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ABSTRACT: Salient aspects of the commissioning, calibration, and performance of the CMS silicon
strip tracker are discussed, drawing on experience during operation with proton-proton collisions
delivered by the CERN LHC. The data were obtained with a variety of luminosities. The operating
temperature of the strip tracker was changed several times during this period and results are shown as
a function of temperature in several cases. Details of the system performance are presented, including
occupancy, signal-to-noise ratio, Lorentz angle, and single-hit spatial resolution. Saturation effects in
the APV25 readout chip preamplifier observed during early Run 2 are presented, showing the effect on
various observables and the subsequent remedy. Studies of radiation effects on the strip tracker are
presented both for the optical readout links and the silicon sensors. The observed effects are compared
to simulation, where available, and they generally agree well with expectations.
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1 Introduction

The silicon strip tracker (SST) of the CMS experiment [1] at the CERN LHC [2] is the world’s
largest silicon-based detector with an active area of 200 m?. The SST detects charge deposits (hits) at
discrete points along the paths of charged particles arising from the collisions produced by the LHC.
These hits, together with those detected in the CMS pixel detector [1, 3-5], are used to reconstruct
the trajectories of charged particles traversing the detector. Because of the bending of the particle



trajectories in the 3.8 tesla field of the CMS solenoid magnet, the transverse momenta of the particles
are measured. The SST was initially proposed in 1997 [3] as a part of a larger tracker featuring
micro-strip gas chambers, but the central tracker was changed to an all-silicon design in the year
2000 [6]. It was assembled and tested at the Tracker Integration Facility at CERN [7, 8], installed
in CMS in late 2007, and subsequently commissioned in 2008 [9].

The LHC started data operation with proton-proton (pp) collisions at 7 TeV in early 2010. The
center-of-mass energy was increased to 8 TeV in 2012. After the LHC Long Shutdown 1 (LS1),
during the years 2013-14, the LHC restarted at an increased center-of-mass energy of 13 TeV . The
data-taking period 2010-2012 is commonly referred to as LHC Run 1, the years 2015-2018 as
LHC Run 2. During Run 1 the bunch spacing in the LHC machine was 50 ns. During Run 2 the
bunch spacing was reduced to its design value of 25 ns, after an initial period of about 6 weeks
with 50 ns bunch spacing. The peak instantaneous luminosity to which the SST has been exposed

2g71 during 2010 to up to a maximum of

has changed by orders of magnitude from a few 102 cm™
2.13x 10* cm™2s7! during 2018, more than twice the design luminosity, as shown in figure 1. The
mean number of pp collisions (pileup) in a single LHC bunch crossing was around 31 during the
years 2017 and 2018, with the tails of the pileup distribution extending to values around 70. The
total integrated luminosity of pp collisions delivered to CMS in Runs 1 and 2 was 192.3 b, At
the time of publication, LHC Run 3 is ongoing at a center-of-mass energy of 13.6 TeV . The SST
was designed for a total integrated luminosity of 500 fb~! and a lifetime of at least 10 years with

no ability to access the detector for maintenance during this time.
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Figure 1. Peak luminosity delivered to CMS during stable pp collisions for 2010-2012 and 2015-2018, as a
function of time [10]. The luminosity for the year 2010 is multiplied by a factor of 10.

This paper covers the years of data taking up to the start of the LHC Long Shutdown 2 (LS2) in
late 2018 and is organized as follows. A brief overview of the SST and the detector status at the start
of LS2 is given in sections 2 and 3. A description of the calibration procedures and the variation of
system properties such as optical link gain and noise is shown for different operating temperatures in
section 4. In section 5, the ingredients necessary to simulate collision events in the SST and model its
performance are described. The performance of the SST with LHC collisions, including quantities
such as occupancy, hit efficiency, and the signal-to-noise ratio, is shown in section 6. Section 7 is
dedicated to the description of radiation effects in the SST, their change with time and integrated



luminosity, as well as studies of the longevity of the existing tracker until the end of Run 3, when it is
expected to be replaced. A summary and an outlook for the future of the SST are given in section 8. A
glossary is supplied in section A for special terms and acronyms used in this paper. A description of
the track and vertex reconstruction performance with the full CMS tracking system in Run 1 is given
in ref. [11]. Some results prepared for this paper have already been made public in ref. [12].

2 Overview of the silicon strip tracker

The SST is located at the center of the CMS experiment inside the solenoidal magnet, which provides
a homogeneous magnetic field of 3.8 T parallel to the beam line. The inner bore of the SST houses the
CMS pixel detector. The original CMS pixel detector [1, 3] was operated during the years 2009 to
2016. It was replaced by the Phase-1 pixel detector [4, 5] in 2017. The SST is surrounded by the
electromagnetic and hadron calorimeters, which are also placed inside the solenoid, and the steel
flux-return yoke of the magnet is instrumented with muon chambers. A more detailed description
of the CMS apparatus is report in refs. [1, 12].

The kinematic variables and spatial coordinates relevant for this paper are described in the
following. CMS uses a right-handed coordinate system with the origin at the nominal interaction
point inside the experiment. The x axis points towards the center of the LHC ring, the y axis points
upwards (perpendicular to the LHC plane), and the z axis points along the beam line in the direction
of the counter-clockwise circulating beam. The azimuthal angle ¢ is measured from the x axis in
the x-y plane, and the radial coordinate in this plane is denoted by . The polar angle 6 is measured
from the z axis. The pseudorapidity is defined as 5 = —Intan (6/2).

The SST occupies a cylindrical volume of 6 m in length and 2.2 m in diameter around the beam
line. It is composed of 15 148 individual silicon detection modules comprising 9.3 million readout
strips. An r-z view of the SST is shown in figure 2. The barrel section of the SST consists of the
tracker inner barrel (TIB) and the tracker outer barrel (TOB), composed of 4 and 6 concentric layers
of silicon modules, respectively. The strips in the TIB and TOB are oriented parallel to the beam line,
enabling a precise measurement of the r-¢ coordinate of a charged-particle track. The first two layers
of both TIB and TOB are made of “stereo modules”, where two independent silicon modules are
mounted back-to-back with the sensor strips in the second module at a 100 mrad “stereo” angle to
enable a three-dimensional point reconstruction. The SST is complemented in the forward region by
the two small tracker inner disk (TID) subdetectors and the larger tracker endcaps (TECs). On each
side of the barrel region, the TID consists of three disks each with three rings of modules. Each of
the two TECs consist of 9 disks; the number of rings decreases from 7 in the first three disks to 4 in
disk 9 to reduce the number of silicon modules while ensuring coverage for || < 2.5. The rings 1
and 2 of the TID and rings 1, 2, and 5 of the TEC also contain stereo modules. The modules in the
TID and the TEC are wedge-shaped with the strips pointing radially outwards from the nominal beam
line to enable a precise measurement in ¢. Within each layer, modules are arranged so that there is a
small overlap between neighboring modules. This arrangement ensures full acceptance and allows
the use of tracks passing through overlapping modules for alignment purposes and other studies that
benefit from a short extrapolation distance. The SST can reconstruct tracks with transverse momenta
upward of a few hundred MeV with full efficiency being reached from around 1 GeV.

The control and readout system of the SST is shown in figure 3. The basic building blocks
of the detector are the detector modules. These contain the silicon sensors, the APV25 front-
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Figure 2. An r-z view of one quarter of the CMS silicon strip tracker. Layers with stereo modules (details
are given in the main text) are drawn as blue lines, layers with single modules as red lines. The Phase-1 pixel
detector, installed in 2017, is shown in green.
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Figure 3. Overview of the control and readout scheme of the SST.

end chips [13], and other auxiliary application-specific integrated circuits (ASIC) for readout and
monitoring. The detector module readout is performed via an optical link. The data from pairs
of APV25 chips are time-multiplexed and passed to a Linear Laser Driver (LLD) [14], located
on an Analog Optohybrid (AOH) [15], which sends the data via an optical fiber to the Front-End
Driver (FED) back-end boards [16] located in the service cavern. The modules are controlled by
Communication and Control Units (CCUs) [17], which are electrically daisy-chained into control
rings. The control information is sent from Front-End Controller (FEC) boards [18], also located
in the service cavern, via a bi-directional digital optical link to a Digital Optohybrid (DOH) [15]
that serves as an entry to, and exit from, a control ring.

Silicon strip detector modules. The SST detector module consists of one or two silicon strip sensors
and a front-end hybrid (FEH) printed circuit board, which houses the readout and auxiliary electronics,
on a light-weight carbon fiber frame. The silicon sensors are of the float-zone p-in-n type, with a



uniform n™" back-side implant with phosphorous doping for the n-bulk material. The unprecedented
scale of the CMS SST prompted the move from 4 inch to 6 inch diameter wafers, and a (100) lattice
orientation was chosen [19] since this was shown to result in improved radiation tolerance of the
surface interface layer [20]. The spacing between the individual p* implants of the readout strips (pitch)
varies between 80 and 205 um, depending on the radial position in the tracker, with the pitch mostly
increasing with radius. The readout strip is connected via a polysilicon bias resistor to a p* bias ring,
held at ground, which also defines the active area of the sensor. A high voltage bias supply is connected
to the aluminum-covered, deep-diffused n*™ layer of approximately 20-30 pm thickness that provides a
robust barrier to charge injection. In the inner parts of the tracker, silicon sensors of 320 um thickness
are used, referred to as “thin” in the following. In the outer parts of the tracker (TOB and rings 5-7 of
the TECs), where occupancy and radiation exposure are lower, two silicon sensors are daisy-chained
to increase the cell size to about 20 cm in length. To maintain a sufficiently high signal-to-noise ratio,
500 um thick silicon sensors, referred to as “thick” in the following, are used for those modules.
The p* implants of the individual strips are covered by a thin silicon oxide and nitride multilayer
and overlaid by an aluminum strip. This structure serves as a capacitor that AC-couples signals
from the sensor to the 128 individual inputs of an APV25 chip. To enable the connection of the
different sensor pitches to the APV25 chip pitch, glass pitch adapters are used. A detector module has
either 512 or 768 strips and is read out by either four or six APV25 chips. Modules with six APV25
chips are used to instrument TIB layers 1 and 2, TOB layers 5 and 6, TID rings 1 and 2, and TEC
rings 1, 2, and 5. All other layers/rings have modules with four APV25 chips. Pictures of all SST
module types can be seen in figure 4. A summary of the strip pitch for different detector locations, as

Figure 4. Module types of the SST.

well as the number of APV25 chips per module is given in table 1. More details about the physical
dimensions of the silicon sensors are reported in ref. [19].

The APV25 chip is used to read out groups of 128 strips. In the name, APV stands for “analog
pipeline voltage” in the memory pipeline, and the “25” in the name refers to the 250 nm processing
technology. For each event, information from all strips is collected and stored on the chip in an analog
pipelined memory for potential readout. A functional schematic of a single APV25 chip readout



Table 1. Summary of number of APV25 chips per module and strip pitch (strip pitch range) for barrel (endcap)
sensor geometries.

Sub- Layer No. of Pitch Sub- Ring No. of Pitch range
detector APV25s [um] detector APV25s [pm]
TIB 1,2 6 80 TID 1 6 80.5-119
TIB 3,4 4 120 TEC 1 6 81-112
TOB 1-4 4 183 TID/TEC 2 6 113-143
TOB 5,6 6 122 TID/TEC 3 4 123-158
TEC 4 4 113-139
TEC 5 6 126-156
TEC 6 4 163-205
TEC 7 4 140-172
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Figure 5. Functional schematic of a single channel of the APV25 chip.

channel is shown in figure 5. The APV25 chip samples at the LHC bunch crossing (BX) frequency
of 40 MHz. It has a preamplifier, a unit-gain inverter stage that can be activated or deactivated, a
shaper, a 192 BX deep analog memory pipeline, and a deconvolution circuit. The pipeline enables
buffering of the information of a given event for a maximum of 4 us.

The APV25 chip has two principal readout modes, called peak and deconvolution mode. In peak
mode, a single cell from the pipeline is read out for a given level-1 trigger accept signal (L1A). In
deconvolution mode, an algorithm described in the following is used, as the shaper of the APV25
chip has a shaping time of 50 ns, which is too long to properly distinguish between hits resulting from
collisions in consecutive bunch crossings. The deconvolution algorithm [21], implemented in the
analog pulse shape processor (APSP) as a switched-capacitor network, effectively shortens the pulse
length to approximately 25 ns, thereby reducing substantially the contribution of hits from particles
traversing in adjacent (earlier or later) bunch crossings. The algorithm performs a three-sample
weighted sum to determine the charge value to be sent out for a particular bunch crossing. The
shorter effective peaking time comes at the expense of increased noise, about a factor of 1.5 higher
compared with the peak mode. The peak mode is used during special commissioning periods and
during runs using cosmic triggers, whereas the deconvolution mode is used for collision data taking.
The APV25 chip can reserve pipeline cells for readout of 31 events in peak mode and 10 events in



deconvolution mode. A special pipeline emulator board in the underground service cavern close
to the central trigger system can block triggers using the CMS trigger throttling system (TTS) to
prevent buffer overflow in the chips.

