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Abstract: Measurements in the highly Lorentz-boosted regime provoke increased interest in probing
the Higgs boson properties and in searching for particles beyond the standard model at the LHC. In
the CMS Collaboration, various boosted-object tagging algorithms, designed to identify hadronic
jets originating from a massive particle decaying to bb or cc, have been developed and deployed
across a range of physics analyses. This paper highlights their performance on simulated events, and
summarizes novel calibration techniques using proton-proton collision data collected at

√
𝑠 = 13 TeV

during the 2016–2018 LHC data-taking period. Three dedicated methods are used for the calibration in
multijet events, leveraging either machine learning techniques, the presence of muons within energetic
boosted jets, or the reconstruction of hadronically decaying high-energy Z bosons. The calibration
results, obtained through a combination of these approaches, are presented and discussed.
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1 Introduction

Heavy particles produced in proton-proton (pp) collisions at a centre-of-mass energy of 13 TeV at
the CERN LHC, such as the Higgs boson (H) and beyond-the-standard model (BSM) particles, can
have high energies reaching up to the TeV scale. These highly Lorentz-boosted resonances can
undergo hadronic decay into quarks, followed by a hadronization process, resulting in the generation
of a collimated spray of particles. These final-state particles can be clustered within a single jet
using a large distance parameter 𝑅. The collection of those clustered particles is commonly referred
to as a large-𝑅 jet.

Identifying the origin of a large-𝑅 jet is crucial to exploring boosted topologies at the LHC [1–6].
Heavy-flavour tagging of large-𝑅 jets aims to identify a boosted resonance (denoted by X) decaying
to a bottom (b) or charm (c) quark-antiquark pair. In the CMS experiment, a variety of tagging
algorithms (“taggers”) using modern machine learning methods [1, 4, 7, 8] such as deep neural
networks (DNNs) or boosted decision trees (BDTs) have been developed to distinguish the X → bb or
X → cc jets from the background. The latter is mainly composed of multijet events from quantum
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chromodynamics (QCD) processes. The main features that distinguish the jets from a heavy boosted
object versus jets from QCD multijet events are the invariant mass of the jet and the distribution of
particles within the jet. Most of the tagging algorithms are designed to produce an output score that is
uncorrelated with the invariant mass, and are referred to as mass-decorrelated. Mass decorrelation
ensures that selecting events based on the tagger output does not introduce artificial mass peaks in
the background distributions associated with jet mass. This property is important when applying
these taggers over a wide mass range and is crucial when the mass variable is used to evaluate the
background. The X → bb and X → cc tagging techniques have been applied to various studies by
the CMS Collaboration, including searches for boosted standard model (SM) Higgs bosons decaying
to bb [9–11] and to cc [12–14], and for a BSM resonance decaying to bb [15].

It is essential that the tagging efficiency for the X → bb or X → cc jets is calibrated using
observed events. In simulated events, the prediction of the shower and hadronization of jets has large
uncertainties since it partially relies on phenomenological models; the tagging efficiency obtained from
simulated signal jets is not necessarily equal to that in data. The calibration is performed by measuring
the ratio of the efficiencies of selected events in data to that in simulation. This ratio is referred to as
the scale factor (SF). It is challenging to obtain a pure sample of X → bb (cc) jets in data. In practice,
a different sample of jets with characteristics similar to that of signal, referred to as “proxy jets”, is
used to derive the SFs. Selecting the proxy jets that closely match the characteristics of signal jets is
mandatory. References [1, 2] investigate the use of gluon-splitting bb jets as proxies, employing a
dedicated reweighting procedure to adjust the jet phase space and acquire a good proxy to H → bb
jets. Since the newer X → bb (cc) tagging algorithms developed within the CMS experiment have
stronger discrimination power between bb (cc) jets from a resonance decay and those produced via
gluon splitting, it becomes more challenging to select g → bb (cc) jets as a signal proxy. Another
approach is to rely on Z → bb jets to calibrate H → bb jets, studied in ref. [2].

In this paper, we summarize three methods to calibrate the mass-decorrelated X → bb or cc jet
taggers that were adopted by the CMS Collaboration for the 2016–2018 data-taking period (LHC
Run 2). The first method selects dedicated regions of phase space using a BDT selection from
gluon-splitting bb (cc) jets in QCD multijet events as a proxy to X → bb (cc) jets; the second method
uses g → bb (cc) jets including a reconstructed muon with low transverse momentum (𝑝T); the third
method uses jets from Lorentz-boosted Z boson decays to bb. The data used in the derivation of
these SFs are largely independent, so the methods can be used as cross-validation for each other. In
addition, a combined measurement of the SFs is performed with the three methods.

The paper is organized as follows. Sections 2–4 detail the CMS detector, the simulated samples,
and the event reconstruction. Section 5 summarizes and compares the heavy-flavour boosted object
tagging algorithms developed by the CMS Collaboration during Run 2. Section 6 describes the
three calibration methods and presents the measured SFs and their combination, and section 7
summarizes the results.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid with an internal diameter
of 6 m, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters, made

– 2 –



2
0
2
5
 
J
I
N
S
T
 
2
0
 
P
1
1
0
0
6

of steel and quartz fibres, extend the pseudorapidity (𝜂) coverage provided by the barrel and endcap
detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke
outside the solenoid. A more detailed description of the CMS detector, together with a definition of
the coordinate system used and the relevant kinematic variables, is reported in refs. [16, 17].

Events of interest are selected using a two-tiered trigger system [18]. The first level [19],
composed of custom hardware processors, uses information from the calorimeters and muon detectors
to select events at a rate of around 100 kHz within a fixed latency of about 4 𝜇s. The second level,
known as the high-level trigger (HLT), consists of a farm of processors running a version of the
full event reconstruction software optimized for fast processing that reduces the event rate to around
1 kHz before data storage.

3 Simulated events

Multiple Monte Carlo (MC) event generators are used to simulate pp collision events at
√
𝑠 = 13 TeV.

The dominant MC contributions in the methods used to measure the SFs are: (i) the QCD multijet
process, when selecting gluon-splitting bb or cc jets; (ii) the Z+jets process when selecting Z → bb
decays. Additional simulated processes we used include top quark-antiquark pair (tt), single top
quark, and W+jets production.

The main QCD multijet and V+jets (V = Z, W) processes are modelled at leading order (LO)
accuracy using the MadGraph5_amc@nlo v2.6.5 generator [20]. For the matrix element (ME)
calculation, the QCD multijet process includes up to four partons, whereas the V+jets process accounts
for up to three partons. The Z (W) boson is required to decay to a quark-antiquark pair at the
ME level of the Z+jets (W+jets) event. The ME generation of the tt simulation is performed with
powheg v2 [21–24] at next-to-LO (NLO) accuracy in QCD, and its cross section is scaled to a
theoretical prediction at next-to-NLO (NNLO) in QCD, including resummation of next-to-next-to-
leading logarithmic soft-gluon terms [25]. The single top quark production in the 𝑡-channel (tW
channel) is simulated using powheg in the 4-flavour (5-flavour) scheme [26–29], with its cross section
normalized to the NLO calculations from ref. [30].

For all processes, the parton shower is simulated with pythia v8.230 [31], using the CP5
underlying event tune [32] with the NNPDF3.1 NNLO parton distribution function (PDF) set [33].
The matching of jets from ME calculations and those from parton showers is done with the MLM [34]
technique for LO samples. The pythia generator is used for parton showering the simulated X → bb
(cc) signal events in searches described in refs. [9–15]. Since the performance of a DNN-based jet
identification algorithm on simulated events is affected by the parton shower patterns, it is important
to ensure that the proxy jet samples use the same generator software for parton showering so that
the resulting SFs are applicable to signal jets.

For the method using 𝜇-tagged jets, detailed in section 6.2, a 𝜇-enriched QCD multijet process is
simulated with pythia by forcing the decay of charged pions and kaons into muons and requiring
the presence of at least one generated muon with 𝑝T > 5 GeV inside the jet. It increases the number
of jets in the simulated sample that have an associated low-energy muon. For the method using
Z → bb jets, detailed in section 6.3, the differential cross sections of the Z+jets and W+jets processes
are corrected, as a function of boson 𝑝T, for NLO QCD effects. The cross sections are reweighted
to NLO using Z+jets and W+jets events with up to two additional partons, simulated at NLO with
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MadGraph5_amc@nlo and using FxFx matching [35]. Additional corrections are applied to the
cross section originating from NLO electroweak effects [36].

To study the tagging performance on simulated signal events, the gluon-fusion Higgs boson
production process is simulated using the HJ-MiNLO [22, 37, 38] event generator with the Higgs
boson mass 𝑚H = 125 GeV, interfaced with pythia v8.230 for Higgs boson decays to bb or cc
and event hadronization. The H → bb and H → cc signal jets are selected from these events;
this is discussed in section 5 and used for deriving the selection thresholds in the X → bb and
X → cc identification algorithms.

For all processes, the effect of additional pp interactions within the same or nearby bunch crossings
(pileup) on top of the hard scattering processes is modelled by minimum bias collisions generated with
pythia. The events are then reweighted to match the pileup profile observed in data. The interactions
between particles and the material of the CMS detector are simulated using Geant4 [39].

The events are simulated separately for four data-taking eras during Run 2 with their corresponding
conditions, denoted as the 2016 pre-VFP, 2016 post-VFP, 2017, and 2018 eras, where VFP stands for
feedback preamplifier bias voltage [40]. The 2016 pre-VFP and post-VFP eras are treated separately
because of the substantial change in the strip tracker conditions between them. The selection thresholds
of each tagging discriminant, referred to as working points (WPs), are determined separately for
each era. The performance of the tagging algorithms, discussed in sections 5 and 6, is evaluated
separately for each era, using the corresponding simulated events and data collected during that period.
Although the 2018 data-taking conditions are primarily used for illustration in these sections, the
resulting SFs for all eras are summarized at the end of section 6.

4 Event reconstruction and physics objects

The global event reconstruction with the particle-flow (PF) algorithm [41] reconstructs and identifies
each individual particle in an event, with an optimized combination of all subdetector information. In
this process, particles are identified exclusively as charged or neutral hadrons, photons, electrons, or
muons. Photons (e.g. coming from neutral pion decays or from electron bremsstrahlung) are identified
as ECAL energy clusters not linked to the extrapolation of any charged-particle trajectory to the
ECAL. Electrons (e.g. coming from photon conversions in the tracker material or from semileptonic
decays of b hadrons) are identified as a primary charged-particle track and potentially as ECAL energy
clusters corresponding to this track extrapolation to the ECAL and to possible bremsstrahlung photons
emitted along the way through the tracker material. Muons are identified as tracks in the central
tracker consistent with either tracks or several hits in the muon system, and associated with calorimeter
deposits compatible with the muon hypothesis. Charged hadrons are identified as charged particle
tracks neither identified as electrons, nor as muons. Finally, neutral hadrons are identified as HCAL
energy clusters not linked to any charged-hadron trajectory, or as a combined ECAL and HCAL energy
excess with respect to the expected charged-hadron energy deposit.

