, ., distribution of the signal and background samples is
fitted using the sum of an exponential function for the background and the sum of two Gaus-
sian distributions for the signal. The figure of merit for the optimization is the approximate
expected signal significance S/+/B, where S and B are the expected number of signal and back-
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Figure 3: Data-to-simulation comparison of the per-event decorrelated mass-resolution estima-
tor 0,,/m using Z — ee events. Both electrons are reconstructed as photons and categorized
either both in the EB (left) or at least one in the EE (right). The uncertainty band in the lower
panel represents the systematic uncertainty based on the residual mismodelling of oz /E (5%).
The error bars on the markers in the lower panels include the statistical uncertainty from data
and the uncertainty from a limited number of simulated events. The last bin contains the over-
flow.

ground events, respectively, in the smallest m.,, interval containing 68% of simulated signal
events.

The modelling of the ¢,, /m distribution in simulation is improved by including the per-photon
energy resolution estimator ¢y into the set of variables corrected with the normalizing flow
(cf. Section 4.2). Figure 3 shows the agreement between the ¢,, /m distributions in Z — ee data
and simulation before and after propagating the corrections for oy to 0,,/m. Both electrons
in the Z — ee events are reconstructed as photons and the simulated events are reweighted
to data in pr, 17, and ¢ of ¥, pe, o, as well as in p. The corrected MC distribution agrees with
the distribution observed in data within the assigned systematic uncertainty in o/ E (5%), as
described in Section 8.

Three 0,,/m categories are used in this analysis, as the improvement in sensitivity quickly
saturates and does not noticeably improve with additional categories. The resulting category
boundaries are [0,0.0105), [0.0105,0.0130), and [0.0130,c0). In all three categories, the mini-
mum value for the photon ID BDT score is 0.25.

The combined acceptance and efficiency of the event selection described in this section is es-
timated from simulation to be ~32% for the ggH and VBF processes, about 27% for the VH
process, and ~28% for the ttH process with respect to the total phase space.

6 Fiducial phase space and observables

The cross section for the Higgs boson production is measured in a fiducial phase space defined
at the particle level, with the goal of reducing model dependence and extrapolation uncertain-
ties. The fiducial criteria at the particle level are close to the event selection requirements at the
detector level (Section 5). The criteria are based on the two pr-leading photons in the event.
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They must be within the fiducial acceptance of || < 2.5 with 1.4442 < || < 1.5660 excluded
to match the rejection of the ECAL barrel-endcap transition regions at the detector level. The
photons must fulfil Z < 10 GeV, where the isolation variable Z is the scalar py sum of stable,
visible final-state particles in a cone of radius 0.3 centred on the photon momentum direction.
The geometric requirement of Vpi'pl2/ Mooy
must fulfil p%z / My, > 1 /4. The efficiency of these criteria, as determined from simulation, is
~50.6%. This is slightly lower compared to the efficiency of ~ 51.8% that is obtained with the
requirement p}“ / Moy > 1 /3 used in previous measurements [11, 30] instead of the geometric
requirement.

> 1/3 is applied, and the subleading photon

Fiducial cross sections are also measured in bins of four kinematic observables: the transverse
momentum, the absolute value of the rapidity of the diphoton system, the number of jets (Nyes)

in the event, and the transverse momentum of the leading jet (p), defined as the jet with
the highest pr. Jets at the fiducial level are built with the anti-ky clustering algorithm out of
stable particles with a distance parameter of 0.4, excluding neutrinos. Jets are retained if they
satisfy p];t > 30GeV, |7’®t| < 2.5 and if they do not overlap with an electron or muon within
AR < 0.4, where the leptons have to fulfil the following requirements: Electrons (muons) must
have pr > 15(10) GeV, || < 2.5(2.4), and Z/pt < 0.2. These criteria match the detector-level
jet selections. The bin boundaries are chosen to provide an expected relative uncertainty in
each bin of about 40 (60%) for p? and |y (Njets and pj%). The boundary values are shown in
Table 1.