Upon reception of an L1A, the APV25 chip outputs a sequence of analog signals corresponding
to the charge present on each strip for the corresponding event, at 20 MHz frequency. An example of
an APV2S5 chip data frame is shown in figure 6. Each APV25 chip first sends a digital header with a
start-of-frame marker, the address of the readout pipeline cell and an error bit, followed by the analog
strip payload. The payload consists of a series of 128 analog signals with an amplitude proportional to
the charge on the individual strips. A digital signal called a tick mark is issued as a synchronization
signal and end-of-frame marker. A tick mark is also issued every 70 clock cycles if no L1A is received
by the APV25 chip. The signal from two APV25 chips is time-multiplexed at 40 MHz via a dedicated
ASIC called the APVMUX (MUX in figure 3). The resulting data frame is then transferred electrically
to the AOH, where the electrical signal is transformed to an analog optical signal by the LLD with
four selectable gain stages based on InGaAsP edge-emitting laser diodes. The signal from two APV25
chips is sent via a single optical fiber at 40 MHz to one of the back-end readout boards.
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Figure 6. Example of an APV25 chip output signal. A data frame consists of a 3-bit start-of-frame marker, an
8-bit pipeline address, an error bit, the 128 strip analog payload, and the trailing tick mark. In the absence of a
level-1 trigger accept signal, the APV25 chip issues tick mark synchronization pulses every 70 clock cycles.

Each detector module contains a Detector Control Unit (DCU) [22] and a phase-locked loop
(PLL) [23] chip. The DCU reads the temperature and leakage current of the silicon sensor as well as
low voltages (LV) and temperatures on the FEH. The PLL chip can delay the clock and trigger signals
sent to the module to perform a precise adjustment of the readout timing in steps of 1.04 ns.

Optical links and back-end readout. The readout signal from the LLD is transmitted via optical fibers
out of the underground experimental cavern to the service cavern where it is received by the FEDs. A
total of 440 FEDs are used to read out the SST. Twelve readout fibers are bundled into a ribbon, and a
total of 8 ribbons are combined into multiribbon cables of 40-60 m length, bridging the path between
the caverns. The FED is a 9U VME board with 8 identical inputs; each receives the signals from one
ribbon or 12 individual fibers. A FED can thus read the signals from up to 192 APV25 chips; the actual
number varies depending on the location of the modules in the detector and other considerations such



as load balancing. The FED has a 10-bit analog-to-digital converter (ADC) at the input. In normal
physics data taking, the FED runs in zero-suppressed (ZS) mode. In this mode it performs pedestal and
common mode subtraction as well as cluster finding on the data, before sending the zero-suppressed
data to the CMS central data acquisition (DAQ). Candidate hits from charged particle tracks are
identified by comparing the strip signal to a corresponding noise level. Dedicated runs outside of the
physics data-taking periods are used to determine the pedestal and noise level of each strip. Data from
a single strip with a signal above five times its noise level will be transmitted. Additionally, data from
a strip whose signal is higher than twice its noise level will be sent out if at least one of its neighbors
also has a signal exceeding two times its noise level. Each signal is reduced to 8-bit precision before
transmission with the two most significant bits dropped. The highest two ADC values have a special
role: 254 implies a digitized strip signal between 254 and 1022 counts, and 255 indicates that the
actual value was 1023 counts, i.e., saturating the ADC. The FED can also send unsuppressed (NZS
for “no zero suppression”) data that contain the full information from all connected strips in the SST
with 10-bit precision. The event size from the SST is 0.5-1.0 MB in the ZS mode, depending on the
occupancy, and about 14 MB in NZS data taking, which is used only in special data-taking periods.

Detector control. The central feature of the SST control system is control rings made of CCUs that are
electrically daisy-chained into a ring-like architecture. A DOH serves as the optical entry and exit point
for each control ring. The FEC boards form the back-end hardware for the detector control system.
These 9U VME boards are equipped with up to 8 mezzanine cards, called mFECs, each of which
communicates via a bi-directional optical link with one of the 356 control rings in the SST. The optical
signal from the mFEC is received by the DOH and transmitted electrically around the control ring.

Each CCU is connected to 2—-12 detector modules and transmits clock and trigger signals to
them via dedicated lines. In addition, configuration parameters are sent using the I’C protocol [24],
and slow-control data from the DCUs are read back. Each control ring consists of between 3 and
12 CCUgs, and control rings vary in size between about 30 and 60 individual modules. The control
ring has a secondary path to allow bypassing individual CCUs in case of failure. A redundant DOH
is available in case the primary DOH fails.

Readout partitions. The strip tracker is organized into four readout “partitions”, each of which can
be operated independently. This means, for example, that for calibration runs the readout partitions
can be triggered independently and different calibration procedures can be performed in parallel.
The four readout partitions of the tracker are formed by the TIB and the TID together, the TOB,
and each of the two endcaps (TEC<).

Services. The SST silicon sensor modules require 1.25V and 2.5 V low voltage (LV) to be supplied
for the front-end readout electronics, and up to 600 V high voltage (HV) for biasing the silicon strip
sensors [25]. These are provided by a set of 962 CAEN A4601 power supply modules (PSM). Each
PSM consists of two independent and identical power supply units (PSU). Each PSU has two LV
channels that can supply up to 6 A at 1.25V and 13 A at 2.5V, as well as two HV channels, each
capable of supplying up to 12 mA at 600 V. The SST was operated at a nominal HV of 300 V. Between
2 and 12 modules are supplied with LV and HV by a single PSU. Such a set of modules is called
a “power group”. The control rings are supplied with 2.5V LV by 110 CAEN 4602 power supply
modules, which can power four control rings each. The power supplies are located in the experimental



cavern and are distributed among 29 racks. They are controlled by 29 branch controllers, which are
housed inside 8 CAEN 2527 mainframes. The total power consumption at the end of Run 2 was
about 32 kW consumed in the front-end electronics and about 60 kW delivered. The difference is
dissipated along the 40—60 m long power cables.

The SST is cooled by two cooling plants that circulate liquid C4F;,. Each plant feeds 90
independent sets of cooling loops. The total cooling capacity is about 90 kW, which is sufficient
to remove the heat produced by the readout electronics and to keep the silicon sensors at subzero
temperatures over the entire lifetime of the detector. The tracker support tube contains a thermal
screen system, which includes heating foils and cooling plates. Toward the outside, the heating foils
maintain a temperature of +18°C to avoid possible condensation and to prevent any thermal effect
on the CMS electromagnetic calorimeter. The cooling plates in the tracker support tube are fed by
two independent cooling plants with 8 loops each. These plants also circulate liquid C¢F,4. The
thermal screen cooling prevents heating of the tracker from the outside and can be used as backup
cooling when the SST is powered off, independently of the two main cooling plants, to ensure that
the tracker volume can be kept cold at all times.

3 Detector status

The SST was installed in CMS in December 2007, and, after commissioning, 98.6% of the channels
were fully operational [9]. Over time, a number of failures developed; the most significant are
described below, representing the status of the end of the running year 2018.

A total of 3 out of the 356 control rings can no longer be operated. This amounts to an inactive
channel fraction of 0.7%. There is one inactive control ring in TIB layer 1, one in TIB layer 2, and
one in TOB layer 4. The detector regions corresponding to the defective control rings do not overlap
inn or ¢. A total of 6 out of the 1924 power groups are inoperable and the corresponding modules
are excluded from data taking. Six out of the 3848 HV channels cannot be put under bias because of
short circuits or excessive currents, and again all modules connected are excluded from data taking.
The above failures sum up to about 1.1% of the modules in the SST.

In late 2009 the cooling circuits connected to one tracker cooling plant suffered from an
overpressure incident. Both the supply and the return valve of the 90 cooling loops were closed while
the coolant was still at +4°C. The coolant gradually warmed up to room temperature and the thermal
expansion led to high pressure inside the cooling lines. A few lines developed leaks in the process
and a total of 5 of the 180 cooling loops were inoperable by the end of Run 2: three in TIB layer 3,
one in TID—- disk 2, and one in TOB layer 3. The modules on these cooling pipes continue to be
operated but are cooled only from the neighboring detector parts via the carbon fiber structure. As
a result of the over-pressure incident, some TIB cooling pipes, which have an oval cross section to
fit within space constraints, were deformed and came into contact with the back side of the silicon
sensor, creating a short circuit on the HV line rendering all modules connected to the same HV
line unusable for data taking. These modules are mostly located in TIB layers 3 or 4, and some are
related to the faulty HV channels mentioned above. For some other modules the cooling contact
between the cooling line and the module has been partially or fully detached leaving the modules
with insufficient cooling. These modules are mostly located in TIB layer 1 or 2. They continue to
be operable, but show high temperatures compared with properly cooled detector parts. Layers and
rings with stereo modules in addition generally show elevated temperatures compared to single-sided



ones. This information is summarized in figure 7, which shows a tracker map where each silicon
module is represented by a rectangle in the barrel region and a trapezoid in the endcap region, and one
part of a stereo module constitutes one half of this area. The large purple regions in TIB layer 2 and
TEC- disk 8 are detector parts that are functional in the data acquisition, but where the readout of
slow control data via the DCUs fails. Owing to the multiple overlapping layers of the SST, there is
no appreciable loss of physics performance from all failures listed above. More details on the total
number of active channels during data taking can be found in section 6.2.
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Figure 7. Tracker map where each silicon module is represented by a rectangle in the barrel and a trapezoid in
the endcap; in stereo modules each submodule constitutes one half of this area. In the TID and TEC the disks are
shown with the distance from the interaction point increasing from left to right. The color scale represents the
silicon sensor temperature measured by DCUs after 191 fb~! of integrated luminosity at a cooling plant set point
of —20°C. Modules in gray are excluded from the data acquisition. The large gray regions in TIB layers 1, 2 and
TOB layer 4 are nonfunctioning control rings. The large purple regions in TIB layer 2 and TEC— disk 8 are detector
parts that are functional in the data acquisition, but have problems in the readout of slow control data via the DCUs.

The SST was operated at +4°C coolant temperature during Run 1. The reason to choose a
temperature set point much higher than foreseen was insufficient humidity control in the tracker
service channels and in the interface region between the SST volume and the environmental seal
towards the outside (called the bulkhead). The SST volume itself had very low humidity values at all
times with dew points well below —30°C. In LS1 a number of measures were undertaken to enable
operation at low temperature. A dry gas delivery system with much larger capacity and fine-grained
distribution was installed, and vapor insulation was improved with seamless sealing from the edge
of the solenoid magnet to the bulkhead. To avoid condensation on the surface of the cooling ducts
and the outside of the tracker cold volume, additional heating elements were added. Monitoring of
humidity was also improved by installing a fine-grained system with both in situ humidity sensors
and a gas extraction system with remote humidity measurements.

The cooling system also underwent a major refurbishment including new and improved heat
exchangers with better regulation and instrumentation, and new housings with better insulation for
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the plant core. The tracker now has the ability to operate safely with coolant temperature as low
as —25°C until LS3 — the foreseen end of life for the SST — when the highest power demand is
expected because of accumulated radiation damage. The evolution of the cooling plant temperature
set points is summarized in table 2.

Table 2. Cooling plant set points of the SST during different operating periods and integrated luminosity
acquired during each period.

Operating Cooling
period set point [°C] L, [fb~]

2009-2012 +4 294
2015-2017 -15 95.0
2018 =20 67.9

The coolant temperature is of great importance because of the temperature dependence of the
effects of radiation damage to the silicon sensors (section 7). Charged and neutral particles crossing the
detector will cause damage to the silicon lattice structure that results in the introduction of additional
energy levels in the silicon bandgap and resulting changes in the macroscopic sensor properties. The
most relevant changes for the SST are an increase in the dark or leakage current of the silicon diodes
and a change in the full depletion voltage due to a change in the effective doping concentration of the
silicon bulk material. At temperatures above about 0°C, defects in the silicon lattice will undergo
slow migration processes that result in a reconfiguration of the defects. This migration of defects
is commonly referred to as “annealing”. For the leakage current, annealing results in a reduction
of the additional leakage current caused by irradiation. For the full depletion voltage a short-term
(days to a few weeks) process called “beneficial annealing” causes a reversal of the effective doping
concentration change. This effect then saturates and at longer timescales (weeks to months and beyond)
a process called “reverse annealing” becomes dominant, which results in a further degradation of the
sensor material, on top of the initial damage caused by irradiation. The annealing typically occurs
over periods without irradiation, but it will also occur while radiation damage is being incurred,
provided temperatures are sufficiently high.