Events are required to have at least one reconstructed vertex. The primary vertex (PV) is taken to
be the vertex corresponding to the hardest scattering in the event, evaluated using tracking information
alone, as described in section 9.4.1 of ref. [42]. The displaced secondary vertices (SVs) used to
probe the decays of b or c hadrons are reconstructed by the inclusive SV-finding algorithm [41, 43],
taking reconstructed tracks in an event as input.
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A collection of reconstructed low-energy (soft) nonprompt muons is used in the 𝜇-tagged
calibration. These soft muons arise from semileptonic decay modes of hadrons; they typically have low
momentum and are surrounded by hadronic activity of the underlying jet in which these hadrons are
created. The relative isolation, 𝐼rel, is defined as the scalar 𝑝T sum of the PF candidates within a cone
of radius Δ𝑅 =

√︁
(Δ𝜂)2 + (Δ𝜙)2

= 0.4 around the muon candidate (where 𝜙 is the azimuthal angle
in radians) divided by the muon 𝑝T. It is corrected for contributions of neutral particles originating
from pileup interactions [44, 45]. The soft muons are required to satisfy 𝐼rel > 0.15 and a set of
kinematic criteria based on the track reconstruction quality, hit multiplicities in the tracking and muon
subdetector layers, and the displacement of these particles with respect to the PV.

Jets are clustered from PF candidates using the anti-𝑘T algorithm [46] with a distance parameter
of 𝑅 = 0.4 (AK4 jets) or 0.8 (AK8 jets). The latter forms the large-𝑅 jet collection and is the
primary object studied in this paper. The effect of particles from pileup is mitigated through the
charged-hadron subtraction [47] and pileup per particle identification (PUPPI) [48, 49] algorithms for
AK4 and AK8 jets, respectively. In PUPPI, charged particles identified as originating from pileup
vertices are discarded, and a weight between zero and one is assigned to each neutral particle as the
probability for the particle to have originated at the PV. The resulting list of PF candidates, with
each particle four-momentum scaled by its corresponding weight, is input to cluster for AK8 jets. Jet
energy corrections are derived from simulation studies so that the average measured energy of jets
matches that of particle-level jets. In situ measurements of the momentum balance in γ+jets, Z+jets,
and QCD multijet events are used to determine any residual differences between the jet energy scale
in data and in simulation, and appropriate corrections are made [47].

Algorithms for heavy-flavour tagging of AK8 jets constitute the primary focus of this study. These
algorithms include seven X → bb and X → cc jet taggers developed by the CMS Collaboration for
the analysis of Run 2 data, which are discussed in detail in section 5. Various jet observables are used
in the tagging performance studies presented in section 6. Among these, the 𝑁-subjettiness variable
𝜏𝑁 [50] is used to quantify the compatibility of a jet’s energy distribution with a hypothesis of having 𝑁

subjets, where each subjet represents a localized region of energy corresponding to potential partonic
activity inside the jet. A smaller value of 𝜏𝑁 indicates greater compatibility with having 𝑁 or fewer
subjets. The 𝑁-subjettiness ratio 𝜏21 = 𝜏2/𝜏1 is used to identify jets with a two-prong characteristic
that may originate from a resonance or a gluon splitting to bb or cc. The “soft-drop mass” 𝑚SD of a jet
is obtained from the soft-drop (SD) algorithm [51]. This algorithm removes wide-angle soft radiation
from the jet through a recursive declustering process, removing soft branches from the original
structure. In the final step of declustering, two subjet axes are identified. The SD algorithm, as applied
in CMS analyses [4], uses the parameters 𝑧 = 0.1 and 𝛽 = 0, where 𝑧 is the soft threshold parameter
controlling the minimum energy sharing between subjets, and 𝛽 controls the angular exponent in the
grooming condition. In addition to 𝑚SD, a regression algorithm [52] is developed to reconstruct the
AK8 jet mass. This method exploits properties of the PF candidates and SVs associated with the jet
using the “ParticleNet” graph neural network [53]. The resulting regressed output, 𝑚PNet, has an
improved resolution of reconstructing the mass of the two-prong jet initiated by a resonance decay.

In simulation, generator-level variables are used to determine the origin of jets. Associating
the flavour of the generator-level hadron that gave rise to a reconstructed jet is a crucial step in
defining jet samples used for calibration. Jets are labelled using ghost association [54], a widely
used approach albeit not guaranteed to be infrared- and collinear-safe. The reconstructed final-state
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particles in the jet are reclustered with the generated b or c hadrons. Only b (c) hadrons that are
the last b (c) hadrons in their decay chains are included. The four-momenta of these hadrons are
rescaled to a very small value to ensure that they do not affect the reconstructed jet momentum and
that only their directional information is kept. The label is determined from the number of b or c
hadrons ghost-associated with a jet. In addition, for jets originating from the signal events, specifically
the gluon-fusion Higgs boson production process with H → bb (cc) decays, the selection criteria
for signal jets require that the direction of the resonance, as well as those of both daughter b (c)
quarks, lie within the jet cone defined by Δ𝑅 < 0.8.

5 Overview of tagging algorithms

This section reviews and compares various boosted heavy-flavour jet identification algorithms developed
by the CMS Collaboration for the analysis of Run 2 data. The ParticleNet-MD tagger (where MD stands
for mass-decorrelated) [7], the DeepDoubleX tagger [8], and the DeepAK8-MD tagger [4] provide
discriminants for both X → bb and X → cc identification, whereas the double-b tagger [1] aims at
X → bb identification only. The performance of these algorithms is evaluated using simulated samples
corresponding to 2018 detector conditions, which are used as a representative benchmark in this section.

5.1 ParticleNet-MD

The ParticleNet-MD jet tagging algorithm [7] provides two discriminants, the ParticleNet-MD
bbvsQCD and ccvsQCD, used for X → bb and X → cc identification, respectively. The ParticleNet-
MD algorithm is a DNN-based algorithm designed to identify two-prong hadronic decays (bb, cc,
and qq, where q represents u, d, and s quarks) of a highly Lorentz-boosted particle across a wide
range of resonance mass and has been used in a number of CMS analyses [11, 13, 15]. It takes the
particle-level features as input, including a list of PF candidates and SVs associated with the jet. Input
variables for a PF candidate include kinematic features such as its 𝑝T, energy, the differences in 𝜂

and 𝜙 between the particle and the jet axis, and its charge. For charged PF candidates, additional
properties measured by the tracking detector are included, such as the track displacement and quality.
Variables for an SV include kinematic and displacement features, as well as quality criteria. At the
core of the algorithm is the “ParticleNet” neural network architecture. For networks of this kind, the
input PF candidates and SVs are processed in a permutation-invariant way; a convolution operation
is performed on each particle, grouping it with its nearest neighbours in the geometric 𝜂-𝜙 space to
facilitate information exchange between particles to extract local features.

Two versions of the algorithm with the ParticleNet architecture exist: an MD version (i.e. the
ParticleNet-MD algorithm) and a non-MD version (the ParticleNet algorithm) [7]. This paper studies
the former algorithm; the latter aims at explicitly utilizing the jet mass to identify hadronic decays of
Lorentz-boosted SM particles (t, W, Z, and H) and is beyond the scope of this paper.

The ParticleNet-MD algorithm is trained on a set of signal jets with 𝑝T > 200 GeV and
30 < 𝑚SD < 260 GeV, including X → bb, X → cc, X → qq, and background QCD jets, where X is
a variable-mass spin-0 neutral particle. Jets from both signal and background samples are reweighted
to yield flat distributions in both 𝑝T and 𝑚SD so as to decorrelate the trained tagger outputs with the
jet mass. The output of the algorithm provides four probability-like scores: 𝑝(X → bb), 𝑝(X → cc),
𝑝(X → qq), and 𝑝(QCD). The discriminants used to separate X → bb and X → cc jets from the
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dominant QCD multijet background are the binary classification scores:

ParticleNet-MD bbvsQCD disc. =
𝑝(X → bb)

𝑝(X → bb) + 𝑝(QCD)
,

ParticleNet-MD ccvsQCD disc. =
𝑝(X → cc)

𝑝(X → cc) + 𝑝(QCD) .
(5.1)

These MD discriminants have been found to provide consistent responses to heavy resonance decays
(e.g. Z or H), regardless of the resonance spin.

The discriminants for signal and background jets are shown in figure 1. The QCD jets matched
with at least two ghost b hadrons are designated “QCD bb”; jets with no ghost-matched b hadrons
but including at least two ghost-matched c hadrons are designated “QCD cc”. The figure shows
that H → bb (H → cc) jets are well separated from the other processes, typically exhibiting high
ParticleNet-MD bbvsQCD (ccvsQCD) discriminant scores.

0.0 0.2 0.4 0.6 0.8 1.0
ParticleNet-MD bbvsQCD

10 3

10 2

10 1

100

101A.
U.

(13 TeV)

CMS
Simulation
AK8 jets
pT > 450 GeV, | | < 2.4

H bb
H cc
QCD bb
QCD cc
QCD inclusive

0.0 0.2 0.4 0.6 0.8 1.0
ParticleNet-MD ccvsQCD

10 3

10 2

10 1

100

101A.
U.

(13 TeV)

CMS
Simulation
AK8 jets
pT > 450 GeV, | | < 2.4

H bb
H cc
QCD bb
QCD cc
QCD inclusive

Figure 1. Shape comparison of the ParticleNet-MD bbvsQCD (left) and ParticleNet-MD ccvsQCD (right)
discriminants for the simulated standard model H → bb and H → cc jets, the bb and cc components of QCD
multijet background jets, and inclusive QCD jets (without flavour-specific selection), using simulated events
corresponding to the 2018 data-taking conditions for jets with 𝑝T > 450 GeV and |𝜂 | < 2.4. The error bars
represent the statistical uncertainties due to the limited number of simulated events.

