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Abstract

A search is presented for the resonant production of a pair of standard model-like
Higgs bosons using data from proton-proton collisions at a centre-of-mass energy
of 13TeV, collected by the CMS experiment at the CERN LHC in 2016-2018, corre-
sponding to an integrated luminosity of 138 fb™!. The final state consists of two b
quark-antiquark pairs. The search is conducted in the region of phase space where
at least one of the pairs is highly Lorentz-boosted and is reconstructed as a single
large-area jet. The other pair may be either similarly merged or resolved, the latter
reconstructed using two b-tagged jets. The data are found to be consistent with stan-
dard model processes and are interpreted as 95% confidence level upper limits on the
product of the cross sections and the branching fractions of the spin-0 radion and the
spin-2 bulk graviton that arise in warped extradimensional models. The limits set are
in the range 9.74-0.29 fb and 4.94-0.19 fb for a narrow radion and a graviton, respec-
tively, with masses between 1 and 3 TeV. For a radion and for a bulk graviton with
widths 10% of their masses, the limits are in the range 12.5-0.35fb and 8.23-0.23 fb,
respectively, for the same masses. These limits result in the exclusion of a narrow-
width graviton with a mass below 1.2TeV, and of narrow and 10%-width radions
with masses below 2.6, and 2.9 TeV, respectively.
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1 Introduction

In proton-proton (pp) collisions at the CERN LHC, the standard model (SM) production of
a pair of Higgs bosons [1-3] involves two destructively interfering processes: the production
of a virtual Higgs boson via a gluon fusion through an internal fermion loop dominated by
the top quark, t, followed by an HHH vertex, and a ‘box” Feynman diagram with a fermion
loop resulting in two ttH vertices. Its predicted cross section of 30.8*5;', fb at a centre-of-mass
energy of 13 TeV [4-13] is too small to be observable with the current data. However, according
to many models “beyond the SM” (BSM), other modes of Higgs boson pair production could
exist, many involving the production of a massive BSM resonance X that then decays to a Higgs
boson pair (X — HH).

Models with a warped extra dimension (WED), as proposed by Randall and Sundrum [14, 15],
are among the BSM scenarios that predict the existence of resonances with large couplings to
the SM Higgs boson, such as a spin-0 radion [16-18] and a spin-2 first Kaluza-Klein (KK) exci-
tation of the graviton [19-21]. The WED models [22] postulate an additional spatial dimension
I compactified between two four-dimensional hypersurfaces known as branes, with the region
in between, the bulk, warped by an exponential metric «/, where « is the warp factor. A value
of kI~ 35 reproduces the mass hierarchy between the Planck scale Mp; and the electroweak
scale [14]. One of the parameters of the model is x/ Mp;, where Mp; = Mp,/+/87. The ultra-
violet cutoff scale of the model Ag = v/6e "' Mp, [16] is another parameter, and its value is
expected to be near the TeV scale.

Searches for HH production have been performed by the ATLAS [23-34] and CMS [35-51]
Collaborations using LHC pp collision data at v/s = 8 and 13 TeV.

A search for a KK bulk graviton or a radion decaying to HH in the bbbb final state was per-
formed by CMS [45] using events with four separate b quark jets. A similar search targeting
a higher my range, in which two large-area jets were used to reconstruct the highly Lorentz-
boosted Higgs bosons has also been published by the CMS Collaboration [46]. The configura-
tion of a Higgs boson candidate reconstructed as one large-area jet or as two separate narrow
jets depends on its momentum [52]. A search for a new resonance X decaying to a Higgs boson
and a scalar Y in the bbbb final state [53] targeted the same dijet topology in a similar kine-
matic regime but was optimised for a wider range of Y masses, and probed the next-to-minimal
supersymmetric SM and an extension of the SM with two additional singlet scalar fields.

In this paper, we improve upon the CMS search for a high-mass resonance (1 < my < 3TeV)
decaying to HH — bbbb [48] by using data collected at /s = 13TeV in 2016-2018, corre-
sponding to the full Run 2 integrated luminosity of 138 fb~!. We use the scenario of Ref. [54]
to describe the KK graviton, where the propagation of SM fields is allowed in the bulk and fol-
lows the characteristics of the SM gauge group, with the right-handed top quark localised near
the TeV brane. The theoretical values of o(pp — X)B(X — HH — bbbb) are calculated for
various masses, using Ay = 3TeV for the radions and x/Mp, = 0.5 for the bulk gravitons. For
these values of x/ Mp, and Ag, the branching fractions B(X — HH — bbbb) are 10% and 23%,
for the bulk graviton and the radion, respectively, for masses of 1 TeV and larger (cf. Figs. 4.5
and 4.10 from Ref. [55]).

