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Abstract

Introduction: The importance of cerebrospinal fluid (CSF) biomarkers in Alzheimer’s disease
(AD) diagnosis is rapidly increasing, and there is a growing interest in the use of CSF
biomarkers in monitoring the response to therapy, especially in the light of newly available
approaches to the therapy of neurodegenerative diseases.

Areas covered: In this review we discuss the most relevant measures of neurodegeneration
that are being used to distinguish patients with AD from healthy controls and individuals with
mild cognitive impairment, in order to provide an overview of the latest information available
in the scientific literature. We focus on markers related to amyloid processing, markers
associated with neurofibrillary tangles, neuroinflammation, neuroaxonal injury and
degeneration, synaptic loss and dysfunction, and markers of a-synuclein pathology.

Expert opinion: In addition to neuropsychological evaluation, core CSF biomarkers (ABa2, t-
tau, and p-taul8l) have been recommended for improvement of timely, accurate and
differential diagnosis of AD, as well as to assess the risk and rate of disease progression. In
addition to the core CSF biomarkers, various other markers related to synaptic dysfunction,
neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40, TREM2) are now
investigated and have yet to be validated for future potential clinical use in AD diagnosis.
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Article highlights

° Besides decreased levels of ABs2 in CSF, CSF AB40, ABs; and ABss may help in
distinguishing AD from healthy controls and other dementias, such as FTD and LBD.

. CSF AB42/ABss and AB42/ABa4o ratios exhibit enhanced performance in distinguishing AD
from other forms of dementia, including PD, LBD, subcortical VaD and FTD.

. Elevated CSF levels of p-tau (p-taul81 and p-tau231) are a valuable marker in
differentiating AD from other types of dementia.

° The p-tau217 exhibits higher accuracy than p-taul81 and p-tau231 in distinguishing
AD dementia from non-AD.

° CSF p-tau/Al4; ratio could be accurate predictor of conversion from MCI to AD
dementia.

. Nfl provides important information about the progress of neurodegeneration and should
be used as a biomarker in AD, but not as a biomarker of AD.

° CSF VILIP-1 levels are significantly increased in AD and MCI patients compared to
controls, and correlates well with the progression and pathology of AD.

° Elevated CSF Ng and SNAP-25 levels are found in patients diagnosed with AD, even in
prodromal phase of the disease.

. Individuals with AD exhibit higher levels of glycoprotein YKL-40 in CSF and plasma
compared to healthy controls.

° AD pathology is associated with elevated CSF sTREM2 levels, especially in the case of
tau-related neurodegeneration.

° Increased CSF a-syn levels are present in patients with MCI and AD, and they correlate
with disease progression and/or severity of cognitive decline.



1 Introduction

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease with an
irreversible but slow time course, and it is the most frequent of all types of dementia (around
60-70% cases). It is characterized with cognitive deterioration, various neuropsychiatric
symptoms, and behavioral problems, and in the later stage with inability to perform daily living
activities [1]. The main neuropathological features in AD are the accumulation of extracellular
amyloid B (AB) plaques and the intracellular accumulation of hyperphosphorylated tau proteins
as neurofibrillary tangles, that result in progressive neurodegeneration and cerebral atrophy.