4 Detector commissioning and calibration

The procedures for commissioning the SST are described in detail in refs. [9, 26]. The most important
aspects of the procedures are reviewed below, and the results of commissioning at different temperatures
are shown and compared with expectations and with previous results where available.

An initial step, which only needs to be performed once, is to validate the connection scheme
between on- and off-detector components. For this, a unique pattern of high and low signals is
generated by each laser driver. This is received by the FED and allows unique identification of
the individual connections.

Next, the following calibrations are performed to ensure the optimal performance of the SST:

* internal time alignment,

* tuning of laser driver gain and bias,
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* adjustment of FED frame-finding thresholds,
* tuning of the APV25 chip baseline,

* calibration of the APV25 chip pulse shape,

pedestal and noise measurement, and
* synchronization to external triggers.

Several commissioning steps make use of the periodically issued tick mark of the APV25 chip. A
high-resolution time domain picture of two 25 ns wide time-multiplexed tick marks can be seen in
figure 8. The tick mark is a digital 1, which corresponds to a +4 mA electrical signal or +400 mV at
the input of the AOH. The digital O corresponds to a level of —4 mA and —400 mV.
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Figure 8. High-resolution time domain capture of the tick marks from two APV25 chips (1 laser) from one
module. The signals from the two APV25 chips are time multiplexed. The tick-height corresponds to an
amplitude of about 800 mV.

The SST is recalibrated several times per year to compensate for the effects of radiation damage
to the readout electronics and the silicon sensors, and to compensate for potential drifts of calibration
constants. In addition, changes of the operating temperature, e.g., from —15 to —20°C between
2017 and 2018, necessitate a recalibration.

4.1 Laser driver tuning

Because of the analog nature of the data transmission to the back-end electronics, the LL.Ds must be
tuned in order to match the expected range of charge deposits in the silicon sensors and the 10-bit
dynamic range of the FED receivers. This provides more precise charge measurements, leading to
improvements in spatial resolution from better determination of charge sharing between strips, and
improved particle identification via the specific energy loss (dE/dx). The LLD has four switchable
gain stages to adjust the amplitude of the output signal for differences in the optical link gain, caused
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Figure 9. Illustration of pulse modulation by the LLD (left) and visualization of the bias setting scan during the
optical link setup run for one LLD gain setting (right).

by, for example, differences in the laser-to-fiber alignment, or by sample variations of the components.
Gain setting 0 has the lowest gain and thus proportionally lowest light power output; gain setting 3
has the highest. Figure 9 (left) shows how an input modulation signal is transformed to an output
signal with a certain gain when the laser is pre-biased at its working point.

The optical link setup run (called a gain scan or opto scan) consists of a nested loop over the
four gain stages of the laser driver and the laser bias setting (0—22.5 mA). For each configuration
of laser gain and bias setting scanned in the loop, the signal received by the FED is analyzed when
sending a digital O and a digital 1 (tick mark), as shown in figure 9 (right). The laser bias is chosen
to ensure that the lowest point of the 4 mA differential APV25 chip output (digital 0) still produces
a signal within the dynamic range of the FED receiver.

The gain setting is chosen to correspond to the value of the tick mark height closest to 690 ADC
counts. The FED receiver has a response of about 1 ADC count/mV, so the tick mark height target
corresponds to a link gain of 0.863 V/V when comparing the voltage levels at the LLD input and the
FED receiver. This central gain value means that charges of up to 2—3 times that of a minimum-ionizing
particle (MIP) are resolved in 8 bits of dynamic range for thin sensors and up to 1.5-2 times a MIP for
thick sensors. Larger charge deposits will be flagged using the overflow bits (section 2).

Figure 10 shows the change in distribution of the chosen gain settings when decreasing the
cooling plant set point from +4 to —25°C in steps of 4 or 5°C. The gain of the LLD is expected to
increase with decreasing temperature by about 0.8% per °C [27]. As a result of this, the number
of optical links with lower gain settings increases as temperature decreases. In figure 11 two
examples of the resulting height of the tick mark as seen by the FED are shown. The spread of
the distributions is about 270 ADC counts (from 552 to 824 ADC counts). The vast majority of
the links fall into this range with sharp edges of the distributions on both sides caused by LLDs
switching into lower or higher gain settings, if available. Tick heights below about 550 ADC
counts correspond to links with malfunctioning components. Such malfunctions can arise from
temporary or permanent issues with the programming of the LLDs, from damaged fibers, or from
other problems. Links with tick heights near zero are mostly caused by nonfunctioning or (temporarily
or permanently) unpowered APV25 chips. Effects of radiation damage on the optical links will
be discussed in section 7.
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Figure 11. Example distributions of tick heights for each of the four laser driver gain settings for data taken in
2010 at +4°C coolant temperature (left) and in 2017 at —15°C coolant temperature (right). Distributions from
different gain settings are stacked.

4.2 Noise measurement

The noise performance of the strip tracker is of crucial importance because the noise is used both in
the online zero-suppression of the data in the tracker FEDs and in the offline identification of clusters
originating from traversing particles. The noise is measured from runs taken in the NZS readout mode
in periods with no beam using low frequency triggers. These are called pedestal runs. The pedestal
of a strip is calculated as the mean of the ADC values over several thousand events. All channels of
an APV25 chip can experience coherent event-to-event fluctuations or “common mode” shifts. The
common mode shift for an APV25 chip in a given event in the analysis of pedestal runs is calculated
as the mean of all strip ADC values after pedestal subtraction. The square root of the variance of the
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resulting quantity over many events is the “common mode subtracted noise” of a given strip. In the
event processing inside the FEDs when running with zero-suppression, this common mode value, in
this case taken as the median of all strip ADC values after pedestal subtraction, is subtracted from
the pedestal-subtracted signal of each strip in the event before cluster finding.

The noise measured with this procedure is the combination of many sources including the silicon
sensor, the APV25 chip, the LLD, and the FED receiver. The combined noise from the LLD and
the FED receiver (referred to as “link noise”) is measured in gain scan runs from the fluctuations on
the link output when the APV25 chip output is biased at —4 mA, i.e., the digital 0. Measurements
were performed at operating temperatures between +4 and —20°C and are summarized in figure 12,
where the mean link noise is shown for the four different gain stages of the LLD. The noise increases
slightly for higher gain settings, as expected, but is quite stable as a function of temperature. Under all
conditions the measured link noise is below 1 ADC count, compared with a total noise of 3-8 ADC
counts measured during pedestal runs, showing that the link noise is not the dominant noise source.
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Figure 12. Noise measured in the optical link chain during optical link setup runs at temperatures between +4°C
and —20°C coolant temperature for the four laser driver gain settings. The error bars show the root-mean-square
(RMYS) of the individual noise distributions and are a measure of the spread of the noise among all optical links
in the SST. Points for different gain settings at the same temperature are slightly displaced for visibility.

To obtain the noise in units of electrons, the readout gain needs to be taken into account. The tick
mark at the input corresponds to a signal of about 8 MIPs or 175 000 electrons in 320 um of silicon.
Using this information, the equivalent noise charge (ENC) in units of the electron charge e is extracted
from the noise measurement in ADC counts. The tick mark height is measured in a separate run. Runs
used for the tick mark scaling are required to be taken within 48 hours of the corresponding pedestal
run and under otherwise identical conditions. APV25 chips with very high (>15 ADC counts) and
low (<2 ADC counts) average noise are not used in the analysis. Runs in which more than 100 of
the about 72 000 APV25 chips show very high or low noise are rejected completely.

The capacitive noise of a silicon sensor increases with the strip length. As a consequence the
total noise is also expected to increase since other noise components do not change for modules with
different strip length. An example of this behavior from pedestal and tick mark runs taken at —15°C
with the APV25 chips in deconvolution mode is presented in figure 13.
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Figure 13. Equivalent noise charge as a function of the strip length.

The expected linear scaling behavior is observed. A straight-line fit to the data yields the following
scaling behavior for the equivalent noise charge in deconvolution mode (ENC y..nvolution):

ENCecomotution = ENCoreer + ENCyone L = (699 £ 92) € + (51.2 £ 6.9) Cim L (4.1)

offse slope

where ENC . and ENCy.
in cm. The same analysis is performed for all runs available from Run 2. The fit is only performed

are the offset and slope of the fit, respectively, and L is the strip length

if data are available from all readout partitions. The results are summarized in figure 14, where the

slopes and offsets are reported as a function of the integrated luminosity, L. .. The offset shows a

int*
slight increase with the accumulated integrated luminosity. A linear fit to the data yields

e
ENC oot (Lin) = (677 £26) e+ (0.6 £0.3) =) L 4.2)

The ENCyp, is constant as a function of the accumulated integrated luminosity. The central value is
ENCjope = (49.4 £ 1.3) e/cm. 4.3)

When fitting with a first-order polynomial, the result for the increase with integrated luminosity
is compatible with zero. In ref. [1] a compatible scaling behavior was observed at low operating
temperatures.

4.3 Time alignment and trigger synchronization

A precise time alignment of the detector readout to the LHC collisions is required to obtain an optimal
signal-to-noise ratio, while minimizing the contributions from particles in adjacent bunch crossings.
The time alignment of all APV25 chips in the tracker is performed in multiple steps, several of which
take place before collision data taking. Initially the known length of the readout fibers from the
modules to the back-end electronics is taken into account. After this, the time alignment of the tick
marks of the individual APV25 chips is performed. The readout sampling is adjusted to account for
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Figure 14. Offsets (left) and slopes (right) as a function of the integrated luminosity, derived from straight-line
fits to the equivalent noise charge as a function of the strip length.

the time of flight of the particles through the detector, assuming that these move at the speed of light
along straight trajectories starting at the nominal collision point. The required time adjustment ranges
from about 1 ns for the central region of the inner barrel to about 9 ns in the outer rings of the last
disk of the tracker endcaps. The internal latency of each APV25 chip is adjusted to ensure that, for a
given L1A, the information from the appropriate BX is read out from the APV25 chip pipeline buffer.
This uses data triggered on cosmic muons, and is done before the start of beam operation [26]. These
adjustments already give good time alignment for recording pp collision data. In addition, the time
alignment of each module is verified with pp collisions. For each module in the SST, a random time
shift in a window of +10 ns around the current setting is applied, i.e., in a window with the width of
about one LHC BX. By shifting only up to a maximum of +10 ns it is expected that most detector
modules are sufficiently close to their original working point to still efficiently detect particle hits.
By shifting modules randomly, the likelihood of having inefficient modules in consecutive tracking
layers is minimized. A certain number of tracks is collected with these settings. Only tracks with
a transverse momentum above 1 GeV are used for the final analysis. The timing of each module is
then shifted by +1 ns relative to its current (random) setting. Modules which reach a shift of +10 ns
compared with their initial setting are next set to —10 ns relative to the initial timing. This procedure
is repeated 21 times to ensure that all modules have taken data with timing settings in the window
[-10ns, +10ns] with respect to their initial working point in steps of 1 ns. For each of these delay
steps, the leading strip charge of clusters associated to reconstructed particle tracks is studied to find
the timing point that maximizes this charge. Simulations show that maximizing the entire cluster
charge would lead to higher contributions from collisions from adjacent bunch crossings, due to
inter-strip cross talk [28]. Modules can be synchronized with a precision of around 1 ns with this
method. Most modules require little or no adjustment after the time-of-flight adjustment.

Figure 15 summarizes the adjustments required for each layer and disk of the SST. The endcaps
are split according to the thickness of the sensors. Figure 15 (left) shows the net delay required
on average in each layer; figure 15 (right) shows the delay curves in which the signal decreases
when moving away from the optimal working point. Each data distribution is fit with a Gaussian
function, which approximates the pulse shape of the APV25 chip in deconvolution mode well in
the central part of the distribution.
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5 Simulation

An accurate simulation is required to design and optimize a detector and to better understand its
operation. Ultimately, those simulations are used as a fundamental tool to analyze and interpret
the recorded data. The simulation chain starts with the generation of the pp collision products,
then propagates the particles inside the CMS detector through the passive components and sensitive
elements, and finally models the response of the readout electronics. The reconstruction that follows
is identical for data and simulated events.

A dedicated software package [29] based on the GEanT4 toolkit [30] has been developed by the
CMS Collaboration. Each particle is propagated through the detector volume. The particle entry
and exit points are recorded for each sensitive element, together with the energy deposited. The
granularity of the information saved matches the design of the detector and its sensitive elements,
which are strips in the case of the SST.

To properly reproduce the interactions of the particles, taking into account, e.g., nuclear interactions,
photon conversions, and electron bremsstrahlung, an accurate description of the passive and active
detector components was prepared following the completion of the construction and integration of the
SST in CMS in 2007. Individual components had been weighed during construction, and the results
were then compared with the estimated weights of the corresponding components in the simulation.
The sum of these weights for each partition and for the entire SST is given in table 3, showing
agreement within 5%. The TOB was never a standalone entity so could not be weighed independently.

