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Abstract

A search for long-lived heavy neutral leptons (HNLs) using proton-proton collision
data corresponding to an integrated luminosity of 138 fb~! collected at /s = 13 TeV
with the CMS detector at the CERN LHC is presented. Events are selected with a
charged lepton originating from the primary vertex associated with the proton-proton
interaction, as well as a second charged lepton and a hadronic jet associated with a
secondary vertex that corresponds to the semileptonic decay of a long-lived HNL. No
excess of events above the standard model expectation is observed. Exclusion limits
at 95% confidence level are evaluated for HNLs that mix with electron and/or muon
neutrinos. Limits are presented in the mass range of 1-16.5 GeV, with excluded square
mixing parameter values reaching as low as 2 x 10~7. For masses above 11 GeV, the
presented limits exceed all previous results in the semileptonic decay channel, and
for some of the considered scenarios are the strongest to date.
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1 Introduction

The discovery of neutrino oscillations [1-3] has provided experimental evidence that neutrinos
have nonzero masses [4]. Constraints from cosmological probes, such as measurements of
the cosmic microwave background [5-7], as well as direct measurements [8, 9], indicate that
the neutrino masses are orders of magnitude smaller than the masses of other fermions in
the standard model (SM) of particle physics. A possible way to generate gauge-invariant mass
terms for the SM neutrinos and explain their small mass scale is the see-saw mechanism, which
requires the introduction of new heavy states with right-handed chirality [10-17]. These new
states, referred to as heavy neutral leptons (HNLs), can also provide explanations for other
open questions in high-energy physics, such as the nature of dark matter [18, 19] or the matter-
antimatter asymmetry in the universe [20-22].

The HNL flavor eigenstates are singlets of the SM gauge groups, and thus do not interact with
the SM particles through the electroweak or strong interaction. They do, however, form mixed
mass eigenstates with the SM neutrinos. This mixing generates HNL-dominated mass eigen-
states with effective electroweak couplings, and hence these mass eigenstates can be produced
and decay via the electroweak interaction. For an explanation of both neutrino observations
and cosmological problems, an SM extension with HNLs generally needs to provide three HNL
generations with couplings to all SM neutrino generations [23]. In the following, we will refer
to the HNL mass eigenstates and indicate them with the symbol N. A wide range of HNL
masses my and mixing parameters V;y can yield mass values for the SM neutrinos consistent
with observed neutrino oscillations and offer an explanation for the matter-antimatter asym-
metry in the universe. In the case of, e.g., my = 10GeV, these requirements are found to be
fulfilled for a range 10~ < |V,|?> < 1072 [22]; a significant part of which can be probed in
proton-proton (pp) collisions at the CERN LHC.

The experimental signature of HNL models has been studied extensively [17, 24-31], and
searches have been conducted at the LHC [32-49], at other colliders [50-54], and in fixed-target
experiments [55-65], covering a mass range from a few keV to several TeV [31]. The proper life-
time t of HNLs follows an exponential distribution P(t) = t! exp(—t/7y) with mean proper
lifetime T depending on my and V;y as [25]
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For my < 20GeV, the value of Ty can become so large that many HNLs will decay after a
time t long enough for the HNL decay products to emerge from a secondary vertex (SV) that
is spatially displaced from the primary vertex (PV) and separately reconstructable. Collider
searches for HNL production can thus be optimized either for short-lived HNL scenarios with
prompt signatures, or for long-lived HNL scenarios with displaced signatures.

This paper reports a search for W boson decays to an HNL and a charged lepton ¢;, with a sub-
sequent HNL decay to a second charged lepton ¢, and two quarks. The search is optimized for
displaced HNL decays with 1 < my < 20 GeV, where the large boost of the HNL in the W bo-
son decay causes the two quarks to be merged into a single jet that can also encompass ¢,. The
experimental signature thus consists of a prompt ¢, originating from the PV, and a nonprompt
¢, encompassed in a jet originating from an SV. We consider only electrons and muons for ¢,
and /,, and refer to them as “leptons” in the following. Two possible decay modes are consid-
ered for the HNLs: lepton-number-conserving (LNC) decays with ¢; and ¢, of opposite sign
(OS), and lepton-number-violating (LNV) decays with same-sign (SS) leptons. The case where
both LNC and LNV decays are possible is referred to as the “Majorana” nature of the HNL,
whereas the “Dirac” nature refers to HNLs with only LNC decays. As a consequence of having



) G
Figure 1: Examples of LO Feynman diagrams for production and decay of an HNL (indicated
with the symbol N) resulting in a final state with two charged leptons and two quarks. In the
left diagram, the HNL is a Dirac particle and thus the two charged leptons must have opposite
charge. In the right diagram, the HNL is a Majorana particle and the two charged leptons can
have the same charge.

twice the number of possible decays, the decay width (7y) of a Majorana HNL is twice (half)

that of a Dirac HNL with the same my and |V, |?. Examples of leading-order (LO) Feynman
diagrams of the studied process with either an LNC or LNV decay are shown in Fig. 1.

The analyzed pp collision data were recorded by the CMS experiment at /s = 13 TeV in 2016~
2018, and correspond to an integrated luminosity of 138 fb . We select events with one prompt
lepton and apply a dedicated reconstruction of the SV with an associated nonprompt lepton
and a jet. Events are grouped into the four lepton flavor categories ee, py, ey, and pe, where
the first (second) symbol refers to the flavor of ¢, (¢,). A machine-learning algorithm that uses
information related to the nonprompt lepton, the jet, and the SV is trained to distinguish be-
tween HNL signal and SM background events. Background contributions from SM processes
can arise when a displaced lepton forms an SV by overlapping with a random track, when
a photon converts into a lepton pair in the detector material, or when a heavy-flavor hadron
decay results in a displaced lepton associated with a genuine SV. These contributions are es-
timated from control samples in data. For the interpretation of our results, we consider sim-
plified models with a single HNL that couples exclusively to electron and /or muon neutrinos
(Refs. [66—-69] discuss limitations of this approach). The ee (u) channel is used to constrain
|Von |? (|VP,N|2) in HNL scenarios with an exclusive coupling to electron (muon) neutrinos,
whereas the ey and pe channels are used together to constrain |Ven VN 2/ (|Van1? + Vi ) in
HNL scenarios with couplings to both electron and muon neutrinos [25]. Exclusion limits are
derived on the respective |V, |? values as functions of my. Tabulated results are provided in
the HEPData record for this analysis [70].