Owing to the broad mass range explored, the H — bb decay is studied using two analysis
topologies. If my is large, both Higgs bosons are highly Lorentz-boosted and are reconstructed
using large-area jets. These “fully-merged” events are then divided into two categories ac-
cording to their purity. To identify the merged H — bb decays, referred to henceforth as “H
candidate jets”, we use a deep neural network jet classifier (“tagger”) algorithm, described in



Section 4. For resonances with masses in the intermediate range (0.8-1.5 TeV), the less energetic
Higgs boson often does not produce a merged bb jet, and thus these events are reconstructed
using one large-area jet and a combination of two separate b quark jets (“semi-resolved” cate-
gory). The inclusion of the semi-resolved events leads to an improvement in the search sensi-
tivity for resonances with my around 1 TeV.

The two dominant sources of the SM background are multijet production and top quark pair
production in association with jets, referred to here as tt+jets. Both backgrounds are estimated
from data, but the procedures are assisted by simulations. To predict the multijet background,
the events that fail the H — bb identification of the leading-pr jet are also used. To aid in the
modelling of the tt+jets background, two categories enriched in tt+jets are defined in addition
to three signal categories. For all five categories, each composed of two regions with events that
pass and fail the H — bb jet identification, the background estimation (described in Section 5)
is based on a two-dimensional fit of the reconstructed resonance mass and the mass of the
leading-p large-area jet. In this joint binned likelihood fit of ten regions the signal strength
floats unconstrained, and the nuisance parameters governing the corrections to both multijet
and tt+jets backgrounds are floating within allowed ranges. Thus, the signal extraction and
the entire background estimation are done simultaneously.

This paper is organised as follows: a brief description of the CMS detector is given in Section 2
followed by a description of event simulation in Section 3. The event selection criteria are
defined in Section 4, and Section 5 describes the modelling of the major background processes.
These are followed by Section 6 on the relevant sources of systematic uncertainty and their
variations allowed by the fit. Finally, the results are presented in Section 7.

Tabulated results are provided in the HEPData record for this analysis [56].

2 The CMS detector and event reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters, made of steel and quartz fibres, extend the pseudorapidity (1) coverage provided
by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embed-
ded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS
detector, together with a definition of the coordinate system used and the relevant kinematic
variables, can be found in Ref. [57].

Events of interest are selected using a two-tiered trigger system. The first level (L1), composed
of custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a fixed latency of 4 us [58]. The second level,
known as the high-level trigger (HLT), consists of a farm of processors running a version of the
full event reconstruction software optimised for fast processing, and reduces the event rate to
around 1 kHz before data storage [59].

A particle flow (PF) algorithm [60] aims to reconstruct and identify each individual particle
in an event (PF candidate), with an optimised combination of information from the various
elements of the CMS detector. The energy of photons is obtained from the ECAL measure-
ment. The energy of electrons is determined from a combination of the track momentum at
the primary interaction vertex, the corresponding ECAL cluster energy, and the energy sum



of all bremsstrahlung photons attached to the track. The momentum of muons is obtained
from the curvature of the corresponding track. The energy of charged hadrons is determined
from a combination of their momentum measured in the tracker and the matching ECAL and
HCAL energy deposits, corrected for zero-suppression effects and for the response function of
the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from
the corresponding corrected ECAL and HCAL energies. The primary vertex (PV) is taken to
be the vertex corresponding to the hardest scattering in the event, evaluated using tracking
information alone, as described in Section 9.4.1 of Ref. [61].

For each event, jets are clustered from these reconstructed particles using the anti-kt algo-
rithm [62, 63] with a distance parameter of 0.4 (AK4 jets) or 0.8 (AKS jets). Jet momentum is
determined as the vectorial sum of all particle momenta in the jet, and is found from simulation
to be, on average, within 5 to 10% of the true momentum over the whole transverse momen-
tum (pr) spectrum and detector acceptance. Additional pp interactions within the same or
nearby bunch crossings (pileup) can contribute additional tracks and calorimetric energy de-
positions, increasing the apparent jet momentum. To mitigate this effect, tracks identified to
be originating from pileup vertices are discarded, and an offset correction is applied to correct
for remaining contributions [64, 65]. Jet energy corrections are derived from simulation studies
so that the average measured energy of jets becomes identical to that of particle level jets. In
situ measurements of the momentum balance in dijet, photon+jet, Z+jet, and multijet events
are used to determine any residual differences between the jet energy scale in data and in sim-
ulation, and appropriate corrections are made [66]. Additional selection criteria are applied to
each jet to remove jets arising from instrumental effects or reconstruction failures [67]. The jet
energy resolution amounts typically to 15-20% at 30 GeV, 10% at 100 GeV, and 5% at 1 TeV [66].

