Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Infinite order results for charged sectors of the Standard Model

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 22 February 2024
  • Volume 2024, article number 168, (2024)
  • Cite this article

You have full access to this open access article

Download PDF
View saved research
Journal of High Energy Physics Aims and scope Submit manuscript
Infinite order results for charged sectors of the Standard Model
Download PDF
  • Oleg Antipin  ORCID: orcid.org/0000-0002-2499-55381,
  • Jahmall Bersini  ORCID: orcid.org/0000-0001-5176-915X2,
  • Pantelis Panopoulos  ORCID: orcid.org/0000-0002-9332-07963,
  • Francesco Sannino  ORCID: orcid.org/0000-0003-2361-53264,5,6 &
  • …
  • Zhi-Wei Wang  ORCID: orcid.org/0000-0002-5602-68977 
  • 458 Accesses

  • 3 Citations

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We determine anomalous dimensions of a family of fixed hypercharge operators in the Standard Model featuring the general Cabibbo-Kobayashi-Maskawa structure. The results are obtained at infinite orders in the couplings and to leading and subleading orders in the charge. The computed anomalous dimensions are shown to agree with the maximum known order in perturbation theory. We further show that the large hypercharge sector of the Standard Model is characterised by a non-Abelian vector condensation phase.

Article PDF

Download to read the full article text

Similar content being viewed by others

One-loop non-planar anomalous dimensions in super Yang-Mills theory

Article Open access 20 October 2020

Infinite-dimensional hierarchy of recursive extensions for all subn-leading soft effects in Yang-Mills

Article Open access 10 December 2024

Anomalous phase diagrams in simplest plasma model

Article 18 April 2017

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Cavity QED
  • Classical Electrodynamics
  • Field Theory and Polynomials
  • Particle Physics
  • Special Functions
  • Order, Lattices, Ordered Algebraic Structures

References

  1. S. Hellerman, D. Orlando, S. Reffert and M. Watanabe, On the CFT operator spectrum at large global charge, JHEP 12 (2015) 071 [arXiv:1505.01537] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  2. D. Banerjee, S. Chandrasekharan and D. Orlando, Conformal dimensions via large charge expansion, Phys. Rev. Lett. 120 (2018) 061603 [arXiv:1707.00711] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Orlando, S. Reffert and F. Sannino, A safe CFT at large charge, JHEP 08 (2019) 164 [arXiv:1905.00026] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Orlando, S. Reffert and F. Sannino, Near-conformal dynamics at large charge, Phys. Rev. D 101 (2020) 065018 [arXiv:1909.08642] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. L.Á. Gaumé, D. Orlando and S. Reffert, Selected topics in the large quantum number expansion, Phys. Rept. 933 (2021) 1 [arXiv:2008.03308] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Orlando, S. Reffert and F. Sannino, Charging the conformal window, Phys. Rev. D 103 (2021) 105026 [arXiv:2003.08396] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Hellerman et al., Nonrelativistic CFTs at large charge: Casimir energy and logarithmic enhancements, JHEP 05 (2022) 135 [arXiv:2111.12094] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Dondi et al., Fermionic CFTs at large charge and large N , JHEP 08 (2023) 180 [arXiv:2211.15318] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Hellerman et al., The unitary Fermi gas at large charge and large N , arXiv:2311.14793 [INSPIRE].

  10. O. Antipin et al., Charging the O(N) model, Phys. Rev. D 102 (2020) 045011 [arXiv:2003.13121] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. O. Antipin et al., Charging non-Abelian Higgs theories, Phys. Rev. D 102 (2020) 125033 [arXiv:2006.10078] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. O. Antipin, J. Bersini and P. Panopoulos, Yukawa interactions at large charge, JHEP 10 (2022) 183 [arXiv:2208.05839] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. O. Antipin et al., Gauge invariance at large charge, Phys. Rev. Lett. 130 (2023) 021602 [arXiv:2210.10685] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. O. Antipin, J. Bersini, F. Sannino and M. Torres, The analytic structure of the fixed charge expansion, JHEP 06 (2022) 041 [arXiv:2202.13165] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, Goldstone bosons and CFT data, JHEP 06 (2017) 011 [arXiv:1611.02912] [INSPIRE].