Recent analyses by the CMS experiment have used the same data set to search for HNLs in
various mass ranges and final-state signatures. The search presented in Ref. [44] targets the
same decay channel and my range as the one presented in this paper, but uses a deep-neural-
network-based jet tagger to identify the displaced decay products without explicitly recon-
structing an SV. The explicit SV reconstruction employed in the analysis presented here results
in more stringent limits in the region with my > 10 GeV and high 7 values. Searches for HNL
production and decay resulting in events with three leptons have been performed in the mass
range 10GeV < my < 1.5TeV, where all leptons are required to originate from the PV [46],
and in the mass range 1 < my < 20GeV, where two of the leptons are required to originate
from an SV [40]. Other results target the range 1 < my < 3GeV by reconstructing HNLs
with ¢ty > 0.1 m decaying in the muon system [45] or by searching for HNLs in B meson de-
cays [47]. A summary of all HNL searches performed by the CMS Collaboration is presented
in Ref. [49].



2 The CMS experiment and event reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (1) coverage provided by the barrel and endcap de-
tectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return
yoke outside the solenoid. More detailed descriptions of the CMS detector, together with a
definition of the coordinate system used and the relevant kinematic variables, can be found in
Refs. [71, 72].

Events of interest are selected using a two-tiered trigger system. The first level, composed of
custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a fixed latency of about 4 us [73]. The second
level, known as the high-level trigger (HLT), consists of a farm of processors running a version
of the full event reconstruction software optimized for fast processing, and reduces the event
rate to around 1 kHz before data storage [74, 75].

Charged-particle tracks are reconstructed across the entire 77 range of the silicon tracker, which
is || < 2.5 with the tracker used in 2016 and || < 3.0 with the new pixel detector installed
at the start of 2017 [76]. Track reconstruction enables the detection of charged particles with
transverse momentum (pt) as low as 0.1 GeV and originating from distances up to 60 cm from
the beam line. In simulation with 2017 detector conditions, the tracking efficiency for charged
particles with pr > 0.9 GeV of better than 90, 60, and 25% for tracks originating at distances
smaller than 2, 10, and 48 cm from the beamline, respectively, is found [77]. These charged-
particle tracks are then clustered to form vertices. To reconstruct vertices corresponding to pp
interactions, the clustering is performed based on the z coordinate of the closest approach of
the tracks to the beam line. The vertex position is estimated with an adaptive vertex fitter [78]
using the collection of tracks compatible with originating from the same interaction. From the
vertices reconstructed in this way, the PV is taken to be the one corresponding to the hardest
scattering in the event, evaluated using tracking information alone, as described in Section 9.4.1
of Ref. [79].

The impact parameter of a track is defined as the distance of the track from the PV at its point of
closest approach. The three-dimensional (3D) impact parameter is referred to as d,, ., the two-
dimensional (2D) value in the plane transverse to the beam line as d,,, and the longitudinal
value along the beam line as d,. For nonisolated particles of 1 < pr < 10GeV and || < 14, the
track resolutions in 2016 were typically 1.5% in pt and 25-90 (45-150) ym in dxy (d,) [80]. From
2017 onward, the upgraded tracker measured particles up to |1| < 3.0 with typical resolutions
of 1.5% in pr and 20-75 ym in d,,, for nonisolated particles of 1 < pp < 10GeV [81].

To reconstruct vertices corresponding to the decay of long-lived particles displaced from the PV,
we employ a modified version of the inclusive vertex finder (IVF) algorithm [82, 83] originally
developed for the identification of displaced B hadron decays. The IVF clusters tracks that have
at least six hits in the tracker and pt > 0.8 GeV, and is seeded with tracks that additionally have
a 3D impact parameter significance, defined as d,,, divided by its uncertainty, above 1.2. The
3D (2D) distance of the SV to the PV is referred to as A;p (Ayp). All SVs are retained that have
a significance of A;p (A,p) above 0.5 (2.5), while no explicit requirements are applied on the
values of Asp or A,p directly. From the high number of SVs reconstructed with the IVF, we
select the candidate vertex corresponding to the HNL decay by requiring that the SV contains
the track associated with /,, selected as described in Section 4. If more than one SV contains



the ¢, track, we select the SV with the highest associated pr.

The particle-flow (PF) algorithm [84] aims to reconstruct and identify each individual particle
in an event, with an optimized combination of information from the various elements of the
CMS detector. The energy of photons is obtained from the ECAL measurement. The energy of
electrons is determined from a combination of the electron momentum at the PV, the energy of
the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially
compatible with originating from the electron track. The energy of muons is obtained from
the curvature of the corresponding track. The energy of charged hadrons is determined from a
combination of their momentum measured in the tracker and the matching ECAL and HCAL
energy deposits, corrected for the response function of the calorimeters to hadronic showers.
Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and
HCAL energies.

Reconstructed PF particles are clustered into jets with the anti-kt algorithm [85, 86] using a
distance parameter of 0.4. The jet momentum is determined as the vectorial sum of all particle
momenta in the jet, and is found from simulation to be, on average, within 5-10% of the true
momentum over the whole pt spectrum and detector acceptance. Additional pp interactions
within the same or nearby bunch crossings (pileup) can contribute with additional tracks and
calorimetric energy depositions, increasing the apparent jet momentum. To mitigate this effect,
tracks identified to be originating from pileup vertices are discarded and an offset correction
is applied to account for remaining contributions [87]. Jet energy corrections are derived from
simulation studies so that the average measured energy of jets becomes identical to that of
particle-level jets. In situ measurements of the momentum balance in dijet, photon+jet, Z+jet,
and multijet events are used to determine any residual differences between the jet energy scale
in data and simulation, and appropriate corrections are made [88]. Additional selection cri-
teria are applied to each jet to remove jets potentially dominated by instrumental effects or
reconstruction failures [87]. Finally, jets are required to have pr > 20GeV and |77| < 2.4.

Electrons are reconstructed within the geometrical acceptance of the silicon strip tracker, which
is |7| < 2.5. The electron momentum is estimated by combining the energy measurement in
the ECAL with the momentum measurement in the tracker. The momentum resolution for
electrons with pp ~ 45GeV from Z — ee decays ranges from 1.6 to 5%. It is generally better in
the barrel region than in the endcaps, and also depends on the bremsstrahlung energy emitted
by the electron as it traverses the material in front of the ECAL [89, 90].

Muons are measured in the range || < 2.4, with detection planes made using three tech-
nologies: drift tubes, cathode strip chambers, and resistive plate chambers. The efficiency to
reconstruct and identify muons is greater than 96%. Matching muons to tracks measured in the
silicon tracker results in a relative pt resolution, for muons with pt up to 100 GeV, of 1% in the
barrel and 3% in the endcaps [91].

3 Data and simulated samples

Data events have been recorded with single-electron and single-muon triggers. For the single-
electron trigger, the presence of at least one isolated electron at the HLT is required with a pt
threshold of 27 (32) GeV in 2016 (2017-2018) [92]. For the single-muon trigger, the presence of
at least one isolated muon at the HLT is required with a py threshold of 24 GeV throughout all
data-taking years [93].

