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Abstract

A search for pseudoscalar or scalar bosons decaying to a top quark pair (tt) in final
states with one or two charged leptons is presented. The analyzed proton-proton col-
lision data was recorded at

√
s = 13 TeV by the CMS experiment at the CERN LHC

and corresponds to an integrated luminosity of 138 fb−1. The invariant mass mtt of
the reconstructed tt system and variables sensitive to its spin and parity are used to
discriminate against the standard model tt background. Interference between pseu-
doscalar or scalar boson production and the standard model tt continuum is included,
leading to peak-dip structures in the mtt distribution. An excess of the data above the
background prediction, based on perturbative quantum chromodynamics (QCD) cal-
culations, is observed near the kinematic tt production threshold, while good agree-
ment is found for high mtt . The data are consistent with the background prediction if

the contribution from a simplified model of a color-singlet 1S[1]0 tt quasi-bound state
η t , inspired by nonrelativistic QCD, is added. Upper limits at 95% confidence level
are set on the coupling between the pseudoscalar or scalar bosons and the top quark
for boson masses in the range 365–1000 GeV, relative widths between 0.5 and 25%,
and two background scenarios with or without η t contribution.
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1 Introduction
The observation of a Higgs boson with mass of 125 GeV by the ATLAS and CMS Collabora-
tions in 2012 [1–3] confirmed the existence of an elementary spin-0 state, a crucial ingredient of
the standard model (SM) of particle physics. While only one such state is required in the SM,
many beyond-the-SM (BSM) extensions predict additional spin-0 states, such as two Higgs
doublet models (2HDMs) [4] and models predicting a new electroweak pseudoscalar or scalar
singlet [5], including models with a combination of a Higgs doublet and such singlet(s) [6].
These additional bosons may also provide a portal to dark matter by acting as mediators be-
tween SM and dark matter particles [7, 8]. The new states introduced in these BSM extensions
usually include pseudoscalar (CP-odd) neutral bosons, scalar (CP-even) neutral bosons, and
charged bosons. We use the symbol A to denote pseudoscalar neutral states, H for scalar neu-
tral states not identified as the one with a mass of 125 GeV, and Φ as a common symbol to refer
to either A or H bosons.

As the heaviest elementary particles, top quarks have a pivotal role in the search for BSM
physics, serving as sensitive probes. Provided that additional Φ bosons couple to fermions
via a Yukawa interaction with coupling strength proportional to the fermion mass, Φ bosons
with mass larger than twice the top quark mass mt may decay to a top quark pair (tt) as the
dominant channel. This is true especially for A bosons with suppressed decays to weak vector
bosons due to CP symmetry, as well as for H bosons in 2HDMs in the vicinity of the alignment
limit [9].

In this paper, we consider a Yukawa-like coupling between Φ bosons and top quarks. The
corresponding terms in the Lagrangian for the two CP eigenstates are:

LYukawa,A = igAtt
mt

v
tγ5t A, LYukawa,H = −gHtt

mt

v
tt H, (1)

where gΦtt ≥ 0 is the real-valued coupling strength modifier and v is the vacuum expectation
value of the SM Higgs field. We probe Φ boson masses mΦ in the range 365 < mΦ < 1000 GeV
and total widths ΓΦ relative to mΦ in the range 0.5 < ΓΦ /mΦ < 25%.

The production of Φ bosons is dominated by the gluon fusion process via a top quark loop,
followed by a decay into a tt pair, as illustrated in Fig. 1 (left). This process interferes with SM
tt production through gluon fusion, an example of which is depicted in Fig. 1 (right). While the
pure Φ resonance component results in a Breit–Wigner peak in the tt invariant mass (mtt ) dis-
tribution, the interference terms may be either destructive or constructive, with the shape and
magnitude of the mtt distribution depending on the phase space region under consideration,
the specific signal model, and the types of particles that appear in the loop of the production
diagram [10, 11]. In general, the sum of the components produce a peak-dip structure in the
mtt distribution [12–16], which is shown in Fig. 2 for two example choices of mΦ and ΓΦ .
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Figure 1: Example Feynman diagrams for the signal process (left) and for SM tt production
(right).
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Figure 2: Differential cross section of tt production at parton level as a function of mtt , shown
as difference between various BSM scenarios and the SM prediction. Shown are the cases
of a single A (red) or H (blue) boson for two example configurations: mΦ = 400 GeV and
ΓΦ /mΦ = 5% (left), or mΦ = 800 GeV and ΓΦ /mΦ = 10% (right), with gΦtt = 1 in both cases.
Separately shown are the cases where only the resonant Φ → tt contribution is added to the
SM prediction (dashed), where only the interference between SM and Φ boson contributions is
added (dotted), and where both contributions are added (solid). The distributions have been
calculated using MADGRAPH5 aMC@NLO as described in Section 3.

Decays of the A and H bosons produce tt systems in the 1S0 and 3P0 states, respectively [14].
The SM tt production comprises a mixture of spin states, with their relative contributions vary-
ing as a function of the partonic center-of-mass energy. Due to the short lifetime of top quarks,
the information about their spin and polarization states is preserved in the angular distribu-
tions of their decay products [17–19]. Therefore, in addition to analyzing the mtt distribution,
we utilize angular observables to investigate the differences in the tt spin states between signal
and background processes.

In the SM, tt production is described by quantum chromodynamics (QCD). State-of-the-art
cross section predictions rely on fixed-order (FO) perturbative QCD (pQCD) calculations and
include electroweak (EW) corrections. An additional enhancement of tt production below the
kinematic threshold is predicted in nonrelativistic QCD, dominated by the production of color-
singlet tt quasi-bound states (toponium) [20–25]. We account for this effect by using a simpli-
fied model of the production of the color-singlet pseudoscalar quasi-bound state 1S[1]0 , referred
to as η t [25].

This paper describes a search for pseudoscalar and scalar bosons produced in proton-proton
collisions at

√
s = 13 TeV and decaying to tt. The analyzed data were recorded using the

CMS detector at the CERN LHC in 2016–2018 and corresponds to an integrated luminosity of
138 fb−1 [26–28]. The single-lepton (ℓj) and dilepton (ℓℓ) channels are considered, correspond-
ing to the tt → bbWW → bbℓνjj and bbℓνℓν decay chains of the tt system, respectively.
Events in the ℓj channel are selected with exactly one electron or muon and at least three jets
(at least two of which are b tagged), and in the ℓℓ channel with exactly two oppositely charged
leptons (electrons and/or muons) and at least two jets (at least one of which is b tagged). The
top quark four-momenta are estimated using kinematic reconstruction algorithms and the re-
sulting mtt distribution together with additional observables sensitive to the spin state of the tt
system are used to search for Φ bosons.

The data are interpreted in terms of Φ boson production, quantified via the coupling gΦtt for
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given values of mΦ and ΓΦ , in three signal configurations: one A boson, one H boson, or both
of them. A combined maximum likelihood fit to all channels is used to extract the signals. Two
different background scenarios are investigated: one consists of FO pQCD predictions alone,
and the other includes η t production as part of the background.

Near the tt threshold, there is an excess of the data with respect to the background predicted
in FO pQCD alone, with a structure that favors an additional pseudoscalar contribution [29].
In Ref. [29], the companion paper to this publication, we perform an identical analysis to the
one presented in this paper in the ℓℓ channel only, to demonstrate that the observed excess can
be explained by η t production without the need for BSM A boson contributions. We note that
the current experimental resolution does not allow for a significant distinction between the η t
and the A boson production scenarios, nor any potential mixtures of both, if the A boson is
produced sufficiently close to the tt production threshold with a width of ∼5% or less.

This search updates a similar analysis performed by the CMS experiment using 35.9 fb−1 of
data collected in 2016, where a moderate signal-like deviation compatible with A boson pro-
duction with a mass of 400 GeV was found [30], without inclusion of any contribution from tt
bound states as background. Searches for Φ → tt have also been performed by the ATLAS ex-
periment using 20.3 fb−1 of

√
s = 8 TeV data [31] and 140 fb−1 of

√
s = 13 TeV data [32], where

no significant deviations from the FO pQCD prediction were observed. A detailed discussion
on the differences of this result and Ref. [32] is provided in Ref. [29].

2 The CMS detector and event reconstruction
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detec-
tors. Muons are reconstructed using gas-ionization detectors embedded in the steel flux-return
yoke outside the solenoid. More detailed descriptions of the CMS detector, together with a
definition of the coordinate system used and the relevant kinematic variables, can be found in
Refs. [33, 34].

Events of interest are selected using a two-tiered trigger system. The first level (L1), composed
of custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a fixed latency of about 4 µs [35]. The second
level, known as the high-level trigger, consists of a farm of processors running a version of the
full event reconstruction software optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage [36, 37].

The primary vertex (PV) is taken to be the vertex corresponding to the hardest scattering in
the event, evaluated using tracking information alone, as described in Section 9.4.1 of Ref. [38].
The particle-flow (PF) algorithm [39] aims to reconstruct and identify each individual particle
in an event, with an optimized combination of information from the various elements of the
CMS detector. The reconstructed particles are referred to as PF candidates in the following. The
energy of photons is obtained from the ECAL measurement. The energy of electrons is deter-
mined from a combination of the electron momentum at the PV as determined by the tracker,
the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung pho-
tons spatially compatible with originating from the electron track. The energy of muons is
obtained from the curvature of the corresponding track. The energy of charged hadrons is de-
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termined from a combination of their momentum measured in the tracker and the matching
ECAL and HCAL energy deposits, corrected for the response function of the calorimeters to
hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding
corrected ECAL and HCAL energies.