5.2 DeepDoubleX

The DeepDoubleX tagging algorithm [8] is a DNN-based algorithm designed to identify X → bb
and X → cc in the boosted topology. The algorithm is employed in the search for boosted Higgs
boson decays to cc [14]. It is an updated version of the algorithm used in the boosted H → bb
search [10], denoted V1 in ref. [55]. DeepDoubleX, inspired by the DeepJet model for AK4 jet flavour
tagging [56], combines one-dimensional (1D) convolutional layers and gated recurrent units. The
algorithm is developed for AK8 jets with 𝑝T > 300 GeV and |𝜂 | < 2.4. The input to the algorithm
includes jet-level observables and three groups of low-level input features: charged PF candidates,
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neutral PF candidates, and SVs. The jet-level variables include properties of the selected tracks and
SVs within the jet, as well as information related to the two-SV system. The low-level variables for
PF candidates and SVs are similar to the inputs for the ParticleNet-MD algorithms. Irrelevant input
features from the initial set described above are pruned using the layer-wise relevance propagation
technique. Each group of low-level inputs is organized into an ordered list, where the ordering is
determined by specific features: the impact parameter for charged PF candidates, the distance to the
nearest SV for neutral PF candidates, and the transverse flight distance for SVs. These groups are
then scaled with a batch normalization layer, and then passed through separate convolutional and
gated recurrent units layers successively. The global jet-level features are passed through a batch
normalization layer and combined with the three processed low-level feature groups in a dense layer.

The algorithm is trained for three binary jet classification tasks: distinguishing X → bb from
QCD jets, X → cc from QCD jets, and X → cc from X → bb jets. The signal jets originate from
the decay of a spin-0 resonance X into bb or cc, with the mass of X ranging from 15 to 250 GeV.
Mass decorrelation is achieved by reweighting the signal jets to match the 𝑚SD distribution of the
QCD background jets. This study focuses on the models trained for the first two classification tasks,
referred to as DeepDoubleBvL (DDBvL) and DeepDoubleCvL (DDCvL), respectively, as outlined
in ref. [8]. The distributions of DDBvL and DDCvL discriminants for signal and QCD multijet
background are shown in figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
DeepDoubleBvL

10 3

10 2

10 1

100

101A.
U.

(13 TeV)

CMS
Simulation
AK8 jets
pT > 450 GeV, | | < 2.4

H bb
H cc
QCD bb
QCD cc
QCD inclusive

0.0 0.2 0.4 0.6 0.8 1.0

DeepDoubleCvL
10 3

10 2

10 1

100

101A.
U.

(13 TeV)

CMS
Simulation
AK8 jets
pT > 450 GeV, | | < 2.4

H bb
H cc
QCD bb
QCD cc
QCD inclusive

Figure 2. Shape comparison of the DeepDoubleBvL (left) and DeepDoubleCvL (right) discriminants for the
simulated standard model H → bb and H → cc jets, the bb and cc components of QCD multijet background
jets, and inclusive QCD jets, using simulated events corresponding to the 2018 data-taking conditions for jets
with 𝑝T > 450 GeV and |𝜂 | < 2.4. The error bars represent the statistical uncertainties due to the limited number
of simulated events.

5.3 DeepAK8-MD

The DeepAK8-MD algorithm [4] is a DNN-based jet tagging algorithm developed for identifying
resonance decays to bb or cc. It was developed early in Run 2 and used in several CMS searches, such
as ref. [12]. DeepAK8-MD uses 1D residual convolutional layers [57] and is trained with the same
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low-level input features as in the ParticleNet-MD algorithm, focusing on AK8 jets with 𝑝T > 200 GeV.
It functions as a multiclass classifier, with the output classes comprising five main categories (t, W, Z,
H, and QCD). Each of these categories is further subdivided; for instance, specific decay modes of
a resonance, such as bb or cc, are distinguished. The training dataset includes hadronic jets from
SM top quarks and W, Z, and H boson decays, as well as QCD jets. Mass decorrelation is achieved
using adversarial training. A mass prediction network is added to the classification network. The
training target is modified to include the accuracy of the mass prediction as a penalty in the loss. After
training, the algorithm outputs probability scores that are largely independent of jet mass.

The discriminants used to identify a resonance decay to bb or cc are:

DeepAK8-MD bbvsQCD disc. =
𝑝(H → bb) + 𝑝(Z → bb)

𝑝(H → bb) + 𝑝(Z → bb) + 𝑝(QCD)
,

DeepAK8-MD ccvsQCD disc. =
𝑝(H → cc) + 𝑝(Z → cc)

𝑝(H → cc) + 𝑝(Z → cc) + 𝑝(QCD) .
(5.2)

The distribution of the discriminants on the signal and background jets is shown in figure 3.
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AK8 jets
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H bb
H cc
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QCD cc
QCD inclusive

0.0 0.2 0.4 0.6 0.8 1.0

DeepAK8-MD ccvsQCD
10 3

10 2

10 1

100

101A.
U.

(13 TeV)

CMS
Simulation
AK8 jets
pT > 450 GeV, | | < 2.4

H bb
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Figure 3. Shape comparison of the DeepAK8-MD bbvsQCD (left) and DeepAK8-MD ccvsQCD (right)
discriminants for the simulated standard model H → bb and H → cc jets, the bb and cc components of QCD
multijet background jets, and inclusive QCD jets, using simulated events corresponding to the 2018 data-taking
conditions for jets with 𝑝T > 450 GeV and |𝜂 | < 2.4. The error bars represent the statistical uncertainties due to
the limited number of simulated events.

5.4 The double-b tagger

The double-b tagger, detailed in ref. [1], is a BDT algorithm trained to distinguish H → bb jets from
the QCD multijet background. It was developed early in Run 2 and used in the search for boosted
H → bb decays [9]. The input to the tagger includes high-level variables constructed from tracks
and SVs associated with the jet, as introduced in section 5.2. For training, H → bb jets are used
directly as the signal. The input variables are chosen to have a weak dependence on jet 𝑝T and mass,
thereby ensuring a stable performance across a wide kinematic range.
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The discriminant distribution for the signal jets and QCD multijet background is shown in figure 4.
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Double-b discriminant
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AK8 jets
pT > 450 GeV, | | < 2.4

H bb
H cc
QCD bb
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Figure 4. Shape comparison of the double-b discriminant for the simulated standard model H → bb and
H → cc jets, the bb and cc components of QCD multijet background jets, and inclusive QCD jets, using
simulated events corresponding to the 2018 data-taking conditions for jets with 𝑝T > 450 GeV and |𝜂 | < 2.4.
The error bars represent the statistical uncertainties due to the limited number of simulated events.

5.5 Working points

Three WPs are determined for each of the discriminants described above. They are referred to
as high-purity (HP), medium-purity (MP), and low-purity (LP) WPs and are defined to result in
H → bb (cc) selection efficiencies of 40% (15%), 60% (30%), and 80% (50%), respectively, based
on simulated events. The WPs are determined separately in simulation corresponding to each of
the four data-taking eras.

5.6 Performance comparison

The performance of the tagging algorithms is compared in figures 5–8, within the 𝑝T ranges of
450–600 and >600 GeV. The figures show the selection efficiency of H → bb (cc) signal jets as
a function of the background selection efficiency, in terms of the receiver operating characteristic
(ROC) curves. The performance is shown with respect to both inclusive QCD multijet background
and separately for the QCD-bb and QCD-cc components. Notably, since QCD-bb (cc) is a background
component that closely resembles H → bb (cc), the performance of separating H → bb (cc) from
QCD-bb (cc) background jets is significantly worse than separating them from inclusive QCD jets.

For X → bb tagging, the three neural-network-based taggers significantly outperform the double-b
tagger. This improvement can be attributed to the utilization of low-level PF candidates and SV inputs,
along with the capability of neural networks to effectively process such detailed information. Similarly,
when considering both X → bb and X → cc tagging, the improvements from DeepAK8-MD to
DeepDoubleX, and subsequently to ParticleNet-MD, reflect the advancements made in neural network
architecture. These findings demonstrate the effectiveness of neural-network-based approaches in
enhancing tagger performance for both X → bb and X → cc tagging tasks.
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Figure 5. Comparison of the performance of the X → bb identification algorithms in terms of receiver
operating characteristic (ROC) curves for H → bb signal jets versus the inclusive QCD jets as background, using
simulated events with the 2018 data-taking conditions. Performance is shown in the 450 < 𝑝T < 600 GeV (left)
and 𝑝T > 600 GeV (right) regions. Additional selection criteria applied to the jets are displayed on the plots.
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Figure 6. Comparison of the performance of the X → cc identification algorithms in terms of receiver
operating characteristic (ROC) curves for H → cc signal jets versus the inclusive QCD jets as background, using
simulated events with the 2018 data-taking conditions. Performance is shown in the 450 < 𝑝T < 600 GeV (left)
and 𝑝T > 600 GeV (right) regions. Additional selection criteria applied to the jets are displayed on the plots.
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Figure 7. Comparison of the performance of the X → bb identification algorithms in terms of receiver operating
characteristic (ROC) curves for H → bb signal jets versus the bb component of the QCD jets as background,
using simulated events with the 2018 data-taking conditions. Performance is shown in the 450 < 𝑝T < 600 GeV
(left) and 𝑝T > 600 GeV (right) regions. Additional selection criteria applied to the jets are displayed on the plots.
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Figure 8. Comparison of the performance of the X → cc identification algorithms in terms of receiver operating
characteristic (ROC) curves for H → cc signal jets versus the cc component of the QCD jets as background,
using simulated events with the 2018 data-taking conditions. Performance is shown in the 450 < 𝑝T < 600 GeV
(left) and 𝑝T > 600 GeV (right) regions. Additional selection criteria applied to the jets are displayed on the plots.
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The dependence of signal efficiency on jet 𝑝T is evaluated for all algorithms, as shown in
figure 9. In the low-𝑝T region, the efficiency rises rapidly up to 𝑝T ≈ 500 GeV. At higher 𝑝T, the
DeepAK8-MD, DeepDoubleX, and ParticleNet-MD algorithms exhibit comparable performance,
with signal efficiency remaining stable. In contrast, the double-b algorithm shows a decline in
performance at high 𝑝T.
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Figure 9. Signal efficiency 𝜖S as a function of jet 𝑝T for a working point corresponding to overall selection
efficiencies of 40% in H → bb and 15% in H → cc jets. The left and right plots compare the performance
of various X → bb and X → cc tagging algorithms, respectively. The error bars represent the statistical
uncertainties due to the limited number of simulated events. Additional selection criteria applied to the jets are
displayed on the plots.

6 Measurements of the tagging efficiency in data

This section introduces three methods to measure the efficiency of X → bb and X → cc taggers
in data. Results are presented for each of the tagger WPs in three exclusive 𝑝T bins, i.e. 450–500,
500–600, and >600 GeV, in terms of the SFs:

SF = 𝜖data(𝑝T)
/
𝜖sim(𝑝T), (6.1)

where 𝜖data(𝑝T) and 𝜖sim(𝑝T) represent the 𝑝T-dependent tagging efficiency in data and for simulated
jets. In the first method, referred to as the sfBDT method, a BDT is trained to identify a sample of
QCD bb (cc) jets arising from gluon splitting with characteristics similar to the X → bb (cc) signal
jets. These gluon-splitting jets are used as proxies for the signal. In the second method, QCD bb
(cc) jets are selected using requirements on soft muons inside the jets and the 𝑁-subjettiness feature.
The third method uses Z → bb jets in data as a proxy for X → bb signal jets.