Monte Carlo (MC) event simulation is used to generate HNL signal events for the evaluation of



the signal selection efficiency, and SM background events for the validation of the background
estimation. For each signal and background process, separate simulated event samples are
generated corresponding to the conditions of the three data-taking years. For the 2016 (2017-
2018) samples, the NNPDF 3.0 [94] (3.1 [95]) parton distribution functions (PDFs) are used in
the simulation of the hard process. All generators are interfaced with the PYTHIA 8.226 (8.230)
simulation [96] for parton showering and hadronization, using the CUETP8M1 [97] (CP5 [98])
tune for the underlying event modeling in case of the event modeling for the 2016 (2017-2018)
samples. Simulated minimum bias events are superimposed on the generated events to re-
produce the pileup distribution obtained from the measured instantaneous luminosity. For all
simulated events, the CMS detector response is modeled with the GEANT4 toolkit [99].

Background samples for W boson production in association with jets (W+jets) are generated
at next-to-LO (NLO) with the MADGRAPH5_aMC@NLO 2.4.2 event generator [100], including
up to two additional partons in the matrix-element calculation. For Drell-Yan (DY) dilepton
production, event samples are generated at LO (NLO) with up to four (two) additional par-
tons in the matrix-element calculation with MADGRAPH5_aMC@NLO. Top quark (pair and
single production) and diboson (WW, WZ, ZZ, W+, Z+) processes are simulated with the
POWHEG v2 [101-108] and MADGRAPH5_.aMC@NLO event generators at NLO. Samples gen-
erated with MADGRAPH5_aMC@NLO at LO (NLO) use the MLM [109] (FxFx [110]) merging
algorithm. For the background from events comprised uniquely of jets produced through the
strong interaction (QCD multijet events), event samples are generated at LO with PYTHIA.

Signal events for HNL production are simulated at LO with MADGRAPH5_.aMC@NLO, using
a model that extends the SM particle content by introducing up to three right-handed neutri-
nos [25,111, 112]. Event samples are generated for a single HNL mass eigenstate with pure elec-
tron neutrino couplings, pure muon neutrino couplings, and equal electron and muon neutrino
couplings, covering the parameter ranges 1 < nyy < 20GeV and 1077 < |V, |*> < 10~!. The
cross section of the HNL event samples is calculated at LO with MADGRAPH5_aMC@NLO, and
scaled to next-to-NLO (NNLO) precision using a K-factor of 1.089 derived from the comparison
of SM W boson production samples generated at LO accuracy with MADGRAPH5_aMC@NLO,
using the same settings as the signal simulation, and the cross section calculated at NNLO
accuracy with the FEWZ v3.1 program [113-116].

For a fixed value of my;, we emulate an event sample with a different |V, | value by applying
a global weight to match the expected cross section and a per-event weight to correct the proper
lifetime distribution. The cross section is proportional to |V, |? [112] and the global weight is
accordingly calculated as the ratio of the new to the simulated |V,y|? value. To reweight from
Ty values T, to Ty, the per-event weights for events with proper lifetime ¢ are calculated as

=53 Son[ (2 1))

The simulation is performed assuming Majorana HNLs, i.e., both LNC and LNV decays are
included. To obtain an event sample for Dirac HNLs, we select only events with LNC decays.
The production cross section is the same for Majorana and Dirac HNLs, and thus the global
weight is only adjusted for the smaller number of generated events in the sample. The per-
event weights are calculated with Eq. (2) but using that 7; is twice as large for a Dirac HNL
with respect to a Majorana HNL of same my and Ty.




4 Event selection

To select prompt and nonprompt leptons and to reduce the contribution from particles misiden-
tified as leptons, additional identification (ID) criteria are applied to the reconstructed electrons
and muons. We employ two standard sets of electron ID criteria defined in Ref. [89] that both
have an efficiency of 90%, where the first is based on sequential selection of requirements on
seven observables (“sequential ID”), and the second is based on a multivariate ID discriminant
trained with an extended set of observables (“multivariate ID”). For muons, we use the set
of “medium” ID criteria defined in Ref. [91] that has an efficiency of 99.5%. In addition, the
relative isolation I, defined as the scalar sum of the of surrounding particles divided by the
lepton pr, is used to quantify how isolated a reconstructed lepton is from other particles in the
event. The isolation sum requires particles to be within a cone of AR = V/ (A5)? + (A¢)? < 0.3,
where A and A¢ are the 7 and azimuthal angle differences between the lepton and the par-
ticle, respectively. Charged hadrons are included only if they originate from the PV, while all
neutral hadrons and photons within the cone are included and additional corrections for the
contribution of neutral particles from pileup interactions are applied [89, 91]. Finally, we em-
ploy selection criteria for the impact parameters of the tracks associated with the electrons and
muons, as defined in Section 2.

Table 1: Selection criteria for electrons and muons. Numbers in parentheses indicate values
applied in the 2017-2018 data sets, when different from those for 2016.

Criterion Prompt Nonprompt
Electrons Muons Electrons Muons
pr [GeV]  >30(34) >30 >7 >7
vl <25 <24 <25 <24
L <0.1 <0.1 — —
\dxy\ [cm] <0.02 <0.01 >0.02 >0.02
|d,| [cm] <0.04 <0.1 <10 <10
1D full full reduced reduced

The selection criteria for prompt and nonprompt electrons and muons are listed in Table 1.
Prompt electrons and muons are required to have a pt above a threshold chosen larger than
the HLT single-lepton trigger thresholds, to be isolated, and to originate from the PV. Non-
prompt electrons and muons are selected with a much lower p; threshold and no isolation
requirement. Instead of consistency with the PV, a minimal requirement on d,, is imposed,
and a loose maximal requirement on d, is used to reduce background contributions from cos-
mic ray muons and pileup. In addition, we require that electrons and muons pass a set of ID
criteria as introduced before, where prompt leptons have to pass the “full” set and nonprompt
leptons only a “reduced” set without criteria that are inefficient for displaced leptons. For
prompt electrons, the multivariate ID is used. For nonprompt electrons, the sequential ID is
used except for the requirements on the maximum number of missing hits in the pixel detector
and the veto on photon conversions, as defined in Ref. [89]. We use the medium ID for both
prompt and nonprompt muons, but remove the requirements on the fraction of valid tracker
hits associated with the muon track and on the fit quality of the global muon track fit [91] for
nonprompt muons.