The detailed description about the AD pathophysiology was reviewed recently [2].
Pathophysiology of AD is described with different hypotheses: cholinergic hypothesis, amyloid
cascade hypothesis and hyperphosphorylation of tau proteins in the brain [3]. All hypotheses
are confirmed with some pathological or pharmacological findings: a decreased acetylcholine
concentration in the brain is associated with neuronal loss and is responsible for the memory
loss, cognitive deterioration and AD development, and this hypothesis is confirmed by the
clinical efficacy of the acetylcholinesterase inhibitors. Amyloid cascade hypothesis is the most
accepted, suggesting that the primary cause of AD is the extent accumulation of AB peptides
and AP plaque deposition in the brain. After the enormous and long-term efforts to develop a
treatment, some new drugs targeting AB have shown satisfactory results [4,5]. A common
hypothesis is also the hyperphosphorylation of tau proteins, due to the excessive accumulation
of the amyloid proteins in the brain tissue. The hypothesis is based on abnormal changes in
tau proteins which result in tau dysfunction, and these hyperphosphorylated tau proteins
shape aggregates (i.e. neurofibrillary tangles) that are deposited within the neurons, with
consequent induction of neuronal damage and negative effects on neuronal function [3]. The
full description of the AD pathophysiology regarding the AR plaques and neurofibrillary tangles
is provided in the text in paragraphs 2.1. (markers of beta-amyloid accumulation and amyloid
processing) and 2.2. (markers of tau pathology), while other pathophysiological features of AD
are described further in the text in the paragraphs 2.3-2.6 (markers of neuroaxonal injury and
degeneration, markers of synaptic dysfunction, markers of neuroinflammation, markers of a-
synuclein pathology).

Currently there is no cure for AD, no disease-modifying treatment, and no therapeutic strategy
exists to prevent AD or reverse disease progression, while few classes of medication (i.e.
acetylcholinesterase inhibitors and non-competitive NMDA antagonist) can only slow AD
progression, with modest benefit on cognition [1]. Medication used to treat symptoms in AD
include donepezil (reversible non-competitive acetylcholinesterase inhibitor), galantamine
(reversible, competitive acetylcholinesterase inhibitor and modulator of nicotinic acetylcholine
receptor), rivastigmine (acetylcholinesterase and butyrylcholinesterase inhibitor) and
memantine (non-competitive NMDA antagonist) [1]. However, recently two additional
treatment strategies have been approved by the U.S. Food and Drug Administration (FDA) for
the treatment of AD, aducanumab [4] and lecanemab [5]. Both drugs are based on a
humanized IgG1 monoclonal antibody that targets aggregated AB and both approaches have
been shown to reduce AB burden measured with PET [6]. Lecanemab exhibits stronger biding
to AB protofibrils, while aducanumab has grater affinity for highly aggregated AR fibrils [6]. In
contrast to aducanumab, the efficiency of lecanemab was found to be more consistent across
different studies [7-9].

The National Institute on Aging—Alzheimer's Association (NIA-AA) in 2018 shifted its
guidelines of the definition of AD from the syndromal entity to biologically based entity and
described AD as “underlying pathologic processes that can be documented by postmortem



examination or in vivo by biomarkers” [10]. This definition should be used for the research
framework, and not for clinical practice [11]. The "A/T/N" classification scheme was proposed
in order to categorize AD biomarker findings into a format which is easy to understand and
use [11]. The classification included 7 major AD biomarkers subdivided into 3 categories: “A”
(AB plaques i.e. biomarkers detected with cortical amyloid PET ligand binding or decreased
cerebrospinal fluid (CSF) AB42),”T” (related to aggregated tau (neurofibrillary tangles), i.e.
increased CSF phosphorylated tau (P-tau) and cortical tau PET ligand binding), and “N”
(biomarkers of neurodegeneration or neuronal injury) [11]. The “N” biomarkers include CSF
T-tau, FDG PET hypometabolism, and brain atrophy detected with MRI, but are open to other
(novel) markers of neurodegeneration. This classification points out the importance of
separating biomarkers related to neurofibrillary tangles from markers associated with neuronal
injury/neurodegeneration since this approach might help differentiate neuronal AD from non-
AD causes [11]. This shift in definition was suggested since these neuropathological changes
(B-amyloid plaques and neurofibrillary tau deposits, evaluated as biomarkers) define AD, and
might offer more precise characterization and improve the knowledge of the order of
neurobiological events that cause AD, however, in addition, AD should be assessed also in
different stages across its entire spectrum [11]. Therefore, the difference is that AD is not only
defined by its clinical symptoms (cognitive deterioration that affects thinking, remembering,
and reasoning, and behavioral changes that interfere with daily life and activities), but also
with characteristic neuropathologic changes that can be assessed with biomarkers in vivo and
postmortem examination. However, when evaluating biomarkers, besides sex-specific
contributions to AD risk biomarkers [12], racial differences should also be considered. The
African American individuals were suggested to have lower levels of CSF t-tau and p-taul81
compared to white individuals, suggesting that in these individuals ATN biomarkers must be
controlled for race [13].