For each event, hadronic jets are clustered from the PF candidates using the infrared and
collinear safe anti-kT algorithm [40, 41] with a distance parameter of 0.4. Jet momentum is
determined as the vectorial sum of all particle momenta in the jet, and is found from simu-
lation to be, on average, within 5–10% of the true momentum over the entire transverse mo-
mentum (pT) spectrum and detector acceptance. Additional proton-proton interactions within
the same or nearby bunch crossings (pileup) can contribute additional tracks and calorimetric
energy depositions to the jet momentum. To mitigate this effect, charged particles identified to
be originating from pileup vertices are discarded and an offset correction is applied to correct
for remaining contributions [42]. Jet energy corrections are derived from simulation to bring
the measured response of jets to that of particle level jets on average. In situ measurements
of the momentum balance in dijet, photon+jet, Z+jet, and multijet events are used to account
for any residual differences in the jet energy scale between data and simulation [43]. The jet
energy resolution amounts typically to 15–20% at 30 GeV, 10% at 100 GeV, and 5% at 1 TeV [43].
Additional selection criteria are applied to each jet to remove jets potentially dominated by
anomalous contributions from various subdetector components or reconstruction failures [42].
To be considered in the data analysis, jets are required to satisfy |η| < 2.4, to have pT > 30
(20) GeV in the ℓj (ℓℓ) channel, and to be separated by ∆R =

√
(∆η)2 + (∆ϕ)2 > 0.4 from any

selected lepton, where ∆η and ∆ϕ are the η and azimuthal angle differences between the lepton
and jet, respectively.

Jets originating from b quarks are identified with the DEEPJET algorithm [44–46]. The used
working point has a selection efficiency for b quark jets of about 77%, and a misidentification
rate of 15% for c quark jets and of 2% for light-quark and gluon jets (considered together and
referred to as light jets in the following), as evaluated in simulated tt samples. Differences be-
tween data and simulation in the b tagging efficiency and misidentification rate are accounted
for by scale factors that depend on the jet pT and η.

Electrons are measured in the range |η| < 2.5 as energy deposits in the ECAL matched to a
track. The momentum resolution for electrons with pT of around 45 GeV from Z → ee decays
ranges from 1.6 to 5%. It is generally better in the barrel region than in the endcaps, and also
depends on the bremsstrahlung energy emitted by the electron as it traverses the material in
front of the ECAL [47, 48]. Only electrons with |η| < 2.4 and pT > 20 GeV are considered in
the analysis. In the ℓℓ channel, well-identified electron candidates are selected using identifi-
cation criteria based on boosted decision trees with a working point targeting a 90% efficiency,
with a misidentification rate of 1 and 3% in the barrel and endcap regions, respectively [47].
In the ℓj channel, well-identified electrons are selected using the “tight” working point of the
identification criteria based on sequential requirements, with an additional requirement of be-
ing consistent with originating from the PV [47]. The efficiency of the “tight” working point
is about 70%, with a misidentification rate of 1 and 2% in the barrel and endcap regions, re-
spectively. Furthermore, the “veto” working point of the same sequential-requirements-based
identification criteria is used to define a sample of loosely identified electrons used to veto
events in the ℓj channel. All three employed sets of electron identification criteria are described
in detail in Ref. [47].

Muons are measured in the range |η| < 2.4, with detection planes made using three technolo-
gies: drift tubes covering the barrel region, cathode strip chambers covering the endcap region,



5

and resistive-plate chambers covering both the barrel and endcap regions. Matching muons
to tracks measured in the silicon tracker results in a relative pT resolution, for muons with pT
up to 100 GeV, of 1% in the barrel and 3% in the endcaps; and of <7% in the barrel for muons
with pT up to 1 TeV. Only muons with pT > 20 GeV are considered in the analysis. For use
in the main event selection, well-identified muon candidates are required to pass the “tight”
working point of the identification criteria described in Ref. [49]. The selection efficiency of
well-identified muons, together with the isolation requirements described below, is 75–85%.
The misidentification rate for well-identified muons is 0.1–0.3%, and the probability to incor-
rectly label muons within jets as isolated is 5–15%. Loosely identified muons are those passing
the “loose” working point of the identification criteria [49], and are used in the ℓj channel to
veto events.

Lepton candidates are required to be isolated from other activity in the event. The relative
isolation Irel is calculated as the pT sum of charged-hadron, neutral-hadron, and photon PF
candidates inside a cone of ∆R = 0.4 around the lepton, divided by the lepton pT. An es-
timated contribution from pileup is subtracted in this calculation [47, 49]. In the ℓj channel,
well-identified muons are required to have Irel < 0.15, while loosely identified muons are re-
quired to have Irel < 0.25. The same criteria of Irel < 0.25 are used for well-identified muons in
the ℓℓ channel, where separate collections of loosely identified leptons are not introduced. For
electrons, isolation requirements are already included in the identification criteria defined in
Ref. [47]. Scale factors that depend on the lepton pT and η are used to correct the simulation for
small differences in lepton trigger, identification, and isolation efficiency with respect to data.

The missing transverse momentum vector p⃗ miss
T is computed as the negative vector sum of

the transverse momenta of all the PF candidates in an event, and its magnitude is denoted as
pmiss

T [50]. The p⃗ miss
T is modified to account for corrections to the energy scale of the recon-

structed jets in the event.

3 Data and simulated event samples
The analyzed data were recorded in 2016–2018 using triggers that require the presence of a
single isolated electron or muon, or the presence of two such leptons including all possible
flavor combinations. Four independent data-taking eras are considered: 2016pre (19.5 fb−1),
2016post (16.8 fb−1), 2017 (41.5 fb−1), and 2018 (59.8 fb−1). The 2016 data set is split into two
eras because of a modification of the APV strip tracker readout chip settings that affects the
efficiency of the track hit reconstruction during the 2016 data-taking period [51], where the
identifiers “pre” and “post” refer to the periods before and after this modification. The 2016pre,
2016post, and 2017 eras are also affected by an inefficiency caused by the gradual shift in the
timing of the inputs to the ECAL L1 trigger in the regions |η| > 2.0 [35]. Correction factors are
computed from data and applied to the acceptance evaluated by simulation to account for this
effect.

In order to compare the collected data to theoretical predictions, Monte Carlo (MC) samples are
produced with events simulating the signal and background processes. Various programs are
used to evaluate matrix elements (MEs) and generate events at parton level. In all cases, the
generators employ the next-to-next-to-leading order (NNLO) NNPDF3.1 parton distribution
functions (PDFs) [52] and are interfaced with PYTHIA 8.240 [53] for fragmentation and hadroni-
zation using the CP5 underlying event tune [54, 55]. The nominal value of mt is set to 172.5 GeV
in all samples involving top quarks, as well as in the computation of theoretical corrections that
are applied to them. The simulated events are processed through the CMS detector simulation



6

based on the GEANT4 program [56]. Separate MC samples are generated corresponding to the
data-taking conditions of each of the four eras. Pileup interactions are generated with PYTHIA

and overlaid in all samples. The simulated events are weighted to reproduce the distribution
of the number of pileup interactions observed in data, assuming a total inelastic cross section of
69.2 mb. On average, there are 23 collisions per bunch crossing in 2016 data and 32 in 2017–2018
data [42].

The Φ → tt signal process is simulated at leading-order (LO) accuracy using a custom model
in the MADGRAPH5 aMC@NLO 2.6.5 event generator [57]. It implements the full kinematics
of the top quark loop of the gluon fusion production, including finite mt effects, via a form
factor that is implemented as an effective coupling between the Φ bosons and gluons [58].
Event samples are produced for different mΦ and ΓΦ /mΦ values, such that a good coverage
throughout the region of phase space probed in this search is obtained. They are reweighted
to target signal hypotheses by the event-by-event ratios of the squared MEs of the target signal
hypothesis and the one used in the original event simulation. The target signal hypotheses
in this search are mΦ values of 365, 380, and 400–1000 GeV (in steps of 25 GeV), and ΓΦ /mΦ
values of 0.5–3 (in steps of 0.5), 4–8 (in steps of 1), 10, 13, 15, 18, 21, and 25%. We use the
notation “A/H(400, 3%)” to refer to Φ bosons of a particular CP eigenstate, mΦ in GeV, and
ΓΦ /mΦ . The factorization and renormalization scales, µF and µR, are set on an event-by-event
basis to mtt /2, following the choice in Ref. [59]. The top quarks from the Φ boson decay are
further decayed in MADGRAPH5 aMC@NLO, preserving their spin correlations.

Separate samples are generated for events corresponding to resonant Φ boson production, and
for events corresponding to interference terms in the ME calculation between Φ boson and
FO pQCD tt background production. Events in the interference samples can receive negative
weights, reflecting the sign of the corresponding part of the squared ME in the presence of a
destructive interference. Since the Φ boson is produced via gluon fusion with a top quark loop,
the Φtt coupling appears twice in the ME. As a result, events originating from the resonance
ME terms correspond to a cross section proportional to g4

Φtt , while those from interference
correspond to a cross section proportional to g2

Φtt .