The SST material budget given in units of radiation length (X)) and interaction length (1) is shown
in figure 16 as a function of 7, with different contributions stacked. The sensitive elements contribute
only about 9% of the total. The dominant contribution comes from the support structures (~36%) and
services (power cables, cooling pipes). In the barrel-to-endcap transition regions, 1.2 < || < 1.8,
the material budget reaches 1.8 X|;, due to the routing of the cables and cooling pipes from the inner
regions. In the central part of the tracker (|n| < 0.8) the material budget remains below 0.8 X,,.
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Table 3. Simulated and measured weights of the SST and of three of its partitions.

Measured weight [kg] Simulated weight [kg] Difference [%0]

SST 39903, 4037 -1
TIB/TID 450732 427 +5
TEC+ 704.3 691.7 +1.8
TEC- 700.2 691.7 +1.2
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Figure 16. Material budget in units of radiation length (left) and interaction length (right) as a function of
n in the SST simulation, shown for the different material categories: beam pipe, silicon sensitive volumes,
electronics, cables, cooling pipes and fluid, support mechanics and outside structures (support tube, thermal
screen and bulkheads).

After the GEANT4 energy deposition step in the sensitive material described above, the SST
simulation proceeds as follows. First, the behavior of charges in the silicon is simulated: the energy
deposited by GEanT4 is distributed along the path of the particle in the silicon. Then each individual
subdeposit is migrated to the surface of the sensor, taking into account local effects in the silicon sensor,
e.g., the drift due to the magnetic and electric fields, together with the effect of thermal diffusion. The
result is a charge on the surface, with a position and a width. The charge contributions are merged
for each strip. The resulting signal is then processed to include the effects of the electronics and
digitization to derive the so-called digis, which are the detector event data as output by the electronics.
By design, the digis have the same data format as data from the detector.

The simulation implements the following steps:

* modeling of the signal pulse shape, in peak or deconvolution mode,
* addition of noise (and the pedestal value in NZS readout mode),

* addition of in-time and out-of-time pileup contributions by adding signals from 12 bunches
before and 3 after the actual collision bunch, using simulated minimum bias collisions,
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* modeling of the time of the signal hits: the time of each simulated hit is shifted taking into
account the bunch of its origin, and the shifted time for each hit is considered when generating
the pulse shapes. The signals from out-of-time particles are scaled down in size according to
the time response of the electronics,

* application of conversion factors (gains) for electronic channels,
* addition of inter-strip cross talk.

In deconvolution mode the signal is processed with an algorithm to reduce its duration to a 25 ns
time window. The deconvolution pulse shape is parametrized in the simulation based on the results
obtained from ref. [28], with the shape shown in figure 17.
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Figure 17. Simulated APV25 pulse shape (deconvolution mode) in the CMS simulation software. The peak is
centered at 0, corresponding to a perfect timing alignment with respect to LHC collisions.

Inter-strip cross talk is caused by inter-strip capacitance. The total charge deposited by a particle
is visible in three neighboring strips. In 2018, during a planned CMS maintenance with 0 magnetic
field, the cross talk was measured in NZS data using cosmic ray muons [31]. Table 4 summarizes
the measurements obtained during this dedicated campaign. The majority of the charge (between
75 and 86%) is collected in the leading strip and its two neighbors (6—10%).

One of the main figures of merit for the SST simulation is the comparison between the simulated
and measured cluster charge, corresponding to the charge deposited by a particle crossing the sensor.
In figure 18 the simulated cluster charge is in sufficient agreement with the measured charge for
each SST partition, as can be seen.

Table 4. Cross talk measured in the barrel in 2018, obtained with cosmic ray data taken without magnetic field.
Results are summarized as the average fraction f; of observed charge for the leading strip, the fraction f; on
each of the two neighboring strips, and the fraction f, on each of the strips next to these neighboring strips.

fo h 5
TIB Layers 1, 2 0.836 £ 0.009 0.070 £0.004 0.012 +0.002
TIB Layers 3, 4 0.862 +£0.008 0.059 +0.003 0.010 +0.002
TOB Layers 1-4  0.792 £0.009 0.083 +£0.003 0.020 £ 0.002
TOB Layers 5,6  0.746 £ 0.009 0.100 +0.003 0.027 + 0.002
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Figure 18. Simulated and measured cluster charge normalized with the track path length for the different SST
subdetectors: TEC (upper left), TOB (upper right), TID (lower left), and TIB (lower right). The measurements
are shown by points, whereas the simulations are shown by yellow histograms. Lower panels show the ratios of
the simulated predictions to data.

6 Detector performance with LHC collisions

In this section, the performance of the SST during LHC collision periods Run 1 (2009-2012) and
Run 2 (2015-2018) is presented.

The steps required to reconstruct charged-particle tracks from SST hit data are summarized below.
More details are reported in ref. [11]. A good spatial alignment of the detector is a prerequisite for
the precise reconstruction of particle tracks. Details about the CMS strategy for the alignment of
the SST and the pixel detector are reported in ref. [32].

Cluster finding.

Clusters of strips are reconstructed starting from strips with charges above threshold that are identified
by the zero-suppression logic implemented inside the FEDs. Further requirements are imposed for a
strip to be included in a cluster. A three-threshold algorithm is used. A strip is considered a seed for a
cluster if its charge is larger than three times its noise. The seed strip forms a proto-cluster to which
more strips can be added. Strips adjacent to cluster candidates are added to it if their charge is larger
than twice their noise. This procedure is repeated until no more strips are found for addition to the
cluster. No holes are allowed in a cluster unless a bad strip, as defined in section 6.2, is encountered
in which case the search is continued. If a second consecutive bad strip is encountered the search is
terminated. A cluster candidate is retained if the summed signal of all strips in the cluster candidate
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Figure 19. Path length £ of a particle crossing a detector of thickness d at an angle 6.

is larger than five times the cluster noise, defined as

6.1

O cluster =

where o is the noise of an individual strip and the sum runs over all n in the cluster candidate.

strips

Path length correction.

For several of the measurements presented in this paper, the cluster charge is corrected for the length £
of the particle trajectory inside the active silicon volume (figure 19). The charge of a cluster from
a track that passed through the sensor with thickness d at an angle 6 with respect to perpendicular
=S, cos (0), where S
charge before any correction is applied and S, is the corrected cluster charge. With this correction

incidence on the sensor is scaled as cos § = d/¢ so that S, is the cluster

corr raw raw

cluster charges are normalized to the one expected under vertical incidence.

Cluster signal-to-noise ratio.

A frequently used quantity is the signal-to-noise ratio (S/NV) of a cluster. In this paper we define this as

the corrected cluster charge S_,,,, defined above, divided by the RMS noise of the individual strips

corr?
in the cluster. This can be expressed as S,/ (a'cluster / \Prstrips ) with the cluster noise definition from
eq. (6.1). The distribution of the energy loss in silicon follows a Landau distribution [33]. An example
of the resulting S/N distribution from a pp collision run is shown in figure 20. The central part of the
distribution is fitted with a Landau convolved with a Gaussian distribution, and the most probable

value (MPV) of the Landau distribution is taken as a measure of the S/N.

Track finding.

Tracks are reconstructed from hits in the pixel detector and the SST. Multiple iterations of track finding
are performed. Early iterations reconstruct prompt tracks originating from the interaction region.
Later iterations reconstruct topologies such as displaced tracks. Clusters already associated with
high quality particle tracks are not reused in later iterations (excluding regional iterations near high
transverse momentum jets or muons). Track seeds are constructed preferentially from hits in the pixel
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Figure 20. Example of a signal-to-noise distribution from the TOB recorded during 2018 at an instantaneous
luminosity of 1.59x 10** cm™2s™". The central part of the distribution is fitted with a Landau convoluted with a
Gaussian distribution. The bin at 100 serves as the overflow bin.

detector (triplets for the original, quadruplets for the upgraded pixel detector). Seeding in subsequent
iterations relies on triplets or doublets of pixel hits or a mix of hits in the pixel and innermost layers of
the SST, taking into account constraints from the size of the interaction region. Later iterations also
use combinations of TOB and TEC layers for track seeding. The final track fit is performed using a
Kalman filter algorithm. Clusters associated with a reconstructed track are called on-track clusters.

6.1 Detector occupancy

The mean detector occupancy, defined as the average fraction of detector cells that are traversed
by one or more particles per event, is an important quantity to consider when designing detectors,
in particular when defining the granularity of the sensors. The SST was designed to ensure the
occupancy is at most a few percent. The occupancy depends on the pitch, the strip length, and the
particle flux in a given location within the detector. It is measured via the strip occupancy, defined as
the ratio between the total number of strips in the reconstructed clusters associated with a particle
crossing a sensor and the total number of strips in the detector. Figure 21 shows the average strip
occupancy at the beginning of an LHC fill for a mean number of pp interactions of about 55 per bunch

257! Even at

crossing, which can be translated into an instantaneous luminosity of 2 x 10** cm™
this high value of pileup, more than twice the design value, the occupancy is at most a few percent,
in line with the design values defined in ref. [6].

The lowest occupancy (0.7%) occurs in the last layer of the barrel (TOB) whereas the highest
occupancy (5.6%) occurs in the innermost ring of the TID. Readout deadtime due to the FED buffer
occupancy, leading to a loss of data-taking efficiency, is expected at a level-1 trigger rate of 100 kHz
only for occupancies above 8% [34], a value that is not reached in the SST.

The occupancy is monitored daily, because a deviation from typical values can be a sign of a

detector issue, e.g., an increase of the noise, or a localized detector failure.
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Figure 21. View of the SST mean strip occupancy in the r-z plane recorded at the beginning of a typical LHC
fill where the pileup was at its maximum (of the order of 55).

6.2 Bad component identification

Failure of components of the SST can occur for various reasons, ranging from radiation damage to
thermal and electrical issues. Although some external failures, e.g., of the power supplies or the
cooling plants, can be repaired on a short time scale, interventions within the detector itself are
practically impossible. The detector is monitored continuously so that any failures can be rapidly
recognized, and if possible, repaired. Likewise miscalibration or other operational issues can be
identified and corrected. When noisy or inefficient electronic channels are identified, the information
is propagated to the offline data processing so these channels can be removed before reconstructing
the tracks. Since the detector has considerable redundancy, the omission of such channels does not
degrade the track reconstruction performance in almost all cases.

During data taking, the identification of bad components in the SST is performed automatically
in the 48 hours that CMS maintains between data taking and the start of offline reconstruction, during
which an express processing of the CMS data is performed. An automatic analysis identifies defects at
the level of the APV25 each time 150 000 clusters are reconstructed within the SST during this express
processing. During standard LHC operation, this occurs about once per day. An iterative comparison
is made between the median occupancy of each APV25 chip and the mean of the medians of all APV25
chips in a given layer and the same z region in the barrel, or in a ring and the same r region in the endcap.
Ateach iteration, APV25 chips with a median occupancy more than 3 standard deviations from the mean
of the respective comparison sample of APV25 chips are removed from the next iteration. At the end
of this process, all APV25 chips with outlier occupancies are removed from the offline reconstruction.
A last iteration targets issues at the level of single strips. For the APV25 chips not identified as
problematic in this process, the mean occupancy of each hit strip is estimated assuming a Poisson
probability distribution. Single strips for which this probability is too low (< 1077) or that are outliers
with respect to the mean occupancy in the considered chip are also ignored in the offline reconstruction.

Figure 22 summarizes the channel status for a representative run at the end of 2017. Fully
operational modules appear as gray, whereas modules with issues are colored. Disabled modules
are also shown in red (these are the permanent defects described in section 3). Broken optical fibers
affect a small number of modules (colored green). Modules colored blue suffer from other problems,
ranging from a single dead strip to an entire defective APV25 chip.
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Figure 22. Positions of the defects within the SST at the module level at the end of 2017. Disabled modules
are shown in red. Those with at least one fiber not in the readout appear in green. The range blue to green
indicates damage varying from single strips (dark blue) to all strips of a single chip. The total number of defects
represents less than 5% of the total number of the SST channels.

Table 5. Fraction of live channels in the different readout partitions of the SST at the end of data taking in 2018.

Partition Percentage of live channels
TIB/TID 91.5 %
TOB 96.7 %
TEC+ 96.9 %
TEC- 97.4 %
SST 95.5 %

Overall, the operational fraction of the strip tracker at the end of LHC Run 2 was 95.5%. Table 5
shows the fraction of live channels for each SST partition. As shown in figure 23, the number of defects
within the SST remained stable during Run 2 with an average fraction of bad channels just above 4%.
The fluctuations visible in the live-channel fraction are mostly due to transient power supply issues or
temporary failures of component configuration. Both these causes generally affect only a small part of
the detector, and only for relatively short times (typically from a few hours to a few days).