Regarding the clinical perspective, AD diagnosis is meet when all criteria defined by The
American Psychiatric Association’s Diagnostic and Statistical Manual (DSM-5) [14] for
dementia are present, and the neuropsychiatric symptoms (cognitive decline associated with
reduced ability for reasoning or thinking, problems with memory and in social skills, behavioral
abilities) occur [15]. Problems in cognition are associated with two or more of the following
domains: acquisition and recall of information, reasoning and judgment in complex tasks,
visuospatial ability, language function, and normal personality or behavior [15]. AD can be
divided in different clinical stages [16]. The first is a pre-clinical or pre-symptomatic stage,
lasting for several years or more, with characteristic mild memory loss and early pathological
changes in cortex and hippocampus, but without any functional impairment in the daily
activities and there are no clinical symptoms of AD [16]. After that a mild or early stage of AD
occurs, with development of particular symptoms (i.e. changes in mood, problems in
concentration and memory, disorientation of place and time, and sometimes depression) [16].
A moderate stage of AD is characterized with elevated loss of memory, troubles in recognizing
family and friends, deficit in impulse control, and problems in reading, writing, and speaking,
while a severe stage of AD or a late-stage of AD is associated with advanced functional and
cognitive deterioration, where patients are not able to recognize their family, have problems
in swallowing and urination, and this is an end-stage of AD where affected patients die from
various complications [16]. Since AD is presented as a continuum, different stages associated
with time course of AD exist, depending on the working group that defines them (International
Working Group or NIA-AA), and can be divided into: asymptomatic at risk or preclinical AD;
prodromal phase or AD with MCI; mild AD dementia or AD with mild dementia; moderate AD
dementia or AD with moderate dementia; and the last severe AD dementia or AD with severe



dementia [17]. All these stages are characterized with specific biomarkers, and therefore
evaluation of these biomarkers in early stages in asymptomatic patients or those with MCI
might offer personalized approach and therapy that targets specific pathological processes
and corresponding biomarkers [2].

In the possible prevention, treatment and reduction of the symptoms of AD, early screening
and accurate diagnosis are the most important. Biomarkers should be used for the early
diagnosis of AD, and this approach offers an improved therapeutic strategy to slow the
progression of disease and treat or reduce the symptoms [18]. Following recent
recommendations of the International Working Group, biomarkers should detect individuals in
early stages who are at risk for progression to AD dementia, or to AD, and will differentiate
various types of dementia and different AD phenotypes and assist in identifying those at risk
for symptomatic AD [18,19]. However, the prediction or diagnosis of AD should not be based
exclusively on AD biomarkers, but should be combined with the clinical assessment [18]. The
diagnosis of AD already starts in primary health care with taking patients’ medical history,
which is afterwards complemented by physical examination, laboratory tests and cognitive
screening (Figure 1). The importance of including both neuroimaging and CSF biomarkers is
in ruling out AD as the underlying cause of cognitive disfunction (Figure 1), in enabling earlier,
more accurate and differential diagnosis of AD, and in enabling personalized management
and treatment of AD [20].

2 CSF biomarkers in the diagnosis of AD

The importance of CSF biomarkers in the diagnosis of AD is rapidly increasing, and this
interest is also growing in terms of monitoring the response to therapy, especially in the light
of newly available approaches to the therapy of neurodegenerative diseases. Determination
of CSF amyloid beta (AB), total tau (t-tau), and phosphorylated tau (p-tau) levels has been
included in both clinical and research diagnostic criteria [18,19,21].