We calculate cross sections for resonant Φ boson production at NNLO accuracy in pQCD with
the SUSHI 1.7.0 program [60, 61] in the context of Type-II 2HDM models, where the 2HDMC

program [62] is used to calculate the remaining model parameters for a given signal hypothesis.
The coupling modifiers of the Φ bosons to bottom and charm quarks are set to zero. The ratio
of the NNLO cross section to the LO cross section calculated with MADGRAPH5 aMC@NLO is
used as a K factor to normalize the resonant part of the signal samples, with typical values
around 2.

For the interference component of the signal samples, we apply K factors corresponding to
the geometric mean of those applied to the resonant signal and the FO pQCD tt process [59].
Here, the FO pQCD tt production K factor is calculated as the ratio between the tt cross section
at NNLO in pQCD with next-to-next-to-leading logarithmic (NNLL) soft-gluon resummation,
as described below, and at LO in pQCD with leading logarithmic resummation. The nominal
value of this K factor is 1.49, and is within 1.42 and 1.55 for different mt values and scale choices
used in the computation. For the H signal, we have compared the resonance and interference K
factors with a recent explicit next-to-LO (NLO) calculation in the scope of a one-Higgs-singlet
extension of the SM in Ref. [63]. We find good agreement for the resonance component and sig-
nificant differences of about 20% for the interference component. However, we have verified
that this discrepancy does not significantly alter the conclusions of this work by performing
alternative fits using the updated K factors for the interference component, and obtaining com-
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patible exclusion regions as those reported in Section 8. All K factors derived in this analysis
are available in Ref. [64].

The η t contribution is implemented as a generic resonance in the MADGRAPH5 aMC@NLO

2.6.5 event generator at LO accuracy in pQCD using a custom simplified model obtained from
Ref. [25]. The model is similar to the one used for the Φ → tt signal generation, although
its effective gluon-pseudoscalar coupling is implemented as an effective contact interaction in-
stead of via the top quark loop. Samples of resonant η t → WbWb events are produced to allow
contributions from off-shell top quarks. The η t mass and width are set to 343 and 7 GeV, respec-
tively, following Ref. [25], corresponding to the expectation that the toponium mass is twice mt
minus a binding energy of about 2 GeV. A restriction to |mWbWb − 343 GeV| < 6 GeV at the gen-
erator level is employed, as recommended in Ref. [25], in order to not influence the high mtt
region which is assumed to be well-described by FO pQCD. Other simulation parameters are
set following the recommendations of the model authors. The version of the model used here
does not include the nonrelativistic Hamiltonian reweighting mentioned in Refs. [25, 65]. This
is expected to have a negligible effect on this analysis, which is performed on reconstructed
distributions, considering that the reweighting has a very small effect on parton-level distri-
butions [66]. The η t sample used in Ref. [29] has been updated compared to the one used in
this work, with the η t width set to 2.8 GeV and removing the generator-level requirement on
mWbWb [67]. At the level of precision of this analysis, and comparing reconstructed distribu-
tions, both η t models are in agreement.

The main background contribution originates from the FO pQCD tt production process, and
is simulated at NLO accuracy in pQCD using the POWHEG v2 generator [68–71]. The µF and
µR scales are set to

√
m2

t + p2
T,t , where mt and pT,t are the mass and pT of the top quarks in

the underlying Born-level configuration. Decays of the top quarks are performed using the
narrow-width approximation [72]. The sample is normalized to the predicted tt production
cross section of 833.9+20.5

−30.0 pb, as calculated with the TOP++2.0 program at NNLO in pQCD, and
including soft-gluon resummation at NNLL order [73]. The quoted uncertainty is derived from
the independent variations of µF and µR, though they are not the only ones that affect the value.
To improve the theoretical description of the FO pQCD tt production process, the sample is
further reweighted differentially to account for NNLO pQCD and NLO EW corrections. The
NNLO pQCD prediction is calculated using a private version of the MATRIX program [74],
and the NLO EW prediction is calculated using the HATHOR 2.1 program [75–80], both with
a nominal scale choice of 0.5

(√
m2

t + p2
T,t +

√
m2

t + p2
T,t

)
. Both predictions are computed at the

level of stable top quarks, using the same PDF set as the POWHEG v2 tt sample. The weights
are applied double-differentially at the generator level as a function of mtt and the cosine of
the angle between the direction of the top quark in the zero-momentum frame (ZMF) of the tt
system and the direction of the tt system in the laboratory frame, cos θ∗t .

Other background events originate from single top quark production (tX), single vector boson
production in association with jets including b jets (Z+jets and W+jets), diboson production
(WW, WZ, and ZZ), tt production in association with a vector boson (referred to as ttV),
and events composed uniquely of jets produced through the strong interaction, referred to
as QCD multijet processes. The single top quark production processes, via the t and s chan-
nels and as tW production, are generated at NLO using POWHEG v2, POWHEG, and MAD-
GRAPH5 aMC@NLO, respectively [81, 82]. The samples are normalized using the NLO cross
section predictions for the t and s channels [79, 83], and approximate NNLO prediction for the
tW channel [84]. The Z+jets process is generated with the POWHEG event generator [69, 70]
with a multi-scale-improved NNLO accuracy in pQCD [85, 86], matched with PYTHIA 8 for
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initial-state radiation (ISR) and the PHOTOS package [87, 88] for final-state radiation (FSR). The
W+jets event samples are generated using MADGRAPH5 aMC@NLO at LO with up to four addi-
tional partons, and the MLM matching scheme [89] is used to combine the different parton mul-
tiplicities. The single vector boson production cross sections are calculated at NNLO [90, 91].
However, in the ℓℓ channel, the normalization of the Z+jets contribution is directly determined
from a control region in data. Events simulating the diboson processes are generated using
PYTHIA and normalized to the respective NNLO (WW) [92] or NLO (WZ and ZZ) [93] cross
sections. For the WW process, we checked that explicitly simulating nonresonant WWbb pro-
duction, which leads to the same final state as tt production, does not change the results of this
work. The ttV events are generated at NLO with MADGRAPH5 aMC@NLO, and are normal-
ized using NLO cross section predictions. The MC@NLO matching scheme [94] is used for the
ttW samples, while the FxFx matching scheme [95] is used for the ttZ samples. Finally, the
QCD multijet events are simulated with PYTHIA.

4 Data analysis in the ℓj channel
Events that contain exactly one well-identified lepton (as defined in Section 2) with pT >
30 GeV are selected for further analysis in the ℓj channel. For data recorded during 2018 and
most of 2017, except for an early period, a higher threshold of pT > 34 GeV is applied if the
lepton is an electron, in order to account for higher trigger-level thresholds. Events containing
additional loosely identified leptons (as defined in Section 2) with pT > 20 GeV are rejected.
Events are required to contain at least three jets with pT > 30 GeV, of which at least two are
required to be b tagged. This event selection is referred to as signal region (SR).

4.1 Kinematic reconstruction

Each selected event is reconstructed under the assumption of tt pair production with one lep-
tonically and one hadronically decaying W boson from the top quark decays. The first step is
to determine the neutrino four-momentum based on the measured pmiss

T , and the second step
is to assign jets to the final-state quarks. Different procedures are followed for events with at
least four or exactly three jets, as described below.

The neutrino four-momentum pν is reconstructed with the algorithm described in Ref. [96],
separately using each b jet in the event as candidate for the b accompanying the leptonically
decaying W boson. Mass constraints of the W boson and leptonically decaying top quark are
formulated, and for each b jet candidate the pν that satisfies these constraints and minimizes
the distance Dν = |pmiss

T − pν
T| is used as the solution [96]. If no solution is found for any b jet,

the event is rejected.

For events with four or more jets, a likelihood function is constructed using the product of the
probability density of the minimal Dν and the two-dimensional probability density of the in-
variant masses of the hadronically decaying top quark and W boson. The probability densities
are evaluated from simulated events in which all jets are correctly identified. All possible as-
signments of jets to the four final-state quarks are evaluated, provided that only b-tagged jets
are assigned as b and b quark candidates. The best jet assignment is the one that maximizes
this likelihood.

For events with exactly three jets, the techniques described in Ref. [97] are applied. The like-
lihood function is constructed using the product of the probability density of the minimal Dν

and the probability density of the invariant mass of the two jets assigned as originating from
the hadronically decaying top quark. As with the case of four or more jets, the best assignment
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is the one that maximizes this likelihood. There are two typical cases of tt events that only
have three jets. The first and more common case is when one or more quarks from the tt decay
lie below the pT threshold or outside of the detector acceptance, which we refer to as lost-jet
events. The second case typically occurs in the high-momentum regime, where the angular
separation between the top quark decay products are lower, leading to multiple quarks being
clustered into one jet. These events are referred to as partially merged events. Once the best
jet assignment is identified, a correction is applied to the four-momentum of the hadronically
decaying top quark as a function of its reconstructed mass. The correction factor, which is de-
rived using simulation as described in Ref. [97], is larger for lost-jet events and is close to one
for partially merged events, since a significant energy loss is expected only in the former case.

In events where the required tt decay products, i.e., the lepton and either all four or at least
three jets, are inside the detector acceptance and well identified, the correct combination is
found in 74% of events with four or more jets and in 83% of events with three jets. With respect
to all selected tt events, these correspond to rates of 37 and 61%, respectively.