Table 1: Bin boundaries for the differential cross section measurement. The first pjTl bin corre-
sponds to events without jets. For the Njgs binning, the right boundary should be considered
as not included in the bin, i.e. [lower, upper).

Observable Bin boundaries

p? (GeV) 0 15 30 45 80 120 200 350 oo
|yH| 0 015 03 06 09 25

N]ets 0 1 2 3 0o

Pt (GeV) Ojet 30 75 120 200 oo

7 Statistical analysis

To extract the inclusive fiducial cross section, ¢4, a binned profile likelihood fit to the Moo
distributions in the three mass-resolution categories is performed with the COMBINE tool [92].
A bin width of 0.25GeV has been chosen, which is sufficiently small compared to the typical
mass resolution of 1.5-2 GeV of the SM Higgs boson signal as indicated in Fig. 4. Systematic
uncertainties are treated as nuisance parameters with Gaussian constraints. The likelihood can
be factorized over the N, = 320 bins of the m, ., distributions in each category:

N,

cat

L(0kg, Mpkg, 0s,0) = Pdf(65)Pdf(g) ] | Pois (név’néig + nliokg)
i=1
L - . ‘ - ) , - nh,
Ny, (UﬁdKl (Gs)sl (mgw |QS)L + nbOASé)OA(mZW |98) + nékgBl (m{},,y ‘OB) ) (2)

X - -
H nl . + nl
=1 sig bkg

~

where
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e Pdf(6) is the probability density function for the vector of nuisance parameters 6;

° 55 and 5}3 are the vectors of nuisance parameters associated with the signal and the
background models, respectively;

e Pois(n|A) is the probability mass function of the Poisson distribution for n occur-
rences with an expectation value of A;

e 1, is the number of observed data events in category i and nl, is the number of
observed data events in category i and m,,, bin [;

. néig (0, Os) = 03gK (65) L+ nhoa and il , are the number of signal and background
events in category i, and ﬁbkg is the vector with entries ny, o

e N = 3is the number of mass-resolution categories;

e Ki(fg) is the efficiency for reconstructing an event in category i;

o Si(m,, 65) and B! (m.,., |65) are the signal and background probability density func-
tions in category i (cf. Sections 7.1 and 7.2);

I .
., is the centre of the [-th Moo bin;
e L is the integrated luminosity;
o 155,550 A(mw ]55) is the out-of-acceptance (OOA) signal contribution in category
i, where 116, is the number of OOA events and S, the corresponding ., signal
model. 155, and S, are estimated from simulation and are affected by the same
set of nuisance parameters as in-fiducial signal events.

A similar approach is used to extract the differential cross sections. In those fits, 054 is pro-
moted to a vector of fiducial cross sections measured in the particle-level bins of a specific
observable. At the detector level, the same binning is used. Consequently, all quantities car-
rying the index i in Eq. (2) are extended with an additional index j to enumerate the same
number of reconstruction-level bins. Similarly, several quantities are extended with an index
k for the respective particle-level bin. For example, the per-category efficiency K'(fg) becomes

the detector response matrix K,Z(](gs) that relates the events from a particle-level bin k with a
detector-level bin j and category i. This permits to encode the unfolding directly in the likeli-
hood. The condition numbers for the response matrices are less than ten, so no regularization
is performed. The condition number is defined as the absolute value of the ratio between the
largest and smallest matrix eigenvalues.