The existing literature is mostly focused on biomarkers that are associated with AD pathogenic
process, and the main clinical value of these biomarkers is to facilitate the diagnosis of AD
and help the clinician to discriminate between AD associated phenotypes and non-AD
pathologies. Diagnostic biomarkers in AD focus on three main pathological features of AD
which reflect the process underlying AD: accumulation of A, hyperphosphorylation of tau, and
neuronal degeneration (less specific markers of AD) [11]. CSF biomarkers that have been
researched the most and have shown the best biomarker properties so far include ABa42, ABao,
p-taussi, p-tauz17, and t-tau. These markers accurately identify the pathological changes
associated with AD, even in early stages of the disease (asymptomatic and prodromal stages),
and they have potential to predict cognitive decline [22]. Markers associated with AR
accumulation and amyloid processing and the markers of tau pathology are useful for the
differentiating AD patients from those with non-AD dementia which will be discussed in more
details in the following sections of this review. Some clinical practices have replaced t-tau as
a measure of neurodegeneration with neurofilament light chain (NfL) because of its high
sensitivity [23]. Other CSF biomarkers which are currently being researched, and will be
discussed in the further text, have a better potential to one day be used as biomarkers for
staging of disease and prognosis, less for the differential diagnoses [18].

This review concentrates on the most relevant measures of neurodegeneration that are being
determined in order to distinguish patients with AD from healthy control subjects and
individuals with mild cognitive impairment (MCI) in order to provide an overview of the latest
information available in the scientific literature. The review focuses on markers related to



amyloid processing, markers of tau pathology, neuroinflammation, neuroaxonal injury and
degeneration, synaptic loss and dysfunction, and markers of a-synuclein pathology (Figure 2).

2.1 Markers of beta-amyloid accumulation and amyloid processing

A significant progress in AD research was the identification of AR as the primary protein
component of amyloid plaques, formed through the enzymatic breakdown of its precursor, the
amyloid precursor protein (APP). In the amyloidogenic pathway, APP is cleaved by B-
secretase, resulting in the production of SAPPB and BCTF 99 fragments [24]. Subsequently,
BCTF 99is cleaved by y-secretase, leading to the generation of AB peptides of various lengths,
predominantly AB4> and AB4o, with the former being much more prone to aggregation [25] and
the formation of amyloid plaques associated with AD. In contrast, the nonamyloidogenic
pathway involves cleavage by a-secretase and production of sSAPPa and aCTF 83 fragments,
while further processing by y-secretase generates peptides like p3, which is less implicated in
AD pathology [26].

The CSF levels of AB42, when combined with total tau (t-tau) and phosphorylated tau (p-tau),
form the recognized CSF pattern used to diagnose AD, with AB4, demonstrating the highest
diagnostic accuracy [27]. The sensitivity for predicting progression to AD in patients with MCI
was found to be 95%, and the specificity 87% [28]. For distinguishing AD from other conditions,
the sensitivity of CSF AB42 was 85% and the specificity 42% in case of Lewy body disease
(LBD), 85% and 77% in case of frontotemporal dementia (FTD) [27], and 77% and 80% for
vascular dementia (VaD) [29]. Moreover, evidence suggests that AB4. levels may serve as a
predictor of disease progression in individuals with normal cognition and those with MCI [27].
Levels of CSF AB42 were significantly reduced in AD patients compared to normal individuals
[30]. This reduction is attributed to increased deposition of amyloid plaques in the brain,
leading to decreased levels of AB42 in CSF. In previous studies, reduced CSF levels of ABa.
have also been observed in other non-AD disorders, such as FTD, LBD, and VaD [30].
Nevertheless, these observations could be linked to mixed pathology, suggesting the
existence of various pathological conditions or overlapping characteristics among the
aforementioned diseases. According to the recent study, it is proposed that the p-tau/ABa: ratio
could serve as a valuable tool in distinguishing AD from FTD with primary language difficulties
[31]. However, the same ratio does not effectively differentiate AD from behavioral variant or
FTD nor from FTD as a collective entity [31]. In addition, CSF AB4, could be a differentiating
marker for the detection of prodromal AD in clinically diagnosed amnestic MCI patients [32].
Conversely, another study found that, compared to AD, cerebral amyloid angiopathy (CAA)
showed similar levels of AB42, but lower levels of AB4o [33].