A detailed description of each method, followed by the calibration results, is given below. A
combination of the measured SFs is presented at the end of the section.
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6.1 The sfBDT method

6.1.1 Method description

The sfBDT method, first introduced in ref. [58], calibrates the X → bb (cc) signal jets using
gluon-splitting jets as a proxy. At the core of the method is a BDT, a multivariate technique employed
to integrate various jet observables and construct a discriminant to identify regions of phase space
of g → bb (cc) jets that closely resemble corresponding regions of X → bb (cc) signal jet phase
space. As such, it serves as an enhanced version of early calibration methods based on gluon-splitting
proxies with manually constructed selection variables, as detailed in section 9.3 of ref. [1]. This
section provides a self-contained summary of the method, with particular emphasis on the design
of the BDT, the validation of the similarity between proxy and signal jets, and the study of the
dependence of the SFs on the sfBDT selection criteria.

Events are selected online using a logical OR of HLT algorithms with different𝐻T (scalar 𝑝T sum of
all AK4 jets) thresholds, starting from 125 (180) GeV for the 2016 (2017–2018) era. Events are required
to have at least one AK8 jet. To ensure a sufficient number of selected jets, for each event, the leading
AK8 jet and the subleading one (if it exists), ordered by 𝑝T, are selected if they satisfy 𝑝T > 200 GeV,
|𝜂 | < 2.4, and 50 < 𝑚SD < 200 GeV. Light-flavour jets are suppressed by requiring preselected jets to
have at least two SVs within the cone of the jet, with each matched to one of the two subjets produced by
the SD algorithm. Since HLTs with low 𝐻T thresholds are prescaled triggers, a reweighting procedure
is applied to the simulated events to align them with the data. This is performed on a 2D binned
histogram defined by the event 𝐻T and jet 𝑝T, for the leading and subleading jets separately.

In the simulation, each selected jet is classified as bottom (b), charm (c), or light flavour (l)
depending on the number of ghost-matched b and c hadrons. Jets with at least one matched b hadron
are assigned to the “b” category; jets with no matched b hadrons but including at least one matched c
hadron go to the “c” category; the remaining jets are labelled as “l” type. In multijet QCD events, the
b (c) category mainly comprises g → bb (cc) jets. These jets differ from the X → bb (cc) signal
jets, especially in the tagging discriminant scores. The aim of the sfBDT method is to obtain a more
representative, signal-like sample of jets using a BDT discriminant. The sfBDT is specifically trained
to distinguish between two groups of jets, both originating from QCD multijet events and selected
based on generator-level jet information. One group consists of jets that closely resemble X → bb
(cc) jets, whereas the other group comprises jets that are less similar to the signal.

The determination of suitable generator-level variables is therefore critical for the performance of
the sfBDT method. Dedicated studies are performed to characterize the differences between g → bb
(cc) jets and the signal X → bb (cc) jets at the generator level. A notable distinction is that g → bb
(cc) jets are more frequently contaminated with additional gluons. Consequently, the previous iteration
of the method, detailed in ref. [58], defined the training samples using the parton-level variable,

𝜅g =

∑
𝑖∈{g} 𝑝T,𝑖∑

𝑖∈{g, q} 𝑝T,𝑖
, (6.2)

which measures the fraction of energy inside a jet due to gluons. Smaller 𝜅g corresponds to QCD jets
that exhibit closer resemblance to the resonance bb or cc jets. The updated version of the method
presented in this paper uses a new variable based on the generator-level hadrons, instead of the
partons. It has been observed that g → bb (cc) jets tend to contain extra radiations, which arise
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from either gluon or quark emissions. From the perspective of the distribution of generator-level
hadrons within the jet, such emissions often result in a distinct multiprong structure. To characterize
this behaviour, we define the 𝑁-subjettiness using first-generation hadrons — those directly produced
from partons prior to any sequential decay. This approach provides a measure of the multiprongness
of jets at the generator level. The 𝜏𝑀𝑁 of the hadrons, denoted by 𝜏

h
𝑀𝑁 , is defined analogously

to the standard 𝑁-subjettiness ratio [50],

𝜏
h
𝑀𝑁 =

∑
𝑖∈{had.} 𝑝T,𝑖 min𝑀

𝑗=1{Δ𝑅𝑖, 𝑛̂𝑀, 𝑗
}∑

𝑖∈{had.} 𝑝T,𝑖 min𝑁
𝑗=1{Δ𝑅𝑖, 𝑛̂𝑁, 𝑗

}
, (6.3)

where 𝑛̂𝑁, 𝑗 ( 𝑗 = 1, 2, · · · , 𝑁) are the 𝑁 subjet axes of the hadrons, obtained by performing the
exclusive 𝑘T algorithm [59, 60] on the hadron list. The 𝜏

h
31 variable, with the signal (background)

for training of sfBDT defined as 𝜏
h
31 < 0.1 (> 0.1), yields the sfBDT with the strongest ability to

select g → bb (cc) jets that resemble X → bb (cc) jets. This choice also demonstrates superior
performance compared with the earlier variable described in eq. (6.2).

The sfBDT is trained on the simulated QCD multijet events enriched with b and c partons. The
same preselection and jet categories (“b”, “c”, and “l”) are applied. Signal and background jets
are selected from the combined “b” and “c” categories based on the criterion involving 𝜏

h
31. This

allows the same sfBDT discriminant to be used in calibrating both X → bb and X → cc jets. The
input to the sfBDT includes six jet-level variables: the constituent-based 𝑁-subjettiness ratio 𝜏21, the
masses of the two subjets obtained from the SD algorithm, the 𝑝T of the two SVs matched to each
subjet, and the total number of tracks associated with the two SVs. Figure 10 shows the distribution
of the trained sfBDT discriminant for both data and simulated events. Overall, good agreement is
observed between data and simulation in the sfBDT discriminant. Residual differences are a source
of systematic uncertainty, as discussed in detail in section 6.1.2.

103

104

105

106

107

Ev
en

ts 
/ 0

.0
2

59.8 fb 1 (13 TeV)

CMS
AK8 jets
sfBDT method
pT > 450 GeV

Data
MC (b)
MC (c)
MC (l)
MC stat. unc.

0.0 0.2 0.4 0.6 0.8 1.0
sfBDT discriminant

0.5

1.0

1.5

Da
ta

 / 
M

C

Figure 10. Distributions of the sfBDT discriminant for data and simulation, illustrated using the 2018 data-taking
conditions, for jets with 𝑝T > 450 GeV. The error bars indicate statistical uncertainties in observed data, which
may be too small to be visible.
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The proxy jets are defined as jets passing the preselection, belonging to “b” (“c”) category in
the calibration of X → bb (cc) jets, and satisfying a dedicated selection on the sfBDT discriminant.
The choices of sfBDT selections are detailed below.

To define a jet selection using the sfBDT discriminant, the updated method introduces an
automated and more sophisticated procedure, improving upon the earlier approach described in
ref. [58]. The method introduces nine predefined “reference selection thresholds”, which are selections
on the sfBDT discriminant as a function of the tagger discriminant score. Each reference selection
threshold is chosen to align the tagger discriminant distributions of proxy and signal jets. They can
be visualized on a 2D plane of the sfBDT score versus the transformed tagger discriminant score, as
shown in figure 11, with the threshold index increasing from the loosest to the tightest selection. The
tagger discriminant is transformed to 𝑋 ∈ (0, 1) such that a selection of 𝑋 > 𝑋0 corresponds to the
signal jet selection efficiency of 1 − 𝑋0. Events that pass the selection thresholds are located above the
corresponding curves. As observed, the reference selection thresholds apply looser constraints on
the sfBDT score in regions with higher tagger discriminant scores. Since the predefined thresholds
generate a set of references where the proxy jet phase space matches that of the signal jets, variations
around these thresholds are introduced to produce conditions with differing signal-to-proxy similarity
levels, resulting in a total of 81 selection choices. Additional details are provided in section 6.1.2.
Specifically, each selection yields a corresponding SF, and the spread among these SFs is used to
quantify an uncertainty term related to the dependence of the SF on the choice of sfBDT selections.
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Figure 11. Illustration of nine predefined “reference selection thresholds” visualized on the two-dimensional
plane spanned by the sfBDT score and the transformed tagger discriminant scores. Selections based on these
thresholds can be interpreted as sfBDT selections with thresholds as a function of the tagger discriminant
score. Each selection aims to match the tagger discriminant distribution of the proxy jet to that of the signal.
The examples shown correspond to the calibration of the ParticleNet-MD X → bb (left) and ParticleNet-MD
X → cc (right) discriminants, using simulated events under 2018 data-taking conditions in the jet 𝑝T range of
(450, 500) GeV.

Figure 12 demonstrates the closure of proxy and signal jets on the transformed tagger discriminant
after applying selections based on the “reference selections”. The closure is also evaluated across
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various jet observables, including the kinematic properties of subjets, SV kinematics and impact
parameters, and the number of tracks associated with the SVs. The sfBDT selection substantially
improves the agreement between proxy and signal jets.

Figures 13–16 show the tagger discriminant distribution in data and simulation, after applying the
middle sfBDT selection among the nine options illustrated in figure 11 (solid curve). The level of agree-
ment between data and simulation varies depending on the tagger type and the tagging WP. Discrepan-
cies are more pronounced for higher purity WPs, highlighting the need to calibrate the selection efficien-
cies. Overall, the ParticleNet-MD and DeepDoubleX discriminants exhibit better agreement between
data and simulation in the high-discriminant-score region, whereas the DeepAK8-MD and double-b
discriminants show larger discrepancies. These differences will be further discussed in section 6.4.

