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Abstract

A search for pseudoscalar or scalar bosons decaying to a top quark pair (tt) in final states with
one or two charged leptons is presented. The analyzed proton—proton collision data was
recorded at /s = 13TeV by the CMS experiment at the CERN LHC and corresponds to an
integrated luminosity of 138 fb~'. The invariant mass mg of the reconstructed tt system and
variables sensitive to its spin and parity are used to discriminate against the standard model tt
background. Interference between pseudoscalar or scalar boson production and the standard
model tt continuum is included, leading to peak-dip structures in the myg distribution. An excess
of the data above the background prediction, based on perturbative quantum chromodynamics
(QCD) calculations, is observed near the kinematic tt production threshold, while good
agreement is found for high m. The data are consistent with the background prediction if the
contribution from a simplified model of a color-singlet IS([)” tt quasi-bound state 7, inspired by
nonrelativistic QCD, is added. Upper limits at 95% confidence level are set on the coupling
between the pseudoscalar or scalar bosons and the top quark for boson masses in the range
365-1000 GeV, relative widths between 0.5% and 25%, and two background scenarios with or
without 7, contribution.
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1. Introduction

The observation of a Higgs boson with mass of 125 GeV by
the ATLAS and CMS Collaborations in 2012 [1-3] confirmed
the existence of an elementary spin-0 state, a crucial ingredi-
ent of the standard model (SM) of particle physics. While
only one such state is required in the SM, many beyond-the-
SM (BSM) extensions predict additional spin-0 states, such
as two Higgs doublet models (2HDMs) [4] and models pre-
dicting a new electroweak pseudoscalar or scalar singlet [5],
including models with a combination of a Higgs doublet and
such singlet(s) [6]. These additional bosons may also provide
a portal to dark matter by acting as mediators between SM
and dark matter particles [7, 8]. The new states introduced in
these BSM extensions usually include pseudoscalar (CP-odd)
neutral bosons, scalar (CP-even) neutral bosons, and charged
bosons. We use the symbol A to denote pseudoscalar neutral
states, H for scalar neutral states not identified as the one with
a mass of 125GeV, and ® as a common symbol to refer to
either A or H bosons.

As the heaviest elementary particles, top quarks have a
pivotal role in the search for BSM physics, serving as sensitive
probes. Provided that additional ¢ bosons couple to fermions
via a Yukawa interaction with coupling strength proportional
to the fermion mass, ¢ bosons with mass larger than twice the
top quark mass m, may decay to a top quark pair (tt) as the
dominant channel. This is true especially for A bosons with
suppressed decays to weak vector bosons due to CP symmetry,
as well as for H bosons in 2HDM s in the vicinity of the align-
ment limit [9].

In this paper, we consider a Yukawa-like coupling between
® bosons and top quarks. The corresponding terms in the
Lagrangian for the two CP eigenstates are:

. ny —
LYukawa,A = L8 Aft 7 t’)/5tA,
mt p—
Lvukawa,H = —&Hit > ttH, (H

where gag > 0 is the real-valued coupling strength modi-
fier and v is the vacuum expectation value of the SM Higgs
field. We probe ® boson masses mg in the range 365 < mg <
1000GeV and total widths I'g relative to mg in the range
0.5<Tg/mep <25%.

The production of ® bosons is dominated by the gluon
fusion process via a top quark loop, followed by a decay into a
tt pair, as illustrated in figure 1(upper). This process interferes
with SM tt production through gluon fusion, an example of
which is depicted in figure 1(lower). While the pure & res-
onance component results in a Breit~-Wigner peak in the tt
invariant mass (mg) distribution, the interference terms may
be either destructive or constructive, with the shape and mag-
nitude of the mg distribution depending on the phase space
region under consideration, the specific signal model, and the
types of particles that appear in the loop of the production dia-
gram [10, 11]. In general, the sum of the components produce
a peak-dip structure in the mg distribution [12-16], which is
shown in figure 2 for two example choices of mg and I's.

g t

Figure 1. Example Feynman diagrams for the signal process
(upper) and for SM tt production (lower).

Decays of the A and H bosons produce tt systems in the 'Sy
and 3Py states, respectively [14]. The SM tt production com-
prises a mixture of spin states, with their relative contributions
varying as a function of the partonic center-of-mass energy.
Due to the short lifetime of top quarks, the information about
their spin and polarization states is preserved in the angular
distributions of their decay products [17-19]. Therefore, in
addition to analyzing the mg distribution, we utilize angular
observables to investigate the differences in the tt spin states
between signal and background processes.

In the SM, tt production is described by quantum chro-
modynamics (QCD). State-of-the-art cross section predictions
rely on fixed-order (FO) perturbative QCD (pQCD) calcula-
tions and include electroweak (EW) corrections. An additional
enhancement of tt production below the kinematic threshold
is predicted in nonrelativistic QCD, dominated by the produc-
tion of color-singlet tt quasi-bound states (toponium) [20-25].
We account for this effect by using a simplified model of the
production of the color-singlet pseudoscalar quasi-bound state
ISQ], referred to as 7 [25].

This paper describes a search for pseudoscalar and scalar
bosons produced in proton—proton collisions at /s = 13 TeV
and decaying to tt. The analyzed data were recorded using the
CMS detector at the CERN LHC in 2016-2018 and corres-
ponds to an integrated luminosity of 138 fb~' [26-28]. The
single-lepton (¢j) and dilepton (¢¢) channels are considered,
corresponding to the tt — bbWW — bb/vjj and bblv/v decay
chains of the tt system, respectively. Events in the ¢j channel
are selected with exactly one electron or muon and at least
three jets (at least two of which are b tagged), and in the ¢/
channel with exactly two oppositely charged leptons (electrons
and/or muons) and at least two jets (at least one of which is
b tagged). The top quark four-momenta are estimated using
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Figure 2. Differential cross section of tt production at parton level
as a function of mg, shown as difference between various BSM
scenarios and the SM prediction. Shown are the cases of a single A
(red) or H (blue) boson for two example configurations:

mg =400GeV and I's /ma = 5% (upper), or mg = 800GeV and
I's /ma = 10% (lower), with gg¢ = 1 in both cases. Separately
shown are the cases where only the resonant ® — tt contribution is
added to the SM prediction (dashed), where only the interference
between SM and ® boson contributions is added (dotted), and where
both contributions are added (solid). The distributions have been
calculated using MADGRAPHS_aMC@NLO as described in section 3.

kinematic reconstruction algorithms and the resulting my dis-
tribution together with additional observables sensitive to the
spin state of the tt system are used to search for ® bosons.

The data are interpreted in terms of ¢ boson production,
quantified via the coupling g for given values of mg and I's,
in three signal configurations: one A boson, one H boson, or
both of them. A combined maximum likelihood fit to all chan-
nels is used to extract the signals. Two different background
scenarios are investigated: one consists of FO pQCD predic-
tions alone, and the other includes 7, production as part of the
background.

Near the tt threshold, there is an excess of the data with
respect to the background predicted in FO pQCD alone, with
a structure that favors an additional pseudoscalar contribu-
tion [29]. In [29], the companion paper to this publication, we
perform an identical analysis to the one presented in this paper
in the #¢ channel only, to demonstrate that the observed excess
can be explained by 7 production without the need for BSM
A boson contributions. We note that the current experimental
resolution does not allow for a significant distinction between
the 7, and the A boson production scenarios, nor any potential
mixtures of both, if the A boson is produced sufficiently close
to the tt production threshold with a width of ~5% or less.

This search updates a similar analysis performed by the
CMS experiment using 35.9 fb~! of data collected in 2016,
where a moderate signal-like deviation compatible with A
boson production with a mass of 400 GeV was found [30],
without inclusion of any contribution from tt bound states as
background. Searches for ® — tt have also been performed
by the ATLAS experiment using 20.3fb~" of \/s = 8TeV
data [31] and 140 b ! of /s = 13TeV data [32], where no
significant deviations from the FO pQCD prediction were
observed. A detailed discussion on the differences of this res-
ult and [32] is provided in [29].

2. The CMS detector and event reconstruction

The central feature of the CMS apparatus is a superconducting
solenoid of 6 m internal diameter, providing a magnetic field
of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calori-
meter (ECAL), and a brass and scintillator hadron calorimeter
(HCAL), each composed of a barrel and two endcap sections.
Forward calorimeters extend the pseudorapidity (1) coverage
provided by the barrel and endcap detectors. Muons are recon-
structed using gas-ionization detectors embedded in the steel
flux-return yoke outside the solenoid. More detailed descrip-
tions of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables,
can be found in [33, 34].

Events of interest are selected using a two-tiered trigger
system. The first level (L1), composed of custom hardware
processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within a
fixed latency of about 4 us [35]. The second level, known as
the high-level trigger, consists of a farm of processors running
a version of the full event reconstruction software optimized
for fast processing, and reduces the event rate to around 1 kHz
before data storage [36, 37].