7.1 Signal model

The signal model is based on simulated events, after including all the corrections described
before. A sum of up to five Gaussian functions is used as a parametric model to describe the
M., resonant shape for each combination of reconstruction-level bins and ¢,,/m categories,
separately for events passing the fiducial selection and the OOA contribution for each of the
four main SM Higgs boson production modes. The fraction of OOA events is the largest for
the VH and ttH production processes, reaching up to 3.4% in the worst-resolution category for
the measurement of the inclusive cross section. In the best-resolution category, the fraction of
OOA events is below 1% for the ggH, VBEF, and VH processes. Additionally, different signal
shapes are constructed for the cases of correct and incorrect identification of the primary ver-
tex, as the invariant diphoton mass depends on the estimated photon direction and therefore
the m, ., shape differs significantly for the cases of a correctly or incorrectly identified primary
vertex. The models for the correct and incorrect vertex identification are combined with their
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relative weights obtained from simulation. This enables the inclusion of systematic uncertain-
ties related to the vertex assignment in the fit (cf. Section 8). To improve the modelling of the
luminous region, its spread along the beam axis is reweighted in simulation to correspond to
the spread in data. The final nominal signal model is given by the weighted sum of the individ-
ual parametric models according to the respective SM cross section predictions, OOA fractions,
and selection efficiencies. The combined parametric signal models for the three mass-resolution
categories and the weighted sum across all categories are shown in Fig. 4. The values of the
effective mass resolution o, defined as half of the smallest interval centred around the mean
that contains 68.3% of the total area under the signal model histogram, are indicated. Signal
shapes are constructed for Higgs boson masses of 120, 125 and 130 GeV. The parameters of the
models for masses between these points are obtained using piecewise linear interpolation. A
piecewise cubic interpolation is used to determine the B(H — 7y), the acceptance and effi-
ciency, and the right-vertex fraction as a function of the Higgs boson mass based on the same
mass hypotheses. The nominal Higgs boson mass is set to 125.38 GeV [74]. The interference
between the H — < signal and the continuous diphoton background [93] is not taken into
account as it is at the percent level for an SM Higgs boson, which is well below the theoretical
uncertainties.

7.2 Background model

The background model is defined in a data-driven way using the discrete profiling method [94].
Parametrized functions are used to model the smoothly falling background as a function of
m,., in the range 100-180GeV. A different model is constructed for each category. During
the extraction of the fiducial cross sections from the fit to data (cf. Eq. (2)), the choice of the
background function is treated as a discrete nuisance parameter and accounts for the imperfect
a-priori knowledge of the m, ., background shape. The resulting uncertainty is absorbed into
the statistical uncertainty.

Initial fits are performed over the whole m, ., range to determine the set of plausible function
choices. The considered functions are grouped into families: sums of Bernstein polynomials,
sums of exponential functions, Laurent series, and sums of power-law functions. In each fam-
ily, multiple functions with different numbers of parameters are considered. An F-test [95] is
performed to determine the maximum number of parameters to be used, whereas the min-
imum number is determined by a requirement on the goodness-of-fit to the data. A higher
number of degrees of freedom for the fitting function is penalized by constructing the likeli-
hood using —21In L5 4+ Np, where Lj refers to the likelihood as a function of the background
function parameters and Ny is the number of free parameters of a given background function.
In the profile likelihood fit, at least four background functions are considered for each category
with at least one function per family. In the measurement of the inclusive cross section, the sum
of three exponential functions, the Bernstein polynomial sum of fourth degree, and the sum of
three exponential functions are the best-fit functions in the best-resolution, medium-resolution
and worst-resolution categories, respectively. For the measurement of the differential cross sec-
tions, a best-fit background function is determined for the three mass-resolution categories in
each detector-level bin of the differential distribution.

8 Systematic uncertainties

The following systematic uncertainties affect the signal model by allowing changes in the loca-
tion and the width of the Higgs boson peak (detailed in Section 7.1):