  16. G. Badel, G. Cuomo, A. Monin and R. Rattazzi, The epsilon expansion meets semiclassics, JHEP 11 (2019) 110 [arXiv:1909.01269] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Badel, G. Cuomo, A. Monin and R. Rattazzi, Feynman diagrams and the large charge expansion in 3 − ϵ dimensions, Phys. Lett. B 802 (2020) 135202 [arXiv:1911.08505] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  18. G. Cuomo, A note on the large charge expansion in 4d CFT, Phys. Lett. B 812 (2021) 136014 [arXiv:2010.00407] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  19. G. Cuomo and Z. Komargodski, Giant vortices and the Regge limit, JHEP 01 (2023) 006 [arXiv:2210.15694] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. G. Arias-Tamargo, D. Rodriguez-Gomez and J.G. Russo, The large charge limit of scalar field theories and the Wilson-Fisher fixed point at ϵ = 0, JHEP 10 (2019) 201 [arXiv:1908.11347] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. I. Jack and D.R.T. Jones, Anomalous dimensions for ϕn in scale invariant d = 3 theory, Phys. Rev. D 102 (2020) 085012 [arXiv:2007.07190] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. I. Jack and D.R.T. Jones, Anomalous dimensions at large charge for U(N )U(N) theory in three and four dimensions, Phys. Rev. D 104 (2021) 105017 [arXiv:2108.11161] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Jafferis, B. Mukhametzhanov and A. Zhiboedov, Conformal bootstrap at large charge, JHEP 05 (2018) 043 [arXiv:1710.11161] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Caetano, S. Komatsu and Y. Wang, Large charge ’t Hooft limit of N = 4 super-Yang-Mills, JHEP 02 (2024) 047 [arXiv:2306.00929] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  25. A. Bednyakov and A. Pikelner, Six-loop anomalous dimension of the ϕQ operator in the O(N) symmetric model, Phys. Rev. D 106 (2022) 076015 [arXiv:2208.04612] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. J.L. Cardy, Conformal invariance and universality in finite-size scaling, J. Phys. A 17 (1984) L385 [INSPIRE].

  27. S. Aoki, Noether’s 1st theorem with local symmetries, PTEP 2022 (2022) 123A02 [arXiv:2206.00283] [INSPIRE].

  28. S. Elitzur, Impossibility of spontaneously breaking local symmetries, Phys. Rev. D 12 (1975) 3978 [INSPIRE].

  29. P.A.M. Dirac, Gauge invariant formulation of quantum electrodynamics, Can. J. Phys. 33 (1955) 650 [INSPIRE].

  30. W. Caudy and J. Greensite, On the ambiguity of spontaneously broken gauge symmetry, Phys. Rev. D 78 (2008) 025018 [arXiv:0712.0999] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J. Greensite and K. Matsuyama, Confinement criterion for gauge theories with matter fields, Phys. Rev. D 96 (2017) 094510 [arXiv:1708.08979] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. A.V. Bednyakov, Three-loop anomalous dimensions of fixed-charge operators in the SM, arXiv:2312.15804 [INSPIRE].

  33. A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Higgs self-coupling beta-function in the Standard Model at three loops, Nucl. Phys. B 875 (2013) 552 [arXiv:1303.4364] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Three-loop Higgs self-coupling beta-function in the Standard Model with complex Yukawa matrices, Nucl. Phys. B 879 (2014) 256 [arXiv:1310.3806] [INSPIRE].

    Article  ADS  Google Scholar 

  35. K.G. Chetyrkin and M.F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the Standard Model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

    Article  ADS  Google Scholar 

  36. F. Sannino, General structure of relativistic vector condensation, Phys. Rev. D 67 (2003) 054006 [hep-ph/0211367] [INSPIRE].

  37. V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Spontaneous rotational symmetry breaking and roton-like excitations in gauged σ-model at finite density, Phys. Lett. B 581 (2004) 82 [Erratum ibid. 734 (2014) 407] [hep-ph/0311025] [INSPIRE].

  38. J.I. Kapusta, Bose-Einstein condensation, spontaneous symmetry breaking, and gauge theories, Phys. Rev. D 24 (1981) 426 [INSPIRE].

  39. J.I. Kapusta, Phase diagram of electroweak theory, Phys. Rev. D 42 (1990) 919 [INSPIRE].

  40. M. Loewe, S. Mendizabal and J.C. Rojas, Weinberg-Salam model at finite temperature and density, Phys. Lett. B 617 (2005) 87 [hep-ph/0412392] [INSPIRE].

  41. Y. Hama, T. Hatsuda and S. Uchino, Higgs mechanism with type-II Nambu-Goldstone bosons at finite chemical potential, Phys. Rev. D 83 (2011) 125009 [arXiv:1102.4145] [INSPIRE].