The primary vertex (PV) is taken to be the vertex cor-
responding to the hardest scattering in the event, evaluated
using tracking information alone, as described in section 9.4.1
of [38]. The particle-flow (PF) algorithm [39] aims to recon-
struct and identify each individual particle in an event, with an
optimized combination of information from the various ele-
ments of the CMS detector. The reconstructed particles are
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referred to as PF candidates in the following. The energy of
photons is obtained from the ECAL measurement. The energy
of electrons is determined from a combination of the elec-
tron momentum at the PV as determined by the tracker, the
energy of the corresponding ECAL cluster, and the energy
sum of all bremsstrahlung photons spatially compatible with
originating from the electron track. The energy of muons is
obtained from the curvature of the corresponding track. The
energy of charged hadrons is determined from a combination
of their momentum measured in the tracker and the matching
ECAL and HCAL energy deposits, corrected for the response
function of the calorimeters to hadronic showers. Finally, the
energy of neutral hadrons is obtained from the corresponding
corrected ECAL and HCAL energies.

For each event, hadronic jets are clustered from the
PF candidates using the infrared and collinear safe anti-kt
algorithm [40, 41] with a distance parameter of 0.4. Jet
momentum is determined as the vectorial sum of all particle
momenta in the jet, and is found from simulation to be,
on average, within 5%—-10% of the true momentum over
the entire transverse momentum (pr) spectrum and detector
acceptance. Additional proton—proton interactions within the
same or nearby bunch crossings (pileup) can contribute addi-
tional tracks and calorimetric energy depositions to the jet
momentum. To mitigate this effect, charged particles identi-
fied to be originating from pileup vertices are discarded and
an offset correction is applied to correct for remaining contri-
butions [42]. Jet energy corrections are derived from simula-
tion to bring the measured response of jets to that of particle
level jets on average. In situ measurements of the momentum
balance in dijet, photon+jet, Z+jet, and multijet events are
used to account for any residual differences in the jet energy
scale between data and simulation [43]. The jet energy res-
olution amounts typically to 15%-20% at 30 GeV, 10% at
100 GeV, and 5% at 1 TeV [43]. Additional selection criteria
are applied to each jet to remove jets potentially dominated
by anomalous contributions from various subdetector com-
ponents or reconstruction failures [42]. To be considered in
the data analysis, jets are required to satisfy 1 < 2.4, to have
pr > 30 (20) GeV in the ¢j (¢¢) channel, and to be separated
by AR=+/(An)?+ (Ag¢)? > 0.4 from any selected lepton,
where An and A¢ are the n and azimuthal angle differences
between the lepton and jet, respectively.

Jets originating from b quarks are identified with the
DEeEePJET algorithm [44-46]. The used working point has a
selection efficiency for b quark jets of about 77%, and a
misidentification rate of 15% for c quark jets and of 2% for
light-quark and gluon jets (considered together and referred
to as light jets in the following), as evaluated in simulated tt
samples. Differences between data and simulation in the b tag-
ging efficiency and misidentification rate are accounted for by
scale factors that depend on the jet pt and 7.

Electrons are measured in the range 7 < 2.5 as energy
deposits in the ECAL matched to a track. The momentum
resolution for electrons with pr of around 45 GeV from Z —
ee decays ranges from 1.6% to 5%. It is generally better in
the barrel region than in the endcaps, and also depends on

the bremsstrahlung energy emitted by the electron as it tra-
verses the material in front of the ECAL [47, 48]. Only elec-
trons with 1 < 2.4 and pr > 20GeV are considered in the
analysis. In the ¢/ channel, well-identified electron candid-
ates are selected using identification criteria based on boos-
ted decision trees with a working point targeting a 90% effi-
ciency, with a misidentification rate of 1% and 3% in the bar-
rel and endcap regions, respectively [47]. In the ¢j channel,
well-identified electrons are selected using the ‘tight” working
point of the identification criteria based on sequential require-
ments, with an additional requirement of being consistent with
originating from the PV [47]. The efficiency of the ‘tight’
working point is about 70%, with a misidentification rate of
1% and 2% in the barrel and endcap regions, respectively.
Furthermore, the ‘veto’ working point of the same sequential-
requirements-based identification criteria is used to define a
sample of loosely identified electrons used to veto events in
the ¢j channel. All three employed sets of electron identifica-
tion criteria are described in detail in [47].

Muons are measured in the range 1 < 2.4, with detection
planes made using three technologies: drift tubes covering
the barrel region, cathode strip chambers covering the endcap
region, and resistive-plate chambers covering both the barrel
and endcap regions. Matching muons to tracks measured in the
silicon tracker results in a relative pr resolution, for muons
with pr up to 100GeV, of 1% in the barrel and 3% in the
endcaps; and of <7% in the barrel for muons with pt up to
1TeV. Only muons with pr > 20GeV are considered in the
analysis. For use in the main event selection, well-identified
muon candidates are required to pass the ‘tight’ working point
of the identification criteria described in [49]. The selection
efficiency of well-identified muons, together with the isola-
tion requirements described below, is 75%—85%. The misid-
entification rate for well-identified muons is 0.1%-0.3%, and
the probability to incorrectly label muons within jets as isol-
ated is 5%—-15%. Loosely identified muons are those passing
the ‘loose’ working point of the identification criteria [49], and
are used in the /j channel to veto events.

Lepton candidates are required to be isolated from other
activity in the event. The relative isolation I is calculated
as the pr sum of charged-hadron, neutral-hadron, and photon
PF candidates inside a cone of AR = 0.4 around the lepton,
divided by the lepton pr. An estimated contribution from
pileup is subtracted in this calculation [47, 49]. In the {j chan-
nel, well-identified muons are required to have I, < 0.15,
while loosely identified muons are required to have I;; < 0.25.
The same criteria of I.; < 0.25 are used for well-identified
muons in the ¢ channel, where separate collections of loosely
identified leptons are not introduced. For electrons, isolation
requirements are already included in the identification criteria
defined in [47]. Scale factors that depend on the lepton pr
and 7 are used to correct the simulation for small differences
in lepton trigger, identification, and isolation efficiency with
respect to data.

The missing transverse momentum vector p'** is computed
as the negative vector sum of the transverse momenta of all
the PF candidates in an event, and its magnitude is denoted as



Rep. Prog. Phys. 88 (2025) 127801

The CMS Collaboration

piss [50]. The pss is modified to account for corrections to
the energy scale of the reconstructed jets in the event.

3. Data and simulated event samples

The analyzed data were recorded in 2016-2018 using trig-
gers that require the presence of a single isolated electron or
muon, or the presence of two such leptons including all pos-
sible flavor combinations. Four independent data-taking eras
are considered: 2016pre (19.5fb™"), 2016post (16.8fb~ 1),
2017 (41.5fb"), and 2018 (59.8fb™"). The 2016 data set
is split into two eras because of a modification of the APV
strip tracker readout chip settings that affects the efficiency
of the track hit reconstruction during the 2016 data-taking
period [51], where the identifiers ‘pre’ and ‘post’ refer to
the periods before and after this modification. The 2016pre,
2016post, and 2017 eras are also affected by an inefficiency
caused by the gradual shift in the timing of the inputs to
the ECAL L1 trigger in the regions n > 2.0 [35]. Correction
factors are computed from data and applied to the acceptance
evaluated by simulation to account for this effect.

In order to compare the collected data to theoretical predic-
tions, Monte Carlo (MC) samples are produced with events
simulating the signal and background processes. Various pro-
grams are used to evaluate matrix elements (MEs) and gener-
ate events at parton level. In all cases, the generators employ
the next-to-next-to-leading order (NNLO) NNPDF3.1 parton
distribution functions (PDFs) [52] and are interfaced with
PYTHIA 8.240 [53] for fragmentation and hadronization using
the CP5 underlying event tune [54, 55]. The nominal value of
my is set to 172.5 GeV in all samples involving top quarks, as
well as in the computation of theoretical corrections that are
applied to them. The simulated events are processed through
the CMS detector simulation based on the GEANT4 pro-
gram [56]. Separate MC samples are generated correspond-
ing to the data-taking conditions of each of the four eras.
Pileup interactions are generated with PYTHIA and overlaid in
all samples. The simulated events are weighted to reproduce
the distribution of the number of pileup interactions observed
in data, assuming a total inelastic cross section of 69.2 mb. On
average, there are 23 collisions per bunch crossing in 2016 data
and 32 in 2017-2018 data [42].