The signal is extracted using two-dimensional (2D) templates built using the mtt and |cos θ∗tℓ |
variables. The angle θ∗tℓ is defined between the reconstructed leptonically decaying top quark in

the ZMF and the direction of the tt system in the laboratory frame, analogously to θ∗t introduced
in Section 3. The spin-0 nature of the signals leads to the top quarks being emitted isotropically
in the tt ZMF, resulting in a flat cos θ∗tℓ distribution at the generator level in the absence of
kinematic selections. The FO pQCD distribution, on the other hand, peaks toward high values
of |cos θ∗tℓ |, due to the contribution from other spin states. As a result, the |cos θ∗tℓ | distribution
will be enriched with signal events at low values.

To assess the precision of the reconstruction algorithm, we compute the relative resolution of
mtt , which is the standard deviation of its relative difference to the generator-level mtt , evalu-
ated in all selected simulated tt events. The resolution is in the range of 8%, for low generator-
level mtt values near the threshold region, to 13% for high generator-level mtt values above
1000 GeV, and it does not strongly depend on the number of jets. Furthermore, the absolute
resolution of |cos θ∗tℓ |, defined similarly as the standard deviation of the absolute difference to
the generator-level value, is found to be about 0.05 for events with four or more jets and 0.08
for events with three jets.

4.2 Background estimation

The background in the ℓj channel is estimated from MC simulation for FO pQCD tt and single
top quark production, as well as for η t production, as described in Section 3. QCD multijet pro-
duction and EW processes (mostly W+jets and small contributions from Z+jets, diboson, and
ttV production) are estimated using a control region (CR) in data with the same selection crite-
ria as for the SR except for requiring that none of the selected jets is b tagged. The background
distributions are obtained by subtracting the simulated single top quark and tt contributions
from the data in the CR. The ratio of simulated background events in the SR and CR is applied
as a normalization factor to the obtained background distributions. This procedure has been
validated in simulation, and the kinematic distributions obtained from the CR are compatible
with those in the SR.

The result of the kinematic reconstruction and background estimation is shown in Fig. 3, show-
ing the reconstructed hadronically decaying top quark mass for events with four or more jets
as well as the pT of the tt system for events with exactly three jets.
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Figure 3: Comparison of the number of observed (points) and expected (colored histograms)
events in the ℓj channel after the kinematic reconstruction and background estimation for the
distributions of the reconstructed hadronic top quark mass mhad

t in the region with four or more
jets (left) and the pT of the tt system in the region with exactly three jets (right). The ratio to the
total prediction is shown in the lower panel, and the total systematic uncertainty is shown as
the gray band.

5 Data analysis in the ℓℓ channel
In the ℓℓ channel, events are selected that contain exactly two oppositely charged well-iden-
tified leptons, one with pT > 25 GeV and the other with pT > 20 GeV. Events are rejected if
they contain additional well-identified electrons or muons with pT > 20 GeV. Furthermore, the
invariant mass mℓℓ of the dilepton pair is required to be larger than 20 GeV, to suppress events
from low-mass dilepton resonances, and for same-flavor pairs to be outside of the Z boson
mass window, 76 < mℓℓ < 106 GeV. To further suppress Z+jets background contributions,
events in the ee and µµ channels are required to have pmiss

T > 40 GeV. In all cases, at least two
jets with pT > 30 GeV are required, and additional jets with pT > 20 GeV are also considered
for further analysis. At least one of these jets is required to be b tagged.

5.1 Kinematic reconstruction

Each selected event is reconstructed under the assumption that the final state consists of a top
quark pair that decays into two leptonically decaying W bosons. A kinematic reconstruction
algorithm [98] consisting of two steps is applied to reconstruct the tt system. First, of all jets in
an event, two are identified as the b and b quark candidates. Second, these two candidates, to-
gether with the two leptons and pmiss

T , are used to determine the t and t quark four-momenta by
applying mass constraints on the W bosons and top quarks, taking into account experimental
resolutions.

To find the best assignment of jets to the b and b quarks, candidate pairs of jets are selected
based on the number of b-tagged jets in the event. For events with two or more b-tagged jets,
only those jets are considered as b and b quark candidates, while for events with exactly one
b-tagged jet, this jet is paired with all other jets in the event. The invariant masses of the vis-
ible top quark decay products mℓ+b and mℓ−b are calculated for each bb candidate pair as
well as each assignment to the b and b quarks, and a likelihood is constructed as the product
of the generator-level probability densities of the two invariant masses, evaluated from simu-
lated events. The candidate pair that maximizes this likelihood is chosen for the next step of
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reconstruction.

Then, a system of equations for the top quark four-momenta is constructed from energy and
momentum conservation as well as additional constraints [99], namely that: (i) the top quark
mass is equal to 172.5 GeV, (ii) the W boson mass is equal to 80.4 GeV, (iii) the two neutrinos
from the W boson decays are the sole source of pmiss

T . These equations, which are polyno-
mials of fourth order, are solved for the neutrino momenta analytically, and the top quark
four-momenta calculated as the vector sum of the decay products. To resolve ambiguities be-
tween the multiple solutions, the one with the lowest reconstructed value of mtt is used, which
minimizes the bias with respect to the true value of mtt [100, 101].

In about 55% of cases, this procedure on its own does not give real solutions for the tt sys-
tem since it does not take into account the detector resolution. To remedy this, the system of
equations is solved 100 times per event with random smearings applied to the energies and
directions of the bb candidates and leptons. These smearings are sampled, respectively, from
distributions of the relative energy difference and angular distance between reconstructed and
generator-level objects, as evaluated in simulated events. The effect of the smearing on the mo-
menta of the bb candidates and leptons is propagated to the measured pmiss

T , by adding to it the
opposite of the total change in momenta along the transverse components due to the smearing.
For all samplings that result in a real solution to the system of equations, weighted averages
of the t and t quark four-momenta are computed over all samplings, with the weight given by
the same likelihood based on mℓ+b and mℓ−b as used for the bb quark candidate assignment.
These averages are then considered as the final result of the reconstruction.

The performance of the tt reconstruction algorithm is studied using simulated FO pQCD tt
events in the ℓℓ final state. The algorithm produces a solution for 90% of the events. In 78% of
these events, at least one b quark jet is correctly assigned, while in 61% both jets are correctly
assigned. The relative mtt resolution, defined similarly as in Section 4, is in the range of 15%,
achieved at low generator-level mtt values near the threshold region, to around 30% at high
generator-level mtt values above 1000 GeV. The average mtt resolution is 23%.

The search is performed by building three-dimensional (3D) templates using mtt and two ob-
servables chel and chan that probe the spin correlations of the tt system. Spin correlation vari-
ables have been discussed in detail in Refs. [17, 67, 102–105], and we follow the coordinate sys-
tem and sign convention of Ref. [103]. The observable chel (referred to as cos φ in Refs. [17, 103]
and − cos θab in Ref. [104]) is defined as the scalar product chel = ℓ̂+t · ℓ̂−t , where ℓ̂+t and ℓ̂−t are
the unit vectors of the momenta of the two leptons in the rest frames of their parent t and t,
respectively, obtained by first boosting the leptons into the tt ZMF and then further boosting
them into the rest frames of their parent top (anti)quarks. The observable chan (identified with
− cos θ′ab in Ref. [104]) is obtained by flipping the sign of the component parallel to the top
quark direction (the k̂ direction in Ref. [103]) for either ℓ̂+t or ℓ̂−t , and then calculating a similar
scalar product. The slopes of both distributions provide sensitivity to the degree of alignment
between the t and t spins. The absolute resolutions of chel and chan as provided by the kine-
matic reconstruction, defined analogously as for |cos θ∗tℓ | in Section 4, are found to be 0.46 for
chel and 0.60 for chan.

At the generator level and with no requirements on acceptance, the distributions of chel and
chan, integrated over the phase space of all other variables, follow a straight line, as shown in
Fig. 4 for SM tt and resonant Φ boson. For chel, the slope is maximally positive for a pseu-
doscalar resonance, due to the resulting tt system being in the 1S0 state with anticorrelated t
and t spins. The slope for the SM tt production is mildly positive, being the weighted average
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of all possible tt spin states reachable by the initial colliding partons. Lastly, the slope of the
scalar resonance is mildly negative, as a consequence of the tt pair being in the 3P0 spin state.
On the other hand, for chan, the slope is mildly positive for a pseudoscalar resonance, approxi-
mately flat for the SM tt production, and maximally negative for a scalar resonance. We further
remark that, at generator level, the chel and chan distributions for A and H resonances have the
same slopes regardless of their mass and width values. The slopes of the SM tt distributions on
the other hand are dependent on mtt —this is because of the change in the relative proportions
of the colliding initial partons as well as their helicity combinations. These features of the chel
and chan distributions, when combined with mtt , allow for discrimination between the signal
and background processes and between the A and H states in a broad range of phase space.
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Figure 4: Normalized differential cross sections in the spin correlation observables chel (left)
and chan (right) at the parton level in the ℓℓ channel, with no requirements on acceptance, for
SM tt production (black solid), resonant A boson production (red dashed), and resonant H
boson production (blue dotted). The corresponding distributions for η t are identical to those
of a A boson.