6.3 The APV25 preamplifier saturation

In late 2015 and early 2016 the strip tracker experienced a decrease in signal-to-noise ratio, also
associated with a loss of hits on tracks, with the effect becoming more pronounced with increasing
instantaneous luminosity. It was eventually found that the problem arose from saturation in the
preamplifier of the APV25 chip at high occupancies. The capacitor in the feedback loop (figure 5) is
charged by the signal current, and then discharges through a resistance formed by the channel of a
field-effect transistor (FET) in parallel with the capacitor, over a time which is long compared with
the 25 ns bunch crossing. Although the effect of high hit rates was studied during prototyping, no
effects were observed during CMS data taking until the instantaneous luminosity regularly exceeded
3% 10¥ ecm™2s™'., which means more than 20 interactions per bunch crossing.
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Figure 23. Fraction of bad channels as a function of the delivered LHC integrated luminosity. The vertical lines
indicate the start of each calendar year.

In the absence of a build up of charge on the feedback capacitor from previous particle crossings,
the response of the preamplifier is linear up to about 3 MIPs but for higher charges the response is
no longer linear [13]. The maximum signal size accommodated in the system is =~ 7 MIPs, limited
by the magnitude of the output voltage of the APV25 and the ADC inside the FED, whereas the
preamplifier alone maintains good linearity to about 30 MIPs.

The significant reduction of the operating temperature for Run 2 resulted in a large and unexpected
increase of the preamplifier discharge time compared to Run 1 when the SST was operated at +4°C.
The slow discharge speed together with the high-occupancy conditions resulted in a gradual build up
of charge in the preamplifier and consequently a very nonlinear and reduced response of the amplifier
to newly deposited charges. Once the problem was understood, it was resolved by adjusting the
preamplifier feedback voltage bias (abbreviated as VFP for voltage feedback preamplifier), which
controls the feedback FET channel resistance, to reduce the preamplifier discharge time constant (7).

The simulated behavior of the preamplifier is shown in figure 24. The charge state of the
preamplifier is changed (in this case, reduced) by the arrival of a charge from the sensor. The charge
then drains away until the original charge state is recovered. One can see that for VFP = 30, the value
used in Run 1 and early in Run 2, the discharge time increases strongly with lower temperatures.
With VFP = 0 the discharge time is below 1 us even at low temperature. Given that no adverse
effects were seen from this change, the setting was retained at 0, the lowest possible value, for the
remainder of Run 2. The effect of the preamplifier saturation in the early 2016 data taking will
be discussed in the following sections.

Since the inefficiency cannot be recovered in the data affected by the saturation effects (about
20fb"), the effect has to be included in the simulation. A model of the preamplifier saturation was
developed, which is applied on top of the detector simulation described in section 5. The charge
state of an APV25 preamplifier depends on the specific layer of the SST, on the z position of the
detector module within the layer, and on the pileup.
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Figure 24. Simulated discharge behavior of the APV25 preamplifier for different temperatures with preamplifier
feedback voltage bias (VFP) at 30 (Run 1 and 2015-2016) and at O (second half of 2016-2018). An exponential
decay function with a discharge time constant 7 is fitted to each set of simulated data. The resulting values for 7
are displayed in the legend.
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Figure 25. Left: cluster charge distribution for clusters on reconstructed particle tracks in the TOB layer 1.
Right: multiplicity of clusters on reconstructed particle tracks in the TOB layer 1 as a function of the number of
pileup interactions. The data from early 2016 (black dots) are compared with two different MC simulations; one
(blue) does not contain any special treatment of the APV25 preamplifier saturation, the other (green) contains
a modeling of the preamplifier saturation to account for the reduced charge response of the amplifier under
high-occupancy conditions. Lower panels show the ratio of MC predictions to data.

The effect of applying the model to simulated events can be seen in figure 25. For both the charge
of on-track clusters (left) and the multiplicity of clusters as function of pileup (right), the Monte
Carlo (MC) events including the APV25 preamplifier saturation describe the data significantly better
than without it. The effect on the muon reconstruction efficiency measured using a tag-and-probe
method [35] is shown in figure 26 for an inclusive muon track collection [36]. Two sets of data
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Figure 26. Tracking efficiency estimated using a tag-and-probe method as a function of the number of primary
vertices for an inclusive muon track collection [36]. Data from early 2016 (black dots) and late 2016 (blue dots)
are compared with two different MC simulations: one (blue) does not contain any special treatment of the
APV25 preamplifier saturation, the second (green) contains a modeling of the preamplifier saturation to account
for the reduced charge response of the amplifier under high-occupancy conditions.

are shown: data from early 2016 (black) affected by the preamplifier saturation and data from late
2016 (blue) after the VFP parameter change. They are compared with two MC simulations, one
containing a modeling of the preamplifier saturation (green) and one without it (blue). The sample
with the preamplifier saturation model describes the data from early 2016 significantly better than
the sample without this model. Similarly the data after the VFP change are better described by the
MC without any preamplifier saturation model, as expected.

6.4 Signal evolution

After the identification and exclusion of nonoperational components, the stability of the signal induced
by charged particles in the detector can be studied. The cluster charge per unit path length as a function
of the integrated luminosity is shown in figure 27 for 2017 and 2018. Each point in the distribution is
a run during an LHC fill with more than 1200 proton bunches colliding in CMS. Only runs for which
the data have been certified as good are included [37]. A Landau function is fitted to the cluster signal
distribution. The MPV from the fit is plotted, with the error bar being the uncertainty on the MPV
from the fit. Large error bars arise from runs with few events. Data from 2016 are excluded because
of the APV25 preamplifier saturation described above. The MPV decreases as a function of time with
some discontinuities. The overall decrease is caused by the accumulating effects of radiation exposure.
The discontinuities occur at recalibrations, particularly of the optical links (section 4.1).

6.5 Signal-to-noise performance

In this section the signal-to-noise performance of the SST is discussed. The S/N value is very
important for the SST, as the FED zero suppression and the offline selection of clusters for the
track reconstruction both depend on it.
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The impact of the APV25 preamplifier saturation in early 2016 on the S/N performance of the
system is illustrated in figure 28, where the S/N for hits on tracks is shown for TOB layer 1, which was
the most affected region of the detector. With the old settings, the shape of the S/N deviates from the
expected Landau-like shape. A downward shift of the MPV and an increased population in the low-end
tail of the distribution can be seen. The second run (new APV settings) was taken after the change of
the VFP parameter. Under very similar running conditions (peak instantaneous luminosity around
1x10%*em™2s™") the S/N distribution after the VFP change is completely recovered and shows the
expected Landau-like shape, with only a very small population in the low-end tail.
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Figure 28. Signal-to-noise ratio for clusters on reconstructed particle tracks in TOB layer 1 for two runs in
2016. The first run (red curve) is affected by saturation effects in the APV25 preamplifier. In the second run
(blue curve), the preamplifier voltage feedback (VFP) has been changed to shorten the discharge time of the
preamplifier. Both curves are normalized to the same number of entries.
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Figure 29. Signal-to-noise ratio as a function of the integrated luminosity for modules from different parts of
the tracker. Trend lines are obtained by separately fitting a linear function to the points for thin and thick sensors.

The S/N distributions for the different regions of the SST are each fitted with a Landau convoluted
with a Gaussian distribution. The MPV of the respective Landau fit curve is quoted as the S/N value
for a specific detector region. The evolution of the S/N as a function of the integrated luminosity is
summarized in figure 29. In the TEC the S/N is plotted separately for thin and thick sensors. Trend
lines are fitted to the two populations of thin and thick sensors. The trend lines show a decrease of
0.12/fb~" for thin and 0.14/fb™" for thick sensors. Differences due to the different radial positions
beyond the separation of thin and thick sensors are neglected in this plot. Extrapolating both curves to
the design end of life of the SST, i.e., to 500 fb~! of integrated luminosity, yields an expected S/N of
12.4 for thin and 16.7 for thick sensors, in good agreement with the measurements in ref. [1]. These
predictions exceed the detector design specification of an S/N value of 10.

6.6 Signal equalization using particles

The energy deposited by a charged particle crossing a sensor in the SST is reconstructed as a cluster of
charge signals on individual strips. Residual nonuniformities at the level of 15% in the signal response
are expected to come from the LLD even after the signal equalization described in section 4.1. These
cannot be corrected by the calibrations performed with the tick height method described in section 4.2.
Particle identification using energy loss in the sensors is sensitive to these inhomogeneities. Therefore,
signals from MIPs crossing the SST are used to calibrate the detector for uniform response across the full
SST as well as for individual modules [38]. This equalization compensates also for the signal loss due
to the radiation inasmuch as it is not corrected through the change of LLD gain following an opto scan.

For each APV25, the calibration requires the distribution of the charge normalized to the path
length for all clusters associated with MIPs reconstructed in the appropriate silicon module. The MPV
is then extracted from a Landau fit to this distribution. The calibration constant (or gain factor G)
is determined by normalizing the MPV of the Landau distribution to the same value (300 ADC
counts/mm), corresponding to the value expected for a MIP.

As an illustration of the method, the charge normalized to the path length is shown in figure 30,
before (left) and after (right) applying the gain factor G to each APV25 of the SST for data recorded
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during LHC Run 1. The result is a clear alignment of the MPVs over the different regions, corresponding
to different positions, sensor thicknesses, and radiation exposures of the modules. When performing
the clustering of strips, this gain factor is used as a correction to the strip charge signal in order to
guarantee stability and uniformity of the most probable value of the cluster charge over time.
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Figure 30. The distribution of the charge normalized to the path length after the tick mark calibration before
(left) and after (right) applying the signal equalization. The dashed line represents the calibration value (set to
300 ADC counts/mm).

The cluster charge is monitored over time and is displayed in figure 31 for the different SST
parts during LHC Run 2. For daily monitoring of the gain stability, a simpler fitting procedure than
that presented in section 6.4 is used over a restricted cluster charge range, which leads to a slightly
biased value for the MPV, 310 ADC counts/mm instead of the actual 300 ADC counts/mm set by
the calibration procedures just discussed. Despite the bias the overall stability is clear. This bias
does not affect monitoring of the stability.

The large fluctuations of the cluster charge in the first 20 fb~! of the data taken in 2016 were
caused by the saturation of the preamplifier of the APV25 chip (section 6.3). This effect had a
strong instantaneous luminosity dependence and resulted in significant deviation from a Landau
distribution, leading to these fluctuations in the calibration. After the APV25 saturation issue was
solved in mid 2016, the SST cluster charge remained stable. The discontinuities occur at intended
updates of the LLD gain, pedestal, and noise values.

6.7 Lorentz angle measurement

The SST is operated in a homogeneous 3.8 T magnetic field B oriented parallel to the beam axis.
In the detector modules, the electric field £ generated by the bias voltage is oriented perpendicular
to the sensor plane. In the SST disks the E and B fields are approximately parallel, whereas in
the inner and outer barrels, the electrical and magnetic fields are perpendicular to each other. This
causes the charge carriers produced in the n-doped silicon bulk of both the inner and the outer
barrel detectors to experience a Lorentz force in addition to their drift to the readout strips under the
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Figure 32. Illustration of the shift due to the Lorentz force along the sensitive coordinate x of a sensor of
thickness d. The Lorentz angle is 8 and the z axis is perpendicular to the sensor. The particle crosses the sensor
with an incident angle 6,. The dashed arrows represent the direction of drift of charge carriers produced in the
silicon. The cluster is represented by the orange rectangle. The cluster size d tan 6, is increased by d tan 6y in
the presence of the magnetic field.

influence of the electric field. As illustrated in figure 32, because of the deflection induced by the
Lorentz force, the cluster measured on the sensor surface is distorted in length and displaced. In
this sketch, the z axis is perpendicular to the sensor, d is the sensor thickness, and 6, is the incident
angle of the track on the sensor in the projection perpendicular to the strips. The charge carriers
inside the sensor are deflected by an angle 6; , called the Lorentz angle, with respect to the electric
field direction. This leads to a shift of the cluster position on the sensor surface measured in the
local coordinate x (perpendicular to the strip direction, parallel to the sensor). The size of a cluster
(dtan@,) is increased by dtan @, in this direction.
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Figure 33. Lorentz angle measured at the end of Run 2 for the different SST layers of the TIB and TOB. The
measurement is displayed separately for modules with strips oriented along the z direction, labeled a, and
modules with the strips rotated by an angle of 100 mrad with respect to the z direction, labeled s.

To measure the Lorentz angle, the minimum of the distribution of the cluster size as a function of
the particle incident angle with respect to the module surface is used [39]. Without a magnetic field,
when the Lorentz force and the Lorentz angle are zero, this minimum is observed for perpendicular
incidence. With a magnetic field, the minimum occurs when the incident angle is equal to the
Lorentz angle, where the charge carrier drift is parallel to the particle trajectory. The results of
the Lorentz angle measurement performed at the end of Run 2 for the different layers within the
barrel are presented in figure 33.