The & —tt signal process is simulated at leading-
order (LO) accuracy using a custom model in the
MADGRAPH5_aMC@NL02.6.5 event generator [57]. It imple-
ments the full kinematics of the top quark loop of the gluon
fusion production, including finite m, effects, via a form factor
that is implemented as an effective coupling between the
® bosons and gluons [58]. Event samples are produced for
different mg and ['g/mg values, such that a good coverage
throughout the region of phase space probed in this search
is obtained. They are reweighted to target signal hypotheses
by the event-by-event ratios of the squared MEs of the tar-
get signal hypothesis and the one used in the original event
simulation. The target signal hypotheses in this search are mg
values of 365, 380, and 400-1000 GeV (in steps of 25 GeV),

and I'¢/mg values of 0.5%-3% (in steps of 0.5), 4%-8%
(in steps of 1), 10%, 13%, 15%, 18%, 21%, and 25%. We
use the notation ‘A/H(400,3%)’ to refer to ® bosons of a
particular CP eigenstate, mg in GeV, and I'g /mg. The fac-
torization and renormalization scales, ugr and ug, are set on
an event-by-event basis to mg/2, following the choice in [59].
The top quarks from the ® boson decay are further decayed in
MADGRAPHS_aMC@NLO, preserving their spin correlations.

Separate samples are generated for events corresponding to
resonant ¢ boson production, and for events corresponding to
interference terms in the ME calculation between ¢ boson and
FO pQCD tt background production. Events in the interfer-
ence samples can receive negative weights, reflecting the sign
of the corresponding part of the squared ME in the presence of
a destructive interference. Since the ® boson is produced via
gluon fusion with a top quark loop, the ®tt coupling appears
twice in the ME. As a result, events originating from the res-
onance ME terms correspond to a cross section proportional
to g‘&)ﬁ, while those from interference correspond to a cross
section proportional to g3 .

We calculate cross sections for resonant ¢ boson produc-
tion at NNLO accuracy in pQCD with the SusHr1 1.7.0 pro-
gram [60, 61] in the context of Type-II 2HDM models, where
the 2HDMC program [62] is used to calculate the remaining
model parameters for a given signal hypothesis. The coupling
modifiers of the ® bosons to bottom and charm quarks are set
to zero. The ratio of the NNLO cross section to the LO cross
section calculated with MADGRAPHS5_aMC@NLO is used as a
K factor to normalize the resonant part of the signal samples,
with typical values around 2.

For the interference component of the signal samples, we
apply K factors corresponding to the geometric mean of those
applied to the resonant signal and the FO pQCD tt process [59].
Here, the FO pQCD tt production K factor is calculated as the
ratio between the tt cross section at NNLO in pQCD with next-
to-next-to-leading logarithmic (NNLL) soft-gluon resumma-
tion, as described below, and at LO in pQCD with leading
logarithmic resummation. The nominal value of this K factor
is 1.49, and is within 1.42 and 1.55 for different m, values and
scale choices used in the computation. For the H signal, we
have compared the resonance and interference K factors with
a recent explicit next-to-LO (NLO) calculation in the scope of
a one-Higgs-singlet extension of the SM in [63]. We find good
agreement for the resonance component and significant differ-
ences of about 20% for the interference component. However,
we have verified that this discrepancy does not significantly
alter the conclusions of this work by performing alternative
fits using the updated K factors for the interference component,
and obtaining compatible exclusion regions as those reported
in section 8. All K factors derived in this analysis are available
in [64].

The 7 contribution is implemented as a generic reson-
ance in the MADGRAPHS_aMC@NLO 2.6.5 event generator
at LO accuracy in pQCD using a custom simplified model
obtained from [25]. The model is similar to the one used
for the ® — tt signal generation, although its effective gluon-
pseudoscalar coupling is implemented as an effective contact
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interaction instead of via the top quark loop. Samples of res-
onant 77, — WbWb events are produced to allow contributions
from off-shell top quarks. The 7 mass and width are set to 343
and 7 GeV, respectively, following [25], corresponding to the
expectation that the toponium mass is twice m, minus a binding
energy of about 2 GeV. A restriction to |mwpwy — 343 GeV| <
6GeV at the generator level is employed, as recommended
in [25], in order to not influence the high mg region which
is assumed to be well-described by FO pQCD. Other simu-
lation parameters are set following the recommendations of
the model authors. The version of the model used here does
not include the nonrelativistic Hamiltonian reweighting men-
tioned in [25, 65]. This is expected to have a negligible effect
on this analysis, which is performed on reconstructed distribu-
tions, considering that the reweighting has a very small effect
on parton-level distributions [66]. The 7, sample used in [29]
has been updated compared to the one used in this work, with
the 7, width set to 2.8 GeV and removing the generator-level
requirement on mw,wp [67]. At the level of precision of this
analysis, and comparing reconstructed distributions, both 7,
models are in agreement.

The main background contribution originates from the FO
pQCD tt production process, and is simulated at NLO accur-
acy in pQCD using the POWHEG V2 generator [68—71]. The

ur and pg scales are set to A /mt2 -+ p%)[, where m, and pr, are
the mass and pr of the top quarks in the underlying Born-
level configuration. Decays of the top quarks are performed
using the narrow-width approximation [72]. The sample is
normalized to the predicted tt production cross section of
833.91302pb, as calculated with the TOP+-+2.0 program at
NNLO in pQCD, and including soft-gluon resummation at
NNLL order [73]. The quoted uncertainty is derived from
the independent variations of up and pg, though they are
not the only ones that affect the value. To improve the the-
oretical description of the FO pQCD tt production process,
the sample is further reweighted differentially to account for
NNLO pQCD and NLO EW corrections. The NNLO pQCD
prediction is calculated using a private version of the MAT-
RIX program [74], and the NLO EW prediction is calculated
using the HATHOR 2.1 program [75-80], both with a nominal

scale choice of 0.5 (\/ m¢ +pr + \/ mZ + pi ;). Both predic-
tions are computed at the level of stable top quarks, using the
same PDF set as the POWHEG v2 tt sample. The weights are
applied double-differentially at the generator level as a func-
tion of mg and the cosine of the angle between the direction
of the top quark in the zero-momentum frame (ZMF) of the
tt system and the direction of the tt system in the laboratory
frame, cos ;.

Other background events originate from single top quark
production (tX), single vector boson production in associ-
ation with jets including b jets (Z+jets and W+jets), dibo-
son production (WW, WZ, and ZZ), tt production in associ-
ation with a vector boson (referred to as ttV), and events com-
posed uniquely of jets produced through the strong interac-
tion, referred to as QCD multijet processes. The single top
quark production processes, via the ¢ and s channels and

as tW production, are generated at NLO using POWHEG V2,
POWHEG, and MADGRAPHS5_aMC @NLO, respectively [81, 82].
The samples are normalized using the NLO cross section pre-
dictions for the ¢ and s channels [79, 83], and approximate
NNLO prediction for the tW channel [84]. The Z+jets pro-
cess is generated with the POWHEG event generator [69, 70]
with a multi-scale-improved NNLO accuracy in pQCD [85,
86], matched with pYTHIA 8 for initial-state radiation (ISR)
and the pHOTOS package [87, 88] for final-state radiation
(FSR). The W-jets event samples are generated using
MADGRAPHS_aMC@NLO at LO with up to four additional par-
tons, and the MLM matching scheme [89] is used to combine
the different parton multiplicities. The single vector boson
production cross sections are calculated at NNLO [90, 91].
However, in the ¢¢ channel, the normalization of the Z+jets
contribution is directly determined from a control region
in data. Events simulating the diboson processes are gener-
ated using PYTHIA and normalized to the respective NNLO
(WW) [92] or NLO (WZ and ZZ) [93] cross sections. For the
WW process, we checked that explicitly simulating nonreson-
ant WWbb production, which leads to the same final state as tt
production, does not change the results of this work. The ttV
events are generated at NLO with MADGRAPHS_aMC@NLO,
and are normalized using NLO cross section predictions. The
MC@NLO matching scheme [94] is used for the ttW samples,
while the FxFx matching scheme [95] is used for the ttZ
samples. Finally, the QCD multijet events are simulated with
PYTHIA.

4. Data analysis in the £j channel

Events that contain exactly one well-identified lepton (as
defined in section 2) with py > 30GeV are selected for further
analysis in the ¢j channel. For data recorded during 2018 and
most of 2017, except for an early period, a higher threshold of
pr > 34GeV is applied if the lepton is an electron, in order to
account for higher trigger-level thresholds. Events containing
additional loosely identified leptons (as defined in section 2)
with pr > 20GeV are rejected. Events are required to contain
at least three jets with pr > 30GeV, of which at least two are
required to be b tagged. This event selection is referred to as
signal region (SR).

4.1. Kinematic reconstruction

Each selected event is reconstructed under the assumption of
tt pair production with one leptonically and one hadronically
decaying W boson from the top quark decays. The first step is
to determine the neutrino four-momentum based on the meas-
ured pTss, and the second step is to assign jets to the final-state
quarks. Different procedures are followed for events with at
least four or exactly three jets, as described below.

The neutrino four-momentum p" is reconstructed with the
algorithm described in [96], separately using each b jet in
the event as candidate for the b accompanying the leptonic-
ally decaying W boson. Mass constraints of the W boson and
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leptonically decaying top quark are formulated, and for each b
jet candidate the pV that satisfies these constraints and minim-
izes the distance D, = [piss — pY ‘ is used as the solution [96].
If no solution is found for any b jet, the event is rejected.