5.2 Background estimation

All background processes in the ℓℓ channel, namely FO pQCD tt, η t , single top quark, Z+jets,
diboson, and ttV production, are estimated from simulated event samples. Both the ℓℓ and the
ℓj decay channels of tt are considered for the FO pQCD tt sample, and additional misidentified
or nonprompt leptons are included. Contributions from W+jets events with one additional
such lepton or QCD multijet events with two such leptons are found to be small in the ℓℓ
channel and neglected.

In the case of Z+jets production, the total yield of the simulation is corrected using data inside
the Z boson mass window, which is removed in the main event selection, following a modified
version of the procedure described in Ref. [106]. The same selection criteria except for the mℓℓ

requirements are applied to the data inside the Z boson mass window. We assume that there,
the Z+jets contribution is negligible in the eµ channel compared to the ee and µµ channels, and
that other backgrounds contribute equally to the three channels up to a combinatorial factor.
Consequently, we can estimate the Z+jets contribution in data inside the Z boson mass window
by subtracting the data yield in the eµ channel from the data yield in the ee and µµ channels
while correcting for lepton reconstruction efficiencies, thus subtracting out other backgrounds.

Next, to estimate the ratio of the Z+jets contribution inside and outside the Z boson mass win-
dow, denoted as Rin/out, we define a second sideband containing events with no b-tagged jets.
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The ratio in this region, R0b
in/out, can be measured directly by comparing the Z+jets yields in data

inside and outside the Z boson mass window. We then assume the ratio of ratios R≥1b
in/out/R0b

in/out
in the regions with ≥1 and 0 b tags, respectively, to be well-described by simulation, which is
a looser assumption compared to that in Ref. [106]. From this, we can infer R≥1b

in/out, and thus
the total Z+jets yield outside the Z boson mass window, for events with one or more b tags, as
used in the main selection.

The yield is separately estimated for the ee and µµ channels, and used to normalize the sim-
ulated Z+jets contribution. Compared to the yields predicted by simulation, we find the yield
to be 3–12% lower depending on analysis era and channel. For the eµ channel, where the
Z+jets contribution is small, the geometric mean of the ratios to simulation is used. The level
of agreement between data and MC simulation after the kinematic reconstruction and back-
ground estimation is shown in Fig. 5 for mℓb as well as the reconstructed pT of the tt system.
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Figure 5: Comparison of the number of observed (points) and expected (colored histograms)
events in the ℓℓ channel after the kinematic reconstruction and background estimation for the
distributions of the invariant lepton-b jet mass mℓb (left) and the pT of the tt system (right). The
ratio to the total prediction is shown in the lower panel, and the total systematic uncertainty is
shown as the gray band.

6 Systematic uncertainties
Various sources of uncertainty affect the distributions of the observables used in this analysis,
and are implemented as nuisance parameters in the binned maximum likelihood fit described
in Section 7. For each considered experimental and theoretical systematic effect, variations
of the predicted signal and background distributions are evaluated. Uncertainties that affect
only the normalization of a process are modeled using log-normal constraints, as described in
Section 4.2 of Ref. [107]. Gaussian constraints are imposed for all other uncertainties, which
are referred to as shape uncertainties and can include a log-normal-constrained variation of the
overall normalization, by modifying the product of the event acceptance and the cross sections
of the relevant processes. Unless stated otherwise, all uncertainties are evaluated for signal
as well as background processes and treated as fully correlated among the processes, lepton
channels, and eras. The uncertainties are summarized in Table 1, and described in detail in the
following.

The uncertainty in the jet energy scale [43] is evaluated by varying the corresponding correc-
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Table 1: The systematic uncertainties considered in the analysis, indicating in parenthesis the
number of corresponding nuisance parameters in the statistical model (if more than one), the
type (affecting only normalization or also the shape of the search templates), and the affected
physics processes and analysis channels they are applicable to.

Uncertainty (# of parameters) Type Process Channel
Jet energy scale (17) shape all all
Jet energy resolution (4) shape all all
Unclustered pmiss

T (4) shape all all
b tagging heavy-flavor jets (20) shape all all
b tagging light jets (5) shape all all
Single-electron trigger shape all ej
Single-muon trigger (5) shape all µj
Dilepton triggers (12) shape all ee, eµ, µµ

Electron identification (2) shape all ej, ee, eµ

Muon identification (10) shape all µj, eµ, µµ

ECAL L1 trigger inefficiency (3) shape all all
Pileup shape all all
Integrated luminosity (5) norm. all all

Top quark Yukawa coupling shape FO pQCD tt all
EW correction scheme shape FO pQCD tt all
mt shape FO pQCD tt, Φ all
ME µR (5) shape FO pQCD tt, Φ, single t, Z+jets all
ME µF (6) shape FO pQCD tt, Φ, η t , single t, Z+jets all
PS ISR (6) shape FO pQCD tt, Φ, η t , single t, Z+jets all
PS FSR (6) shape FO pQCD tt, Φ, η t , single t, Z+jets all
Color reconnection (2) shape FO pQCD tt all
hdamp shape FO pQCD tt all
PDF (2) shape FO pQCD tt all

Single top quark normalization norm. Single t all
EW+QCD normalization norm. EW+QCD ℓj
EW+QCD shape (20) shape EW+QCD ℓj
ttV normalization norm. ttV ℓℓ

Z+jets normalization norm. Z+jets ℓℓ

Diboson normalization norm. Diboson ℓℓ

tions within their uncertainties, resulting in a total of 17 nuisance parameters that correspond to
the absolute and relative jet energy scales, calibration uncertainties in specific detector regions,
pT balance in dijet or Z+jets events used in the jet energy calibration, and flavor-dependent jet
response split into one source for b quark jets and another for all other. Of these, 12 nuisance
parameters are specific to individual data-taking eras. The uncertainty in the jet energy reso-
lution measured in calibration data is propagated to the scale correction and smearing of the
jet energy resolution in simulation. An uncertainty in the unclustered component of pmiss

T is
computed by shifting the energies of PF candidates not clustered into jets with pT > 15 GeV
according to the energy resolution for each type of PF candidate [50].
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Uncertainties in the scale factors to correct the b tagging efficiency in simulated events are
evaluated by varying them within their respective uncertainties [44], independently for heavy-
flavor (b and c quark) and light jets. We assign 20 nuisance parameters for the heavy-flavor
jet scale factors that correspond to the parton shower (PS) modeling, the presence of leptons
within the jet, the jet energy scale, the number of pileup interactions, and differences between
different SF estimation methods. Of these, 4 nuisance parameters affect individual eras. For
the light jet scale factors, 5 nuisance parameters are assigned, of which 4 affect individual eras.

Uncertainties in the trigger, electron identification, and muon identification scale factors are
considered [47, 49]. For the single-muon trigger and muon identification scale factors, each
uncertainty component is further split into statistical components that are uncorrelated across
eras and a correlated systematic component. The effects of the inefficiency caused by the grad-
ual shift in the timing of the inputs of the ECAL L1 trigger [35] are considered by assigning one
nuisance parameter to each era except 2018, where the effect was not present.

The effective inelastic proton-proton cross section used for pileup reweighting in the simula-
tion is varied by 4.6% from its nominal value. The uncertainty in the integrated luminosity
amounts to 1.6% [26–28] and affects the normalization of all simulated processes. It is split into
5 nuisance parameters with different correlation assumptions between the eras.

The prediction of the FO pQCD tt production is affected by various sources of theoretical un-
certainty. The computation of the NLO EW correction, discussed in Section 3, depends on the
value of the SM top quark Yukawa coupling through interference with diagrams containing
virtual SM Higgs bosons. This coupling is modified with respect to its SM value in many BSM
scenarios relevant to this analysis, and its experimental measurement uncertainty is signifi-
cantly larger than the uncertainty on the top quark mass. Thus, we consider an uncertainty in
the coupling by varying its value by 1.00 +0.11

−0.12, where the range is given by the measurement
reported in Ref. [108]. Furthermore, the uncertainty in the application scheme of the NLO EW
corrections when combined with NNLO pQCD corrections is considered by taking the differ-
ence between the multiplicative and additive approaches of about 1–2%, as recommended in
Ref. [80]. The uncertainty in mt is considered by shifting its value in simulation by ±3 GeV,
and the induced variations are then rescaled by a factor of 1/3 to emulate a more realistic top
quark mass uncertainty of 1 GeV [109]. The effect of the choice of µR and µF in the ME calcula-
tion is evaluated by varying these scales independently by a factor of two up and down. The
effects of the mt , µR, and µF variations on the acceptance and shape of the search templates are
considered at NLO accuracy, while the effects on the overall FO pQCD tt normalization is con-
sidered at NNLO+NNLL accuracy [73, 110]. Decoupling the theoretical nuisance parameters
based on their effects—one each for the acceptance and shape, and one additional parameter
for the overall FO pQCD tt normalization—does not alter the conclusions of this analysis. Un-
like Ref. [29], no additional nuisance parameters comparing the predictions of different ME
and PS programs are assigned to the FO pQCD tt background.

The scales used to evaluate the strong coupling constant αS in the PS simulation of ISR and
FSR are also varied independently by a factor of two up and down. The effect of the un-
certainties in the underlying event tune is estimated by varying the parameters of the CP5
tune [55]. Two uncertainties are assigned for the color reconnection model, with one based
on the “QCD-inspired” model [111], and the other by switching on the early resonance decay
option in PYTHIA 8.240 [112].