3 Event simulation

Two scenarios of bulk graviton and radion signal events are considered: “narrow-width” sig-
nal shapes with a width of 1MeV and a “10%-width” where the width is set to 10% of the
resonance mass. The width of 1 MeV is much smaller than the standard deviation of the dijet
invariant mass distribution (~5%, in the considered mass range 1-3 TeV) and thus the narrow-
width scenario provides a limiting case where the signal shape is completely determined by the
experimental resolution. A width of 10% was chosen to demonstrate the effects of a resonance
width larger than the jet mass resolution. Although the background estimation would be valid
for much broader signals, the analysis is not optimised for them. All signals are simulated at
leading order (LO) in the mass range 1-3 TeV, using the MADGRAPH5_.aMC@NLO event gen-
erator [68]; version 2.2.2 is used for the 2016 data-taking period, and 2.4.2 for 2017 and 2018.
The NNPDEF3.0 LO parton distribution function (PDF) set [69], taken from LHAPDEF6 library
[70-73], with the four-flavour scheme, is used for all signal samples. The parton shower and
hadronization are simulated with PYTHIA 8.212 [74].

The dominant background consists of events composed primarily of jets (multijet events) aris-
ing from the SM quantum chromodynamics (QCD) interaction, and is modelled from data.
The tt+jets events comprise most of the remaining background and are generated at next-to-
LO using POWHEG 2.0 [75-77] using NNPDF3.0 LO PDF set for 2016 data-taking period, and
PDF4LHC15 next-to-next-to-LO (NNLO) PDF set [69, 70, 73, 78-80] to model data from 2017
and 2018. These events are showered by PYTHIA 8, using the CUETP8M2T4 tune [81, 82].
The contribution from tt+ets is estimated using a NNLO cross section of 832725 pb [83], cor-
responding to the top quark mass of 172.5GeV. To account for the difference in the shape of

the py distribution of the top quarks between data and simulation, arising from the absence of



the contribution from the NNLO diagrams, the simulated tt+jets events are reweighted using
the pr-dependent scale factor, ¥ FPr, with & = 0.0615 and B = 0.0005, derived from low-
prtt+jets events. A sample of multijet events from QCD interactions, simulated at LO using
MADGRAPH5_aMC@NLO and PYTHIA 8, and NNPDF3.0 (for 2016) or PDF4LHC15 (for 2017
and 2018) is used to develop and validate the background estimation techniques prior to being
applied to the data. Other background processes, such as WZ, ttZ or Z+jets production, are
also considered but their yields are found to be negligible.

All generated samples are processed through a GEANT4-based [84, 85] simulation of the CMS
detector. The effect of pileup, averaging 23-32 additional interactions per bunch crossing, for
the LHC beam conditions between 2016 and 2018, is included in the simulations, and the sam-
ples are reweighted to match the distribution of the number of pp interactions observed in the
data, assuming a total inelastic pp collision cross section of 69.2 mb [86].

4 Event selection

Collision events are selected using a logical OR of triggers based on the jet activity in the event.
One trigger path requires that the pp sum of all AK4 jets in the event (Hy) be greater than 800,
900, or 1050 GeV, depending on the data collection year and the LHC beam instantaneous lu-
minosity. A second trigger path collects events with Hy > 650 GeV, and with a pair of AK4 jets
that has invariant mass above 900 GeV and a pseudorapidity separation |Ayy| < 1.5. A third
trigger path accepts events if the py of the leading AKS jet is greater than 360 or 400 GeV (de-
pending on the data collection year) and the “trimmed mass” of an AKS jet is above 30 GeV.
The jet trimmed mass is obtained after removing remnants of soft radiation with the jet trim-
ming technique [87], using a subjet size parameter of 0.3 and a subjet-to-AKS jet pr fraction of
0.1.

Offline, collected events are split into three categories: one semi-resolved category and two
fully-merged categories, further separated by purity. Since the background estimation uses
the mass and the H — bb jet tagger discriminant of the leading-p;y AKS jet, the events are
not preselected based on these variables. The AKS jets are required to have || < 2.4, and
pr > 300GeV. The fully-merged categories require two such AKS jets (each representing a
Higgs boson candidate), whereas the semi-resolved category requires only one, with the other
Higgs boson candidate reconstructed from a pair of b-tagged AK4 jets.