Once 6; is known, a correction to the reconstructed cluster position can be applied to derive
the actual position on the sensor surface of the charged particle hitting this sensor. This correction
is used in the offline reconstruction and as input for the offline tracker alignment procedure [32].
In addition, the Lorentz angle is monitored, because changes could arise from degradation of the
sensor performance due to radiation damage. Figure 34 shows measurements of the Lorentz angle
for modules with strips oriented along the z direction, belonging to the first layer of the TIB, and for
modules with the strips rotated by an angle of 100 mrad with respect to the z direction, belonging
to the TOB, as a function of integrated luminosity during Run 2. No significant degradation with
accumulated luminosity is observed.

6.8 Hit reconstruction efficiency
6.8.1 Measurement of the hit efficiency

The efficient detection of a hit, defined as the response of the sensor and electronics to the passage of a
charged particle, is important in the process of efficiently reconstructing the trajectory of the particle.
The hit efficiency is defined as the ratio of detected hits to the number of expected hits belonging to a
track. Regular measurements of the hit efficiency are made using collision and cosmic data.

Only high-quality tracks are selected in this analysis. This track selection, defined in ref. [11], is
based on a standard set of selection criteria, in particular on the chi-squared normalized to the degrees
of freedom and on the compatibility of the tracks with originating from the interaction region. To avoid
inactive regions, such as the bonding region for modules with two sensors, trajectories passing near
the edges of sensors or close to their readout electronics are excluded from consideration. A module is
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Figure 35. Hit efficiency for the various layers of the SST at the end of Run 2. Known faulty modules are
masked. The two gray bands correspond to the outermost layers where the efficiency cannot be measured.

considered as efficient if the distance between the trajectory crossing point and the hit position is less
than 15 strips (depending on the sensor type, this corresponds to distances of about 1 to 3 mm).

If the trajectory starts or ends in a module, it is not used for computing the efficiency of this
module. Thus, the measurement in the first layer of the inner barrel relies on tracks with inner pixel
detector hits, and no measurement is possible in the last layers, i.e., the last layer of the outer barrel
and the last disk of the two endcaps. To avoid biases, known bad modules (section 6.2) are excluded
from the measurement. Likewise, modules with low efficiency, defined as those with efficiency 10%
below the layer average, are not included in the computation of the overall average efficiency. For
layers with stereo modules, both sensors are taken into account.

The average hit efficiency at the end of Run 2 is above 99%, as shown in figure 35 for typical
beam conditions with an average number of interactions of 31 per bunch-crossing and an instantaneous

luminosity of 1.1 x 10**cm™2s™'.
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6.8.2 Effect of the APV25 preamplifier saturation on the hit efficiency

The effect on the single-hit reconstruction efficiency from the APV25 preamplifier saturation is
presented in figure 36, again for modules in TOB layer 1 (as shown also in figure 28). In runs affected
by the preamplifier saturation, a notable drop of the efficiency is already seen at luminosities of
a few 10 cm s~ with the effect reaching more than 7% at 1 X 10**em™%s™!. After the VFP
parameter change, only a very slight decrease of the efficiency is observed, even at instantaneous

luminosities above the design value of 1 X 10**ecm ™27
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runs before (open circles) and after (filled circles) the change of the APV25 preamplifier discharge speed. Error
bars are statistical only.

6.8.3 Highly ionizing particles as the main source of the hit inefficiencies

Although the hit efficiency after eight years of operation is confirmed to remain very high, there is
typically a 1% inefficiency, as shown in figure 35. To identify the origin, a measurement of this
efficiency as a function of the number of pileup interactions has been carried out. This indicates
an almost linear dependency of the hit efficiency on the number of overlapping pp interactions,
as shown in figure 37.

Highly ionizing particles (HIPs), generated from nuclear interactions in the SST sensors, give
rise to large energy deposits (equivalent to several hundred MIPs) within the silicon sensors. These
HIP events, though rare, are the source of a temporary saturation of the APV25 chip, leading to a
deadtime of about five bunch crossings during the recovery process. This leads to a loss of efficiency,
proportional to the interaction rate.

The effect of HIPs on the APV25 has been studied in ref. [40]. This study was performed during
the design of the SST and is summarized in this section.

The HIP events are identified by the presence of a large signal in the affected APV25 chips,
whereby the outputs of all other channels connected to the same APV25 are driven down to a level
well below their pedestals. To illustrate this behavior, an example of a HIP event identified during a pp
collision is shown in figure 38. The typical signature of these events is a large charge deposited in the
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Figure 38. ADC counts of the six APV25 chips in a TIB module during a collision in 2016. The large charge
(at # 800 ADC counts located around strip number ~ 60) together with a drop of the baseline in the first chip is
the signature of a HIP event.

sensor, together with a dramatic drop of the baseline of the corresponding APV25, and accompanied
by smaller-than-usual channel-to-channel fluctuations of this baseline.

The probability of occurrence of such events within the SST was measured in several special
NZS runs in 2018. The selection of the HIP events is based on the typical signature described above.
The average probability for a HIP event to occur per pp interaction is shown in figure 39.

A model of the resulting inefficiency was developed, taking into account the HIP probability and
the LHC bunch structure with trains of bunches of protons separated by 25 ns. The trains are separated
by a gap of 3 us. The deadtime, during which the chip is assumed to be fully inefficient after the
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occurence of a HIP, is used as a parameter. The prediction of this model for the first layer of the TIB is
compared with the measured efficiency in figure 40, using data from 2017 with an average pileup of 31,
which is representative for the pileup during LHC Run 2. The agreement between this model and the
data indicates that the time dependence within a train is well described, that HIP events are the dominant
source of the hit inefficiency, and that HIP events lead to a typical deadtime of five bunch crossings,
compatible with the measurements from previous dedicated beam tests, as presented in ref. [41].
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Figure 41. Single-hit resolution as a function of the strip pitch (left) and for different detector regions (right).
In the left plot, the expected resolution for binary readout (pitch/\/ﬁ) is also shown for comparison.

6.9 Single-hit resolution

The procedure to measure the spatial resolution of hits within the SST is explained in ref. [42], which
also documents the measurements performed during LHC Run 1. The single-hit resolution measured
during LHC Run 2 is presented in this section.

In the SST, silicon sensors slightly overlap with their neighbors to ensure a hermetic tracking
coverage within the entire 1 range, so that a particle can cross two sensors in the same layer. To
compute the hit resolution, hits from tracks passing through regions where modules overlap within a
layer are considered. Tracking is redone without the hits in the layer, and the reconstructed track is
used to predict the position of the impact point in each of the two overlapping modules A and B of
the layer. For each module, the residual, i.e., the difference between the measured and predicted hit
position, is determined. Then the so-called double-difference is calculated as:

(hit, — prediction4) — (hitz — predictionp), (6.2)

where hit, g refers to the position of a hit in module A or B, and prediction, g refers to the position
of a predicted impact point of the track in module A or B.

The advantage of this method is that most uncertainties in the track propagation are cancelled in
the difference prediction 4 — prediction. For a perfectly aligned detector, the difference of residuals is
expected to be zero on average. The width of this difference is a measure of the SST hit resolution, which
depends on the thickness, the orientation, and the pitch of the sensor as well as the size of the clusters.

The SST hit resolution measurements performed during the last year of Run 2 are shown in figure
41 41 functions of these parameters. In a detector without analog charge measurement, the typical
resolution is limited to p/V12 where p is the strip pitch. This binary resolution limit is displayed in
the figure, highlighting the improvement achieved through the measurement of the charge sharing,
which is made possible by the analog readout of the charge from each channel. By measuring the
fraction of charge collected by adjacent strips, the hit position can be interpolated more precisely,
leading to a resolution significantly better than the binary limit.

With typical values between 20 and 40 um, the SST hit resolution matches the expectation from
the detector design [43], without any sign of degradation compared to previous measurements [42].
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6.10 Particle identification by ionization energy loss

Although the primary function of the strip tracker is to provide precise hit information for track
reconstruction, and hence precise momentum determination, the wide linear range of the analog
output also provides a measurement of the ionizing energy loss of the incident particles, which
can be used for particle identification.

The mean ionization energy loss per unit length dE'/dx of a particle crossing a layer of material is
given by the Bethe-Bloch formula [33]. In a restricted range of momentum p of the incident particle
of mass m (0.2 < By < 0.9, where 8 is the velocity and y the Lorentz factor), the Bethe-Bloch
formula can be linearized in m> / p2 [38], where K and C are constants and can be extracted from
a fit of the mean energy loss measurement:

dE 2
<E> -k +c. (6.3)
p

CMS 2017 Run2 (13TeV)

20000

€ C ]

L 14+ _

3 1 —{30000
= [ ]

5 121 B

g 1 —25000
Z 10 -

(0] _

5 .

w

©

15000

10000

LB B I

OO

4 5
p [GeV]

Figure 42. Energy loss measurement in the SST during LHC Run 2. Expected losses for pion, kaon, proton,
and deuteron particles are also shown (black lines). Tracks with momentum below 0.5 GeV are not included in
this plot.

In the SST, the mean ionization energy loss per unit length is computed by measuring the cluster
charge generated in all the sensors along the trajectory of a particle normalized to the path length
through each sensor. Because the SST sensors are thin, the fluctuation of the energy loss within a
sensor follows a Landau-like distribution. The most probable energy loss is estimated by combining the
measurements along the particle trajectory. Several estimators providing the most probable energy loss
have been evaluated. The harmonic-2 estimator, which is the harmonic mean of power —2 defined as:

Y ~1)2
I, = (ﬁ > (dE/dx)l-‘z) : (6.4)
i=1

where N is the number of measurements, is chosen for its stronger discrimination power [38]. The
distribution of the most probable energy loss obtained from this estimator as a function of the particle
momentum is shown in figure 42. The region corresponding to the energy loss distribution for
protons was fitted using the function from eq. (6.3) with K and C as fit parameters. The black
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lines in figure 42 represent the calculated energy loss for deuterons, kaons, and pions. However,
the region for pions at rising energy loss values is not visible due to the cutoff at low momenta.
Particle identification using the energy loss measurement within the SST is used in searches for
long-lived charged particles in pp collisions [44].

7 Radiation effects

Because of the continuous exposure to particles arising from the high-energy pp collisions of the
LHC, the detector modules of the SST and their individual components are exposed to large levels of
radiation over their lifetime. The effect of the heavy ion data-taking periods can be neglected because
of the very low integrated luminosity. Since the start of collision data taking, two effects have been
regularly monitored: radiation damage to the optical link system and radiation damage to the silicon
sensors of the SST modules. In both cases the dominant damage mechanism is displacement damage
in the crystal lattice through hadronic interactions. The damage mechanism is commonly expressed
through the NIEL (non ionizing energy loss) concept [45] in which radiation damage from different
particle types is scaled to the equivalent damage from neutrons. As a result, fluences for silicon
sensors are expressed in units of 1 MeV neutron equivalent per cm? (1 MeV Neq/ cm?). For radiation
damage in the InGaAsP laser diodes in use in the SST, equivalent damage factors for different particle
types, that allow scaling to a common reference, is reported in the literature, e.g., in ref. [46].

Simulated fluences in this section are obtained from the FLUKA radiation simulation frame-
work [47, 48], within which the geometry and material distribution of the full CMS experiment
have been simulated.

7.1 Optical link radiation damage monitoring

The optical link system is expected to degrade with increasing radiation exposure. The two main
radiation-induced effects expected are a decrease in link gain and an increase in laser threshold current.
The laser bias setting is retuned during gain scans at regular intervals to account for the change in
threshold current (section 4.1). The threshold current is thus measured regularly and its change as
a function of time and luminosity can be studied.

The radiation level in the SST varies strongly as a function of the radial distance from the
beam line, but has only a weak dependence on the z position. Accordingly results are combined for
modules at equal radius in layers (TIB/TOB) and rings (TID/TEC). Measurements of the laser driver
thresholds are summarized in figure 43. The threshold current is shown as a function of time to better
show annealing effects during periods where no integrated luminosity is accumulated. A reference
point in early 2016, to which subsequent runs are compared, is defined for each readout partition.
The threshold current change compared with the selected reference point is shown for the TIB and
TEC+. Both detector parts show an increase of the threshold current during running periods, and
the increase is larger for modules located closer to the beam line. The increase in threshold current
closely follows the increase in integrated luminosity. Annealing of the current increase (section 3) is
visible in periods with no beam, most prominently during the interruptions of the LHC data taking
of 2-3 months, typically starting at the end of a given calendar year, where the SST was kept at
room temperature typically for at least a few days. The step in the distribution at the beginning of
2018 corresponds to the reduction of the operating temperature of the SST to —20°C. Such a change
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Figure 43. Laser driver threshold increase versus time for laser drivers in TIB (upper) and TEC+ (lower). A
point in early 2016, to which subsequent runs are compared, is defined for both readout partitions.

arises from the dependence of the threshold current of the laser on the temperature. The current,
for identical radiation exposure and annealing, varies as

Iy, = 1;,(0) exp (AT /Ty) , (7.1)

where [,;,(0) is the threshold current at a reference temperature, AT is the temperature difference
between the laser and the reference value and 7y, is the characteristic temperature of the laser diodes,
measured to be around 65 K [49]. The characteristic temperature is used to indicate the temperature
sensitivity of the laser diode.