For events with four or more jets, a likelihood function is
constructed using the product of the probability density of the
minimal D, and the two-dimensional (2D) probability dens-
ity of the invariant masses of the hadronically decaying top
quark and W boson. The probability densities are evaluated
from simulated events in which all jets are correctly identified.
All possible assignments of jets to the four final-state quarks
are evaluated, provided that only b-tagged jets are assigned as
b and b quark candidates. The best jet assignment is the one
that maximizes this likelihood.

For events with exactly three jets, the techniques described
in [97] are applied. The likelihood function is constructed
using the product of the probability density of the minimal
D, and the probability density of the invariant mass of the
two jets assigned as originating from the hadronically decay-
ing top quark. As with the case of four or more jets, the best
assignment is the one that maximizes this likelihood. There are
two typical cases of tt events that only have three jets. The first
and more common case is when one or more quarks from the
tt decay lie below the pr threshold or outside of the detector
acceptance, which we refer to as lost-jet events. The second
case typically occurs in the high-momentum regime, where the
angular separation between the top quark decay products are
lower, leading to multiple quarks being clustered into one jet.
These events are referred to as partially merged events. Once
the best jet assignment is identified, a correction is applied to
the four-momentum of the hadronically decaying top quark
as a function of its reconstructed mass. The correction factor,
which is derived using simulation as described in [97], is lar-
ger for lost-jet events and is close to one for partially merged
events, since a significant energy loss is expected only in the
former case.

In events where the required tt decay products, i.e. the
lepton and either all four or at least three jets, are inside the
detector acceptance and well identified, the correct combin-
ation is found in 74% of events with four or more jets and
in 83% of events with three jets. With respect to all selec-
ted tt events, these correspond to rates of 37% and 61%,
respectively.

The signal is extracted using 2D templates built using the
mg and |cos 6 | variables. The angle 6" is defined between the
reconstructed leptonically decaying top quark in the ZMF and
the direction of the tt system in the laboratory frame, analog-
ously to 6" introduced in section 3. The spin-0 nature of the
signals leads to the top quarks being emitted isotropically in
the tt ZMF, resulting in a flat cos6;; distribution at the gen-
erator level in the absence of kinematic selections. The FO
pQCD distribution, on the other hand, peaks toward high val-
ues of |cos &y |, due to the contribution from other spin states.
As aresult, the [cos 6} | distribution will be enriched with sig-
nal events at low values.

To assess the precision of the reconstruction algorithm, we
compute the relative resolution of mg, which is the standard

deviation (SD) of its relative difference to the generator-level
my, evaluated in all selected simulated tt events. The resolution
is in the range of 8%, for low generator-level mg values near
the threshold region, to 13% for high generator-level m values
above 1000 GeV, and it does not strongly depend on the num-
ber of jets. Furthermore, the absolute resolution of |cosf; |,
defined similarly as the SD of the absolute difference to the
generator-level value, is found to be about 0.05 for events with
four or more jets and 0.08 for events with three jets.

4.2. Background estimation

The background in the /j channel is estimated from MC sim-
ulation for FO pQCD tt and single top quark production, as
well as for 7, production, as described in section 3. QCD mul-
tijet production and EW processes (mostly W+jets and small
contributions from Z+jets, diboson, and ttV production) are
estimated using a control region (CR) in data with the same
selection criteria as for the SR except for requiring that none
of the selected jets is b tagged. The background distributions
are obtained by subtracting the simulated single top quark and
tt contributions from the data in the CR. The ratio of simulated
background events in the SR and CR is applied as a normal-
ization factor to the obtained background distributions. This
procedure has been validated in simulation, and the kinematic
distributions obtained from the CR are compatible with those
in the SR.

The result of the kinematic reconstruction and background
estimation is shown in figure 3, showing the reconstructed had-
ronically decaying top quark mass for events with four or more
jets as well as the pt of the tt system for events with exactly
three jets.

5. Data analysis in the £¢£ channel

In the /¢ channel, events are selected that contain exactly
two oppositely charged well-identified leptons, one with pp >
25GeV and the other with pt > 20GeV. Events are rejected
if they contain additional well-identified electrons or muons
with pt > 20GeV. Furthermore, the invariant mass i of the
dilepton pair is required to be larger than 20 GeV, to sup-
press events from low-mass dilepton resonances, and for same-
flavor pairs to be outside of the Z boson mass window, 76 <
myge < 106GeV. To further suppress Z+jets background con-
tributions, events in the ee and up channels are required to
have p?iss > 40GeV. In all cases, at least two jets with pr >
30GeV are required, and additional jets with pt > 20GeV are
also considered for further analysis. At least one of these jets
is required to be b tagged.

5.1. Kinematic reconstruction

Each selected event is reconstructed under the assumption that
the final state consists of a top quark pair that decays into two
leptonically decaying W bosons. A kinematic reconstruction
algorithm [98] consisting of two steps is applied to reconstruct
the tt system. First, of all jets in an event, two are identified as
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Figure 3. Comparison of the number of observed (points) and
expected (colored histograms) events in the ¢j channel after the
kinematic reconstruction and background estimation for the

had :

distributions of the reconstructed hadronic top quark mass m““ in
the region with four or more jets (upper) and the pr of the tt system
in the region with exactly three jets (lower). The ratio to the total
prediction is shown in the lower panel, and the total systematic
uncertainty is shown as the gray band.

the b and b quark candidates. Second, these two candidates,
together with the two leptons and p2*, are used to determine
the t and t quark four-momenta by applying mass constraints
on the W bosons and top quarks, taking into account experi-
mental resolutions.

To find the best assignment of jets to the b and b quarks,
candidate pairs of jets are selected based on the number of b-
tagged jets in the event. For events with two or more b-tagged
jets, only those jets are considered as b and b quark candidates,

while for events with exactly one b-tagged jet, this jet is paired

with all other jets in the event. The invariant masses of the
visible top quark decay products m,+, and m,—y, are calculated
for each bb candidate pair as well as each assignment to the b
and b quarks, and a likelihood is constructed as the product of
the generator-level probability densities of the two invariant
masses, evaluated from simulated events. The candidate pair
that maximizes this likelihood is chosen for the next step of
reconstruction.

Then, a system of equations for the top quark four-momenta
is constructed from energy and momentum conservation as
well as additional constraints [99], namely that: (i) the top
quark mass is equal to 172.5 GeV, (ii) the W boson mass is
equal to 80.4 GeV, (iii) the two neutrinos from the W boson
decays are the sole source of p*. These equations, which
are polynomials of fourth order, are solved for the neutrino
momenta analytically, and the top quark four-momenta cal-
culated as the vector sum of the decay products. To resolve
ambiguities between the multiple solutions, the one with the
lowest reconstructed value of m; is used, which minimizes the
bias with respect to the true value of mg [100, 101].

In about 55% of cases, this procedure on its own does not
give real solutions for the tt system since it does not take into
account the detector resolution. To remedy this, the system of
equations is solved 100 times per event with random smear-
ings applied to the energies and directions of the bb candid-
ates and leptons. These smearings are sampled, respectively,
from distributions of the relative energy difference and angular
distance between reconstructed and generator-level objects, as
evaluated in simulated events. The effect of the smearing on
the momenta of the bb candidates and leptons is propagated
to the measured p**, by adding to it the opposite of the total
change in momenta along the transverse components due to
the smearing. For all samplings that result in a real solution
to the system of equations, weighted averages of the t and t
quark four-momenta are computed over all samplings, with the
weight given by the same likelihood based on my+;, and my—y,
as used for the bb quark candidate assignment. These averages
are then considered as the final result of the reconstruction.

The performance of the tt reconstruction algorithm is stud-
ied using simulated FO pQCD tt events in the ¢/ final state. The
algorithm produces a solution for 90% of the events. In 78% of
these events, at least one b quark jet is correctly assigned, while
in 61% both jets are correctly assigned. The relative m resol-
ution, defined similarly as in section 4, is in the range of 15%,
achieved at low generator-level mg values near the threshold
region, to around 30% at high generator-level m values above
1000 GeV. The average my resolution is 23%.