The yields of “b”, “c”, and “l” categories in data are determined from a template of fit to
the variable ln(𝑚corr

SV1
/GeV), where SV1 is the SV with maximum 𝑑𝑥𝑦 significance and 𝑚

corr
SV is the

corrected SV mass. It is defined as

𝑚
corr
SV =

√︃
𝑚

2
SV + 𝑝

2 sin2
𝜃 + 𝑝 sin 𝜃, (6.4)

where 𝑚SV is the invariant mass of the tracks associated with the SV, 𝑝 is the SV momentum obtained
from associated tracks, and 𝜃 the angle between the SV momentum and the vector pointing from the PV
to the SV. This correction to the SV mass accounts for the difference between the SV’s flight direction
and its momentum, considering the effects of potential particles that were either not reconstructed
or failed to be associated with the SV. The fit variable is constructed to enhance separation among
the three categories. For the “b” and “c” categories, 𝑚corr

SV exhibits mass peaks corresponding to b
and c hadrons, located around 5 GeV and 1.5 GeV, respectively. In contrast, the “l” category shows a
smooth distribution. The logarithmic scale is chosen to address the long-tailed distribution caused by
the reconstruction precision of 𝑚corr

SV , allowing for wider bins in the high-mass region.
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Figure 12. Shapes of the transformed ParticleNet-MD X → bb (left) and X → cc (right) discriminants for
SM H → bb (cc) signal jets and proxy jets selected with different sfBDT selection thresholds. The examples
correspond to the calibration of the ParticleNet-MD X → bb and X → cc discriminants with the sfBDT
method, using simulated events under 2018 data-taking conditions for jets with 𝑝T > 450 GeV. The error bars
represent the statistical uncertainties due to the limited number of simulated events.
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Figure 13. An example of the transformed ParticleNet-MD X → bb (left) and X → cc (right) distribution in
data and simulated events, after applying the preselection and the middle sfBDT selection threshold in the sfBDT
method. The high-purity (HP), medium-purity (MP), and low-purity (LP) working points for the left (right)
plot correspond to selections of 𝑋 > 0.6, 0.4, 0.2 (0.85, 0.7, 0.5) on the transformed tagger discriminant. The
error bars represent the statistical uncertainties in observed data. The lower panels display the ratio of data to
simulation, with the hatched bands representing the normalized statistical uncertainty of simulated events for
each bin. The distributions are based on data and simulated events with the 2018 data-taking conditions, in the
jet 𝑝T range of (450, 500) GeV.
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Figure 14. An example of the transformed DeepDoubleX X → bb (left) and X → cc (right) distribution in
data and simulated events, after applying the preselection and the middle sfBDT selection threshold in the sfBDT
method. The high-purity (HP), medium-purity (MP), and low-purity (LP) working points for the left (right)
plot correspond to selections of 𝑋 > 0.6, 0.4, 0.2 (0.85, 0.7, 0.5) on the transformed tagger discriminant. The
error bars represent the statistical uncertainties in observed data. The lower panels display the ratio of data to
simulation, with the hatched bands representing the normalized statistical uncertainty of simulated events for
each bin. The distributions are based on data and simulated events with the 2018 data-taking conditions, in the
jet 𝑝T range of (450, 500) GeV.
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Figure 15. An example of the transformed DeepAK8-MD X → bb (left) and X → cc (right) distribution in
data and simulated events, after applying the preselection and the middle sfBDT selection threshold in the sfBDT
method. The high-purity (HP), medium-purity (MP), and low-purity (LP) working points for the left (right) plot
correspond to selections of 𝑋 > 0.6, 0.4, 0.2 (0.85, 0.7, 0.5) on the transformed tagger discriminant. The error
bars represent the statistical uncertainties in observed data, which may be too small to be visible. The lower
panels display the ratio of data to simulation, with the hatched bands representing the normalized statistical
uncertainty of simulated events for each bin. The distributions are based on data and simulated events with the
2018 data-taking conditions, in the jet 𝑝T range of (450, 500) GeV.
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Figure 16. An example of the transformed double-b distribution in data and simulated events, after applying
the preselection and the middle sfBDT selection threshold in the sfBDT method. The high-purity (HP),
medium-purity (MP), and low-purity (LP) working points correspond to selections of 𝑋 > 0.6, 0.4, 0.2 on the
transformed tagger discriminant. The error bars represent the statistical uncertainties in observed data, which
may be too small to be visible. The lower panel displays the ratio of data to simulation, with the hatched bands
representing the normalized statistical uncertainty of simulated events for each bin. The distribution is based on
data and simulated events with the 2018 data-taking conditions, in the jet 𝑝T range of (450, 500) GeV.
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Three unconstrained parameters, denoted as SFb , SFc , and SFl , are used to define the normalization
of the “b”, “c”, and “l” categories when passing the selection on the tagger discriminant at a given
WP. The three parameters are simultaneously fitted to data in the regions passing or failing the tagger
WP (denoted by the “pass” and “fail” region). The total yields of the “pass” and “fail” regions for
each category remain constant. The fit is delivered separately in three exclusive 𝑝T bins. Specifically,
for the fit performed with a given tagger and WP at a specific 𝑝T bin, for each histogram bin, let the
simulated event yields of the three flavour categories in the “pass” and “fail” regions be denoted as
𝑁

sim,P
𝑓

and 𝑁
sim,F
𝑓

, respectively, where 𝑓 = b, c, l. The predicted data yields for the three categories,
𝑁

data,P
𝑓

and 𝑁
data,F
𝑓

, can be therefore expressed as

𝑁
data,P
𝑓

= SF 𝑓 𝑁
sim,P
𝑓

,

𝑁
data,F
𝑓

= 𝑁
sim,F
𝑓

+ 𝑁
sim,P
𝑓

− SF 𝑓 𝑁
sim,P
𝑓

.
(6.5)

Figures 17 and 18 show an example of distributions of data and the corresponding fitted simulated
events, in the derivation of SFs of the ParticleNet-MD X → bb and X → cc discriminants, respectively.
The fitted SFb or SFc are subsequently propagated to derive the final SF for X → bb or cc jets,
respectively. This is achieved through a dedicated post-processing procedure that incorporates
additional uncertainties and adjusts the central value, as detailed in section 6.1.2.
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Figure 17. Post-fit distributions from the sfBDT method for events passing (left) and failing (right) the
tagger selection, used in the derivation of the scale factor for the ParticleNet-MD X → bb discriminant at the
high-purity working point. Error bars represent statistical uncertainties in data, whereas hatched bands denote
the total uncertainties in the simulation. The example corresponds to data and simulated events from the 2018
data-taking conditions, in the jet 𝑝T range of (450, 500) GeV.

6.1.2 Systematic uncertainties and results

A number of systematic uncertainties are considered that affect the shape of the simulated templates
used in the fit. They are summarized as follows:

• Fractions of b, c, and light-flavour jets: three uncertainty sources account for the potential
mismodelling of the b-, c-, and light-flavour jet fractions in simulation. Each uncertainty is
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Figure 18. Post-fit distributions from the sfBDT method for events passing (left) and failing (right) the
tagger selection, used in the derivation of the scale factor for the ParticleNet-MD X → cc discriminant at the
high-purity working point. Error bars represent statistical uncertainties in data, whereas hatched bands denote
the total uncertainties in the simulation. The example corresponds to data and simulated events from the 2018
data-taking conditions, in the jet 𝑝T range of (450, 500) GeV.

modelled by varying the yield of the corresponding flavour up and down by 20% [1]. Alternative
variations have been tested and have a minimal impact on the resulting SF.

• Initial- and final-state radiation in parton shower: the renormalization scale of QCD emissions
in the initial-state radiation (ISR) and final-state radiation (FSR) in the parton shower simulation
is individually varied up and down by factors of 2 and 0.5.

• Jet energy scale: the uncertainty in the jet energy scale is propagated to the fit template by
varying with ±1 standard deviation from its nominal value [47, 61].

• Jet energy resolution: for the nominal efficiency measurement, the jet energies in the simulation
are smeared according to a Gaussian function to accommodate the slightly worse resolution in
data. The uncertainty in the jet energy resolution is propagated to the template by varying with
±1 standard deviation of the Gaussian function by its uncertainty [47, 61].

• Integrated luminosity: the uncertainty in the integrated luminosity is incorporated into the
template by uniformly varying the event yields across all samples and regions by 1.2–2.5% in
the 2016–2018 data-taking eras [62–64].

• Pileup reweighting: the uncertainty in the pileup reweighting procedure is determined by varying
the total inelastic cross section used to produce the pileup profile away from the measured
central value by 5% [65].

In addition to these uncertainties contributing to the change of fit templates, two external
uncertainty sources are considered.
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The first uncertainty assesses the effect of varying the sfBDT selection thresholds. Each sfBDT
selection illustrated in figure 11 is employed to measure the corresponding SF. Moreover, to evaluate
the additional dependency on the sfBDT selection — particularly the effect introduced by varying the
signal-to-proxy similarity conditions — separate sfBDT selection thresholds are applied in the “pass”
and “fail” regions, modifying the similarity between the proxy and signal discriminant shapes in an
ad-hoc manner. For example, applying a tighter sfBDT selection in the “pass” region relative to the “fail”
region enhances the signal-like characteristics of the proxy jets. This procedure results in 81 distinct
selection combinations. The final SF is obtained by averaging the 81 measured SFs, incorporating
both central values and variations. Specifically, each SF is treated as a normally distributed variable,
and the combined result is defined by the median and the ±1𝜎 interval of the averaged distribution.
As a result, the final SF has a larger uncertainty than that obtained from the individual fits.

The second uncertainty accounts for mismodelling of the sfBDT discriminant score and the fit
variable ln(𝑚corr

SV1
/GeV). An “ad-hoc reweighting” approach is used to evaluate the impact of such

mismodelling on the derived SFs. The SF derivation procedure is repeated in two additional schemes.
In the first scheme, a reweighting of the sfBDT discriminant score is performed such that the total
simulated expectation matches data, before any selection on sfBDT is applied. In the second scheme,
a simulation-to-data reweighting is applied on the ln(𝑚corr

SV1
/GeV) variable after the sfBDT selection

and before splitting the template into the “pass” and “fail” regions. This results in two additional sets
of SFs. An external uncertainty, determined from the maximum deviation of the central SF values in
the new sets with respect to the nominal one, is assigned to the nominal SF.

Table 1 summarizes the contributions of each source to the final uncertainty in the derived SFs,
using ParticleNet-MD X → bb discriminant at the HP WP as a representative example. The presented
values are averaged across all derivation points, including all relevant 𝑝T bins and data-taking conditions.
The fit-related uncertainties from individual sources are computed via a breakdown procedure in which
nuisance parameters are frozen to their best-fit values sequentially, ordered by descending impact.
The contribution from each source is computed by taking the quadrature difference between the total
uncertainty with and without the parameter frozen. Uncertainties external to the fit are estimated

Table 1. Breakdown of the contributions to the total uncertainty in the fitted scale factor (SF) of the ParticleNet-
MD X → bb discriminant at the high-purity working point, using the sfBDT method. The numbers are averaged
over multiple SF derivation points, including all relevant 𝑝T bins and data-taking eras.

Uncertainty source ⟨ΔSF⟩
Statistical 0.063
Theory

Fraction of jet flavours 0.039
ISR and FSR in parton shower 0.014

Experimental
Effect of varying sfBDT thresholds 0.048
Effect of applying “reweighting schemes” 0.091
Jet energy scale and resolution 0.008
Integrated luminosity 0.001
Pileup reweighting 0.009
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similarly, by taking the quadrature difference between the total uncertainties obtained with and without
the external treatment. The result indicates that the dominant contributors to the total uncertainty are
the two external uncertainty sources and the statistical fluctuations in data and simulation.