The selection efficiencies for nonprompt electrons and muons are evaluated in HNL signal
samples with different (my, |V,n|?) scenarios, representing ¢ty values in the range 7-92 mm,
and shown in Fig. 2 as functions of the generated pr and the transverse displacement A, of
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Figure 2: Selection efficiencies of nonprompt electrons (upper) and muons (lower), evalu-
ated in simulated HNL signal events as functions of the generated lepton pr (left) and trans-
verse displacement of the generated SV (right). Three HNL signal scenarios are shown, with
my = 3GeV and |V;y|? = 9.9 x 107> (HNL3, corresponding to ¢ty = 23mm), my = 5GeV
and |Vyn]? = 1.6 x 107° (HNLS5, corresponding to ¢ty = 92mm), and my = 10GeV and

|V)n|? = 5.7 x 1077 (HNL10, corresponding to ¢ty = 7 mm). The error bars in the plot repre-
sent statistical uncertainties.

the generated SV. The simulated HNL signal events used for this evaluation are selected by
requiring a generated nonprompt electron (muon) with pr > 7GeV and |y| < 2.5 (2.4), and a
generated HNL decay vertex with A, < 50 cm. The obtained efficiencies reflect various effects
in the electron and muon reconstruction methods and identification criteria, as well as effects
caused by different my and cty values. Overall, the better resolution and higher efficiency
in the basic reconstruction of muons compared to electrons [89, 91] results in higher selection
efficiencies for nonprompt muons when compared to electrons, which leads to a better sensi-
tivity of the analysis to |V, |* than [V, |*. Atlow values of lepton pr, the track reconstruction
in the inner tracker has a worse efficiency and resolution, decreasing especially the efficiency
for nonprompt electrons. At high values of lepton pr, the decay products of the HNL will



be boosted and thus the nonprompt lepton is closer to or fully included in the jet from the
HNL decay, which reduces the efficiency to pass selection criteria designed to reject hadrons
misidentified as leptons. Due to differences in the track reconstruction and combination with
ECAL deposits or the muon system track, respectively, the pr-dependent shape is different
between nonprompt electrons and muons. The selection efficiency of nonprompt electrons de-
creases quickly with larger displacement, since the dedicated electron track reconstruction is
very sensitive to missing hits in the inner tracker [89], whereas the muon reconstruction includ-
ing the muon system track is less dependent on a well-reconstructed track in the inner tracker.
For nonprompt muons, a small inefficiency can be seen in the first bin of the efficiency as a
function of A,p, caused by the minimal requirement on |d,, | listed in Table 1.

Events are selected with exactly one prompt electron or muon (¢,), which is required to match
geometrically to the lepton reconstructed at the HLT that satisfies the trigger selection. Further,
events are required to have exactly one nonprompt electron or muon (¢,), as well as one jet
matched to ¢, by the requirement AR < 0.7. To reconstruct the HNL decay vertex, the /,
track is required to be part of an SV reconstructed by the IVF, as described in Section 2. The
SV reconstruction is validated in simulation by comparing properties of the reconstructed SV
with the generated HNL decay vertex. In Fig. 3, the SV reconstruction efficiency is shown as
a function of A,p, using HNL signal events with an SV that contains the nonprompt-lepton
track and is matched to the generated HNL decay vertex. The vertex matching is defined by
the criterion |Azp — A5 /ASST < 0.1, where A5 is the 3D displacement of the generated HNL
decay vertex.
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Figure 3: The SV reconstruction efficiency in simulated HNL signal events as a function of
the SV displacement for vertices with a nonprompt electron (left) or muon (right). Three HNL
signal scenarios are shown, with my = 3GeV and |V |? = 9.9 x 10~> (HNL3, corresponding to
cTy = 23mm), my = 5GeV and |V |? = 1.6 x 107° (HNL5, corresponding to cTy = 92 mm),

and nmy = 10GeV and |V, |? = 5.7 x 10~7 (HNL10, corresponding to ¢ty = 7 mm). The error
bars in the plot represent statistical uncertainties.

Further requirements are imposed on the invariant mass of the two selected leptons, m(¢,¢,) >
10GeV, and on their angular separation, |A¢(¢1,£,)| > 0.4. These requirements remove poorly
reconstructed events, as well as background events originating from low-mass resonances.
Events with at least one additional jet separated from ¢, by AR > 0.4, as expected for top
quark production, are removed and used as an orthogonal event selection for the validation of



the background prediction described in Section 6. Events where ¢, and ¢, are OS muons and
have 85 < m(u*u¥) < 95GeV are removed to suppress DY dimuon background contribu-
tions. This DY veto is introduced because of a correlation between the observables used in the
background estimation observed in the OS dimuon channels, as described in Section 6, but is
not required for the other channels where no such correlation is observed. The event selection
criteria are summarized in Table 2.

Table 2: Summary of the event selection criteria.

Event selection criteria
N(prompt {;) =1
N(nonprompt ¢,) =1
N(jets) =1
AR(,,jet) < 0.7
l, € SV
m(€,4,) >10GeV
[Ap(Lq, £5)]>0.4
m(u*u¥) ¢ [85,95] GeV

Separate event categories are defined based on the flavors of ¢, and ¢, (ee, ey, pe, and ppu),
and for the cases of SS and OS charges. The invariant mass of /; and the tracks belonging to
the selected SV, m(¢,,SV), is an important observable for the discrimination between signal
and background events. For HNL signal events, m(¢;,SV) is kinematically limited by the W
boson mass since it includes all charged particles originating from the W boson decay in the
hard interaction but does not account for potential neutral hadrons and photons formed in
the hadronic decay. The distribution of m(¢;,SV) predicted from simulated event samples is
shown in Fig. 4, separately for the different event categories.

5 Identification of the SV from an HNL decay

A multivariate discriminant based on machine learning is employed to distinguish between
events with a reconstructed SV originating from an HNL decay and background events where,
e.g., the jet accidentally overlaps with the nonprompt lepton. We employ a particle-flow net-
work (PEN) [117], an application of the deep sets theorem [118], that uses per-particle infor-
mation of the particles associated with the jet as well as per-event information associated with
the nonprompt lepton, the jet, and the SV. The PEN architecture consists of two sections, with
three fully connected neural network layers of 128 nodes each per section. First, each individ-
ual particle is passed through the per-particle section, which is provided with the per-particle
information and produces a 256-dimensional output representing the latent space. The per-
particle outputs are added up in a summation layer, and the sums are provided together with
event-level variables as inputs to the second section that processes the full event information.
The two sections are combined into a single network, which allows for a simultaneous opti-
mization of both the per-particle and per-event sections. The PFN output is a single score value
between zero and one, where high (low) values are assigned to signal-like (background-like)
events.