The threshold current increased by 1 mA from the beginning of the 2016 run to the end of
the 2017 run (91.4fb™") and by 0.75mA over the 2018 running period (67.9 b~ '), which does
not reflect the ratio of luminosities in the two periods. This is believed to be an effect of the
different operating temperatures, namely —15°C in 2016-2017 and —20°C in 2018, which reduced
the beneficial annealing effect in 2018.
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The integrated luminosity over these three years was about 160 fb~!. The absolute threshold
current was between 3 and 4 mA in 2016. The maximum possible threshold current is 22.5 mA, which
suggests that there should be ample margin for operation up to 500 b, the expected integrated
luminosity prior to the HL-LHC upgrades and replacement of the existing system.

From irradiation tests on similar devices [50], a threshold increase of less than 6 mA is expected
over the full lifetime of the SST.

7.2 Silicon sensor radiation damage monitoring

The two main effects of radiation on the p-in-n silicon sensors are an increasing leakage current under
HV bias, also leading to increased noise, as well as a change of effective bulk doping concentration
N of the initially n-type bulk, that will eventually cause type inversion to p-type and hence a
change of polarity of the bulk material. The depletion voltage decreases before type inversion and
increases again afterwards.

Measurements of both the leakage current and the depletion voltage are described below. Both
quantities are compared with the predictions from simulations and to preinstallation results. A
more detailed discussion of the effects of bulk damage in silicon detectors is reported elsewhere,
e.g., in ref. [45].

Simulations of the evolution of the leakage current and depletion voltage have been performed
assuming an integrated luminosity of 500 fb~! and a detector operating temperature of —25°C until
the start of the LHC LS3.

7.2.1 Leakage current evolution

In radiation-damaged silicon sensors, the leakage current increases linearly with the fluence [45].
This increase is commonly expressed by the “current-related damage rate” or a-parameter, which
is defined as the current increase, scaled to +20°C, per sensor volume and 1 MeV Neg / cm’. The
leakage current increase Al can then be written as

AIleak = a(I)qu, (72)

where @, is the particle fluence in units of 1 MeV n,/ cm” and V is the volume of the sensor under
consideration. The leakage current of a radiation-damaged sensor is strongly temperature dependent
with the leakage current roughly doubling for every 7°C of temperature increase. The leakage current
at a reference temperature 7, can be expressed as [45]

T\ E, (1 1
Deax (Trep) = Dear (Ti1) (T—ef) exp [——g (T_ - T_)} , (7.3)

sil ref sil

where E, is the bandgap energy of silicon (1.11eV), kg is Boltzmann’s constant, and T is the
temperature of the silicon sensor. The temperature of the sensor depends on the available cooling
capacity for the module in question, which here is defined as the increase in temperature due to an
increase in power on the sensor. In the SST this is measured using the DCUs on the individual
modules during a bias voltage scan. The increase in the total sensor power P, given by V.. [} .., can
be correlated with the increase in sensor temperature to extract the thermal contact coefficient d7'/dP.
With sufficient cooling power available, the additional heat generated by the increased current will not
result in a (significant) increase in the temperature of the silicon sensor. In regions of the detector
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without adequate cooling, the increase is sizable and can lead to thermal runaway [51]. Thermal
runaway occurs when an increase in leakage current results in additional power dissipation in the
sensor which in turn results in a rise in temperature (self-heating) and thus a further increase in leakage
current, and this feedback loop continues uncontrollably. Figure 44 shows an example of this in a
power group in a stereo layer of the TIB during the 2017 running.

CMS
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Figure 44. Thermal runaway observed in one power group of the TIB during the 2017 running. A power group
consists of two high-voltage channels. The maximum high-voltage current of each channel is 12 mA. Once one
of the two channels reaches this limit it is switched off (red dots). The modules connected to the other channel
cool down as a result of this and the current decreases (blue squares).

Separate HV channels provide bias to the two sides of each stereo module in this power group.
Initially one of the two HV channels is off. Switching on this channel causes the temperature of both
sets of modules to increase and the leakage currents increase accordingly. The increase continues until
one of the HV channels reaches the maximum power supply current of 12 mA, at which point the
voltage is abruptly ramped down. The current for the second channel remains just below the 12 mA
trip point and decreases rapidly once the temperature decreases. It was possible to operate both HV
channels of this power group by lowering the bias voltage and thus reducing the power dissipated on
the sensors. A few more power groups experienced thermal runaway during the late stage of operation
at —15°C; no thermal runaway has been observed when operating at —20°C during Run 2.

The leakage current is measured with two complementary approaches, one measuring the total
current for a group of modules in the power supply units, the other measuring the leakage current of the
individual modules using the DCU. The behavior for different parts of the strip tracker is investigated.
The leakage current is extracted for a particular integrated luminosity and then scaled to +20°C using
eq. (7.3). These measurements are then plotted as functions of the fluence that the individual parts of
the detector have received up to this moment, where the fluence generally decreases with increasing
distance from the beam line. Results are reported in figure 45, where the leakage current per unit
volume, scaled to +20°C, is shown as a function of the fluence. A linear fit is performed to the
data to extract the @-parameter. It should be noted that the amount of annealing for the individual
sensors is not always the same because of the strong temperature differences in the SST (section 3),
hence resulting in an “effective” a-parameter being derived rather than the one defined in eq. (7.2),
which does not include annealing effects. Nevertheless, the fit describes the data reasonably well
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Figure 45. Leakage current per unit volume and integrated luminosity, scaled to +20°C, measured after an
integrated luminosity of 55.4 fb~! as a function of the simulated fluence for modules at different radii. A linear
fit to the data is performed and used to extract the effective current related damage rate, a.g-

and a value of (3.5 £0.1) x 1077 A/em is obtained, which is in good agreement with the value of
(3.79 £ 0.27) x 107 A/cm found in ref. [1], in measurements on irradiated SST sensors.

Simulation is used to predict the future variation of the leakage current. Such simulations
require the fluence as a function of the position inside the detector, the sensor temperature, and
the available cooling power for each module as input parameters. The temperature change due to
changes in operating conditions (e.g., change of coolant temperature) and self-heating can then be
predicted. The self-heating is included iteratively in the simulation until either thermal runaway
occurs or the procedure converges (that is, the increase in leakage current due to self-heating from
the previous iteration is less than 1nA).

At sufficiently high temperature, the radiation damage to the sensors will undergo annealing,
which leads to a reduction of the leakage current. The simulation must include simultaneous annealing
and radiation damage effects. This is done by calculating the increase in leakage current on a given
day, based on the integrated luminosity or radiation dose on this day. This damage is then annealed
based on the sensor temperature over the following days. The leakage current on any given day
is thus a superposition of the initial leakage current measured before radiation exposure and the
increments from each successive day.

The predicted leakage current and sensor temperature from the simulation are compared with
measurements at specific times.

Figure 46 shows two examples of the variation of leakage current and temperature in both data and
simulation as a function of time. The simulation tracks the measurements reasonably well. For both
modules the temperatures during the Run 1 period agree well between simulation and measurement.
The leakage current is well described for the TIB module during Run 1, with the simulation slightly
overestimating the leakage current towards the end. For the TOB module the simulations similarly
describe the data well with a slight underestimation towards the end of Run 1. During LS1 and two
periods of Run 2, the simulation has many more points than are present in the data. This is because
during periods when the detector is off there are no per-module measurements of temperature and
leakage current, but the temperature can still be estimated rather precisely from nearby temperature
sensors that are continuously read out. These temperature measurements are good proxies of the
module temperature when the LV of the system is off and the system is thus in thermal equilibrium.
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Figure 46. Leakage current and temperature measured by the DCU compared with simulation for a single
module in the TIB layer 1 (left) and a module in TOB layer 3 (right).
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Figure 47. Silicon temperature as measured by the DCUs of the individual modules after 192.3 ! of
integrated luminosity, compared with simulation.

The temperature measurements can also be used in the simulation of annealing effects in periods
without DCU readings. The peaks visible during Run 2 correspond to periods where the SST cooling
plants were switched off. The high simulated current corresponds to the expected value under these
conditions; in reality the sensors were never put under bias.

The measured and simulated sensor temperatures after exposure to 192.3 o' of integrated
luminosity are shown for all modules of the SST in figure 47. The simulated values agree well with
those measured. The corresponding plot for the leakage current is shown in figure 48. Again, most
modules are well described by the simulation. The simulation slightly underestimates the measured
values in the TID, TOB, and TEC, but slightly overestimates them in the TIB.

The average leakage current for each layer, normalized to unit volume and scaled to a common
temperature (0°C), is shown as a function of the integrated luminosity in figure 49 for the TIB
(left) and the TOB (right). In general, the simulation reproduces the features of the data well, but
underestimates the leakage current by about 20% consistently for all layers, even given the variation
in their radial position. This discrepancy is not yet understood; possible factors are an imperfect
modelling of the radiation environment in FLUKA, and uncertainties in the cooling contact, which
can lead to an incorrect estimate for the self-heating.
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Figure 49. Leakage current for each layer scaled to unit volume and 0°C as a function of the total delivered
integrated luminosity in the TIB (left) and TOB (right). The lower part of each plot shows the ratio of the
measured and simulated current.

7.2.2 Depletion voltage evolution

The full-depletion voltage V., of a silicon sensor is the applied bias voltage at which the active silicon
volume is completely depleted of free charge carriers. After installation, when direct measurements
on the silicon sensors are no longer possible, the full-depletion voltage can be determined from the
signal created by MIP-like particles. The variation of cluster charge and cluster size with bias voltage
is investigated. This is called a ‘bias scan’ in the following. At the full-depletion voltage there is a
noticeable change in behavior, an example of which is shown in figure 50 where the mean cluster
size for on-track clusters is presented as a function of the bias voltage.

The cluster size increases below the full depletion because of the incomplete collection of the charge
which results in lower strip charges, that have a higher probability to be below the zero-suppression
threshold, especially in the tails of a cluster. Above the full depletion voltage the cluster decreases due
to the increased charge collection speed which reduces the charge sharing between neighboring strips.

The kink in the measured data indicates that the full-depletion voltage has been reached. To
determine the precise full-depletion voltage while accounting for the finite step size of the scan, the
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measurements are fitted with two linear functions, one before the kink and one after it. The abscissa
of the intersection point of the two functions is the full depletion voltage.

The effective doping concentration N4 of silicon sensors changes with radiation dose due
to the creation of point and cluster defects in the lattice structure [45]. Defects can be caused
by energy deposition from both charged particles (mostly charged pions and protons) and neutral
particles (mostly neutrons). The defects lead to (incomplete) donor removal and the creation of
stable acceptor levels. For the n-type sensors of the SST this initially leads to a reduction of the
effective doping concentration to the point of type inversion, after which the bulk becomes increasingly
p-type effectively. The full-depletion voltage V., can be related to the effective doping concentration
N,

g and to the resistivity p via

|New| @ q d’
dep = © — and Vdep = 2660#p’

where d is the sensor thickness, g is the unit charge, u is the electron mobility, and € and ¢, are

7.4
2€€ 74

the permittivity of silicon and the vacuum, respectively. The left formula is valid for the radiation
fluences in the SST for which the effect of charge trapping can be neglected. The initial resistivity of
the thin and thick sensor types is chosen to have similar initial depletion voltages. The values are in
the range of p = 1.55-3.25 kQ cm for the 320 um thick sensors and p = 4-8kQ cm for the 500 um
thick sensors. Because of the higher resistivity of their bulk material, thick sensors are expected to
reach type inversion at lower fluences than the thin sensors.

The evolution of the full-depletion voltage is monitored continuously during the operation of
the SST by means of regular bias scans. In figure 51 (left) an example of the scan data used to
extract the full-depletion voltage at various times is shown. The evolution of the full-depletion voltage
as determined from these data is shown and compared with the expectations from simulation in
figure 51 (right). In general, the simulation agrees well with the data. A small step downwards is
visible around 30 fb~! in both data and simulation, with different magnitude. This corresponds to
reverse annealing that happened during LS1 where the SST was at room temperature for extended
periods of time. Comparing the size of this step in many modules suggests that the amount of reverse
annealing is underestimated in the simulation.
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Figure 51. Left: mean cluster width as a function of the sensor bias voltage for one module in the TIB layer 1
for bias scans taken at various integrated luminosities. The curves have been normalized to the same cluster
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module as a function of the integrated luminosity (lower x axis) and fluence (upper x axis) using the data from
bias scans. The red line shows the predicted full-depletion voltage. The gray hashed area indicates the region
where depletion voltage estimates from data have a large uncertainty.