The search is performed by building three-dimensional
(3D) templates using mg and two observables cpe; and chapn
that probe the spin correlations of the tt system. Spin correl-
ation variables have been discussed in detail in [17, 67, 102—
105], and we follow the coordinate system and sign conven-
tion of [103]. The observable cpe (referred to as cos in [17,
103] and —cos#f,;, in [104]) is defined as the scalar product
Chel = 0 Zf , where 7 and Z{ are the unit vectors of the
momenta of the two leptons in the rest frames of their parent t
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Figure 4. Normalized differential cross sections in the spin
correlation observables cpel (upper) and cpa, (lower) at the parton
level in the £¢ channel, with no requirements on acceptance, for SM
tt production (black solid), resonant A boson production (red
dashed), and resonant H boson production (blue dotted). The
corresponding distributions for 7 are identical to those of a A boson.

and t, respectively, obtained by first boosting the leptons into
the tt ZMF and then further boosting them into the rest frames
of their parent top (anti)quarks. The observable cy,, (identified
with —cos8/, in [104]) is obtained by flipping the sign of the
component parallel to the top quark direction (the ¥ direction
in [103]) for either Zf or Zf*, and then calculating a similar
scalar product. The slopes of both distributions provide sens-
itivity to the degree of alignment between the t and t spins.
The absolute resolutions of cye; and cp,, as provided by the
kinematic reconstruction, defined analogously as for |cos 6 |
in section 4, are found to be 0.46 for ¢y and 0.60 for cpay.

At the generator level and with no requirements on accept-
ance, the distributions of cyj and chay, integrated over the phase
space of all other variables, follow a straight line, as shown in
figure 4 for SM tt and resonant ® boson. For ¢y, the slope is
maximally positive for a pseudoscalar resonance, due to the
resulting tt system being in the 'S state with anticorrelated t

and t spins. The slope for the SM tt production is mildly pos-
itive, being the weighted average of all possible tt spin states
reachable by the initial colliding partons. Lastly, the slope of
the scalar resonance is mildly negative, as a consequence of
the tt pair being in the 3Py spin state. On the other hand, for
Chan, the slope is mildly positive for a pseudoscalar resonance,
approximately flat for the SM tt production, and maximally
negative for a scalar resonance. We further remark that, at gen-
erator level, the ¢y and ¢y, distributions for A and H reson-
ances have the same slopes regardless of their mass and width
values. The slopes of the SM tt distributions on the other hand
are dependent on mg—this is because of the change in the rel-
ative proportions of the colliding initial partons as well as their
helicity combinations. These features of the cye; and cp,, dis-
tributions, when combined with mg, allow for discrimination
between the signal and background processes and between the
A and H states in a broad range of phase space.

5.2. Background estimation

All background processes in the £/ channel, namely FO pQCD
tt, 7, single top quark, Z+jets, diboson, and ttV production,
are estimated from simulated event samples. Both the ¢/ and
the ¢j decay channels of tt are considered for the FO pQCD tt
sample, and additional misidentified or nonprompt leptons are
included. Contributions from Wjets events with one addi-
tional such lepton or QCD multijet events with two such
leptons are found to be small in the #¢ channel and neglected.

In the case of Z+jets production, the total yield of the sim-
ulation is corrected using data inside the Z boson mass win-
dow, which is removed in the main event selection, follow-
ing a modified version of the procedure described in [106].
The same selection criteria except for the my, requirements
are applied to the data inside the Z boson mass window. We
assume that there, the Z+jets contribution is negligible in the
ep channel compared to the ee and pp channels, and that
other backgrounds contribute equally to the three channels up
to a combinatorial factor. Consequently, we can estimate the
Z+jets contribution in data inside the Z boson mass window by
subtracting the data yield in the ep channel from the data yield
in the ee and pp channels while correcting for lepton recon-
struction efficiencies, thus subtracting out other backgrounds.

Next, to estimate the ratio of the Z+jets contribution inside
and outside the Z boson mass window, denoted as Rj; /oy, We
define a second sideband containing events with no b-tagged
jets. The ratio in this region, R?I}’/ ou» €an be measured directly
by comparing the Z+jets yields in data inside and outside the
Z boson mass window. We then assume the ratio of ratios
Ri /lzm / R?If’/ o iN the regions with 21 and 0 b tags, respectively,
to be well-described by simulation, which is a looser assump-
tion compared to that in [106]. From this, we can infer Ri /lgm,
and thus the total Z+jets yield outside the Z boson mass win-
dow, for events with one or more b tags, as used in the main
selection.

The yield is separately estimated for the ee and pp chan-
nels, and used to normalize the simulated Z+-jets contribution.
Compared to the yields predicted by simulation, we find the
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Figure 5. Comparison of the number of observed (points) and
expected (colored histograms) events in the £¢ channel after the
kinematic reconstruction and background estimation for the
distributions of the invariant lepton-b jet mass mg, (upper) and the
pr of the tt system (lower). The ratio to the total prediction is shown
in the lower panel, and the total systematic uncertainty is shown as
the gray band.

yield to be 3%—12% lower depending on analysis era and chan-
nel. For the e channel, where the Z+jets contribution is small,
the geometric mean of the ratios to simulation is used. The
level of agreement between data and MC simulation after the
kinematic reconstruction and background estimation is shown
in figure 5 for my, as well as the reconstructed pr of the tt
system.

6. Systematic uncertainties

Various sources of uncertainty affect the distributions of the
observables used in this analysis, and are implemented as
nuisance parameters in the binned maximum likelihood fit

described in section 7. For each considered experimental and
theoretical systematic effect, variations of the predicted signal
and background distributions are evaluated. Uncertainties that
affect only the normalization of a process are modeled using
log-normal constraints, as described in section 4.2 of [107].
Gaussian constraints are imposed for all other uncertainties,
which are referred to as shape uncertainties and can include a
log-normal-constrained variation of the overall normalization,
by modifying the product of the event acceptance and the cross
sections of the relevant processes. Unless stated otherwise, all
uncertainties are evaluated for signal as well as background
processes and treated as fully correlated among the processes,
lepton channels, and eras. The uncertainties are summarized
in table 1, and described in detail in the following.

The uncertainty in the jet energy scale [43] is evaluated by
varying the corresponding corrections within their uncertain-
ties, resulting in a total of 17 nuisance parameters that cor-
respond to the absolute and relative jet energy scales, calib-
ration uncertainties in specific detector regions, pt balance
in dijet or Z-+jets events used in the jet energy calibration,
and flavor-dependent jet response split into one source for b
quark jets and another for all other. Of these, 12 nuisance
parameters are specific to individual data-taking eras. The
uncertainty in the jet energy resolution measured in calibra-
tion data is propagated to the scale correction and smearing
of the jet energy resolution in simulation. An uncertainty in
the unclustered component of pis* is computed by shifting
the energies of PF candidates not clustered into jets with pt >
15GeV according to the energy resolution for each type of PF
candidate [50].

Uncertainties in the scale factors to correct the b tagging
efficiency in simulated events are evaluated by varying them
within their respective uncertainties [44], independently for
heavy-flavor (b and c quark) and light jets. We assign 20 nuis-
ance parameters for the heavy-flavor jet scale factors that cor-
respond to the parton shower (PS) modeling, the presence of
leptons within the jet, the jet energy scale, the number of pileup
interactions, and differences between different SF estimation
methods. Of these, 4 nuisance parameters affect individual
eras. For the light jet scale factors, 5 nuisance parameters are
assigned, of which 4 affect individual eras.

Uncertainties in the trigger, electron identification, and
muon identification scale factors are considered [47, 49]. For
the single-muon trigger and muon identification scale factors,
each uncertainty component is further split into statistical
components that are uncorrelated across eras and a correl-
ated systematic component. The effects of the inefficiency
caused by the gradual shift in the timing of the inputs of the
ECAL L1 trigger [35] are considered by assigning one nuis-
ance parameter to each era except 2018, where the effect was
not present.

The effective inelastic proton—proton cross section used for
pileup reweighting in the simulation is varied by 4.6% from
its nominal value. The uncertainty in the integrated luminosity
amounts to 1.6% [26-28] and affects the normalization of all
simulated processes. It is split into 5 nuisance parameters with
different correlation assumptions between the eras.
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Table 1. The systematic uncertainties considered in the analysis, indicating in parenthesis the number of corresponding nuisance parameters
in the statistical model (if more than one), the type (affecting only normalization or also the shape of the search templates), and the affected

physics processes and analysis channels they are applicable to.