o Photon energy scale and resolution: This is the uncertainty related to the scale of the
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photon energy in data and the resolution corrections in simulation. The total uncer-
tainty consists of three components: First, a uniform 0.1% uncertainty accounts for
biases from the method related to the energy dependence of the resolution correc-
tions to the simulation, efficiency scale factors, and kinematic differences between
data and simulation. Additionally, the variations of the corrections from changing
the fit window of the invariant dielectron mass from [80, 100] to [70,110] GeV are
considered. Furthermore, the derivation of the corrections is repeated with a pho-
ton ID BDT score requirement of > — 0.9 instead of >0.25 to estimate the impact
of background contributions as well as the correlations between the energy and the
photon ID BDT score. The energy scale uncertainties are the lowest for photons in
the inner EB (|57] < 1) and amount to =~ 0.1% in this region. The relative uncertainty
in the resolution term is around 5% for high-Rg photons in the inner EB. It reaches
20 (40)% for high- (low-)Rg photons in the EE. Six uncorrelated nuisance parameters
parametrize this source of uncertainty in the statistical model.

o GEANT4 electromagnetic shower modelling: An uncertainty is introduced to account
for the imperfect modelling of electromagnetic showers in GEANT4. A simulation
with an alternative shower description modifies the energy scale for both electrons
and photons. This results in an uncertainty of 0.05% in the photon energy scale.

o Non-uniformity of light collection: This uncertainty is related to the modelling of the
light collection depending on the emission depth in the ECAL crystals, which is
different for electrons and photons [74]. It is only considered for photons with Ry >
0.975 as most photons with smaller Ry values convert before reaching the calorimeter
and therefore deposit most of their energy as electrons. This uncertainty affects the
photon energy scale and amounts to about 0.14 (0.31)% for photons in the EB (EE).

o Modelling of the material upstream of the ECAL: The fraction of photons that convert be-
fore reaching the ECAL depends on the material before the ECAL whose description
in the simulation is not perfect. The impact on the photon energy scale is estimated
by varying the amount of upstream material in the simulation. It amounts to 0.02—
0.05% for photons in the EB and reaches 0.25% for photons in the EE.

o Vertex assignment: The fraction of events with a reconstructed vertex within |Az| <
1 cm of the true vertex, i.e. with the mass resolution driven by the energy resolution
of the photons, is varied by £2%. The estimation of this uncertainty is detailed in
Ref. [91].

Other sources of experimental systematic uncertainty affect the event yields. Their effect is
parametrized with log-normal distributions. The following sources of experimental uncer-
tainty are considered:

o Integrated luminosity: The uncertainty in the integrated luminosity collected in 2022
is 1.4% [35].

o Cross section for pileup reweighting: Simulated events are reweighted so that the distri-
bution of the number of reconstructed primary vertices in MC matches that observed
in data. The data pileup distribution is inferred from the recorded instantaneous lu-
minosity profile together with an assumed inelastic pp cross section of 69.2 mb and
compared to that in simulation to determine the nominal reweighting factors. Its
uncertainty of 3.2mb is propagated by recomputing the data pileup distribution,
yielding alternative event weights that are propagated to the statistical analysis and
parameterized with a single nuisance parameter. This uncertainty primarily affects
the extracted cross section through the correlation between pileup and the diphoton
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mass resolution estimator.

o Trigger efficiency: The systematic uncertainty in the trigger efficiency is determined
by using alternative background templates for the efficiency measurement from
Z — ee events. The uncertainty reaches 2.2% for low-Rg photons, but it is generally
below 0.3% for photons in the EB and with high values of Ry, which is the case for
most photons from Higgs boson decays that enter the best-resolution category.

e Photon preselection efficiency: The uncertainty in the photon preselection scale factor
is evaluated by varying the signal and background shapes used to determine the
preselection efficiency in data and simulation from Z — ee events and propagating
these variations to the scale factors. The resulting uncertainty is generally below 1%
for photons in the EB with pr < 60 GeV, where the Z boson decays provide a large
number of events. For photons in the EE, the uncertainty can be as large as 2.8%.

o Electron veto efficiency: Z — uu<y events are used to determine the efficiency of the
electron veto in both data and simulation. The limited number of events in data is
the dominant uncertainty in the resulting scale factor. The uncertainty reaches 2.5%
for low-Rg photons in the EE, but is below 0.5% otherwise.