Up to 50 PF particles associated with the selected jet are used for the per-particle section. For
each particle, the pr, 77, ¢, charge, particle type as identified by the PF algorithm, impact param-
eter properties and uncertainties, number of hits in the pixel and strip detectors of the tracker
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Figure 4: The m(¢,,SV) distribution of predicted events yields after applying the selection
summarized in Table 1, for the ee (upper left), uu (upper right), ey (lower left), and pe (lower
right) categories. The filled histograms display the predicted background yields. The lines
show the predicted yields for three HNL signal scenarios, with my = 3GeV and |V, |* =
9.9 x 107> (HNL3), my = 5GeV and |V,y|?> = 1.6 x 107° (HNL5), and my = 10GeV and
|Vin|? = 5.7 x 1077 (HNL10). The HNL signal yield is normalized to the total background
yield. The last bins include the overflow.

system [80], and the association with tracks and SVs are provided as input variables to the PFN.

The per-event input variables are associated with the selected jet, nonprompt lepton, and SV.
For the jet, the kinematic properties and the number of constituent particles are provided. For
the nonprompt lepton, the kinematic properties, I, impact parameter properties and uncer-
tainties, and the number of hits in the pixel detector are used. Additionally, the AR between
lepton and jet, the transverse component of the lepton momentum with respect to the jet axis,
and the pr ratio between the lepton and the jet are provided. For the SV, the kinematic proper-
ties including the invariant mass mgy of the tracks associated with the SV, the number of tracks,
the normalized Xz of the reconstruction as determined with the IVF, and the distance from the
PV are used.

The PFN is trained with MC samples for the HNL signal, and the SM background samples
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described in Section 3. Only the QCD multijet sample is excluded from the training, because of
its large statistical uncertainties. Only events passing the event selection summarized in Table 2
are used for the training. To account for the upgrade of the pixel detector in 2017 [76], PFNs
are trained separately for the 2016 data set and the combined 2017-2018 data sets. Separate
PFNs are trained for nonprompt electrons and muons, and for my up to and above 5 GeV. The
reason for the split into a low- and high-mass PFN is the strong dependence of some of the
input variables for HNL signal events on the my scenario, and also heavy-flavor background
events are more similar to low-mass than to high-mass HNL events. For the low-mass (high-
mass) PFN, the training is performed using an admixture of MC signal samples with HNL
masses in the range of 1-5 (6-20) GeV and with different Ty values.

The PEN training is performed with the KERAS v2.1.5 deep learning library [119] interfaced
to TENSORFLOW v1.6 [120]. Parametric rectified linear functions are chosen for the activation
function. The dropout parameter is set to a high value of 50%, i.e., a random half of the neu-
rons are dropped from each training iteration to prevent overtraining [121]. We set aside 10%
of the training samples as a testing set, which is not used during the training but only for the
final validation after the full training is done. Two thirds of the remaining events in the train-
ing samples are used for training during an epoch and the other third for validation after the
epoch. The PFN is trained for a maximum of 100 epochs, and stopped earlier if the accuracy
on the training data does not increase for four full training epochs. This cycle is repeated three
times, where a different third of the events is used as the validation set. This K-fold cross-
validation method, where each event is used both for training and validation, further reduces
the possibility of overtraining [122]. The final model is obtained by taking the average of the
three models with the best accuracy on the validation data of the respective training cycle. The
PEN score is shown for simulated HNL and background events in Fig. 5.

A validation of differences in the shape of the PFN score between data and simulated events is
performed to ensure that the signal efficiency is the same in data and simulation. The meson
decays K — 71771~ are a representative long-lived decay process that can be used to emulate
HNL decays. Following a procedure similar to that described in Ref. [123], a pure sample of
Z — uTu~ events is selected, requiring two OS muons with m(u*u¥) within 10GeV of the
Z boson mass [124] to facilitate the data-to-simulation comparison and normalization. These
events are then required to contain an SV formed by two tracks with an invariant mass within
15MeV of the K2 meson mass [124]. The K2 meson is typically found within a jet with addi-
tional PF candidates. The identification of the SV and jet is performed with the same configu-
ration employed for HNL events. All PF particles in the jet, including those not associated with
the K2 meson decay, are used as inputs to the PFN. Since no displaced lepton is present in the
K meson decay, the 77+ candidate track with the higher py is chosen to emulate the displaced
lepton for the PFN. In Fig. 6, the result of this comparison is shown for the low-mass PFNs.
The total Kg candidate yield derived from MC samples is normalized to the yield in data, to
facilitate the shape comparison of the PEN score. Agreement between the data and the MC
prediction within 20% is found over the whole range of the PFN score, both in the electron and
muon channels, with an agreement of better than 10% for the last two bins with the highest
PEN scores. A similar level of agreement is found for the high-mass PFNs. This validation is
used to assign a systematic uncertainty for data-to-simulation differences in the PEN score, as
discussed in Section 7.
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Figure 5: The PFN score distribution of predicted events yields after applying the selection
summarized in Table 1, for the combined ee and pe (left) or yu and ey (right) categories, using
the low-mass (upper) or high-mass (lower) PFNs. The filled histograms display the predicted
background yields, where the QCD multijet background displays huge statistical fluctuations
for PFN scores above 0.2. The lines show the predicted yields for four HNL signal scenarios,
with my = 3GeV and |V,|? = 9.9 x 107° (HNL3), my = 5GeV and |V;n|*> = 1.6 x 107°
(HNL5), my = 6GeV and |V;y|?> = 2.0 x 107® (HNL6), and my = 10GeV and |V, |> =
5.7 x 1077 (HNL10). The HNL signal yield is normalized to the total background yield.

6 Background estimation

After applying all event selection criteria, the main sources of SM background contributions are
top quark, W-+jets, DY, and QCD multijet production. Their relative contributions vary across
the different channels. To further suppress background events and enrich the event sample
used for the background estimation with events that have properties similar to expected HNL
signal events, all events are required to have m(¢;,SV) > 10GeV and a PEN score of at least
0.2. The selection after these additional requirements will be referred to as the signal region
(SR), and is generally different when using low- or high-mass PFNs. Contributions from DY
production are found in the ee and iy categories, where one lepton is poorly reconstructed and
identified as nonprompt, and combined with a random track to form a compatible SV. Back-
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Figure 6: Predicted and observed event yields in the PFN score distribution for K3 — 77~
decaysin Z — u"u~ events, using the low-mass PFNs for the electron (left) and muon (right)
channels, where the 7* with higher py is treated as the lepton. The prediction is scaled to
match the overall data yield. The lower panels show the data-to-prediction ratio.

ground contributions from top quark (W+jets) production typically have one genuine prompt
lepton and a second lepton inside a jet that is reconstructed in genuine (accidental) association
with an SV. The QCD multijet events contribute especially to the yu and ey categories, and
neither the prompt nor nonprompt lepton is genuine. A final background source arises from
displaced photon conversions in the detector material and contributes mainly to the ee and pe
categories, which have a photon radiated from a prompt lepton and subsequently converted
into an e e~ pair with one electron receiving most of the momentum.