The uncertainty in the matching scale between the ME and PS is evaluated by varying the
POWHEG parameter hdamp, which controls the suppression of radiation of additional high-pT

jets. The nominal value of hdamp in the simulation and its variations are 1.58 +0.66
−0.59 mt [113]. The
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uncertainty arising from the choice of the PDF set is evaluated by reweighting the simulated tt
events using 100 replicas of the NNPDF3.1 set. A principal component analysis is performed
on the variations from the PDF replicas to construct base variations in the space of the predicted
event yields in each bin of the search templates, from which the base variation with the largest
eigenvalue is used as the PDF uncertainty. The second largest eigenvalue is found to be almost
two orders of magnitude smaller than the largest one, thus the base variations corresponding
to it and smaller eigenvalues are not considered. The uncertainty in the αS parameter used in
the PDF set forms a second independent PDF variation uncertainty.

The µR and µF scale uncertainties in the Φ signal simulation are treated independently for the
resonance and interference components. Compared to the alternative of varying the scales for
the two components simultaneously, we found this to be the more conservative option. The
effect on the acceptance and shapes of the search templates is considered at LO accuracy, while
the effect on signal cross section is considered at NNLO accuracy. The scales used in the PS
simulation of ISR and FSR are also varied independently by a factor of 2 in each direction and
are treated independently for the resonant and interference components.

The uncertainty in mt is also considered for the signal by varying its value in simulation by
±1 GeV. Its effect on acceptance, shape, and cross section is considered in the same way as µR
and µF variations. Given that this is a variation on the same physical parameter, it is treated
as fully correlated with the background processes. Other theoretical uncertainties in the signal,
such as the PDF, are neglected as they are small compared to those already considered.

The η t background simulation, if applied, considers µF, ISR, FSR, and mt uncertainties, affect-
ing only the acceptance and shape. They are handled identically to the corresponding varia-
tions in the Φ signal simulation. The overall normalization of η t is always taken to be a free
parameter of the fit in this analysis. Since the used model describes effective η t production
via a contact interaction, without the emission of extra partons at the LO ME level, the model
encodes no dependence on αS. Therefore, µR variations have no effect on the η t prediction.

The µR, µF, ISR, and FSR scale uncertainties are also independently considered for the Z+jets
and single top quark production processes. For these processes, the µR and µF uncertainties
affect only acceptance and shape, not normalization.

The expected yields for most of the non-tt background processes are derived using theoreti-
cal predictions for the cross sections at NLO or higher accuracy. The uncertainties assumed
in the normalization of these processes are conservative and always exceed those of the corre-
sponding theoretical computations. For single top quark production, we assign an uncertainty
of 15%, based on relevant cross section measurements [114–116]. In the ℓℓ channels, the un-
certainty in the ttV production is taken to be 30% [117, 118]. The uncertainty of the Z+jets
production is taken to be 5% [119]. To account for the fact that this search probes a restricted re-
gion of the phase space of the corresponding processes, we assign a normalization uncertainty
of 30% for diboson production, which has little impact on the overall sensitivity due to the
small contribution of these processes. All normalization uncertainties for non-tt background
processes are considered uncorrelated between each other.

In the single-lepton channels, the normalization uncertainty of the EW+QCD background es-
timate evaluated from a CR in data is taken to be 50%. Furthermore, to estimate the effect of
changing the b tagging requirements on the kinematic distributions, the estimation is repeated
for three different selections of the highest allowed b tagging discriminant value in the event.
The shape differences between the central selection and the selections with a higher and lower
allowed value of the highest b tagging discriminant are taken into account as uncertainties in
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the background estimation. As an additional uncertainty, we take into account a variation of
the subtracted single top quark and tt contributions, in which their expected contributions are
scaled by the ratio of observed and expected events in the CR.

The nominal background prediction is affected by the limited size of the simulated MC
event samples. This statistical uncertainty is evaluated using the “light” Barlow–Beeston
method [120], by introducing one additional nuisance parameter for each bin of the search
templates. These parameters are uncorrelated across all channels and eras.

Several systematic variations, most notably those constructed from dedicated MC samples, are
affected by statistical fluctuations. We suppress these fluctuations with a smoothing procedure,
which is described in Ref. [30] and is based on the LOWESS algorithm [121, 122].

In general, the relative importance of different systematic uncertainties depends greatly on
the signal hypothesis, especially the mass of the scalar bosons. Close to the tt production
threshold, uncertainties due to the modeling of tt dominate the total uncertainty, in particular
the top quark Yukawa coupling, the application scheme of the NLO EW corrections, µR, mt , the
color reconnection model, and the η t normalization (if considered). A further nonnegligible
contribution comes from the estimation of the EW+QCD background. For larger values of
mΦ , the ME-PS matching uncertainty for the FO pQCD tt background as well as experimental
uncertainties due to heavy-flavor jet tagging become similarly important, while the effect of the
η t and EW+QCD contributions become small. In addition, the total MC statistical uncertainties
in all bins together often outweigh every other individual uncertainty.

7 Statistical analysis
To evaluate the consistency of the observed data with the background-only hypothesis and
with different signal hypotheses, we perform a statistical analysis using the search templates
described in Sections 4–5. The ℓj and ℓℓ final states do not overlap as they correspond to
orthogonal lepton selection criteria.

The statistical model is defined by the likelihood function

L(pΦ , µ(η t), ν) =

(
∏

i

λi(pΦ , µ(η t), ν)ni

ni!
e−λi(pΦ , µ(η t), ν)

)
G(ν), where

λi(pΦ , µ(η t), ν) = SΦ
i (pΦ , ν) + Sη t

i (µ(η t), ν) + Bi(ν),

(2)

with Bi denoting the combined FO pQCD background yield in a given bin i, SΦ
i the Φ signal

yield dependent on signal model parameters pΦ , Sη t
i the η t contribution dependent on the

signal strength µ(η t), ν the vector of nuisance parameters on which the signal and background
yields generally depend, and ni the observed yield. The external constraints on the nuisance
parameters are taken into account in this likelihood via a product of corresponding probability
density functions, G(ν).

The Φ signal yield is given by

SΦ
i (pΦ , ν) = ∑

Φ=A,H

(
g4

Φtt sΦ
R,i(mΦ , ΓΦ , ν) + g2

Φtt sΦ
I,i(mΦ , ΓΦ , ν)

)
, (3)

where sΦ
R,i and sΦ

I,i are the yields for the resonant and interference part, respectively. The vector
pΦ represents the signal model parameters and comprises the Φ boson mass mΦ , width ΓΦ , and
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gΦtt . Equation (3) is kept generic by including contributions from both A and H. Since there
is no interference between them, the corresponding signal distributions are trivially added
together.

The yield of the η t contribution is given by

Sη t
i (µ(η t), ν) = µ(η t) sη t

i (ν), (4)

where sη t
i are the predicted η t signal yields and µ(η t) is the signal strength modifier, which is a

free parameter of the fit. There is no additional interference between A and η t productions [67,
105, 123].

The background-only model is constructed by setting gΦtt = 0. The compatibility between
data and a given hypothesis is determined by performing scans over the parameters of the
signal models in different scenarios, using methodologies described in the following.

7.1 Methodology for single Φ boson interpretation

In the single Φ boson interpretation, constraints on the coupling strength modifier gΦtt are de-
rived as a function of mΦ for fixed ΓΦ /mΦ values, separately for A and H. This is done while
setting the coupling modifier for the other CP state in Eq. (2) to zero, thus excluding it from
the statistical model. The scan is performed for the mΦ and ΓΦ /mΦ values listed in Section 3.
Coupling strength values up to 3 are probed to guarantee that the amplitudes preserve pertur-
bative unitarity for all calculations, in accordance with the lower bound tan β = 1/gAtt ≳ 0.3
given in Ref. [4] in the context of 2HDMs, where tan β is the ratio of the vacuum expectation
values of the Higgs doublets coupling to the up- and down-type quarks.

A variant of the LHC profile likelihood ratio test statistic q̃µ equivalent to those described in
Refs. [124, 125] is utilized:

q̃µ(pΦ) = −2 ln
L(µ, pΦ , ν̂µ,pΦ

)

L(µ̂, pΦ , ν̂µ̂,pΦ
)

, 0 ≤ µ̂ ≤ µ. (5)

Because the Φ signal scales nonlinearly with the coupling modifiers gΦtt , we introduce an aux-
iliary overall signal strength modifier µ in terms of which the test statistic is expressed, in the
same way as in Ref. [30]. This facilitates testing different Φ signal hypotheses in a computation-
ally efficient way. The auxiliary parameter scales the overall Φ signal yield in Eq. (3), keeping
the other parameters in pΦ fixed. The likelihood in the numerator is maximized with respect
to the nuisance parameters, and ν̂µ,pΦ

denotes the vector of their values at the maximum for a
given pΦ . Depending on the scenario considered, the η t signal strength is kept as a free param-
eter of the fit and treated as part of the nuisance parameters, or it is fixed to µ(η t) = 0 in both
numerator and denominator. A similar notation is used in the denominator, where the likeli-
hood is maximized with respect to both µ and ν, under the additional constraint 0 ≤ µ̂ ≤ µ.
The requirement µ̂ ≥ 0 excludes cases in which the shape of the overall BSM contribution gets
flipped, resulting in a qualitatively different effect from what is targeted in this search. The
condition µ̂ ≤ µ prevents the exclusion of a signal hypothesis if the data are more compatible
with a model that predicts the BSM contribution of a similar shape but a larger overall size.