e Photon identification efficiency: After applying the normalizing-flow-based corrections,
the photon ID BDT score distribution is in good agreement between data and sim-
ulation. Scale factors are calculated using the tag-and-probe method with Z — ee
events to correct the simulation for any remaining disagreement. The scale factors
are compatible with unity within the uncertainties. Several sources of systematic un-
certainty are taken into account, including alternative signal and background mod-
elling templates. These uncertainties are combined and result in an uncertainty that
is generally below 0.5% for photons in the EB. For EE photons with low Ry, it can
reach up to 2%.

e Per-photon energy resolution: After applying the normalizing-flow-based correction,
a small residual disagreement in the distribution of o/ E between data and simula-
tion remains for both Z — ee events as well as diphoton events with m, ./ GeV €
[100, 120] U [130, 180]. A conservative uncertainty of 5% is applied to 0/ E and prop-
agated to the invariant mass resolution of the diphoton system. This uncertainty
mainly results in migrations between the mass-resolution categories.

o Jet energy correction and jet enerqy resolution: The uncertainty in the calibration of the
JEC and JER [89] directly affects the selection efficiency of the jets for the differential
measurement of the number of jets. The uncertainty in the JEC and JER is 2-5%,
depending on the pr and 7 of the jets.

In addition, several sources of theoretical uncertainty are taken into account. The normalization
of each particle-level bin is fixed while evaluating the effect of all of these uncertainties except
for those related to the limited number of events in the simulation samples. Thus, their effect
only enters in category migrations between detector-level bins and mass-resolution categories.
The following sources are considered:

e Parton distribution function uncertainties: The uncertainty in the imperfect knowledge
of the PDFs is estimated by reweighting events according to the NNPDEF3.1 [38]
prescription using the compressed Hessian set of PDF eigenvectors. This source
of uncertainty is parameterized with 100 independent nuisance parameters in the
statistical model.

o Renormalization and factorization scales uncertainty: This uncertainty is related to the
missing higher-order terms in the perturbation series for the cross section calcula-
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tion. Simulated events are reweighted with alternative event weights where the
scales are varied by a factor of two, excluding the (2,1/2) and (1/2,2) variations.

o «g uncertainty: As the PDF uncertainty, the uncertainty in the value of the strong cou-
pling constant is taken from the NNPDF3.1 prescription. It is evaluated by varying
ag by £0.002 from the nominal value of ag(my) = 0.118.

o Parton shower uncertainty: The uncertainty in the modelling of the parton shower is
estimated with reweighting factors that correspond to per-event cross section vari-
ations with the scales for initial- and final-state radiation varied up and down by a
factor of two.

Finally, the uncertainty due to the limited number of events in the simulation samples is ac-
counted for and parametrized using one nuisance parameter per category and for each of the
two periods before and after the ECAL cooling issue [96, 97].

The dominant sources of systematic uncertainties for the measurement of the fiducial cross
section are summarized in Table 2.

9 Results

The measured cross section in the fiducial phase space, defined in Section 6, is
Ohq = 74 + 11 (stat) ™ (syst) fb = 74 £ 12 fb. 3)

Figure 5 shows the likelihood scans for the inclusive fiducial cross section measurement. It
also shows the theoretical prediction of 67.8 + 3.8fb = 67.8 & 2.6 (scales) + 2.3 (PDF + ag) +
1.4 (B) fb, calculated with MADGRAPH5_aMC@NLO reweighted to match the NNLOPS predic-
tion for ggH, and interfaced with PYTHIAS8 (version 8.240) [98] using the CP5 tune. The mea-
sured value agrees with this prediction within the uncertainties. The uncertainty in the predic-
tion combines contributions from the Higgs boson production cross sections, the B(H — 7),
and the fiducial acceptance. The first two uncertainties are taken from Refs. [7] and [43], re-
spectively, whereas the third is computed with the MC samples presented in Section 3. The
variations of the fiducial acceptance are evaluated with the compressed Hessian eigenvector
set of NNPDF3.1 [38], the ag value varied by 0.002 around its nominal value of 0.118, and the
renormalization and factorization scales varied by a factor of 2, while excluding the (2,1/2)
and (1/2,2) variations.