Uncertainty (# of parameters) Type Process Channel
Jet energy scale (17) shape all all

Jet energy resolution (4) shape all all
Unclustered p* (4) shape all all

b tagging heavy-flavor jets (20) shape all all

b tagging light jets (5) shape all all
Single-electron trigger shape all ej
Single-muon trigger (5) shape all Wj
Dilepton triggers (12) shape all ee, ept, HpL
Electron identification (2) shape all ej, ee, epL
Muon identification (10) shape all L, ew, Uy
ECAL L1 trigger inefficiency (3) shape all all
Pileup shape all all
Integrated luminosity (5) norm. all all

Top quark Yukawa coupling shape FO pQCD tt all

EW correction scheme shape FO pQCD tt all

my shape FO pQCD tt, ® all

ME pur (5) shape FO pQCD tt, ®, single t, Z+jets all

ME pur (6) shape FO pQCD tt, ®, 7, single t, Z+jets all

PS ISR (6) shape FO pQCD tt, ®, 7, single t, Z+jets all

PS FSR (6) shape FO pQCD tt, ®, n, single t, Z+jets all

Color reconnection (2) shape FO pQCD tt all

hdamp shape FO pQCD tt all

PDF (2) shape FO pQCD tt all
Single top quark normalization norm. Single t all
EW+QCD normalization norm. EW+QCD 4
EW+QCD shape (20) shape EW+QCD 4j

ttV normalization norm. tv o
Z-+jets normalization norm. Z+jets 174
Diboson normalization norm. Diboson o

The prediction of the FO pQCD tt production is affected by
various sources of theoretical uncertainty. The computation of
the NLO EW correction, discussed in section 3, depends on the
value of the SM top quark Yukawa coupling through interfer-
ence with diagrams containing virtual SM Higgs bosons. This
coupling is modified with respect to its SM value in many BSM
scenarios relevant to this analysis, and its experimental meas-
urement uncertainty is significantly larger than the uncertainty
on the top quark mass. Thus, we consider an uncertainty in the
coupling by varying its value by 1.00 f?)"};, where the range
is given by the measurement reported in [108]. Furthermore,
the uncertainty in the application scheme of the NLO EW
corrections when combined with NNLO pQCD corrections is
considered by taking the difference between the multiplicat-
ive and additive approaches of about 1%—2%, as recommen-
ded in [80]. The uncertainty in m, is considered by shifting
its value in simulation by 43 GeV, and the induced variations
are then rescaled by a factor of 1/3 to emulate a more realistic
top quark mass uncertainty of 1 GeV [109]. The effect of the
choice of ug and pp in the ME calculation is evaluated by vary-
ing these scales independently by a factor of two up and down.

The effects of the my, ur, and pp variations on the accept-
ance and shape of the search templates are considered at NLO
accuracy, while the effects on the overall FO pQCD tt nor-
malization is considered at NNLO+NNLL accuracy [73, 110].
Decoupling the theoretical nuisance parameters based on their
effects—one each for the acceptance and shape, and one addi-
tional parameter for the overall FO pQCD tt normalization—
does not alter the conclusions of this analysis. Unlike [29], no
additional nuisance parameters comparing the predictions of
different ME and PS programs are assigned to the FO pQCD tt
background.

The scales used to evaluate the strong coupling constant
as in the PS simulation of ISR and FSR are also varied inde-
pendently by a factor of two up and down. The effect of the
uncertainties in the underlying event tune is estimated by vary-
ing the parameters of the CP5 tune [55]. Two uncertainties are
assigned for the color reconnection model, with one based on
the ‘QCD-inspired” model [111], and the other by switching
on the early resonance decay option in PYTHIA 8.240 [112].

The uncertainty in the matching scale between the ME and
PS is evaluated by varying the POWHEG parameter /igump, which
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controls the suppression of radiation of additional high-pr jets.
The nominal value of Agayp in the simulation and its variations
are 1.58 fg:gg my [113]. The uncertainty arising from the choice
of the PDF set is evaluated by reweighting the simulated tt
events using 100 replicas of the NNPDF3.1 set. A principal
component analysis is performed on the variations from the
PDF replicas to construct base variations in the space of the
predicted event yields in each bin of the search templates, from
which the base variation with the largest eigenvalue is used as
the PDF uncertainty. The second largest eigenvalue is found to
be almost two orders of magnitude smaller than the largest one,
thus the base variations corresponding to it and smaller eigen-
values are not considered. The uncertainty in the ag parameter
used in the PDF set forms a second independent PDF variation
uncertainty.

The pr and pp scale uncertainties in the ® signal simulation
are treated independently for the resonance and interference
components. Compared to the alternative of varying the scales
for the two components simultaneously, we found this to be
the more conservative option. The effect on the acceptance and
shapes of the search templates is considered at LO accuracy,
while the effect on signal cross section is considered at NNLO
accuracy. The scales used in the PS simulation of ISR and FSR
are also varied independently by a factor of 2 in each direction
and are treated independently for the resonant and interference
components.

The uncertainty in m; is also considered for the signal by
varying its value in simulation by +1 GeV. Its effect on accept-
ance, shape, and cross section is considered in the same way
as ur and pp variations. Given that this is a variation on the
same physical parameter, it is treated as fully correlated with
the background processes. Other theoretical uncertainties in
the signal, such as the PDF, are neglected as they are small
compared to those already considered.

The 7, background simulation, if applied, considers ug,
ISR, FSR, and m, uncertainties, affecting only the acceptance
and shape. They are handled identically to the corresponding
variations in the ® signal simulation. The overall normaliza-
tion of 7 is always taken to be a free parameter of the fit in this
analysis. Since the used model describes effective 7, produc-
tion via a contact interaction, without the emission of extra
partons at the LO ME level, the model encodes no depend-
ence on «g. Therefore, ug variations have no effect on the 7,
prediction.

The R, pr, ISR, and FSR scale uncertainties are also inde-
pendently considered for the Z+-jets and single top quark pro-
duction processes. For these processes, the ug and pg uncer-
tainties affect only acceptance and shape, not normalization.

The expected yields for most of the non-tt background
processes are derived using theoretical predictions for the
cross sections at NLO or higher accuracy. The uncertainties
assumed in the normalization of these processes are conservat-
ive and always exceed those of the corresponding theoretical
computations. For single top quark production, we assign an
uncertainty of 15%, based on relevant cross section measure-
ments [114-116]. In the £/ channels, the uncertainty in the ttV
production is taken to be 30% [117, 118]. The uncertainty of

the Z+jets production is taken to be 5% [119]. To account for
the fact that this search probes a restricted region of the phase
space of the corresponding processes, we assign a normaliz-
ation uncertainty of 30% for diboson production, which has
little impact on the overall sensitivity due to the small con-
tribution of these processes. All normalization uncertainties
for non-tt background processes are considered uncorrelated
between each other.

In the single-lepton channels, the normalization uncertainty
of the EW+QCD background estimate evaluated from a CR
in data is taken to be 50%. Furthermore, to estimate the effect
of changing the b tagging requirements on the kinematic dis-
tributions, the estimation is repeated for three different selec-
tions of the highest allowed b tagging discriminant value in
the event. The shape differences between the central selection
and the selections with a higher and lower allowed value of
the highest b tagging discriminant are taken into account as
uncertainties in the background estimation. As an additional
uncertainty, we take into account a variation of the subtracted
single top quark and tt contributions, in which their expected
contributions are scaled by the ratio of observed and expected
events in the CR.

The nominal background prediction is affected by the lim-
ited size of the simulated MC event samples. This statist-
ical uncertainty is evaluated using the ‘light’ Barlow—Beeston
method [120], by introducing one additional nuisance para-
meter for each bin of the search templates. These parameters
are uncorrelated across all channels and eras.

Several systematic variations, most notably those construc-
ted from dedicated MC samples, are affected by statistical
fluctuations. We suppress these fluctuations with a smooth-
ing procedure, which is described in [30] and is based on the
LOWESS algorithm [121, 122].

In general, the relative importance of different systematic
uncertainties depends greatly on the signal hypothesis, espe-
cially the mass of the scalar bosons. Close to the tt produc-
tion threshold, uncertainties due to the modeling of tt domin-
ate the total uncertainty, in particular the top quark Yukawa
coupling, the application scheme of the NLO EW corrections,
LR, M, the color reconnection model, and the 7, normalization
(if considered). A further nonnegligible contribution comes
from the estimation of the EW+QCD background. For lar-
ger values of mg, the ME-PS matching uncertainty for the
FO pQCD tt background as well as experimental uncertain-
ties due to heavy-flavor jet tagging become similarly import-
ant, while the effect of the 7, and EW+QCD contributions
become small. In addition, the total MC statistical uncertain-
ties in all bins together often outweigh every other individual
uncertainty.

7. Statistical analysis

To evaluate the consistency of the observed data with the
background-only hypothesis and with different signal hypo-
theses, we perform a statistical analysis using the search tem-
plates described in sections 4 and 5. The ¢j and ¢/ final states



Rep. Prog. Phys. 88 (2025) 127801

The CMS Collaboration

do not overlap as they correspond to orthogonal lepton selec-
tion criteria.
The statistical model is defined by the likelihood function

L(I’@,/J(Th) ,V)
= (H )\i (pq)’u(:?t)’y) ’ e_)\i (pcbvlj’(nl) 7V)> G(V),
; n;:
where
Ai(péaﬂ(nt)vy) = S?) (péay) +S:71 (H(nl) 7V) +B,‘(V),

@)

with B; denoting the combined FO pQCD background yield in

a given bin i, ST the ® signal yield dependent on signal model

parameters pg,, S;" the 7, contribution dependent on the signal

strength p(n), v the vector of nuisance parameters on which

the signal and background yields generally depend, and n; the

observed yield. The external constraints on the nuisance para-

meters are taken into account in this likelihood via a product

of corresponding probability density functions, G(v).
The @ signal yield is given by

S;I)(Pq»’/): Z (g:lblfsg),i(mq)aréay)
®=AH

+g<21>tf‘s;1,>i (m‘bar‘ba V)),

3

where 51%),1‘ and sﬁ’i are the yields for the resonant and inter-
ference part, respectively. The vector pg represents the signal
model parameters and comprises the ® boson mass mg, width
I's, and ggg. Equation (3) is kept generic by including con-
tributions from both A and H. Since there is no interference
between them, the corresponding signal distributions are trivi-
ally added together.
The yield of the 7, contribution is given by

S () ,v) = p(n) si* (v),

where 5! are the predicted 7 signal yields and j(r) is the
signal strength modifier, which is a free parameter of the fit.
There is no additional interference between A and 7 produc-
tions [67, 105, 123].