For each signal hypothesis, we perform a test according to the CLs criterion [126, 127]. An
asymptotic approximation [124] is employed to efficiently construct the distributions of the
adopted test statistic. We exclude a configuration pΦ at 95% confidence level (CL) if the CLs
value computed for µ = 1, which reproduces the nominal signal expectation, is smaller than
0.05.
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7.2 Methodology for A+H boson interpretation

In the A+H boson interpretation, we consider the more general case where two Φ states exist
at the same time. We confine ourselves to the case with exactly one A boson and exactly one H
boson, i.e., the case considered in 2HDMs [4]. Constraints in the gAtt –gHtt plane are set using
the following test statistic:

q̃pΦ
= −2 ln

L(pΦ , ν̂pΦ
)

L(p̂Φ , ν̂ p̂Φ
)

, (6)

expressed directly in terms of gAtt and gHtt . In contrast to the single A/H interpretation,
the asymptotic approximation on the form of the test statistic distribution is not exploited,
rendering the auxiliary parameter µ unnecessary.

For each gΦtt configuration under consideration, its compatibility with the data is evaluated
with the Feldman–Cousins prescription [128, 129]. An iterative procedure is applied to reduce
the number of points for which the test statistic needs to be evaluated. An initially sparse
grid of gΦtt configurations are evaluated and refined around the region of the exclusion con-
tour boundary at a given CL. The procedure is repeated until the minimum distance of two
neighboring gΦtt configurations in the plane is small enough. Like in the single A/H boson
interpretation, we scan within the range of gΦtt ≤ 3 in the A+H boson interpretation.

8 Results
The data are interpreted in the context of Φ boson production under two background scenarios,
one including η t production and one without. When η t is not included, a deviation from the
background prediction is observed near the tt production threshold. In Section 8.1, we compare
the two different background scenarios to the signal scenario corresponding to the highest local
significance for this deviation. Next, in Section 8.2, limits on the production of a single Φ boson
are presented, assuming that the background prediction is based on FO pQCD calculations
alone. Then, in Section 8.3, the same Φ boson interpretations are presented, but now with η t
included as part of the background. Finally, in Section 8.4, we show exclusion contours for
the simultaneous presence of A and H bosons for a few examples of mΦ and ΓΦ /mΦ , in the
background scenario with η t production included. Constraints on gΦtt in the single Φ boson
interpretation, as well as exclusion contours in the A+H boson interpretation, for mass and
width values not included in this paper are provided in the corresponding HEPData entry [64].

We refer to the companion paper Ref. [29] for an interpretation of the excess around the thresh-
old region in terms of a pseudoscalar tt quasi-bound state without invoking any BSM degrees
of freedom, performed in the ℓℓ channels only. For mtt values close to the tt threshold and with
the chosen analysis strategy without spin correlation observables, the ℓj channels contribute
only subleading sensitivity to a tt quasi-bound state. As a result, including the ℓj channels in
Ref. [29] would not significantly change the conclusions of said work.

8.1 Data compared to background scenarios with and without η t contribution

The expected and observed distributions are shown after the fit in Figs. 6–8 for the three chan-
nels considered. In the middle panels, where no η t contribution is included, a deviation from
the background prediction can be seen at low values of mtt .

The shown fit is performed using the signal pair A(365, 2%)+H(425, 3%), using the notation
introduced in Section 3, which corresponds to the highest observed local significance. To find
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Figure 6: Observed and expected mtt distribution in bins of |cos θ∗tℓ |, shown for the ℓ + 3j chan-
nel summed over lepton flavors and eras. In the upper panel, the data (points with statistical
error bars) are compared to tt production in FO pQCD and other sources of background (col-
ored histograms) after the fit to the data in the A+H interpretation. The ratio of data to the
prediction is shown in the middle panel, where the two signals A(365, 2%) and H(425, 3%),
corresponding to the best fit point, are overlaid. The lower panel shows the equivalent ratio for
the fit where η t is considered as an additional background, for the same signal points. In both
cases, the gray band shows the postfit uncertainty, and the respective signals are overlaid with
their best fit model parameters.
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Figure 7: Observed and expected mtt distribution in |cos θ∗tℓ | bins, shown for the ℓ +≥4j chan-
nel summed over lepton flavors and eras. Notations as in Fig. 6.
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Figure 8: Observed and expected mtt distribution in chel and chan bins, shown for the ℓℓ channel
summed over lepton flavors and eras. Notations as in Fig. 6.

this signal pair, the local significance of an A+H boson pair is estimated using the square root of
the value of the test statistic from Eq. (6) when fixing gΦtt = 0, i.e., comparing the case of zero
A+H contribution to the one that best describes the data, in the background scenario without
η t [124].

It becomes apparent in Fig. 8 (middle) that the contributions of A/H boson production at the
best fit gΦtt values are dependent on chel and chan, highlighting their sensitivity to discriminate
between the signals. In general, A boson production is favored by the data over H boson
production. Comparing A(365, 2%) and H(365, 2%), corresponding to the best fit mass and
width for single A/H boson signals, we find a difference in negative log-likelihood of 2∆ ln L ≈
53, indicating a strong preference for the CP-odd contribution.

For the lower panels of Figs. 6–8, η t production was included in the fit as additional back-
ground with the normalization being a freely floating parameter of the fit, as discussed in Sec-
tion 7. In this case, the contributions for A and H boson production vanish, showing that the
data prefers η t production over A or H boson production. However, we note that the consid-
ered A/H masses are different from the η t mass of 343 GeV, as described in Section 3, and η t
and A are thus not directly comparable. A further difference between η t and A/H is the inclu-
sion of SM tt–A/H interference, leading to peak-dip structures in mtt , while η t is modeled as
a pure resonance [123].

In addition, the Feldman–Cousins exclusion contours (as discussed in Section 7.2) for the two
scenarios are shown in Fig. 9. The expected contours are similar in shape, though the one in
the background scenario including η t (right) is slightly wider. This is due to the fact that in the
regions of gAtt relevant for the contours, the interference component of the signal dominates,
effectively manifesting as a deficit of expected events. Since this occurs at higher mtt compared
to the enhancement predicted by η t , the addition of η t to the background does not significantly
affect the expected exclusion in gAtt . Furthermore, since H and η t can be distinguished based
on chel and chan, the exclusion in gHtt is not affected either.
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Figure 9: Frequentist 2D exclusion contours for gAtt and gHtt for the A(365, 2%)+H(425, 3%)
signal point, in the background scenario excluding (left) and including (right) η t production.
The expected and observed contours, evaluated with the Feldman–Cousins prescription [128,
129], are shown in black and pink, respectively, with different line styles denoting progressively
higher CLs. The regions outside of the contours are considered excluded.

The observed exclusion contours are significantly different for the two background scenarios.
If η t production is not included as in Fig. 9 (left), the observed pseudoscalar-like excess in
data manifests as a narrow strip of compatible gAtt values significantly different from zero.
In contrast, the value of gHtt for this parameters point is compatible with zero within three
standard deviations (SDs). This demonstrates the pseudoscalar nature of the excess.

In the η t background scenario as presented in Fig. 9 (right), the observed allowed values of
both gAtt and gHtt are compatible with zero within two SDs, and the excess has vanished.

8.2 Single Φ boson interpretation without η t in the background model

Combining the fit results for the 2D templates in (mtt , |cos θ∗tℓ |) of the ℓ + 3j and ℓ +≥4j chan-

nels (as discussed in Section 4), with the results derived from the 3D templates in (mtt , chel, chan)
of the ℓℓ channels (as discussed in Section 5), for all lepton flavors and eras, upper exclusion
limits on gAtt and gHtt at the 95% CL are presented in Figs. 10–11, for the background scenario
without η t contribution, as functions of mΦ for different assumptions on the ΓΦ /mΦ . The ex-
pected constraints on gΦtt evolve in accordance with the signal cross section, as A/H boson
mass and width values increase. The relatively sharper decline in sensitivity for A/H bosons
with 700 < mΦ < 900 GeV and larger ΓΦ is due to cancellations in the cross sections for the
resonance and interference signal components.

The expected constraints on gΦtt obtained in this analysis improve upon the previous results
presented in Ref. [30], which were based on a smaller data set and a simpler analysis strategy.
In the ℓj channel, the addition of the three jets category increases the statistical power of the
analysis. In the ℓℓ channel, the addition of chan as an observable improved sensitivity of the
search, particularly for H bosons.

These improvements also result in significantly stronger observed constraints on gΦtt com-
pared to previous results, across most of the mass and width values in both CP scenarios.
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Figure 10: Model-independent constraints on gAtt as functions of the A boson mass in the
background scenario without η t contribution, for ΓΦ /mΦ of 1, 2, 5, 10, 18, and 25% (from upper
left to lower right). The observed constraints are indicated by the shaded blue area, bounded
by the solid blue curve. The inner green and outer yellow bands indicate the regions containing
68 and 95%, respectively, of the distribution of constraints expected under the background-only
hypothesis. The unphysical region of phase space in which the partial width ΓA→tt becomes
larger than the total width of the A boson is indicated by the hatched line.
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Figure 11: Model-independent constraints on gHtt as functions of the H boson mass in the
background scenario without η t contribution, shown in the same fashion as in Fig. 10.
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Interestingly, there is a significant deviation between observed and expected limits at low mΦ
values, for both the A and H boson interpretations. The largest differences are for A boson sig-
nal hypotheses with narrow widths. The best fit to the data is achieved for the A(365, 2%) sig-
nal hypothesis, corresponding to the lowest generated A boson mass value, with an observed
local significance over the background-only hypothesis in the background scenario without η t
contribution of more than five SDs. This hypothesis corresponds to the lowest mΦ value probed
in this analysis.