The dominant sources of systematic uncertainty for the measurement of the inclusive fiducial
cross section are shown in Table 2. The main contribution is from the per-photon energy res-
olution, related to migrations between the mass-resolution categories, followed by the photon
energy scale and resolution, which affect the location and the width of the Higgs boson peak.
Other experimental uncertainties not listed in Table 2 are below 0.5% and the theoretical uncer-
tainty is below 1%.

The observed diphoton invariant mass distribution is shown in Fig. 6 together with the com-
bined signal and background fit and the background component alone. The distributions from
the three mass-resolution categories in the inclusive fiducial measurement are included and
weighted by S/ (S + B), where S and B are the number of signal and background events in the
central interval of width 20, around the fitted peak position per mass-resolution category.

The differential fiducial cross sections for the observables and the binning introduced in Sec-
tion 6 are extracted from the maximum likelihood fit together with their uncertainties and the
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Figure 5: Likelihood scans for the inclusive fiducial cross section measurement. The black line
corresponds to considering both the statistical and systematic uncertainties. The blue dash-
dotted line corresponds to considering only the statistical uncertainty, including the discrete
profiling method for the background modelling uncertainty. The theoretical prediction from
MADGRAPH5_aMC@NLO, including the NNLOPS reweighting for the ggH component, is shown
in red. The shaded theory uncertainty band includes the uncertainties in the renormalization
and factorization scales, in the parton distribution functions, in ag, in the B(H — 77), and in
the fiducial acceptance.

correlation matrices. The spectra and correlation matrices for p? , [y, Njets, and p]Tl are pre-
sented in Figs. 7, 8, 9, and 10, respectively. The cross sections measured in bins of jet-related
observables exhibit stronger correlations due to the larger bin-by-bin migrations induced by the
relatively poor energy resolution for jets compared to photons, whereas there is almost no cor-

relation for the well measured variables p? and |y"|. The measured differential cross sections
are compared to various theoretical predictions. For these theoretical predictions, the accep-
tances in the differential bins are calculated using the ggH predictions from three different gen-
erators, whereas the inclusive prediction is normalized to the next-to-next-to-next-to-leading
order computation [7, 43]. The three predictions are taken from the MADGRAPH5_aMC@NLO
simulation, with and without NNLOPS reweighting, and from the POWHEG 2.0 event genera-
tor [99-102]. The acceptance of the xH = VBF + VH + ttH component of the signal is taken
from the MADGRAPH5_aMC@NLO simulation, whereas the inclusive prediction is normalized
to the integrated cross sections reported in Ref. [43]. The uncertainties in the theoretical pre-
dictions are computed following the same strategy as for the inclusive cross section, described
above.

To assess the compatibility with the SM predictions, p-values are computed for every observ-
able from

p= /:f(x; Ngins) dx, 4)

where f(x; Ng;s) is the probability density function for a chi-squared variable (x?) with N
degrees of freedom and A = 2(NLL(Fgy) — NLL(6)) = x2 is twice the difference between
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Figure 6: Diphoton invariant mass distribution in the inclusive fiducial measurement, weighted
by S/(S + B) for the different mass-resolution categories. The distribution is shown together
with the signal+-background fit (red line) and the background-only component (dashed line).
In the lower panel, the signal component is shown, estimated by subtracting the background
component from the signal-+background fit. The green (yellow) bands indicate the +1¢ (+20)
uncertainties in the background component. They are derived from pseudoexperiments using
the best-fit background function from the signal+background fit.
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Table 2: Magnitude of the systematic uncertainties (Impact) in the inclusive fiducial cross sec-
tion measurement. The magnitude of the uncertainty from the photon energy scale and reso-
lution is extracted by performing a fit with the corresponding group of nuisance parameters
frozen to their best-fit values. The obtained confidence interval is then subtracted in quadra-
ture from the total confidence interval from the fit where all nuisance parameters are profiled.
The magnitudes of the other sources of systematic uncertainty are obtained by varying the
corresponding nuisance parameter by one standard deviation, keeping the other nuisance pa-
rameters at their best-fit values.