The average change of the full-depletion voltage for each layer in the TIB and TOB as a function
of the fluence is shown in figure 52 for both data (left) and simulation (right). For data the integrated
luminosity is converted to the expected fluence for each module using a FLUKA simulation. As
expected, different behavior for the thin and thick sensors is clearly visible in the data and reproduced
in simulation. Furthermore, the change of Vg, is similar for different sensor geometries. The range of
simulated fluence stops just before the sensors reach type inversion; here the determination of Vj,,,
becomes unreliable. At the end of Run 2 many sensors of the SST are at or close to type inversion.
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Figure 52. Left: change of the full-depletion voltage in different tracker layers as a function of the particle
fluence in data. Scans at different integrated luminosities are shown. The luminosity is converted to particle
fluence for each position in the detector using a FLUKA model. Right: simulated change of the full-depletion
voltage for single modules in different tracker layers as a function of the particle fluence.
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Figure 53. Tracker map of predicted leakage current at the end of life of the SST, where each silicon module
is represented by a rectangle in the barrel and a trapezoid in the endcap; in stereo modules each submodule
constitutes one half of this area. The color scale shows the projected sensor leakage current for a total integrated
luminosity of 500 fb~! with the SST operated at —25°C during all of Run 3. Modules in dark gray were already
inoperable at the end of Run 2. Modules in light gray are expected to become inoperable during Run 3 because
their projected leakage current will be too high. Regions in purple are control rings with DCU readout issues,
implying no input data for the simulation.

7.2.3 Radiation damage projections

Simulation is used to predict the status of the SST at its end of life. This is assumed to be at
the end of Run 3, after an integrated luminosity of 500 fb~! while operating with a cooling fluid
temperature of —25°C.

The SST was warm for about 160 days during LS2, over periods where cold operation was
not possible. These were during the removal and reinstallation of the pixel detector, as well as
during removal, reinstallation, and bake out of the central beam pipe, when there was insufficient
humidity control, e.g., in the bulkhead. The simulation here assumes a total of 120 days at room
temperature during LS2. Although this is slightly lower than the actual, the equilibrium temperature
used in the simulation is +18°C, whereas the actual temperature of the detector was around +16°C
during warm periods. During future year-end technical stops the temperature is assumed to be
maintained near or below 0°C, by means of the primary detector cooling or with the thermal screen
cooling, as described in section 2.

The predicted leakage current after 500 fo~! of integrated luminosity is shown in figure 53. The
gray areas of the detector in TIB layers 1, 2, and 3, and in the —z disk 2 of the TID are regions where
either the maximum power supply current of 12 mA per HV channel is reached or where one or more
modules connected to the same HV channel have experienced thermal runaway. The purple regions are
those that lacked appropriate input parameters for the simulation (TEC+ disks 6 and 9, and TIB layer 3,
TOB layer 4) as DCU readout on these control rings was not possible. The modules that are expected to
become inoperable from excessive leakage current correspond very closely to the regions with elevated
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Figure 54. Fraction of modules affected by thermal runaway as a function of the integrated luminosity.

temperatures from figure 7. The total number of inactive modules is smaller than that anticipated
in figure 2.24 of ref. [4], suggesting a less severe degradation of the system: fewer bad modules are
expected especially in TIB layer 2 and TOB layer 4. Some groups of modules in the TIB layers 1, 2,
and 3 show elevated leakage currents of around 2-3 mA per module and these could also potentially
become inoperable. Because of their limited number, the overall assessment does not change.

In figure 54, the percentage of modules experiencing thermal runaway is shown as a function of
the integrated luminosity. The number of such modules increases rapidly above 300 b~ ! and reaches
about 1.5% at 500fb™'. A module is considered to reach thermal runaway if during the iterative
simulation the self-heating contribution continues to increase.

Predictions are made for the full-depletion voltage at the end of life of the SST. The predicted
full-depletion voltage at 500 fb~! is shown in figure 55.

The highest full-depletion voltage is expected to be around 275 V, suggesting that there is ample
margin with respect to the maximum bias voltage of 600 V that can be delivered by the power supply
system. Modules that suffer most from reverse annealing due to high operating temperatures are not
included here since they are expected to either reach the power supply current limit or experience
thermal runaway before a possible limit in full-depletion voltage becomes relevant.

8 Summary and outlook

In this paper, the calibration, operation, and performance of the CMS silicon strip tracker (SST)
were presented. The SST has successfully delivered measurements for the reconstruction of charged
particle trajectories since the start of LHC operation.

First the calibration of the SST was discussed. It was demonstrated that the system behavior
is well understood over 10 years of operation, which includes different operating temperatures and
ever increasing instantaneous luminosities over the course of the data taking.

Next, the ingredients necessary for a proper simulation of the SST were considered. Measurements
required as input to the simulation, obtained in special runs, were presented.

The performance with proton-proton collisions was then extensively discussed. The single-
hit occupancy of the system is in line with expectations even while running at twice the design
instantaneous luminosity. The dynamic identification of bad components, crucial for a proper handling
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Figure 55. Tracker map of predicted full-depletion voltage at the end of life of the SST, where each silicon
module is represented by a rectangle in the barrel and a trapezoid in the endcap; in stereo modules each
submodule constitutes one half of this area. The color scale shows the projected full-depletion voltage for a total
integrated luminosity of 500 fb™ ! with the SST operated at —25°C during all of Run 3. Modules in dark gray were
already inoperable at the end of Run 2. Modules in light gray are expected to become inoperable during Run 3
because their projected leakage current will be too high and are identical to the modules depicted in light grey in
figure 53. Regions in purple are control rings with DCU readout issues, implying no input data for the simulation.

of missing hits in the subsequent reconstruction of particle tracks, was introduced and shown to work
well. Saturation effects in the APV25 preamplifier, which resulted in a reduced track reconstruction
efficiency, were identified during 2015-2016. This problem was understood and resolved in mid-
2016. The signal-to-noise performance of the system was excellent even after almost 200 o~ of
integrated luminosity. The outlook toward the expected end-of-life integrated luminosity is in line
with expectations. As a result, the system shows excellent single-hit reconstruction efficiency because
of the analog readout that enables a hit resolution significantly better than the binary limit for the most
relevant cluster sizes. The evolution of the Lorentz angle as a function of the integrated luminosity
was shown, as was a measurement of the specific energy loss of particles, made possible by the analog
readout, which is useful for more sophisticated analyses of collision events.

Finally, radiation effects in the SST were examined, with focus on the effects in the laser diodes of the
optical link system and the effects on the properties of the silicon sensors. The threshold current increase
in the laser diodes was shown to behave as expected, leaving ample margin for the future operation
of the SST. For the bulk damage of the silicon sensor, the resulting effects on the leakage current and
full-depletion voltage were shown and compared with simulations. The evolution of both leakage
current and depletion voltage is well described by models, and the outlook to the expected end of life of
the SST shows that the vast majority of the modules should continue to function well. Those modules
that are expected to become inoperable are in regions of the SST affected by cooling-related problems
encountered during early operation; the extent of problems is expected to be lower than anticipated
from earlier projections. The small fraction of about 1.5% of affected modules is not expected to
severely affect the SST’s ability to provide high-quality measurements for track reconstruction until
the start of LS3, when the tracking system will be replaced for the High-Luminosity LHC era.

—51 -



Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of
the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their
contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing
centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so
effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring
support for the construction and operation of the LHC, the CMS detector, and the supporting computing
infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria);
FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and
BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES
and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3 and MoER TK?202
(Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF
(Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST
(India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia);
LMTLT (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and
UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC
(Poland); FCT (Portugal); MESTD (Serbia); MICIU/AEI and PCTI (Spain); MOSTR (Sri Lanka);
Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK
and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).
Individuals have received support from the Marie-Curie program and the European Research
Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093,
101115353, 101002207, and COST Action CA16108 (European Union); the Leventis Foundation;
the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Science Committee,
project no. 22rl-037 (Armenia); the Fonds pour la Formation a la Recherche dans 1’Industrie et
dans I’Agriculture (FRIA-Belgium); the Beijing Municipal Science & Technology Commission,
No. Z191100007219010 and Fundamental Research Funds for the Central Universities (China); the
Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Shota Rustaveli National
Science Foundation, grant FR-22-985 (Georgia); the Deutsche Forschungsgemeinschaft (DFG), among
others, under Germany’s Excellence Strategy — EXC 2121 “Quantum Universe” — 390833306, and
under project number 400140256 - GRK2497; the Hellenic Foundation for Research and Innovation
(HFRI), Project Number 2288 (Greece); the Hungarian Academy of Sciences, the New National
Excellence Program - UNKP, the NKFIH research grants K 131991, K 133046, K 138136, K 143460, K
143477, K 146913, K 146914, K 147048, 2020-2.2.1-ED-2021-00181, TKP2021-NKTA-64, and 2021-
4.1.2-NEMZ_KI-2024-00036 (Hungary); the Council of Science and Industrial Research, India; ICSC
— National Research Center for High Performance Computing, Big Data and Quantum Computing and
FAIR — Future Artificial Intelligence Research, funded by the NextGenerationEU program (Italy); the
Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the
National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland);
the Fundagdo para a Ciéncia e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National
Priorities Research Program by Qatar National Research Fund; MICIU/AEI/10.13039/501100011033,
ERDF/EU, “European Union NextGenerationEU/PRTR”, and Programa Severo Ochoa del Principado
de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project,
and the National Science, Research and Innovation Fund via the Program Management Unit for Human

—52 —



Resources & Institutional Development, Research and Innovation, grant B39G670016 (Thailand);

the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation,
contract C-1845; and the Weston Havens Foundation (U.S.A.).

A Glossary of special terms and acronyms

ADC:
AOH:
APSP:
APV:
APV25:
APVMUX:
ASIC:
BX:
CCU:
DAQ:
DCU:
DOH:
ENC:
FEC:
FED:
FEH:
FET:
HIP:
HL-LHC:
HV:

2C:

Ilea :
Ayt
L1A:
LHC:
LLD:
LS1:
LS2:
LS3:
LV:
MC:
mFEC:

MIP:
MPV:
N eff*
NIEL:
NZS:
PLL:
PSU:
PU:
RMS:
Run 1:
Run 2:
Run 3:
SIN:
SST:

Analog-to-digital converter

Analog Optohybrid, used in the auxiliary electronics of the CMS silicon strip tracker
Analog pulse shape processor

Analog pipeline voltage

Readout chip used in the CMS silicon strip tracker

Auxiliary chip to multiplex the outputs of two APV25 chips

Application-specific integrated circuit

Bunch crossing

Communication and Control Unit, used in the auxiliary electronics of the CMS silicon strip tracker
Data acquisition

Detector Control Unit, used in the auxiliary electronics of the CMS silicon strip tracker
Digital Optohybrid, used in the auxiliary electronics of the CMS silicon strip tracker
Equivalent noise charge

Front-End Controller, used in the DAQ system of the CMS silicon strip tracker
Front-End Driver, used in the DAQ system of the CMS silicon strip tracker
Front-end hybrid

Field-effect transistor

Highly ionizing particle

High-Luminosity LHC

High voltage

Inter-integrated circuit

Silicon sensor leakage current

Interaction length

CMS level-1 trigger accept signal

Large Hadron Collider

Linear Laser Driver, used in the auxiliary electronics of the CMS silicon strip tracker
Long Shutdown 1 (2013-2014)

Long Shutdown 2 (2019-2021)

Long Shutdown 3 (2026-2030)

Low voltage

Monte Carlo

Mezzanine card on the FEC, used in the DAQ system of the CMS silicon strip tracker,
for the communication to an individual control ring

Minimum-ionizing particle

Most probable value, of a Landau distribution

Effective doping concentration of a silicon sensor

Non-ionizing energy loss

Data with no zero suppression applied

Phase-locked loop

Power supply unit

Pileup

Root-mean-square

First data-taking period at the LHC (2009-2012)

Second data-taking period at the LHC (2015-2018)

Third data-taking period at the LHC (2022-2026)

Signal-to-noise ratio

Silicon strip tracker of the CMS experiment
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TIB:
TID:

TEC:
TOB:

TTS:
Vdep .

VFP:

ZS:

Tracker Inner Barrel, a subdetector of the SST

Tracker Inner Disk, a subdetector of the SST

Tracker Endcap, a subdetector of the SST

Tracker Outer Barrel, a subdetector of the SST

Trigger throttling system

Silicon sensor full-depletion voltage

Preamplifier feedback voltage bias, setting to control the discharge speed
of the APV25 preamplifier

Radiation length

Zero-suppressed

Data Availability Statement. This article has associated data in a data repository. Release and
preservation of data used by the CMS Collaboration as the basis for publications is guided by the
CMS data preservation, re-use and open access policy.

Code Availability Statement. This article has associated code in a code repository. The CMS
core software is publicly available on GitHub.
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