The background-only model is constructed by setting
gaq = 0. The compatibility between data and a given hypo-
thesis is determined by performing scans over the parameters
of the signal models in different scenarios, using methodolo-
gies described in the following.

“

71 Methodology for single ® boson interpretation

In the single ® boson interpretation, constraints on the coup-
ling strength modifier g are derived as a function of mg for
fixed I' /mqe values, separately for A and H. This is done
while setting the coupling modifier for the other CP state
in equation (2) to zero, thus excluding it from the statistical
model. The scan is performed for the mq and I'g /mg values
listed in section 3. Coupling strength values up to 3 are probed

to guarantee that the amplitudes preserve perturbative unitar-
ity for all calculations, in accordance with the lower bound
tan/3 = 1/gag 2 0.3 given in [4] in the context of 2HDMs,
where tan 3 is the ratio of the vacuum expectation values of
the Higgs doublets coupling to the up- and down-type quarks.

A variant of the LHC profile likelihood ratio test statistic
g, equivalent to those described in [124, 125] is utilized:

L (H,Ihp, '/);L,pq))

’é’ = —2In ~ = ’
}L(pq)) L(N7P¢7Vﬁ7P<p)

o<p<p (5
Because the ® signal scales nonlinearly with the coup-
ling modifiers geg, we introduce an auxiliary overall sig-
nal strength modifier p in terms of which the test statistic is
expressed, in the same way as in [30]. This facilitates testing
different ® signal hypotheses in a computationally efficient
way. The auxiliary parameter scales the overall ® signal yield
in equation (3), keeping the other parameters in p 4 fixed. The
likelihood in the numerator is maximized with respect to the
nuisance parameters, and 2/, , . denotes the vector of their val-
ues at the maximum for a given p4,. Depending on the scenario
considered, the 7, signal strength is kept as a free parameter of
the fit and treated as part of the nuisance parameters, or it is
fixed to p(n) = 0 in both numerator and denominator. A sim-
ilar notation is used in the denominator, where the likelihood
is maximized with respect to both p and v, under the addi-
tional constraint 0 < 2 < p. The requirement i > 0 excludes
cases in which the shape of the overall BSM contribution gets
flipped, resulting in a qualitatively different effect from what
is targeted in this search. The condition i < p prevents the
exclusion of a signal hypothesis if the data are more compat-
ible with a model that predicts the BSM contribution of a sim-
ilar shape but a larger overall size.

For each signal hypothesis, we perform a test according
to the CLg criterion [126, 127]. An asymptotic approxima-
tion [124] is employed to efficiently construct the distribu-
tions of the adopted test statistic. We exclude a configuration
P at 95% confidence level (CL) if the CL¢ value computed
for ;1 = 1, which reproduces the nominal signal expectation, is
smaller than 0.05.

72. Methodology for A+H boson interpretation

In the A+H boson interpretation, we consider the more general
case where two P states exist at the same time. We confine
ourselves to the case with exactly one A boson and exactly one
H boson, i.e. the case considered in 2HDMs [4]. Constraints
in the gag—gui plane are set using the following test statistic:

L (p $> I/)Pnp )

A~ ~ )
L (pq” Vl/i @ )
expressed directly in terms of gag and gyg. In contrast to the
single A/H interpretation, the asymptotic approximation on the
form of the test statistic distribution is not exploited, rendering
the auxiliary parameter ;4 unnecessary.

For each ggg configuration under consideration, its com-
patibility with the data is evaluated with the Feldman—Cousins

dp, = —2In ©6)
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prescription [128, 129]. An iterative procedure is applied to
reduce the number of points for which the test statistic needs
to be evaluated. An initially sparse grid of go configurations
are evaluated and refined around the region of the exclusion
contour boundary at a given CL. The procedure is repeated
until the minimum distance of two neighboring g4 config-
urations in the plane is small enough. Like in the single A/H
boson interpretation, we scan within the range of ggg < 3 in
the A+H boson interpretation.

8. Results

The data are interpreted in the context of ® boson produc-
tion under two background scenarios, one including 7, pro-
duction and one without. When 7 is not included, a deviation
from the background prediction is observed near the tt pro-
duction threshold. In section 8.1, we compare the two differ-
ent background scenarios to the signal scenario correspond-
ing to the highest local significance for this deviation. Next, in
section 8.2, limits on the production of a single ® boson are
presented, assuming that the background prediction is based
on FO pQCD calculations alone. Then, in section 8.3, the
same ¢ boson interpretations are presented, but now with 7,
included as part of the background. Finally, in section 8.4, we
show exclusion contours for the simultaneous presence of A
and H bosons for a few examples of mg and I's /ms, in the
background scenario with 7 production included. Constraints
on gg in the single ® boson interpretation, as well as exclu-
sion contours in the A+H boson interpretation, for mass and
width values not included in this paper are provided in the cor-
responding HEPData entry [64].

We refer to the companion paper [29] for an interpret-
ation of the excess around the threshold region in terms
of a pseudoscalar tt quasi-bound state without invoking any
BSM degrees of freedom, performed in the ¢¢ channels
only. For mg values close to the tt threshold and with the
chosen analysis strategy without spin correlation observables,
the ¢j channels contribute only subleading sensitivity to a
tt quasi-bound state. As a result, including the ¢j channels
in [29] would not significantly change the conclusions of said
work.

8.1. Data compared to background scenarios with and
without n contribution

The expected and observed distributions are shown after the fit
in figures 6-8 for the three channels considered. In the middle
panels, where no 7 contribution is included, a deviation from
the background prediction can be seen at low values of m.
The shown fit is performed using the signal pair
A(365,2%)+H(425,3%), using the notation introduced in
section 3, which corresponds to the highest observed local
significance. To find this signal pair, the local significance
of an A+H boson pair is estimated using the square root of
the value of the test statistic from equation (6) when fixing
gai = 0, i.e. comparing the case of zero A+H contribution to

the one that best describes the data, in the background scenario
without 7 [124].

It becomes apparent in figure 8(middle) that the contribu-
tions of A/H boson production at the best fit ggi values are
dependent on cpe and cpan, highlighting their sensitivity to dis-
criminate between the signals. In general, A boson production
is favored by the data over H boson production. Comparing
A(365,2%) and H(365,2%), corresponding to the best fit
mass and width for single A/H boson signals, we find a dif-
ference in negative log-likelihood of 2A1InL = 53, indicating
a strong preference for the CP-odd contribution.

For the lower panels of figures 6-8, 7 production was
included in the fit as additional background with the normal-
ization being a freely floating parameter of the fit, as dis-
cussed in section 7. In this case, the contributions for A and
H boson production vanish, showing that the data prefers
1. production over A or H boson production. However, we
note that the considered A/H masses are different from the 7
mass of 343 GeV, as described in section 3, and 7; and A are
thus not directly comparable. A further difference between 7
and A/H is the inclusion of SM tt—-A/H interference, leading
to peak-dip structures in mg, while 7, is modeled as a pure
resonance [123].

In addition, the Feldman—Cousins exclusion contours (as
discussed in section 7.2) for the two scenarios are shown in
figure 9. The expected contours are similar in shape, though
the one in the background scenario including 7 (lower) is
slightly wider. This is due to the fact that in the regions of
gagt relevant for the contours, the interference component of
the signal dominates, effectively manifesting as a deficit of
expected events. Since this occurs at higher mg compared to
the enhancement predicted by 7y, the addition of 7 to the
background does not significantly affect the expected exclu-
sion in gag. Furthermore, since H and 7, can be distinguished
based on cpe; and chap, the exclusion in gyg is not affected
either.

The observed exclusion contours are significantly differ-
ent for the two background scenarios. If 7, production is not
included as in figure 9(upper), the observed pseudoscalar-like
excess in data manifests as a narrow strip of compatible gag
values significantly different from zero. In contrast, the value
of gyt for this parameters point is compatible with zero within
three SDs. This demonstrates the pseudoscalar nature of the
excess.

In the 7, background scenario as presented in figure 9
(lower), the observed allowed values of both gag and gyt are
compatible with zero within two SDs, and the excess has van-
ished.