Background estimates for displaced signatures based on MC simulation are known to be poorly
modeled. Thus, we employ a background estimation method using data control samples and
rely on the discriminating powers of the m(¢,,SV) distribution described in Section 4 and the
PEN score described in Section 5. A target region A is defined by requiring 50 < m(¢,,SV) <
85 GeV and that the PFN score is above a threshold value x. An ABCD method [125] is then
employed to predict the background contribution in region A from the observed yields in three
sideband regions B, C, and D, based on inverting one or both of the m(¢;,SV) and PFN score
requirements. The region definitions are listed in Table 3 and shown schematically in Fig. 7. The
expected number of background events in region A, Ny, is then estimated from the observed
number of events in the sideband regions as Ny = NgNc/Np.

To optimize the values x of the PFN threshold, we consider the signal-over-background ratio in
region A as well as the statistical precision of the ABCD background estimate. For the latter, it
is important that N- does not become zero, which would result in an estimate of Ny = 0 with
a large statistical uncertainty. The result of this optimization are values of 0.97 < x < 0.998,
chosen separately for each event category. To further increase the sensitivity to the HNL signal,
the SR is binned in mgy and the transverse displacement A, between PV and SV. The ABCD
background estimation is done separately for each bin in mgy and A,p, and separately using
the low- and high-mass PFNs.

The ABCD method relies on the absence of correlation between the PEN score and m(¢;,SV).
To evaluate in data whether this assumption is valid, we form an orthogonal event selection
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Table 3: Definition of target and sideband regions used in the ABCD background estimation
method for the signal (SR), validation (VR), and control (CR) regions. The threshold value x is
chosen between 0.97 and 0.998 separately for each event category, as described in the text.

Region N(jets) PFNscore m({;,SV) [GeV]

SR-A =1 >x >50, <85
SR-B =1 >0.2, <x >50, <85
SR-C =1 >x >10, <50 or >85
SR-D =1 >0.2, <x >10, <50 or >85
VR-AB >1 >0.2 >50, <85
VR-CD >1 >0.2 >10, <50 or >85
CR-A >1 >x >85, <110
CR-B >1 >0.2, <x >85, <110
CR-C >1 >x >10, <50 or >110

CR-D >1 >0.2, <x >10, <50 0r >110

>

]

)

= SR-D SR-C

m.\
851

h SR-B SR-A
50-

SR-D SR-C

101N (jets) = 1 PEN score,

0 .
0 0.2 x 1

Figure 7: Illustration of the target and sideband region definitions for the ABCD method ap-
plied to the SR, in terms of N (jets), m(¢{,SV), and the PFN score.

with N(jets) > 1, referred to as validation region (VR). For the first test, we divide the VR into
a target region with 50 < m(¢,,SV) < 85GeV and a sideband region outside of this interval, as
listed in Table 3. In Fig. 8, the PEN scores in data are compared for VR events in the target and
sideband regions and, notably, no difference is observed between the shapes.

As further tests, we calculate Pearson correlation coefficients, which measure the strength and
direction of the linear relation, to quantify the correlation between m(¢,,SV) and the PEN score,
as well as p-values to determine the statistical significance of the correlation [126]. This is done
separately in flavor channels and (mgy, A,p) bins, but inclusively in the ABCD classification of
the VR. We find correlation coefficients very close to zero in most cases, and also the p-values
indicate a weak or negligible linear dependence of the PEN score on m(¢;,SV). Only in the
OS up category of the VR with the low-mass PFN, a relevant statistical dependence is found.
We identified in studies with simulated event samples that DY dimuon production is the only
background process that exhibits this correlation.

To correct for the bias in the background estimation from the correlation between m(¢;,SV)
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Figure 8: The PEN scores in data in the VR, shown for the electron (left) and muon (right)
trainings with the low-mass (upper) and high-mass (lower) samples. The distributions are
normalized to unity to facilitate a shape comparison. Statistical uncertainties are indicated
with error bars and shaded areas. The lower panels show the ratio of the VR-AB to the VR-CD
yields.

and the PFN score in DY dimuon events, we apply correction factors to the ABCD estimate.
The correction factor cpy that needs to be applied to the DY contribution in a bin is calculated
as the ratio between the direct DY MC prediction for N in that bin with the ABCD estimate
NgNc/ Np evaluated from the same DY MC prediction. Using the fraction fpy of DY MC events
relative to the total MC background prediction in that bin, the correction factor to be applied to
the ABCD background prediction evaluated from data is ¢, = 1+ (cpy — 1) fpy- Each bin of
the OS pup categories when using the low-mass PFNs is corrected separately. The limited size
in the DY MC event samples used for the evaluation of ¢, results in a systematic uncertainty,
as discussed in Section 7.

We evaluate the closure of the ABCD background estimation in data by defining a control
region (CR) that does not include the target region SR-A, splitting it into target and sideband
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regions, and comparing the ABCD background estimate for CR-A with the observed yields.
The CR is formed from all events in the SR and VR outside the interval 50 < m(¢{,SV) <
85GeV, i.e., excluding the target regions of the SR and VR. The inclusion of the VR increases the
statistical power of this closure test. The target region of the CR is defined by the requirement
85 < m(fl, SV) < 110GeV, and the corresponding sideband definitions are listed in Table 3.
The comparison between the ABCD estimate for CR-A with the observed yield is done in bins
of mgy and A,p, optimized separately for usage with the low- and high-mass PFNs to provide
discrimination between signal and background, as well as between different signal hypotheses.
For the low-mass analysis, two mgy bins <2 and >2 GeV are formed, and each is divided into
three A,p bins <4, 4-10, and >10 cm. For the high-mass analysis, the two mgy bins are <6 and
>6GeV, each divided by A,p as <1, 1-5, and >5cm. For the SS pu and ey channels with the
high-mass PFNs, we split the mgy > 6 GeV bin into only two A,p bins with <1 and >1cm, to
avoid having a A,p > 5 cm bin with zero predicted background. The results of the comparison
are shown in Figs. 9-10. A good closure of the background prediction estimate is found within
20-30% when taking the large statistical uncertainty of the data into account. As discussed
in Section 7, a systematic uncertainty in the background prediction is assigned based on this
closure.

7 Systematic uncertainties

The predicted number of background events, as well as the expected number of signal events
in the different SR bins for the different event categories, are affected by several sources of sys-
tematic uncertainty. Several theoretical and experimental uncertainties affect the HNL signal
yields, with some changing only the overall normalization and others also affecting the shape
of the signal prediction in the SR bins. For the background yields, two dedicated uncertainties
are evaluated that both affect the shape of the prediction. A summary of the different system-
atic uncertainty sources is given in Table 4.