The derived SFs for all X → bb and X → cc discriminants are displayed in figures 28–34. An
analysis of the results obtained using the sfBDT method, along with comparisons to other approaches,
is provided in section 6.4.

6.2 The 𝝁-tagged method

6.2.1 Method description

The 𝜇-tagged method calibrates the X → bb (cc) signal jets using proxy jets from gluon-splitting
bb (cc) jets that contain a soft muon within their respective jet cones.

Since the hadronized final state initiated from the decay of a bottom (charm) quark has a 20% (10%)
probability of including an electron or muon [66], the presence of the nonisolated soft leptons provides
a good handle to select a pure sample of heavy-flavour jets. By selecting AK8 jets with b (c) flavours
and requiring them to be 𝜇-tagged, the resulting collection is dominated by gluon-splitting bb (cc) jets.
This selection ensures a closer resemblance in the phase space between these jets and the signal jets.

For the X → bb (cc) taggers discussed in section 5, the muon information is not explicitly
used in the training of the algorithms. Hence, these algorithms are suitable to be calibrated using
a subset of bb (cc) jets containing soft muons. This essentially imposes a requirement on the kind
of tagging algorithm that can be calibrated with this method. A similar technique is employed in the
calibration of AK4 b (c) jet taggers [1, 67], where soft, non-isolated muons are used as a criterion
for selecting b (c) jets for calibration.

In the 𝜇-tagged method, events are selected online by requiring the presence of an AK4 or AK8
jet with 𝑝T > 300 GeV in association with a muon with 𝑝T > 5 GeV. For each event, the leading AK8
jet and the subleading one (if it exists) are selected and required to pass the kinematic preselection
of 𝑝T > 350 GeV, |𝜂 | < 2.4, and 𝑚SD > 40 GeV. The simulated 𝜇-enriched QCD multijet events, as
described in section 3, are used to compare with data, whereas the QCD multijet process simulated
with MadGraph5_amc@nlo is used as an alternative. Offline, the AK8 jet is required to contain
at least one soft muon with 𝑝T > 5 GeV and |𝜂 | < 2.4. To further extract the signal-like g → bb
(cc) jets, a selection on the 𝑁-subjettiness ratio, 𝜏21 < 0.3, is applied to select two-prong jets. To
correct the 𝜇-enriched QCD modelling to match with data and reduce the discrepancy with the
MadGraph5_amc@nlo-based QCD multijet sample, the QCD multijet sample is reweighted to data
after subtracting the tt , single top quark, and V+jets contributions. This reweighting is performed in
bins of the jet variables (𝑝T, 𝜂, 𝜏21), with the leading and subleading jets reweighted separately.

Similar to the sfBDT method in section 6.1.1, the selected jets are classified into the “b”, “c”,
and “l” flavour categories based on the number of ghost-matched b and c hadrons. The proxy jets
are defined as simulated jets in the “b” (“c”) categories for calibration of X → bb (cc) signal jets,
passing the aforementioned selections.

The dependence of the resulting SFs on the similarity between proxy and signal jets in the
𝜇-tagged method is evaluated by varying the 𝜏21 selection threshold between 0.2 and 0.4. Figure 19
illustrates the impact of different 𝜏21 thresholds (0.2, 0.25, 0.3, 0.35, and 0.4) on the transformed tagger
discriminant for proxy jets. Tighter 𝜏21 selections make the proxy jets more signal-like. The resulting
variation in the SF is treated as an additional systematic uncertainty, as detailed in section 6.2.2.
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Figure 19. Shapes of the transformed ParticleNet-MD X → bb (left) and X → cc (right) discriminants for
SM H → bb (cc) signal jets and proxy jets selected with different 𝜏21 selection thresholds. The examples
correspond to the calibration of the ParticleNet-MD X → bb and X → cc discriminants with the 𝜇-tagged
method, using simulated events under 2018 data-taking conditions for jets with 𝑝T > 450 GeV. The error bars
represent the statistical uncertainties due to the limited number of simulated events.

Figures 20–23 show the distributions of the transformed tagger discriminant, passing the
preselection above. The tagger discriminant is transformed to 𝑋 ∈ (0, 1), such that a selection of
𝑋 > 𝑋0 corresponds to the signal jet selection efficiency of 1 − 𝑋0. The distributions of the tagger
discriminants show varying levels of agreement between data and simulation, leading to conclusions
consistent with those shown in figures 13–16 for the sfBDT method. Furthermore, when comparing
these distributions between the 𝜇-tagged method and the sfBDT method for the same tagger and
WP, the data-to-simulation ratio in the HP region is slightly smaller for the sfBDT method. Further
discussion is provided in section 6.4.

To extract the SF for the proxy jet, the 𝜇-tagged method employs a fit procedure analogous to
that used in the sfBDT method. Three unconstrained factors, SFb , SFc , and SFl , are assigned to
the “b”, “c”, and “l” categories in simulation, for jets passing a specific WP of tagger discriminant.
The fit is performed on the binned histogram of the variable ln(𝑚(∑ ®𝑝 corr

SV )/GeV), where 𝑚(∑ ®𝑝 corr
SV )

denotes the invariant mass of the vector sum of all corrected SV four-momenta, ®𝑝 corr
SV , associated

with the jets. The corrected SV four-momentum ®𝑝 corr
SV is computed from the momenta of tracks

associated with the SV and using the corrected SV mass as defined in eq. (6.4). Alternative fit
variables based on SV information have been tested and lead to compatible results. A simultaneous
fit is performed across the “pass” and “fail” regions of the tagger WP, in three exclusive 𝑝T bins,
following the same procedure as used in the sfBDT method.

In addition, a dedicated treatment is put into place in order to account for the degeneracy of
the “b” and “c” flavour templates in the “pass” region. The background SFs are fixed to unity if the
signal and background templates are degenerate or if the background contribution is negligible. The
templates are defined as degenerate if the 𝜒

2 difference between the “b” and “c” shapes is below
one. This procedure is necessary because the fit of two unconstrained parameters with degenerate
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Figure 20. An example of the transformed ParticleNet-MD X → bb (left) and X → cc (right) distribution in
data and simulated events, passing the preselection of the 𝜇-tagged method. The high-purity (HP), medium-purity
(MP), and low-purity (LP) working points for the left (right) plot correspond to selections of 𝑋 > 0.6, 0.4, 0.2
(0.85, 0.7, 0.5) on the transformed tagger discriminant. The error bars represent the statistical uncertainties in
observed data. The lower panels display the ratio of data to simulation, with the hatched bands representing the
normalized statistical uncertainty of simulated events for each bin. The distributions are based on data and
simulated events with the 2018 data-taking conditions, in the jet 𝑝T range of (450, 500) GeV.
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Figure 21. An example of the transformed DeepDoubleX X → bb (left) and X → cc (right) distribution in data
and simulated events, passing the preselection of the 𝜇-tagged method. The high-purity (HP), medium-purity
(MP), and low-purity (LP) working points for the left (right) plot correspond to selections of 𝑋 > 0.6, 0.4, 0.2
(0.85, 0.7, 0.5) on the transformed tagger discriminant. The error bars represent the statistical uncertainties in
observed data. The lower panels display the ratio of data to simulation, with the hatched bands representing the
normalized statistical uncertainty of simulated events for each bin. The distributions are based on data and
simulated events with the 2018 data-taking conditions, in the jet 𝑝T range of (450, 500) GeV.
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Figure 22. An example of the transformed DeepAK8-MD X → bb (left) and X → cc (right) distribution in data
and simulated events, passing the preselection of the 𝜇-tagged method. The high-purity (HP), medium-purity
(MP), and low-purity (LP) working points for the left (right) plot correspond to selections of 𝑋 > 0.6, 0.4, 0.2
(0.85, 0.7, 0.5) on the transformed tagger discriminant. The error bars represent the statistical uncertainties in
observed data. The lower panels display the ratio of data to simulation, with the hatched bands representing the
normalized statistical uncertainty of simulated events for each bin. The distributions are based on data and
simulated events with the 2018 data-taking conditions, in the jet 𝑝T range of (450, 500) GeV.
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Figure 23. An example of the transformed double-b distribution in data and simulated events, passing the
preselection of the 𝜇-tagged method. The high-purity (HP), medium-purity (MP), and low-purity (LP) working
points correspond to selections of 𝑋 > 0.6, 0.4, 0.2 on the transformed tagger discriminant. The error bars
represent the statistical uncertainties in observed data. The lower panel displays the ratio of data to simulation,
with the hatched bands representing the normalized statistical uncertainty of simulated events for each bin. The
distribution is based on data and simulated events with the 2018 data-taking conditions, in the jet 𝑝T range of
(450, 500) GeV.
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templates cannot disentangle the effects of each parameter independently, since they are anti-correlated
in the fit. In these cases, the background SF is fixed in the fit and only the signal SF is measured.
Only 16% of the fitted points are affected by the degeneracy of signal and background templates and
are subject to this special treatment. In particular, the “pass” region of taggers with higher purity,
such as the ParticleNet-MD X → bb and X → cc taggers, is the most affected by the degeneracy,
especially at high 𝑝T and for the HP WP.

Figures 24 and 25 show an example of distributions of data and the corresponding fitted simulated
events for deriving the SFs of the ParticleNet-MD X → bb and X → cc discriminants. In the
calibration of X → bb (cc) taggers, the fitted SFb (SFc) is employed as the central value for the
derived SF, and the uncertainty is expanded to incorporate additional uncertainties, as detailed in
the following description.
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Figure 24. Post-fit distributions from the 𝜇-tagged method for events passing (left) and failing (right) the
tagger selection, used in the derivation of the scale factor for the ParticleNet-MD X → bb discriminant at the
high-purity working point. Error bars represent statistical uncertainties in data, where hatched bands denote
the total uncertainties in the simulation. The example corresponds to data and simulated events from the 2018
data-taking conditions, in the jet 𝑝T range of (450, 500) GeV.

6.2.2 Systematic uncertainties and results

The following systematic uncertainties are included in the fit.

• Fractions of b, c, and light-flavour jets: three uncertainty sources accounting for the fractions of
b, c, and light-flavour jets are treated in the same way as described in section 6.1.2.

• QCD jet modelling: a systematic uncertainty accounting for the simulation difference between
the 𝜇-enriched QCD sample and the MadGraph5_amc@nlo-based QCD sample is estimated,
by adjusting the fit template of each b, c, and light-flavour originating from the former QCD
sample to the latter sample.