8.2. Single ® boson interpretation without r in the
background model

Combining the fit results for the 2D templates in (mg, [cos 6, |)
of the ¢/+3j and ¢+ >4j channels (as discussed in
section 4), with the results derived from the 3D templates
in (mg, Chel, Chan ) Of the £ channels (as discussed in section 5),
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Figure 6. Observed and expected mj distribution in bins of |cos 6y, |, shown for the £ + 3j channel summed over lepton flavors and eras. In
the upper panel, the data (points with statistical error bars) are compared to tt production in FO pQCD and other sources of background
(colored histograms) after the fit to the data in the A+H interpretation. The ratio of data to the prediction is shown in the middle panel,
where the two signals A (365, 2%) and H(425, 3%), corresponding to the best fit point, are overlaid. The lower panel shows the equivalent
ratio for the fit where 7 is considered as an additional background, for the same signal points. In both cases, the gray band shows the postfit
uncertainty, and the respective signals are overlaid with their best fit model parameters.
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Figure 7. Observed and expected my distribution in |cos 8, | bins, shown for the £ 4- >4j channel summed over lepton flavors and eras.

Notations as in figure 6.
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Figure 8. Observed and expected my distribution in cpe) and chay bins, shown for the £¢ channel summed over lepton flavors and eras.

Notations as in figure 6.

for all lepton flavors and eras, upper exclusion limits on gag
and gyt at the 95% CL are presented in figures 10 and 11, for
the background scenario without 7, contribution, as functions
of mg for different assumptions on the I'g /mq. The expected
constraints on ggg evolve in accordance with the signal cross
section, as A/H boson mass and width values increase. The
relatively sharper decline in sensitivity for A/H bosons with
700 < mg < 900GeV and larger I'¢ is due to cancellations
in the cross sections for the resonance and interference signal
components.

The expected constraints on g¢g obtained in this analysis
improve upon the previous results presented in [30], which
were based on a smaller data set and a simpler analysis
strategy. In the ¢j channel, the addition of the three jets cat-
egory increases the statistical power of the analysis. In the £/
channel, the addition of cy,, as an observable improved sens-
itivity of the search, particularly for H bosons.

These improvements also result in significantly stronger
observed constraints on ggg compared to previous results,
across most of the mass and width values in both CP scen-
arios. Interestingly, there is a significant deviation between
observed and expected limits at low mg values, for both the
A and H boson interpretations. The largest differences are for
A boson signal hypotheses with narrow widths. The best fit
to the data is achieved for the A(365,2%) signal hypothesis,
corresponding to the lowest generated A boson mass value,
with an observed local significance over the background-only
hypothesis in the background scenario without 7, contribution
of more than five SDs. This hypothesis corresponds to the low-
est mg value probed in this analysis.

8.3. Single ® boson interpretation with 7y in the background
model

The same limit extraction as in section 8.2 is repeated assum-
ing single ® boson production as signal, but now including 7,
production to the fit as additional background, with the nor-
malization treated as an unconstrained nuisance parameter, as
outlined in section 7.

The obtained 95% CL upper limits on gag as a function
of mg are shown in figures 12 and 13. The observed lim-
its are consistent with the expected ones within two SDs for
both CP scenarios, across all width values and the entire mass
range. Notably, the excess at low masses seen in figures 10
and 11, where the background model without 7, contribu-
tion is assumed, has disappeared. This suggests that the data
are well described when 7, production is included in the
background model. Moreover, a comparison of the exclu-
sion regions in figures 10—12 at low masses indicates a slight
preference for the 7 hypothesis over the single A boson
production hypothesis for the lowest probed mass point at
A(365,2%). However, the current analysis has limited dis-
criminatory power between these hypotheses based on their
mg lineshapes due to the limited experimental resolution, pre-
venting a definitive preference for one explanation over the
other.

8.4. The A+H boson interpretation

Many extensions of the Higgs sector, such as 2HDMs [4], pre-
dict the existence of both A and H bosons, with their masses
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Figure 9. Frequentist 2D exclusion contours for gag and gy for the A (365, 2%)+H(425, 3%) signal point, in the background scenario
excluding (upper) and including (lower) 7 production. The expected and observed contours, evaluated with the Feldman—Cousins
prescription [128, 129], are shown in black and pink, respectively, with different line styles denoting progressively higher CLs. The regions

outside of the contours are considered excluded.

and widths potentially falling within the range probed by this
analysis. To investigate this possibility, we perform a simul-
taneous A+H boson interpretation, considering various A/H
boson pairs beyond the one analyzed in section 8.1, including
the 7, contribution in the background scenario.

The results are presented in figure 14 for the case of
identical A and H boson masses and in figure 15 for differing

masses, all assuming a width of 2%. In all cases, the observed
exclusion contours are consistent with zero A+H boson con-
tribution. We note that the difference between expected and
observed contours in figure 14(lower left) corresponds to
a local tension at the level of 1-2 SDs for mpy between
700 and 780 GeV and T'y/my = 2%, similar as in figure 13
(upper left).
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Figure 10. Model-independent constraints on g as functions of the A boson mass in the background scenario without 7, contribution, for
T's/mae of 1%, 2%, 5%, 10%, 18%, and 25% (from upper left to lower right). The observed constraints are indicated by the shaded blue
area, bounded by the solid blue curve. The inner green and outer yellow bands indicate the regions containing 68% and 95%, respectively,
of the distribution of constraints expected under the background-only hypothesis. The unphysical region of phase space in which the partial
width I'y ¢ becomes larger than the total width of the A boson is indicated by the hatched line.
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Figure 11. Model-independent constraints on gy as functions of the H boson mass in the background scenario without 7 contribution,
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Figure 12. Model-independent constraints on g as functions of the A boson mass in the background scenario with 7, contribution, shown
in the same fashion as in figure 10.
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Figure 13. Model-independent constraints on gyt as functions of the H boson mass in the background scenario with 7, contribution, shown
in the same fashion as in figure 10.
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Figure 14. Frequentist 2D exclusion contours for gai and gug in the A+H boson interpretation for four different signal hypotheses with
identical A and H boson masses of 365 GeV (upper left), 500 GeV (upper right), 750 GeV (lower left), and 1000 GeV (lower right), all
assuming a relative width of 2%. The expected and observed contours, evaluated with the Feldman—Cousins prescription [128, 129], are
shown in pink and black, respectively, with the solid and dashed lines corresponding to exclusions at 68% and 95% CL. The regions outside
of the contours are considered excluded. In all cases, 7, production is included in the background model.

9. Summary

A search has been presented for the production of pseudoscalar
or scalar bosons in proton—proton collisions at /s = 13 TeV,
decaying into a top quark pair (tt) in final states with one or
two charged leptons. The analysis uses data collected with
the CMS detector at the LHC, corresponding to an integrated
luminosity of 138fb~'. To discriminate the signal from the
SM tt background, the search utilizes the invariant mass of
the reconstructed tt system along with angular observables
sensitive to its spin and parity. The signal model accounts for
both the resonant production of the new boson and its interfer-
ence with the perturbative quantum chromodynamics (pQCD)
tt background.

A deviation from the background prediction, modeled
using FO pQCD, is observed near the tt production threshold.
This deviation is similar to the moderate excess previously
reported by CMS using data corresponding to an integ-
rated luminosity of 35.9fb~' [30]. The local significance
of the excess exceeds five SDs, with a strong preference

22

for the pseudoscalar signal hypothesis over the scalar
one.

Incorporating the production of a color-singlet IS([)” tt
quasi-bound state, 7, within a simplified nonrelativistic QCD
model, with an unconstrained normalization to the back-
ground, yields agreement with the observed data, eliminating
the need for additional exotic pseudoscalar or scalar boson
production. However, the precision of the measurement is
insufficient to clearly favor either the 7, production model, or
a new A boson down to a mass of 365 GeV, or any potential
mixture of the two. A detailed analysis of the excess using the
tt quasi-bound-state interpretation is provided in [29].

Exclusion limits at the 95% CL are set on the coup-
ling strength between top quarks and new bosons, cov-
ering mass ranges of 365-1000GeV and relative widths
of 0.5%—-25%. When the background model includes both
FO pQCD tt production and 7; production, stringent con-
straints are obtained for three scenarios: a new pseudoscalar
boson, a new scalar boson, and the simultaneous presence
of both. Coupling values as low as 0.4 (0.6) are excluded
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Figure 15. Frequentist 2D exclusion contours for gai and gug in the A+H boson interpretation for six different signal hypotheses with
unequal A and H boson masses, corresponding to combinations of 365, 500, and 1000 GeV, all assuming a relative width of 2%. The
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with the solid and dashed lines corresponding to exclusions at 68% and 95% CL. The regions outside of the contours are considered
excluded. In all cases, 7, production is included in the background model.

for the pseudoscalar (scalar) case. These limits are similar Data availability statement

to the ATLAS results [32] in case of pseudoscalar produc-

tion, and represent the most stringent limits on scalar reson- Release and preservation of data used by the CMS
ances decaying into tt over a wide range of mass and width  Collaboration as the basis for publications is guided by the
values. CMS data preservation, re-use and open access policy. The
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