A resonant HH signal of high mass results in a small |Ay| between the two Higgs bosons, while
the multijet background often produces events with larger values of |Ay|. Events in the fully-
merged category are therefore required to have |Ay| < 1.3 between the H candidate jets. The
subleading AKS jet is required to have its soft-drop mass, the jet mass that results from applying
the soft-drop algorithm [88, 89], between 110-140 GeV, consistent with the Higgs boson mass,
my = 125GeV [90, 91]. The fully-merged selection is summarised in Table 1.

Table 1: Event selection criteria for the fully-merged topology.

Variable Selection

Leading two AKS jets pr > 300GeV and |77| < 2.4
|Ay| <13
Sub-leading AKS jet soft-drop mass 110 < mgp < 140 GeV
MY corr >750 GeV

A deep neural network based tagger, “DeepAK8” [92], is used to identify the boosted H — bb



candidate jets. We use a “mass-decorrelated” version of this tagger, which exploits an adver-
sarial network to reduce the correlation of the tagging score with the soft-drop jet mass [92].
A significantly reduced sculpting of the distribution of the H candidate’s jet mass preserves
its sidebands and allows the use of the jet mass in conjunction with the DeepAKS8 tagger in
the background estimate. The efficiency of the DeepAKS8 tagger is calibrated in data using a
sample of jets originating from gluons splitting into bb pairs that produce merged jets. A jet in
this sample must have a soft-drop mass in the 50-200 GeV range and have two secondary ver-
tices, each matched to one subjet. This selection results in tagger distributions that are similar
between the sample jets and the signal H — bb jets. The DeepAKS tagger data-to-simulation
correction factors range from 0.9 to 1.4, depending on the jet pt and data-taking year [93]. The
DeepAKS tagger outperforms the “double-b” H — bb tagger used previously [48], resulting
in an increase of the sensitivity from the tagger alone by a factor of ~2.5 over the whole search
domain.

The AKS jets with DeepAKS8 tagger discriminant above 0.8 are said to pass a “loose” criterion
while those with the discriminant above 0.9 pass the “tight” criterion. The efficiency of the
tight criterion for H candidate jets from a 1500 GeV narrow radion signal is about 60%, with
a misidentification probability of QCD jets of 1%. For jets that pass the loose but not tight
criterion, the H jet efficiency is about 20%, with the misidentification probability of 2%. The
fully-merged events are split into two categories based on the purity of the H candidate jets:
events are categorised as either “high purity” (HP), where both AKS jets satisfy the tight thresh-
old, or as “low purity” (LP), where both AKS jets pass the loose tagging threshold but are not
part of the HP category.

We denote the signal regions as “pass” regions. For the purpose of background estimation,
for each signal region we also define a control region where the leading-pt AKS jet fails the
tagging requirement; we denote them as “fail” regions, and define them separately for HP and
LP categories. In defining the mutually exclusive HP and LP fail regions, we aim to model the
signal regions with events that have the same criteria for the subleading jet, which makes them
kinematically similar. The HP fail region (used to predict the background in the HP signal
region) is defined by the leading-pr H candidate jet failing the loose tagger requirement, while
the subleading-pr H candidate jet passes the tight Deep AKS tagger requirement. Analogously,
the LP fail region is defined by the leading H candidate jet failing the loose criterion while
the subleading passes it, but fails the tight one. A schematic diagram of these four regions is
shown in Fig. 1. The HP selection corresponds to a signal efficiency of 7-11% for a narrow
radion signal for masses my in the range 1-3 TeV, and slightly higher for the bulk graviton. The
LP selection results in signal efficiencies of 3-4% over the same my domain.

Two dedicated tt+jets event control regions (each consisting of corresponding HP and LP
events) are also used to correct the modelling of the tt+jets background component for events
with high jet pr, for which the tt simulation does not agree with data. The tt control regions
use the same selections as the HP and LP categories, except for a window on the soft-drop mass
of the subleading-pr jet, which is shifted from 110 < mgp < 140 to 140 < mgp < 210GeV in
order to correspond to the top quark mass.

Events that fail the fully-merged selection for either HP or LP category are considered in the
semi-resolved selection. Jets for the semi-resolved category are required to have || < 2.4, and
pr > 30GeV (300 GeV) for AK4 (AKS) jets.

To find a Higgs boson decay into two resolved b quark jets, all AK4 jets in each event are
examined by the “DeepJet” algorithm [94, 95], which gives the probability for a jet to have
originated from a bottom quark. Deep]et is a neural network trained using information from
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Figure 1: A diagram showing high-purity (HP, purple) and low-purity (LD, blue) pass regions
(solid) and their corresponding fail regions (dash-dotted).

tracks and secondary vertices associated with the jet.