Table 4: Summary of systematic uncertainty sources in the signal and background predictions.
Electron- and muon-related uncertainties are listed together, with the values before and inside
the parentheses referring to electrons and muons, respectively.

Source Type Uncertainty [%]
Signal prediction

NNLO K-factor Normalization 4

Integrated luminosity Normalization 1.6

Pileup modeling Shape 4.6

e (u) trigger efficiency Shape 1(<1)

Prompt e (y) selection efficiency Shape 2-4 (1-3)

Nonprompt e (u) selection efficiency Shape 1-20 (<1)

Tracking efficiency Shape 7.3

Jet energy scale & resolution Shape 1-2

PEN score Normalization 10

Background prediction
CR closure Shape 20-30
DY scale factor (OS pyu, low mass) Shape 20-50



17

138fb~" (13 TeV)

(D T T T T T T T T T T T T T T T T T T
- 3L . —
S 1°F CMS CR, SS } Data Pred. % Total unc.
5 i v ey ee pe 1
102’ <2GeV : »>2GeV | <2GeV : >2GeV | <2GeV | >2GeV | <2GeV | >2GeV |
g% %0 : ; |
A% : + : : : 1
f | S 5 5 |
10 Ws‘: §§f§§j e I E
L Fow a i
T o — % — e
o 15 = : I * ; Syst. unc.; Stat. unc.; E
L e ---{-i-i--- Apppd--
gosp o : {1 B £
0’ L L 1 L L L L 1 L L L 1 L L L L 1 L L -
(] O0sg 9~ 70 Ong %7270 Ong F~15210 Ong %~170 Og %7270 O~g %~15°10 Ong 1570 O~g F~15°70
Agp [cm]
138fb~1 (13 TeV)
w [ T T T T T T T T T T T T T T T T T T T T T T T ]
S 100 CMS CR, OS { Data Pred. 5% Total unc. i
5 MM e ee ue
F <2GeV : >2GeV | <2GeV | >2GeV | <2GeV : >2GeV | <2GeV : >2GeV 1
102 ’ : : 5 .
R0 o ' : : 1
re S&Q R ' ' ]
of Y i @W el
i ; % ; i :
T —— 17
e 15 = ; Syst. unc. ; ; I ; i =
S . t : i: : E
= ey IS I B S B p A
"% 0.5 3 E : Stat. unc. E i + E E
O’ L L I L L I L L L I L L L L I L L —
(] O0sg #7270 Og %7270 Ong %170 Ong F~1,2 10 O~g F~75270 O~g %1570 Ong 1,770 Ong %~1,° 10

Aop [cm]

Figure 9: Predicted and observed event yields in the CR for the low-mass PFNs in the SS (up-
per) and OS (lower) categories, binned by flavor channel, mgy (as specified below the flavor
channel), and A,p. The hashed bands represent the total uncertainty in the background pre-
diction. The lower panels show the data-to-prediction ratio and the background prediction
uncertainty is split into statistical (“stat.”) and systematic (“syst.”) contributions.
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Figure 10: Predicted and observed event yields in the CR for the high-mass PFNs in the SS
(upper) and OS (lower) categories, binned by flavor channel, mgy (as specified below the fla-
vor channel), and A,p. The hashed bands represent the total uncertainty in the background
prediction. The lower panels show the data-to-prediction ratio and the background prediction
uncertainty is split into statistical (“stat.”) and systematic (“syst.”) contributions.
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The K-factor applied to the normalization of HNL signal events has an uncertainty of 4%, eval-
uated by performing variations of the factorization and renormalization scales and of the PDFs
in the NNLO W boson production calculation. Additionally, the pt spectrum of the simulated
W boson in SM W+jets production at either NLO or LO accuracy was compared, and all differ-
ences were found to be covered by the K-factor uncertainty.

The integrated luminosity of the three data-taking years is measured with uncertainties be-
tween 1.2 and 2.5% [127-129], with a total uncertainty of 1.6% for the combined data set. The
modeling uncertainty of pileup interactions is assessed by varying the total pp inelastic cross
section in simulation by +4.6%.

The efficiencies of the trigger and prompt-lepton selections are measured in data and simula-
tion with the “tag-and-probe” method applied to Z — ¢ ¢~ events [130]. Differences between
efficiencies in data and simulation are corrected for with scale factors, and the uncertainties
in these scale factors are considered for the HNL signal yield. The uncertainties in the trig-
ger scale factors are found to be about 1% (less than 1%) for the single-electron (single-muon)
trigger, and in the selection scale factors to be 2—4 (1-3)% for electrons (muons).

The selection efficiency for nonprompt electrons is studied in asymmetric photon conver-
sions events, following the procedure described in Ref. [40]. Events with Z — ey =
¢t~ e*(eT), where (eT) is a low-py electron that is not reconstructed in the detector, are se-
lected. Data-to-simulation differences are evaluated as a function of a displacement variable,
with different results found for the different years of data taking, corresponding to differences
in the material budget and its modeling in the detector simulation. Systematic uncertainties in
the range 1-20% are found, largest for small displacements and depending on the data-taking
year.

The nonprompt-muon selection efficiency is studied with a tag-and-probe method in B* —
J/9K* — utu~K* events, where the muon pair from the ]/ meson decay provides a good
proxy to nonprompt muons in HNL decays [40]. The differences between the efficiencies mea-
sured in data and simulated events are found to be small, with a systematic uncertainty of less
than 1%.

The track and SV reconstruction efficiency is studied using K2 meson decays to two charged
particles, which provide an event signature with two displaced tracks originating from a com-
mon vertex [123]. We find that reconstruction inefficiencies originate almost entirely from the
track reconstruction inefficiency, while the SV reconstruction is almost 100% efficient. Scale fac-
tors are applied as a function of pt and displacement to correct the simulation for differences
with data, and we assign half the difference from unity as a systematic uncertainty.

Uncertainties in the momentum scale and resolution of prompt leptons [89, 91] are found to
be negligible. Possible discrepancies between data and simulation in the momentum scale
and resolution of nonprompt tracks are assessed by comparing the mean values and standard
deviations of Gaussian fits to the reconstructed K¢ candidate mass, in bins of SV displacement.
All discrepancies are found to be below 1% and are neglected.

The systematic uncertainties associated with the jet energy scale and resolution [88] are eval-
uated by independently scaling the energy of jets up and down by their uncertainty. These
variations result in a variation of the HNL signal yield by 1-2%.

The PEN score validation in Kg meson decays, as described in Section 5, is used to evaluate a
systematic uncertainty that covers differences between data and simulation in the PFN score
for HNL events. For high values of the PEN score, discrepancies between data and simulation
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of up to 10% are observed, consistent for different PFN trainings and data-taking years. Thus,
we assign an overall 10% uncertainty in the HNL yield.