8.3 Single Φ boson interpretation with η t in the background model

The same limit extraction as in Section 8.2 is repeated assuming single Φ boson production as
signal, but now including η t production to the fit as additional background, with the normal-
ization treated as an unconstrained nuisance parameter, as outlined in Section 7.

The obtained 95% CL upper limits on gΦtt as a function of mΦ are shown in Figs. 12–13. The ob-
served limits are consistent with the expected ones within two SDs for both CP scenarios, across
all width values and the entire mass range. Notably, the excess at low masses seen in Figs. 10–
11, where the background model without η t contribution is assumed, has disappeared. This
suggests that the data are well described when η t production is included in the background
model. Moreover, a comparison of the exclusion regions in Figs. 10–12 at low masses indicates
a slight preference for the η t hypothesis over the single A boson production hypothesis for
the lowest probed mass point at A(365, 2%). However, the current analysis has limited dis-
criminatory power between these hypotheses based on their mtt lineshapes due to the limited
experimental resolution, preventing a definitive preference for one explanation over the other.

8.4 The A+H boson interpretation

Many extensions of the Higgs sector, such as 2HDMs [4], predict the existence of both A and
H bosons, with their masses and widths potentially falling within the range probed by this
analysis. To investigate this possibility, we perform a simultaneous A+H boson interpretation,
considering various A/H boson pairs beyond the one analyzed in Section 8.1, including the η t
contribution in the background scenario.

The results are presented in Fig. 14 for the case of identical A and H boson masses and in
Fig. 15 for differing masses, all assuming a width of 2%. In all cases, the observed exclusion
contours are consistent with zero A+H boson contribution. We note that the difference between
expected and observed contours in Fig. 14 (lower left) corresponds to a local tension at the level
of 1–2 SDs for mH between 700 and 780 GeV and ΓH/mH = 2%, similar as in Fig. 13 (upper left).

9 Summary
A search has been presented for the production of pseudoscalar or scalar bosons in proton-
proton collisions at

√
s = 13 TeV, decaying into a top quark pair (tt) in final states with one or

two charged leptons. The analysis uses data collected with the CMS detector at the LHC, corre-
sponding to an integrated luminosity of 138 fb−1. To discriminate the signal from the standard
model tt background, the search utilizes the invariant mass of the reconstructed tt system along
with angular observables sensitive to its spin and parity. The signal model accounts for both
the resonant production of the new boson and its interference with the perturbative quantum
chromodynamics (pQCD) tt background.

A deviation from the background prediction, modeled using fixed-order (FO) pQCD, is ob-
served near the tt production threshold. This deviation is similar to the moderate excess previ-
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Figure 12: Model-independent constraints on gAtt as functions of the A boson mass in the
background scenario with η t contribution, shown in the same fashion as in Fig. 10.
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Figure 13: Model-independent constraints on gHtt as functions of the H boson mass in the
background scenario with η t contribution, shown in the same fashion as in Fig. 10.
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Figure 14: Frequentist 2D exclusion contours for gAtt and gHtt in the A+H boson interpretation
for four different signal hypotheses with identical A and H boson masses of 365 GeV (upper
left), 500 GeV (upper right), 750 GeV (lower left), and 1000 GeV (lower right), all assuming a rel-
ative width of 2%. The expected and observed contours, evaluated with the Feldman–Cousins
prescription [128, 129], are shown in pink and black, respectively, with the solid and dashed
lines corresponding to exclusions at 68 and 95% CL. The regions outside of the contours are
considered excluded. In all cases, η t production is included in the background model.

ously reported by CMS using data corresponding to an integrated luminosity of 35.9 fb−1 [30].
The local significance of the excess exceeds five standard deviations, with a strong preference
for the pseudoscalar signal hypothesis over the scalar one.

Incorporating the production of a color-singlet 1S[1]0 tt quasi-bound state, η t , within a simplified
nonrelativistic QCD model, with an unconstrained normalization to the background, yields
agreement with the observed data, eliminating the need for additional exotic pseudoscalar or
scalar boson production. However, the precision of the measurement is insufficient to clearly
favor either the η t production model, or a new A boson down to a mass of 365 GeV, or any
potential mixture of the two. A detailed analysis of the excess using the tt quasi-bound-state
interpretation is provided in Ref. [29].

Exclusion limits at the 95% confidence level are set on the coupling strength between top quarks
and new bosons, covering mass ranges of 365–1000 GeV and relative widths of 0.5–25%. When
the background model includes both FO pQCD tt production and η t production, stringent
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Figure 15: Frequentist 2D exclusion contours for gAtt and gHtt in the A+H boson interpreta-
tion for six different signal hypotheses with unequal A and H boson masses, corresponding to
combinations of 365, 500, and 1000 GeV, all assuming a relative width of 2%. The expected and
observed contours, evaluated with the Feldman–Cousins prescription [128, 129], are shown in
pink and black, respectively, with the solid and dashed lines corresponding to exclusions at
68 and 95% CL. The regions outside of the contours are considered excluded. In all cases, η t
production is included in the background model.
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constraints are obtained for three scenarios: a new pseudoscalar boson, a new scalar boson,
and the simultaneous presence of both. Coupling values as low as 0.4 (0.6) are excluded for
the pseudoscalar (scalar) case. These limits are similar to the ATLAS results [32] in case of
pseudoscalar production, and represent the most stringent limits on scalar resonances decaying
into tt over a wide range of mass and width values.
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A. Braghieria , S. Calzaferria , P. Montagnaa,b , M. Pelliccionia , V. Rea ,
C. Riccardia,b , P. Salvinia , I. Vaia,b , P. Vituloa,b

INFN Sezione di Perugiaa, Università di Perugiab, Perugia, Italy
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Wayne State University, Detroit, Michigan, USA
S. Bhattacharya , P.E. Karchin

University of Wisconsin - Madison, Madison, Wisconsin, USA
A. Aravind , S. Banerjee , K. Black , T. Bose , E. Chavez , S. Dasu , P. Everaerts ,
C. Galloni, H. He , M. Herndon , A. Herve , C.K. Koraka , S. Lomte, R. Loveless ,
A. Mallampalli , A. Mohammadi , S. Mondal, T. Nelson, G. Parida , L. Pétré , D. Pinna,
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University, Budapest, Hungary
32Also at HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
33Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
34Also at The University of Kansas, Lawrence, Kansas, USA
35Also at Punjab Agricultural University, Ludhiana, India
36Also at University of Hyderabad, Hyderabad, India
37Also at Indian Institute of Science (IISc), Bangalore, India
38Also at University of Visva-Bharati, Santiniketan, India
39Also at IIT Bhubaneswar, Bhubaneswar, India
40Also at Institute of Physics, Bhubaneswar, India
41Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
42Also at Isfahan University of Technology, Isfahan, Iran
43Also at Sharif University of Technology, Tehran, Iran
44Also at Department of Physics, University of Science and Technology of Mazandaran,
Behshahr, Iran
45Also at Department of Physics, Faculty of Science, Arak University, ARAK, Iran
46Also at Helwan University, Cairo, Egypt
47Also at Italian National Agency for New Technologies, Energy and Sustainable Economic
Development, Bologna, Italy
48Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
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82Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
83Also at California Lutheran University;, Thousand Oaks, California, USA
84Also at California Institute of Technology, Pasadena, California, USA
85Also at United States Naval Academy, Annapolis, Maryland, USA
86Also at Bingol University, Bingol, Turkey
87Also at Georgian Technical University, Tbilisi, Georgia
88Also at Sinop University, Sinop, Turkey
89Also at Erciyes University, Kayseri, Turkey
90Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH),
Bucharest, Romania
91Now at another institute formerly covered by a cooperation agreement with CERN
92Also at Hamad Bin Khalifa University (HBKU), Doha, Qatar
93Also at another institute formerly covered by a cooperation agreement with CERN
94Also at Yerevan Physics Institute, Yerevan, Armenia
95Also at Imperial College, London, United Kingdom
96Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent,
Uzbekistan


	1 Introduction
	2 The CMS detector and event reconstruction
	3 Data and simulated event samples
	4 Data analysis in the single-lepton channel
	4.1 Kinematic reconstruction
	4.2 Background estimation

	5 Data analysis in the dilepton channel
	5.1 Kinematic reconstruction
	5.2 Background estimation

	6 Systematic uncertainties
	7 Statistical analysis
	7.1 Methodology for single A/H boson interpretation
	7.2 Methodology for A+H boson interpretation

	8 Results
	8.1 Data compared to background scenarios with and without toponium contribution
	8.2 Single A/H boson interpretation without toponium in the background model
	8.3 Single A/H boson interpretation with toponium in the background model
	8.4 The A+H boson interpretation

	9 Summary
	A The CMS Collaboration 