The DeepJet selection on AK4 jets uses the “medium” working point, which corresponds to
a 1% mistag rate for gluon and light-flavoured quark jets. It results in a b tagging efficiency
of about 70% for b quark jets in the pr range 80-150 GeV, and decreasing to about 50% for
pr~1000GeV. The b tagging efficiency in the simulation is corrected to match that in the data,
using measurements of the b-tagging algorithm performance in a sample of muon-enriched
jets and b jets from tt+jets events, with the correction factor ranging from 0.95 to 1.1[95].

Resolved H — bb candidates are constructed by considering all pairs of b-tagged AK4 jets.

“yon a7

Events are required to have least one pair where both AK4 jets (jets “j,” and “j,”) are separated

by AR = V(A¢)? + (An)? > 0.8 (where ¢ is the azimuthal angle in radians) from the leading-
pr AKS jet (jet “J;”) and are within AR < 1.5 of each other. If several such pairs are found,
the pair of jets j, and j, that has the highest sum of the AK4 jet DeepJet discriminant values
is selected. The invariant mass of j, and j;, m; ; , is required to be within 90-140 GeV, forming

the resolved H — bb candidate. The leading-p; AKS jet is then identified as the merged H
candidate, and the pair of AK4 jets is identified as the resolved H candidate. If no resolved
H candidate is found starting from the leading-pt AKS jet, then this process is repeated with
the subleading-py AKS jet as a merged H candidate. The event is rejected if a H — bb pair is
not found even in this case. As in the fully-merged regime, the events are required to have a
pseudorapidity difference between the two H candidates |Ay| < 1.3.

In the semi-resolved category, the “pass” region is defined by the leading-pr AKS jet having
a DeepAKS tagger discriminant above 0.9, and the “fail” region below 0.9. The efficiency of
the semi-resolved selection peaks at ~3.5% around 1.2-1.4 TeV, depending on the signal, and
rapidly falls at higher my masses. The requirements for the semi-resolved events are sum-
marised in Table 2.

The main variable used in the search for an HH resonance is the “corrected HH mass”. For the
fully-merged categories it is defined as My oy = myy + (Mg — my,) + (my — my,), where my;
is the dijet invariant mass, m;, and mj, are the soft-drop masses of the leading and subleading
H candidate jets in the event, and my; = 125GeV is the nominal Higgs boson mass. In the

semi-resolved analysis, this quantity is defined by My core = My + (my —my, ) + (my —m;,),



Table 2: Event selection criteria for the semi-resolved topology.

Variable Selection

Leading AKS jet pr > 300GeV and || < 2.4
AK4 jets pr > 30GeV and |y| < 24
|Ay| <13

DeepJet Medium working point
Invariant mass of two AK4 jets 90 < my; < 140GeV
MHH,corr >750GeV

where my; is the invariant mass of the three jets comprising a semi-resolved HH candidate. The
corrected HH mass is used rather than the invariant mass of the two reconstructed H candi-
dates because effects due to fluctuations in jet reconstruction or to missing pr associated with a
neutrino from a b quark decay are correlated between the H jet mass and the invariant mass of
the HH system. Adjusting the H — bb candidates to the nominal H mass improves our esti-
mate of the HH invariant mass. Using the corrected HH mass leads to an 8-10% improvement
in the invariant jet mass resolution [46]. A requirement of my .o,y > 750 GeV is applied for
selecting signal-like events because of trigger turn-on effects.

5 Background model

The background is predicted to be dominated by multijet and tt+jets production. The contri-
bution from processes like WZ, ttZ or Z+jets production was found to be negligible. The total
background model is constructed as a sum of the individual background contributions using
a Poisson distribution for each bin of the two-dimensional (11, My corr) distribution. The H
candidate jet mass is used as one of the discriminants because the signal and the tt+jets back-
ground exhibit shapes distinct from each other and from the multijet background. To extract
the signal, we compare the number of expected events from both the background-only and
signal-plus-background hypotheses with the number of observed events in data using a likeli-
hood ratio fit. The number of extracted signal events can then be related to the production cross

section via Ngigna = oxB(X — HH — bbbb)eL, where oy is the production cross section of X

(a radion or a bulk graviton), B(X — HH — bbbb) is the product of the branching fractions
of X — HH and the two H — bb decays, ¢ is the product of the acceptance and the efficiency
to reconstruct an HH event, and L is the integrated luminosity of the data set.