The predicted background yields in the target region are subject to statistical uncertainties in
the observed event yields in the sideband regions, resulting in uncertainties of up to 50% in the
target region yields. Additional systematic uncertainties are assigned, as discussed in Section 6
and described in the following. From the agreement between predicted and observed yields
in the CR, an uncertainty of 20-30% in the background prediction is considered, separately for
each channel. For the additional scale factor applied to the background prediction in the OS u
low-mass channel, the limited size of the DY MC sample used for the derivation of this scale
factor results in an uncertainty of 20-50%, depending on the SR bin.

8 Results

The yields in the four flavor channels are analyzed with both the low- and high-mass PFNSs,
and binned according to mgy and A,p, as defined in Section 6. The observed data and the
predicted background yields from the ABCD method in these bins are shown in Fig. 11 (12)
for the low-mass (high-mass) PFNs. The number of observed events in data is in agreement
with the SM background expectations within the statistical and systematic uncertainties. No
significant data excess is found in any final state or SR bin.

For each (my;, |V;n|?) HNL signal scenario, we evaluate upper limits on the production cross
section using the modified frequentist CL criterion [131, 132]. A profile likelihood ratio is used
as test statistic [133], employing the asymptotic approximation [134] in the limit setting pro-
cedure. The binned likelihood is constructed from the observed data yields and the expected
signal and background yields in the (mgy, Aop) bins. The expected signal yields are estimated
from simulation. The ABCD method for the estimation of the background yields discussed in
Section 6 is implemented in the likelihood similar to the method described in Ref. [44]: both
the target and the three sideband regions of the SR are included, with possible signal con-
tamination in the sideband regions explicitly considered, background templates constructed
from the prefit difference between data and expected signal yields in the sideband regions, and
nuisance parameters introduced to constrain the background yield in the target region to the
ABCD estimate. Further constrained nuisance parameters are introduced for the systematic
uncertainties, which include effects on the shapes of the distributions. The binned profile like-
lihood fits are performed with the CMS statistical analysis tool COMBINE [135], which is based
on the ROOFIT [136] and ROOSTATS [137] frameworks.

We derive exclusion limits on |V,y|?, |VFN|2, and |V, VP,N|2/(|VQI\T|2 + |V},N|2) as functions
of my;, separately for the cases of Majorana and Dirac HNLs, using a grid of points in the
(mn, |Vyn|?) parameter space. A signal scenario is excluded if the predicted cross section is
incompatible with the observed data at 95% confidence level (CL). The obtained limits are
connected with straight lines between neighboring mass points. We consider values of 1 <
my < 20GeV with a step size of 0.5 or 1GeV. For each mass point, per-event reweighting
is employed to interpolate across the entire range of interest in |V, |?, using all available MC
samples, as described in Section 3. Generated samples with V. = V), are used for deriving
limits in the ey and pe channels, but since the HNL production cross section in these channels
depends only on |Von VN 12/ (|Von |2 + Vun |?) [25], the results are applicable also to scenarios
with different |V, |? : VN |? ratios. The obtained exclusion limits are presented in Fig. 13.

The exclusion limits exhibit both an upper and a lower curve, corresponding to HNL scenar-
ios with short and long lifetimes. The upper curves are evaluated only for my > 8 GeV; the
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prompt scenarios with lower my; and high |V, |* values are not well described by the available
HNL signal samples and are already excluded by previous searches, e.g., by the results of the
DELPHI Collaboration [50]. The results of this study extend existing exclusion limits into the
parameter space characterized by longer lifetimes and, correspondingly, smaller |V |? values.
In Table 5, the observed limits are summarized for those mass points where the lowest values
of |V,n|? are excluded per scenario.

Table 5: Comparison of lowest and highest |V |? values excluded at 95% CL for Majorana
and Dirac HNLs with different coupling scenarios. For each scenario, the my value where the

lowest |V, |? value is excluded is shown.

Type Coupling my 95% CL exclusion
[GeV] Lowestvalue Highest value
Majorana ANE 10 9.1 x 1077 5.6 x 107>
Majorana Vnl? 14 29 x 1077 4.8 x107°
Majorana \VeNVyN]Z/(WQN\Z + ]VVNF) 12 1.3 x 1077 6.7 x 107°
Dirac |Von 2 115  69x1077 6.8 x 1075
Dirac VNI 13.5 2.7 x 1077 21x107°
Dirac  [VonVunl?/ (IVenl? +Vnl?) 12 1.2 x 107 1.8 x 107

Other experiments and searches have established more stringent limits for some of the mass
range probed in this analysis. The CHARM experiment [56] has excluded electron (muon)
couplings for 1.0 < my < 2.1 (1.9)GeV, with |V;N|? values as low as 10~7. The previous
CMS search for HNLs decaying in the muon system [45] found more stringent limits in the
mass range 1-2.8 GeV, with electron (muon) couplings excluded with |V, |? values as low as
0.9 (0.5) x 107°. The displaced trilepton search [40] and the displaced-jet-tagger analysis in the
same final state [44] probe similar nzy and |V, |? regions as this work. In the mass range 2—
10 GeV, the two searches exhibit sensitivities that are comparable to our results. For masses of
10-17 GeV and |V, |? values below 107>, the requirement of an SV in this analysis results in the
removal of a significant amount of background from the SRs, resulting in more stringent limits
when compared to Ref. [44]. For masses above 10 GeV and higher coupling values (i.e., shorter
lifetime), however, the displaced-jet-tagger approach shows a better sensitivity. Compared to
the recent prompt trilepton search [46], the limits on |V, |? and VN |? presented here are more
stringent in the probed mass range by more than one order of magnitude.

9 Summary

A search for long-lived heavy neutral leptons (HNLs) has been presented using proton-proton
collision events with one prompt lepton and a system of a nonprompt lepton and a jet as-
sociated with a secondary vertex. The data set corresponds to 138fb™! and was collected
by the CMS experiment at the LHC in 2016-2018. Secondary vertices are reconstructed and
matched with nonprompt leptons to find candidate vertices for the HNL decay, and a dedi-
cated machine-learning method is utilized to distinguish between secondary vertices associ-
ated with HNL decays and those from background sources. No excess of events above the
standard model background prediction obtained from control samples in data is found. Ex-
clusion limits at 95% confidence level are evaluated for different HNL coupling scenarios as
functions of the HNL mass and the mixing parameter with standard model neutrinos. The
obtained exclusion limits cover HNL masses from 1 to 16.5 GeV and squared mixing parame-
ters as low as 2 x 1077, depending on the scenario. These results exceed previous experimental
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constraints derived in the single-lepton decay channel in the mass range 11-16.5 GeV. For some
of the considered coupling scenarios and mass ranges, the presented limits are the strongest to
date.
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