Systematic uncertainty Impact in %
Category migration from energy resolution  +3.5/—4.2
Photon energy scale and resolution group +3.4/-2.8

Integrated luminosity +1.4
Photon preselection efficiency +1.4
Material budget +1.3/-1.2
Photon identification efficiency £1.0
Pileup reweighting +0.8

the negative log likelihood (NLL) evaluated for the SM hypothesis and for the best-fit values.
The p-values for the nominal prediction, MADGRAPH5_aMC@NLO with NNLOPS reweighting,
are 0.14, 0.19, 0.85, and 0.65 for the measurements of the p?, [y, Njgts, and Pt differential cross
sections, respectively. These values are above 5% and show good compatibility with the SM
prediction.

The residual model dependence of the differential measurements is also tested. Differential
fiducial cross sections are extracted from fits to an Asimov data set [103] that comprises the
background component generated from the best-fit background modelling function and a sig-
nal component from the SM signal model. In these fits, the signal component is assumed to be
entirely composed of VBF, VH, or ttH. This introduces a model dependence, as the migration
matrices do not correspond to the SM scenario and the normalization of the OOA component
changes. The differences with the extracted differential cross sections using the SM signal com-

ponent hypothesis are below 12% in every particle-level p? bin. The average deviation is 8.3%,
which is much smaller than the expected statistical uncertainty per bin. Thus, the presented
differential cross section measurements are model independent within the statistical uncertain-
ties given that the tested scenarios of 100% VBF, VH, and ttH contributions in the signal model
are extreme considering the current experimental knowledge of Higgs boson production.

10 Summary

The fiducial inclusive cross section for Higgs boson production in proton-proton collisions has
been measured at a centre-of-mass energy of 13.6 TeV using the H — <y decay channel. The
data were collected with the CMS detector at the LHC and correspond to an integrated lumi-
nosity of 34.7 fb~!. A new normalizing-flow-based method is applied to correct the imperfect
modelling of reconstructed photon variables in the simulation and to reduce the associated sys-
tematic uncertainties. The fiducial phase space is defined at the particle level and requires two
isolated photons within the pseudorapidity || < 2.5 and not within 1.4442 < |y| < 1.5660.
These photons must fulfil a requirement on the geometric mean of their transverse momenta

scaled by their invariant mass, V p1' p12/ m.. > 1/3, which improves the perturbative conver-
gence of the theoretical predictions, as well as the requirement p%Z /m.. > 1/4. The measured
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Figure 7: Differential fiducial cross sections for p? (left) and the corresponding correlation ma-
trix (right). The measured cross section in each bin is divided by the corresponding bin width.
The coloured lines denote the predictions from different event generation setups, explained in
the legend and in the text. The dashed boxes show the uncertainties in theoretical predictions
on both the ggH and xH components. The p-value is calculated for the nominal SM prediction,
which is MADGRAPH5_.aMC@NLO with NNLOPS (MG5_.aMC@NLO + NNLOPS) reweighting.
The lower panel in the left plot shows the ratio to the nominal SM prediction. The last bin
extends to infinity and the normalization of the bin is indicated in the plot.
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inclusive fiducial cross section is 0y = 74 + 11 (stat)fi (syst) fb and is in agreement with the
standard-model (SM) expectation of 67.8 + 3.8 fb. Differential cross sections are measured as
functions of the Higgs boson transverse momentum, rapidity, the number of associated jets,
and the transverse momentum of the leading jet in the event. Within the uncertainties, the
differential cross sections agree with the SM predictions.
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