The multijet background estimation relies on a “pass-to-fail ratio”, a transfer function between
the pass and fail regions defined in Section 4 and determined by the discriminant of the leading-
pr H candidate jet. In this analysis, the pass-to-fail ratio is of the order of 10~2. Conceptu-
ally, the pass-to-fail ratio is measured in the Higgs boson mass sidebands (m;, < 100GeV and
my > 140 GeV) and interpolated into the signal region (100 < mj < 140 GeV); however, both
steps are done simultaneously with the extraction of the signal yield and profiling over all
nuisance parameters, including those that govern the normalizations and shapes of the tt+jets
component.

The tt+jets contributions to the signal categories are obtained from simulation, but their overall
normalization and their shapes are allowed to be modified by nuisance parameters that are
described in the next section. These nuisance parameters are constrained using two control
event categories enriched in tt+jets, which are also a part of the joint likelihood. Therefore,
both the signal and all backgrounds are simultaneously obtained from a one-step fit to the
(my,, Migp core) Planes in the ten pass and fail regions.



The total numbers of expected events failing, ny, and passing, np, the Deep AKS tagger require-
ment are given by

n(i, 8) = nd(0) + ni! (i,6) + . (i, 6) (1)
and . — .
np(i, 8) = ng“P (i) + ny, (i, 6) + np (i,6) @

where i is a bin in the 2D (m , My corr) plane, and f is the set of all nuisance parameters
that quantify the systematic uncertainties, as described in Section 6. Each bin in the “fail” 2D
distribution, n]?CD(i ), is represented by an individual parameter in the fit that is required to be

positive but is otherwise unconstrained.

The predicted multijet yield in the “pass” 2D distribution, nSCD(i ), is obtained by
”gCD@ = n§CD(i> Rp/p(my,, My corr) 3)

where Rp /5 (1my,, My corr) 18 the transfer function.

We define the transfer functions in data and in the QCD multijet simulation as Rg‘}? (my,, Mygp corr)

and Rls,i}nF(m]l, MyH corr), Tespectively. The R%E}tﬁ(mh, MY corr) and Rf}%(m]] , MY corr) bOth vary
smoothly as a function of mj and My oo because HH candidates in multijet processes arise
from random combinations of jets. The data-to-simulation ratio of these 2D functions,

data
RP/F (mh s mHH,corr)

Ryatio (M5, Myp corr) = 5
ratio \""*]; 7 ,COLT R?}% (mh/ mHH,corr)

/ (4)

is therefore also smooth and can be parameterised with an analytic function of m; and Mgy cory-

While Rgi}?(mh, MyH corr) cOuld also be described by analytic functions, features of this shape
that are hard to model analytically can be factored out by using the QCD simulation, and the
fit of the analytic function to data is only responsible for describing the residual differences be-
tween data and simulation that can be parameterised with fewer parameters than the shape of
Rgf}tﬁ‘ (my,, Mg core)- Thus the number of events in a given bin of the passing region is obtained
from .

nI?CD (l) = n;)CD (Z) f’l% (mjll mHH,corr) Rratio (m]ll mHH,corr) (5)
where Rio6 (115, Migp core) 18 @ surface parameterised by the product of two one-dimensional
polynomials in the (1) , M4 corr) plane with coefficients determined from the fit to data. Second-
order polynomials were chosen for Ry, (), Myt corr) parameterization, along both m; and
My corr aX€s, based on a Fisher test [96], where polynomial terms were added until the p-value
obtained in the test was larger than 0.05.

To reduce the effect of statistical fluctuations on the calculation of Rf}}“F(mh, MyY corr) iN the
QCD multijet simulation, the pass and fail distributions are smoothed using an adaptive kernel
density estimate [97] prior to calculating the ratio.

6 Sources of systematic uncertainty

The following sources of systematic uncertainty affect the expected signal and background
event yields. A complete list of systematic uncertainties and ranges for the associated nuisance
parameters is given in Table 3. These ranges are used as input to the fit, and the minimization
of the likelihood further constrains some of them. None of these lead to a significant change in



Table 3: Summary of the impact of each source of systematic uncertainty on the signal and tt
background yields in the high purity signal region for a radion resonance at 1500 GeV. The
impact of the same nuisance parameters in other signal regions and for other resonance masses
is similar.

Source Effect on signal (%) Effect on tt background (%)
Integrated luminosity 1.6 1.6
Pileup 0.1 0.2
PDF and scales 04 1.2
tt cross section — 5.0
Trigger efficiency 4.0 5.7
Top quark pr reweighting — 13.7
DeepAK8 H — bb efficiency 18.3 12.7
DeepJet b tagging efficiency 0.0 0.0
Jet energy scale 1.5 0.7
Jet energy resolution 0.9 0.9
Jet mass scale 1.2 0.8
Jet mass resolution 6.2 6.7

the signal shape and, after the fit, their impact on the signal yield is significantly smaller than
the effect of limited statistics.