• ISR and FSR in parton shower: two uncertainty sources accounting for the ISR and FSR in the
parton shower by pythia are estimated in the same way as described in section 6.1.2.
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Figure 25. Post-fit distributions from the 𝜇-tagged method for events passing (left) and failing (right) the
tagger selection, used in the derivation of the scale factor for the ParticleNet-MD X → cc discriminant at the
high-purity working point. Error bars represent statistical uncertainties in data, whereas hatched bands denote
the total uncertainties in the simulation. The example corresponds to data and simulated events from the 2018
data-taking conditions, in the jet 𝑝T range of (450, 500) GeV.

• Jet energy scale and resolution: two sources of uncertainties, accounting for the jet energy scale
and resolution, are propagated to the SF measurement as described in section 6.1.2.

• Integrated luminosity: the uncertainty in the integrated luminosity is treated in the same way as
described in section 6.1.2.

• Pileup reweighting: the uncertainty in the pileup reweighting is treated in the same way as
described in section 6.1.2.

In addition, similar to the sfBDT method, two external uncertainty sources are included in the
SF measurements. The first one aims to measure the effect of varying the 𝜏21 < 0.3 selection. The
threshold is adjusted from 0.4 to 0.2 as a handle to tune the signal and proxy jet similarity. The
variation observed in the fitted SFs is treated as an additional source of uncertainty. The second
source accounts for the mismodelling of the fit variable ln(𝑚(∑ ®𝑝 corr

SV )/GeV). Prior to measuring the
SF, a simulation-to-data reweighting is implemented on the variable within the “inclusive” region,
which is the combined “pass” and “fail” regions. In degenerate fit points, as defined in section 6.2.1,
the impact of the chosen fixed background SF on the signal SF is minor compared to the existing
systematic uncertainties. The signal SF measured by fixing the background SF is compatible with
the measurement with all SFs freely floating.

The contribution of each uncertainty source is summarized in table 2, taking the ParticleNet-MD
X → bb discriminant at the HP WP as an example. The most significant contribution arises from the
external uncertainty associated with the dependence of the SF on the 𝜏21 selection.

The derived SFs for all X → bb and X → cc discriminants are displayed in figures 28–34. A
detailed analysis of the results is provided in section 6.4.
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Table 2. Breakdown of the contributions to the total uncertainty in the fitted scale factor (SF) of the ParticleNet-
MD X → bb discriminant at the high-purity working point, using the 𝜇-tagged method. The numbers are
averaged over multiple SF derivation points, including all relevant 𝑝T bins and data-taking eras.

Uncertainty source ⟨ΔSF⟩
Statistical 0.093
Theory

Fraction of jet flavours 0.089
ISR and FSR in parton shower 0.027
QCD jet modelling 0.014

Experimental
Effect of varying 𝜏21 thresholds 0.275
Effect of “simulation-to-data reweighting” 0.064
Jet energy scale and resolution 0.032
Integrated luminosity 0.009
Pileup reweighting 0.017

6.3 The boosted Z boson method

6.3.1 Method description

The boosted Z boson method calibrates the X → bb signal jets using the proxy jets originating from
the decay of a Lorentz-boosted Z boson into a bb pair. Since the Z boson is a massive particle, the
boosted Z → bb jets are closer in the jet characteristics to the target X → bb jets, compared with
g → bb jets. Therefore, no special selection is applied to Z → bb proxy jets, contrary to the method
based on gluon-splitting proxy jets described in sections 6.1 and 6.2. However, the measurement of
Z jets comes with a smaller number of events compared with the gluon-splitting jets, and there is
a sizeable QCD multijet background. Hence, the principle of the method is to extract the Z boson
peak on top of the large nonresonant hadronic background.

In the boosted Z boson method, events are selected using a series of online triggers, which impose
a combination of requirements on the jet 𝑝T, the jet mass after applying the trimming algorithm [68],
or 𝐻T, as detailed in ref. [15]. The trigger efficiency is measured in data using a baseline trigger,
which requires a single AK4 jet with 𝑝T > 260 GeV, and by applying the offline selection described
below. This baseline trigger is a prescaled trigger and has a low threshold, ensuring that it passes
all events that also satisfy the offline selection.

The following offline selection criteria are applied. First, the leading AK8 jet in 𝑝T must satisfy
𝑝T > 450 GeV, |𝜂 | < 2.4, and 𝑚PNet > 40 GeV, where 𝑚PNet is the DNN-based regressed mass, as
introduced in section 4. Then, the subleading AK8 jet, regarded as the recoil jet, is required to pass
the selection of 𝑝T > 200 GeV and |𝜂 | < 2.4. This condition reduces the background contribution
and helps the trigger efficiency without significantly reducing the signal efficiency. Two vetoing
requirements are also imposed to suppress the tt background. Events with at least one electron or muon
with 𝑝T > 20 GeV, |𝜂 | < 2.4, and satisfying the loosest identification and isolation WP [44, 45] are
vetoed. Events are also required to have no presence of a b-tagged AK4 jet satisfying 𝑝T > 30 GeV and
Δ𝑅 > 0.8 with respect to the leading AK8 jet. After the selections, the leading jet of an event is used to
measure the data efficiency of boosted Z → bb jets on a given WP of an X → bb tagging discriminant.
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For a given WP of a tagger, a fit is performed simultaneously in the regions passing and failing
the WP. The parameters of interest are the three unconstrained factors, SFZ,𝑖 (𝑖 = 1, 2, 3), assigned to
the Z+jets process for three exclusive target 𝑝T bins. Also included is a single factor, SFW , assigned
to the W+jets process. SFs represent the ratio of tagging efficiencies between data and simulation.
For the Z+jets process, we only consider the Z boson decays to two b or c quarks since the decays
to lighter quarks do not contribute significantly to the “pass” region. The Z → bb and Z → cc
decay modes are jointly fit as a single process, since their templates are not distinguishable at the Z
boson peak. The Z → bb component dominates the boson peak in the “pass” region, contributing
more than 90%, so the SFZ,𝑖 extracted from the fit can be interpreted as the SF for Z → bb jets in
each of the three target 𝑝T bins. Likewise, only the decays with a c quark contribute significantly
to W+jets and are included in the fit.

The fit is performed on a 2D binned histogram on (𝑚PNet, 𝑝T) of the leading jet. The fit templates
are produced both from simulation and from data. The Z+jets and W+jets processes are estimated
from simulated events. The QCD multijet background, which is the dominant background source,
is modelled with data to achieve better modelling accuracy. Specifically, for each (𝑚PNet, 𝑝T) bin
in the “fail” region, which is predominantly composed of QCD multijet events, a free parameter
is assigned to represent the QCD multijet background contribution for that bin. During the fitting
procedure, these parameters typically converge to values very close to the total data yield minus
the small contributions from other processes.

A transfer ratio 𝑅P/F, defined as the ratio of the QCD multijet event yields in the “pass” and “fail”
region, is then modelled by a 2D polynomial function in (𝑚PNet, 𝑝T) of order 𝑜,

𝑅P/F =

𝑝+𝑞≤𝑜 ∧ 𝑞<3∑︁
𝑝, 𝑞=0

𝑘 𝑝,𝑞 (𝑚PNet)
𝑝 (𝑝T)

𝑞
, (6.6)

where 𝑘 𝑝,𝑞 are the parameters of the polynomial, determined during the fit. The polynomial order is
determined with a Fisher’s F-test [69] combined with the chi-square goodness-of-fit test using the
saturated model. The selected polynomial orders range from 2 to 4, depending on the tagger, WP,
and era. The feasibility of determining 𝑅P/F in polynomial form relies on the tagging algorithm being
decorrelated from the jet mass. This mass decorrelation prevents the algorithm from introducing peaks
at specific masses in the QCD multijet background shape. Consequently, the ratio of distribution
shapes in the “pass” and “fail” regions can be modelled using simple functions.

Figure 26 shows the example post-fit histograms in the “pass” and “fail” regions, in the derivation
of SFs of the ParticleNet-MD X → bb discriminant.

6.3.2 Systematic uncertainties and results

The following systematic uncertainties are included in the fit. The contribution of each uncertainty
source is listed in table 3, taking ParticleNet-MD X → bb discriminant at the HP WP as an example.

• NLO corrections: the uncertainties in the NLO corrections applied to the V+jets are taken from
ref. [36]. They account for the renormalization and factorization scale variations and shape
uncertainties of the NLO QCD corrections. For the NLO electroweak corrections, uncertainties
account for higher-order Sudakov logarithms, hard NNLO emission effects, and the limitations
of Sudakov approximation. Details are given in section 4 of ref. [36].
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Figure 26. Post-fit distributions from the boosted Z boson method for events passing (left) and failing (right)
the tagger selection, used in the derivation of the scale factor for the ParticleNet-MD X → bb discriminant at
the high-purity working point. The error bars represent the statistical uncertainties in observed data. The lower
panels show the pulls defined as (observed events− expected events)/

√︁
𝜎

2
obs + 𝜎

2
exp, where 𝜎obs and 𝜎exp are

the total uncertainties in the observation and the background estimation, respectively. The example corresponds
to data and simulated events from the 2018 data-taking conditions, in the jet 𝑝T range of (450, 500) GeV.

• PDF uncertainties: the uncertainties accounting for the PDF are derived using the PDF4LHC
procedure [70] and the NNPDF3.1 PDF sets.

• ISR and FSR in parton shower: two uncertainty sources accounting for the ISR and FSR in the
parton shower by pythia are handled in the same way as described in section 6.1.2.

• Jet mass scale and resolution: two sources of uncertainty for the jet mass scale and resolution
are propagated to the SF measurement. They account for the simulation-to-data discrepancy in
the modelling of 𝑚PNet, and are measured using hadronically decaying, boosted W boson jets
selected in a dedicated tt-enriched phase space. The uncertainty in the jet mass scale is < 1%.
The relative uncertainty in the jet mass resolution is around 5%.

• Jet energy scale and resolution: two sources of uncertainties for the jet energy scale and
resolution are propagated to the SF measurement as described in section 6.1.2.

• Trigger efficiency: the overall uncertainty is calculated by taking the statistical uncertainty of
the trigger efficiency measurement, less than 1%, to which an additional 1% is included. The
latter corresponds to the jet energy scale uncertainties of the efficiency measurement.

• Integrated luminosity: the uncertainty in the integrated luminosity for different years ranges
from 1.2% to 2.5%. [62–64].

• Pileup reweighting: the uncertainty in the pileup reweighting is treated in the same way as
described in section 6.1.2.
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Table 3. Breakdown of the contributions to the total uncertainty in the fitted scale factor (SF) of the ParticleNet-
MD X → bb discriminant at the high-purity working point, using the boosted Z boson method. The numbers
are averaged over multiple SF derivation points, including all relevant 𝑝T bins and data-taking eras.