    Article  ADS  Google Scholar 

  42. H. Watanabe and H. Murayama, Spontaneously broken non-Abelian gauge symmetries in nonrelativistic systems, Phys. Rev. D 90 (2014) 121703 [arXiv:1405.0997] [INSPIRE].

    Article  ADS  Google Scholar 

  43. V. Gorbenko, S. Rychkov and B. Zan, Walking, weak first-order transitions, and complex CFTs, JHEP 10 (2018) 108 [arXiv:1807.11512] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. E. Witten, Analytic continuation of Chern-Simons theory, AMS/IP Stud. Adv. Math. 50 (2011) 347 [arXiv:1001.2933] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  45. A. Cherman, D. Dorigoni and M. Unsal, Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles, JHEP 10 (2015) 056 [arXiv:1403.1277] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. Y. Tanizaki and T. Koike, Real-time Feynman path integral with Picard-Lefschetz theory and its applications to quantum tunneling, Annals Phys. 351 (2014) 250 [arXiv:1406.2386] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. H. Goldberg, Breakdown of perturbation theory at tree level in theories with scalars, Phys. Lett. B 246 (1990) 445 [INSPIRE].

  48. V.A. Rubakov, Nonperturbative aspects of multiparticle production, in the proceedings of the 2nd Rencontres du Vietnam consisting of parallel conferences. Astrophysics meeting: from the Sun and beyond/particle physics meeting: physics at the frontiers of the Standard Model, (1995), p. 2 [hep-ph/9511236] [INSPIRE].

  49. C. Degrande, V.V. Khoze and O. Mattelaer, Multi-Higgs production in gluon fusion at 100 TeV, Phys. Rev. D 94 (2016) 085031 [arXiv:1605.06372] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work of J.B. was supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; and also supported by the JSPS KAKENHI Grant Number JP23K19047. The work of P. P is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2023R1A2C1006975) and from the JRG Program at the APCTP through the Science and Technology Promotion Fund and Lottery Fund of the Korean Government. The work of F.S. is partially supported by the Carlsberg Foundation, grant CF22-0922. We thank Alexander Bednyakov for sharing with us his three-loops perturbative results for the Standard Model anomalous dimensions of the family of Higgs operators with hypercharge Q.

Author information

Authors and Affiliations

  1. Rudjer Boskovic Institute, Division of Theoretical Physics, Bijenička 54, 10000, Zagreb, Croatia

    Oleg Antipin

  2. Kavli IPMU (WPI), UTIAS, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan

    Jahmall Bersini

  3. Asia Pacific Center for Theoretical Physics, Pohang, 37673, Korea

    Pantelis Panopoulos

  4. Quantum Theory Center (ℏQTC) at IMADA and D-IAS, Southern Denmark Univ., Campusvej 55, 5230, Odense M, Denmark

    Francesco Sannino

  5. Dipartimento di Fisica “E. Pancini” and INFN sezione di Napoli, Università di Napoli Federico II, via Cintia, 80126, Napoli, Italy

    Francesco Sannino

  6. Scuola Superiore Meridionale, Largo S. Marcellino 10, 80138, Napoli, NA, Italy

    Francesco Sannino

  7. School of Physics, The University of Electronic Science and Technology of China, 88 Tian-run Road, Chengdu, China

    Zhi-Wei Wang

Authors
  1. Oleg Antipin
    View author publications

    Search author on:PubMed Google Scholar

  2. Jahmall Bersini
    View author publications

    Search author on:PubMed Google Scholar

  3. Pantelis Panopoulos
    View author publications

    Search author on:PubMed Google Scholar

  4. Francesco Sannino
    View author publications

    Search author on:PubMed Google Scholar

  5. Zhi-Wei Wang
    View author publications

    Search author on:PubMed Google Scholar

Corresponding authors

Correspondence to Jahmall Bersini or Zhi-Wei Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2312.12963

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipin, O., Bersini, J., Panopoulos, P. et al. Infinite order results for charged sectors of the Standard Model. J. High Energ. Phys. 2024, 168 (2024). https://doi.org/10.1007/JHEP02(2024)168

Download citation

  • Received: 15 January 2024

  • Accepted: 08 February 2024

  • Published: 22 February 2024

  • Version of record: 22 February 2024

  • DOI: https://doi.org/10.1007/JHEP02(2024)168

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higher Order Electroweak Calculations
  • Renormalization Group
  • Higgs Properties
  • Scale and Conformal Symmetries

Profiles

  1. Francesco Sannino View author profile

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

31.147.207.93

Not affiliated

Springer Nature

© 2026 Springer Nature