The uncertainties in the modelling of the trigger response are particularly important for mypy ¢y <
1100 GeV, where the trigger efficiency drops below 99%. The trigger efficiency in each category

is measured in the data as a fraction of events with at least one AK4 jet with pr > 260 GeV
satisfying the offline selection that passes the trigger selection criteria. Simulated events are
weighted by this efficiency as a function of the invariant mass of the two leading-pr AKS jets
in the event, myy o, The trigger efficiency in simulation is corrected by a scale factor, which
has an uncertainty between 1 and 15%, attributable to the control trigger inefficiency and the
sample size used.

The impact of the jet energy scale and resolution uncertainties [67] on the signal yields is esti-
mated to be 1-3%, depending on the signal mass. The jet mass scale and resolution are mea-
sured using a sample of boosted W — q@’ jets in semileptonic tt events. The jet mass scale
and resolution have a 2% effect on the signal yields because of a change in the mean of the H
candidate jet mass distribution.

Scale factors are used to correct the signal event yields so that their Deep AKS tagger and Deep-
Jet discriminant efficiencies are the same as for data. The DeepAKS8tagger and the DeepJet
discriminant scale factors are taken to be 100% correlated. The associated uncertainty in the
scale factor is 2-9% [93], depending on the DeepAKS tagger working point and jet pr, and is
propagated to the total uncertainty in the signal yield.

The impact of the uncertainties in the renormalization and factorization scale and the parton
distribution functions (PDF), the latter derived using the PDF4LHC procedure [73] and the
NNPDEF3.0 PDF sets, is estimated to be 0.5%. These uncertainties affect the product of the
signal acceptance and the selection efficiency. The factorization scale and PDF uncertainties
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have negligible impact on the signal myyy . distributions. Additional systematic uncertainties
associated with pileup modelling (1-2%, based on a 4.6% variation on the pp total inelastic
cross section [86]) and with the integrated luminosity determination [98-100] (1.6%, combining
the measurements of the three years of data taking), are applied to the signal yield.

The systematic uncertainties applied to the signal are also applied to the tt+jets background,
as appropriate. The total uncertainty in the tt+jets cross section is 7%. The correction to the

shape of the top quark ptT distribution (described in Section 3) has two parts, an additional nor-

t
malization correction e* and a shape correction e #Pr. Each correction is assigned independent
multiplicative uncertainties of 2 and 0.5 times the nominal weight.

An uncertainty in the “bandwidth” parameter of the kernel density estimate, which acts as
a scale for the width of the adaptive kernels, was studied by varying this parameter, and its
impact is found to be negligible.

The main source of uncertainty in the multijet background estimate is the statistical uncertainty
in the fit of R,;,. This uncertainty, amounting to 2-10%, is fully correlated between all 7y ¢oy,
bins. Additional statistical uncertainties in the background shape and yield in the signal region
result from the finite sizes of the multijet samples in the fail region and are evaluated using
the Barlow—Beeston Lite method [101, 102]. These uncertainties are small compared to the
uncertainty in the Rp g ratio, and are uncorrelated from bin to bin.

7 Resulis

Results are obtained using a statistical combination of the semi-resolved and fully-merged
event categories. An X — HH signal is resonant in the 2D space of the different signal event
categories, as discussed in Section 5. The likelihood is formed by combining 2D binned likeli-
hoods of ten regions: HP, LP, and semi-resolved signal categories, and HP and LP tt control
categories, where each category provides both a pass and a fail region. The projections of the
slices of the post-fit 2D distributions in the three signal regions (HP, LP, and semi-resolved) are
shown in Figs. 2—4.

The narrow radion signal corresponding to the resonance mass of 1500 GeV is also shown. This
resonance mass is chosen to illustrate the contribution of the semi-resolved category compared
with the HP and LP categories; the signal is scaled by the same scale in all three figures. The
sensitivity is dominated by the HP region over the whole resonance mass domain. At lower
resonance masses, the semi-resolved category contributes significantly to the sensitivity of the
search. The LP category contributes only at very high resonance masses, where the standard
model backgrounds are low.

The three signal regions are examined for an excess of events above the predicted background,
and the data are found to be consistent with the expected background predictions. We proceed
to set an upper limit on the number of possible signal events in our data.

Upper limits at 95% confidence level (CL) are set on the product of the production cross section
and the branching fractions, o(pp — X)B(X — HH — bbbb). They are obtained using the
profile likelihood as a test statistic [103]. The systematic uncertainties are treated as nuisance
parameters and are profiled in the minimization of the negative of the logarithm of the profile
likelihood ratio, and the distributions of the likelihood ratio are calculated using the asymptotic
approximation [104] of the procedure reported in Refs. [105, 106].