Uncertainty source ⟨ΔSF⟩
Statistical 0.354
Theory

ISR and FSR in parton shower 0.081
NLO corrections 0.074
PDF uncertainties 0.019

Experimental
Jet mass scale and resolution 0.033
Jet energy scale and resolution 0.078
Trigger effiency 0.020
Integrated luminosity 0.036
Pileup reweighting 0.007

The boosted Z boson method is used to measure the SFs of the ParticleNet-MD X → bb
discriminants at all WPs, the DeepDoubleX X → bb discriminants at the HP and MP WPs, and
the double-b tagger at the HP WP. For the unmeasured WPs of the three discriminants, the method
cannot converge with reasonable uncertainties because the Z+jets contribution is negligible compared
with the large QCD multijet yield in the “pass” region. Additionally, the DeepAK8-MD X → bb
discriminant is not calibrated with this method since jet 𝑚PNet distributions for the QCD multijet
background differ significantly between the “pass” and “fail” regions. This is due to some residual
mass correlation of this discriminant. The derived SFs are displayed in figures 28–34. It is also
worth noting that the method has limitations in calibrating X → cc discriminants, given the notable
contribution of Z → bb jets after applying a X → cc discriminant WP selection. Therefore, the
method is only used for the X → bb discriminants.

Since the method extracts the yields of both the Z → bb signal and the QCD multijet background,
we can measure the signal efficiency versus the mistag rate. Figure 27 shows the ROC curve of
the ParticleNet-MD X → bb discriminant, obtained in simulation and the three WPs measured
in data. The uncertainty in the measured mistag rate is much lower than the uncertainty in the
measured signal efficiency due to the large QCD background in both the “pass” and “fail” regions.
The uncertainty in the measured signal efficiency is larger for the LP WP because of the lowering
of the signal-to-background ratio in the “pass” region.

6.4 Combination of measured scale factors

In previous sections, individual SFs for X → bb and X → cc tagging efficiencies, measured from
the sfBDT method, the 𝜇-tagged method, and the boosted Z boson method, have been presented.
The sfBDT and 𝜇-tagged methods are employed to derive the full set of tagging efficiency SFs,
whereas the boosted Z boson method provides measurements for a subset of the X → bb tagging
SF derivation points. In this section, a combination of the available measurements is performed
for the SFs at each derivation point. The combination is a weighted average taking into account
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Figure 27. Receiver operating characteristic (ROC) curve of the ParticleNet-MD X → bb discriminant
obtained from simulation (blue), under 2018 data-taking conditions with 𝑝T > 450 GeV. The high-purity (HP),
medium-purity (MP), and low-purity (LP) working points are indicated by filled circles for simulation and
hollow circles for data. The error bars represent the statistical uncertainties in observed data.

the full covariance matrix for the uncertainties using the best linear unbiased estimator (BLUE)
method [71]. As adopted in the combination of AK4 SFs for b and c jets [1], the BLUE method
is extended to fit all the jet 𝑝T bins simultaneously, providing a more comprehensive treatment of
bin-to-bin correlations for the systematic uncertainties [72].

For the combination of AK8 SFs, the common systematic uncertainties shared by the three
measurements are treated as fully correlated. These systematic uncertainties include the ISR and FSR
uncertainty in parton shower, the jet energy scale and resolution, the integrated luminosity uncertainty,
and the uncertainty from pileup reweighting. The sfBDT method and the 𝜇-tagged method, both
based on QCD proxy jets, include uncertainties in the fraction of the b, c, and light-flavour jets.
These three systematic uncertainty sources are considered correlated between the two methods. Other
uncertainty sources that are specific to an individual measurement are treated as fully uncorrelated.
Since the phase space of the proxy definitions of the three methods is largely orthogonal, the statistical
uncertainty in data is also considered fully uncorrelated. The result of the combination is also shown
in figures 28–34. The derived SFs are presented on the basis of the tagger discriminant at certain
WPs. Each plot summarizes the SF results under the four data-taking eras for three exclusive 𝑝T bins,
obtained from the measurements from two or three methods. For each SF derivation point, available
individual SFs from either two or three measurements are combined via the BLUE method.

The derived SFs from the two or three methods, as well as the combined SF, lead to several findings.
When comparing multiple tagger discriminants, better agreement between data and simulated events
is observed with the ParticleNet-MD and DeepDoubleX discriminants, whereas the DeepAK8-MD
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Figure 28. The measured scale factors of the ParticleNet-MD X → bb discriminant in the high-purity
(left), medium-purity (middle), and low-purity (right) working points. Three methods are presented in the
measurements: the sfBDT method, the 𝜇-tagged method, and the boosted Z boson method. The combined
measurements from available methods are also shown.
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Figure 29. The measured scale factors of the DeepDoubleX X → bb discriminant in the high-purity
(left), medium-purity (middle), and low-purity (right) working points. Three methods are presented in the
measurements: the sfBDT method, the 𝜇-tagged method, and the boosted Z boson method. The combined
measurements from available methods are also shown.
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Figure 30. The measured scale factors of the DeepAK8-MD X → bb discriminant in the high-purity (left),
medium-purity (middle), and low-purity (right) working points. Two methods are presented in the measurements:
the sfBDT method and the 𝜇-tagged method. The combined measurements from available methods are
also shown.
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Figure 31. The measured scale factors of the double-b X → bb discriminant in the high-purity (left), medium-
purity (middle), and low-purity (right) working points. Three methods are presented in the measurements: the
sfBDT method, the 𝜇-tagged method, and the boosted Z boson method. The combined measurements from
available methods are also shown.
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Figure 32. The measured scale factors of the ParticleNet-MD X → cc discriminant in the high-purity
(left), medium-purity (middle), and low-purity (right) working points. Two methods are presented in the
measurements: the sfBDT method and the 𝜇-tagged method. The combined measurements from available
methods are also shown.
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Figure 33. The measured scale factors of the DeepDoubleX X → cc discriminant in the high-purity (left),
medium-purity (middle), and low-purity (right) working points. Two methods are presented in the measurements:
the sfBDT method and the 𝜇-tagged method. The combined measurements from available methods are
also shown.
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Figure 34. The measured scale factors of the DeepAK8-MD X → cc discriminant in the high-purity (left),
medium-purity (middle), and low-purity (right) working points. Two methods are presented in the measurements:
the sfBDT method and the 𝜇-tagged method. The combined measurements from available methods are
also shown.

discriminant generally yields SFs that are systematically lower than unity. This observation is supported
by the data and simulation distributions depicted in figures 13–16 and 20–23.

For all three methods, the uncertainties in the SFs are dominated either by method-specific
systematic sources or by statistical uncertainties, which are uncorrelated across the different methods.
When considering all methods collectively, consistent results are found among the available approaches
within their respective uncertainties. The sfBDT and 𝜇-tagged methods exhibit smaller uncertainties
compared with the boosted Z boson method, which extracts the signal from a predominantly QCD
multijet background and is largely constrained by statistical limitations. Furthermore, the sfBDT
method generally yields larger SFs than the 𝜇-tagged method. This difference can be attributed, in part,
to systematic effects arising from the distinct phase space probed by the two methods. The observed
trend in SF divergence is supported by the comparison of figures 20–23 with 13–16, based on the
data-to-simulation ratio in the high-discriminant-score region. Given that the sfBDT and 𝜇-tagged
methods perform calibration in two distinct regions of phase space, their combination can mitigate
the systematic bias in scale factors introduced by each specific method.

The results presented in this paper are compared with earlier corresponding measurements by
the CMS Collaboration using Run 2 data. For the double-b tagger, the extracted efficiency SFs are
consistent with those reported in ref. [1] for 2016 data, with central SF values being close to unity. The
uncertainty reported in this work is larger, primarily due to the inclusion of new external uncertainty
sources considered in both the sfBDT and the 𝜇-tagged methods. These uncertainties are introduced
to account for the calibration of taggers with improved discrimination power for H → bb against
g → bb jets. The estimation strategies for these uncertainties are relatively conservative and contribute
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significantly to the overall uncertainty in the SFs. When compared with the ParticleNet-MD X → cc
and DeepDoubleX X → cc SFs presented in refs. [13, 14, 58] derived for all conditions in Run 2,
reasonable agreement is observed regarding the central SFs, the SF dependence on the year of data
taking, and the level of uncertainties. Overall, the methods summarized in this paper provide a unified
framework for deriving SFs across all detector conditions and tagger discriminants, including those
with substantial discrimination power between the signal and the QCD multijet background.

7 Summary

This paper presents the performance of heavy-flavour X → bb and X → cc jet tagging algorithms
in the boosted topology, with a focus on the performance of various taggers in simulation and the
calibration of tagging efficiencies using data collected by the CMS detector during the 2016–2018
data-taking period (LHC Run 2). With the boosted topology gaining increasing relevance in physics
searches during Run 2, the development of dedicated jet-tagging techniques and robust calibration
methods for taggers on data has become increasingly important.

In this paper, we first provide a complete review and a comparison of X → bb and X → cc
tagging algorithms, which were developed by the CMS Collaboration for analyzing Run 2 data and
have been used for various physics measurements. These algorithms include the ParticleNet-MD,
DeepDoubleX, DeepAK8-MD, and the double-b tagging algorithms. Three methods for evaluating the
performance of the algorithms on data, in terms of deriving the scale factors to correct the selection
efficiency of simulated X → bb and X → cc jets, are presented in detail. The three methods define
the proxy jets based on (1) a novel phase space selected from gluon-splitting bb and cc jets via a
dedicated boosted decision tree discriminant; (2) gluon-splitting bb and cc jets containing a soft
muon, with an auxiliary selection on the 𝑁-subjettiness variable; and (3) boosted Z → bb jets for
representing the X → bb signal jet. The phase space of the selected proxy jets is largely orthogonal
across the methods, which enables a meaningful comparison of their calibration results. Scale factors
and their uncertainties are derived for all working points of the seven tagging discriminants developed
for X → bb and X → cc tagging. These scale factors are presented both individually and in a
combined form, obtained using the best linear unbiased estimator method.

A reasonable agreement is found when comparing the results with previous CMS studies, which
calibrated some of the discriminants studied in this work, either partially or under full Run 2 conditions.
Additionally, the scale factors presented by the three methods remain consistent within the uncertainty
range. Their combination provides the highest measurement precision for the scale factor while
also reducing the systematic biases inherent to each individual method. The tagging algorithms
and calibration approaches documented in this paper serve as a comprehensive summary and are
considered as benchmarks for the techniques adopted by the CMS Collaboration during Run 2. These
outcomes will facilitate further in-depth studies and wider experimental explorations of the boosted
phase space with heavy-flavour tagging in the future.
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