As shown in Fig. 5 (left) a narrow radion with mass between 1-2.6 TeV is excluded at 95% CL
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Figure 2: Slices of 2D distributions of observed events and the post-fit templates in the HP
signal region, projected onto the plane of leading jet mass mj (left) and corrected HH mass
Myy corr (ight) axes, together with the signal (scaled up by a factor of five) expected for a
radion of mass 1.5TeV. For this and following figures, the value of ¢ in the lower panel is

o= ,/0% g T 02 .., where Opig 18 the total post-fit uncertainty in the background and oy, is the
statistical uncertainty associated with the number of data events in a particular bin.
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Figure 3: Slices of 2D distributions of observed events and the post-fit templates in the LP signal
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for the assumed value of the cutoff scale, Ay = 3TeV. A narrow bulk graviton for the assumed
value of the ultraviolet cutoff scale, k/ Mp, = 0.5, is excluded at 95% CL only for masses be-
tween 1-1.2TeV, as shown in Fig. 5 (right). The deviations in the observed limits at graviton
and radion masses of 1.3 and 1.5 TeV, respectively, correspond to a small upward fluctuation
of data over the background prediction at myy ooy ~1.4 TeV, visible in Fig. 2, middle row. The
corresponding exclusion limits, assuming a signal with 10% decay width, are shown in Fig. 6.
The product of the efficiency and the acceptance for the 10%-width signals is 3-5% lower than
for the narrow signals, and, consequently, the cross section exclusion limits are similar.

These limits result in the exclusion of the narrow-width graviton with my below 1.2 TeV. Nar-
row and 10%-width radion with masses below 2.6 TeV, and 2.9 TeV, respectively, are also ex-
cluded. This is a substantial improvement over the previous CMS radion exclusion limit of
~1.6 TeV [48]. The analysis presented in this paper complements a previous result from AT-
LAS that achieved an almost identical sensitivity for X — HH — 4b for both spin-0 and spin-2
hypotheses [33] between 1.5-3 TeV, while employing a different background estimation strat-
egy and H jet identification. Below 1.5 TeV the ATLAS analysis benefits from the combination
with the fully resolved 4b channel.
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Figure 5: The observed (solid black line) and expected (dashed black line) upper limits at 95%
CL on o(pp — X)B(X — HH — bbbb) for a narrow spin-0 radion (left, corresponding to
Ag = 3TeV) and a narrow width spin-2 bulk graviton (right, corresponding to k/Mp; = 0.5)
models. The green (yellow) bands represent one (two) standard deviations from the expected
limit. The predicted theoretical cross sections for the narrow radion and bulk graviton are also
shown.

8 Summary

A search has been presented for the pair production of standard model Higgs bosons (HH)
from the decay of a spin-0 radion or a spin-2 bulk graviton as predicted in warped extradimen-
sional models, using data from proton-proton collisions at a centre-of-mass energy of 13 TeV
and corresponding to an integrated luminosity of 138 fb™'.

The search is restricted to the case where each Higgs boson decays to a bottom quark-antiquark
pair. It is conducted in the region of phase space where at least one of the Higgs bosons has
a large Lorentz boost, so that the H — bb decay products are collimated to form a single H
candidate jet. The search combines events with one H candidate jet and two b jets with events
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Figure 6: The observed (solid black line) and expected (dashed black line) upper limits at 95%
CL on o(pp — X)B(X — HH — bbbb) for the 10%-width spin-0 radion (left) and the 10%-
width spin-2 bulk graviton (right) models. The green (yellow) bands represent one (two) stan-
dard deviations from the expected limit. The predicted theoretical cross sections for the 10%-
width radion and bulk graviton are also shown.

having two H candidate jets, thus adding sensitivity compared with previous analyses [46,
48]. The improvement comes from both an increase in integrated luminosity (~1.9) and an
improved DeepAKS8 tagger (~2.5).

The results are interpreted in terms of upper limits on the product of the production cross
section for the respective resonance particles and the branching fraction to HH — bbbb, at
95% confidence level. The upper limits range from 9.74 to 0.29 fb for a narrow radion and from
4.94 to 0.19 fb for a narrow bulk graviton, each having a mass of 1-3 TeV. Assuming a width of
10% for the radion and the graviton, the limits for the same masses are in the range 12.48-0.35 fb
and 8.23-0.23 fb, respectively. As a result, the narrow-width graviton with my below 1.2 TeV,
and narrow and 10%-width radion with masses below 2.6 TeV, and 2.9 TeV, respectively, are
excluded.
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