Previous study has reported varied findings regarding CSF ABa4o levels [34]. The reports
showed either decreased, unchanged, or elevated CSF A4 levels in AD compared to other
forms of dementia [34]. Recent research highlighted a significant age-independent rise in CSF
ABs levels in AD, along with a positive association between CSF ABs and p-tauis:
concentration, even in non-AD individuals, suggesting that initial amyloid peptide levels may
serve as a risk factor for sporadic AD [34]. On the other hand, diminished CSF AB4o levels
could indicate alternative conditions such as FTD, CAA [34], normal pressure hydrocephalus
[35] and multiple sclerosis [36].

Besides AB42 and AB.o, AB37 and ABss may help in distinguishing AD from other dementias,
such as FTD and LBD [30]. The noticeable decrease in CSF AB.. levels was reported in AD,
while in LBD the CSF levels of ABss, AR and AB4, were found to be decreased [37]. This
indicates that amyloid metabolism is altered in LBD, even when there is no concurrent



presence of AD pathology. Furthermore, differentiating AD from CAA using CSF biomarkers
is challenging due to symptom overlap between these diseases [38]. It was suggested that
adding ABss and ABas to standard AD biomarkers could improve this differentiation [39], while
others found no enhancement in distinguishing between AD and CAA with their inclusion [40].
The significant improvement in AD diagnosis was achieved through calculating the CSF
AB42/ABao ratio [41]. The CSF A4 initially showed limited potential as a stand-alone
biomarker. However, it quickly became apparent that normalizing AB42 levels to the total AR
quantity, represented by the most abundant isoform ARa4o, Yields superior diagnostic
performance compared to AB.. alone [42]. Consistent AB4o levels were observed across AD
patients, non-AD patients and controls, but the reduction in AB4; levels significantly elevated
the AB42/AB4o ratio [27]. Subsequent study revealed notable differences in AB42/ABss and
AB42/AB4o ratios in AD, suggesting superior diagnostic potential compared to individual
biomarkers [27]. Further, CSF AB42/ABss and AB.2/AB4o ratios exhibited enhanced performance
in distinguishing AD from other forms of dementia, including Parkinson’s disease dementia
(PD), LBD and subcortical VaD [43]. In addition, it was proposed that the AB42/AB4o ratio is
highly valuable for differentiating between AD and LBD patients, especially during the
prodromal stage when clinical diagnosis proves to be particularly challenging [44]. Moreover,
recent study showed that the AB42/AB4o ratio outperformed AR alone in distinguishing AD
from FTD [45].

In addition to these findings, CSF sAPPa and sAPP have been proposed as potential novel
CSF biomarkers for AD and several other neurodegenerative conditions [46]. Their
effectiveness has not met expectations, often yielding conflicting results, with limited studies
examining their utility in distinguishing between different neurodegenerative diseases beyond
comparisons with healthy elderly controls [47,48]. Significant elevations in both sAPPa and
sAPPg levels in individuals in the MCI-AD group compared to those in the MCl-others group
were reported [47]. The same group also verified a strong correlation between levels of
sAPPa, sAPPB, p-tau, as well as t-tau, suggesting potential pathological connections between
tau and sAPPs [48]. This correlation is significant as the increase in p-tau and t-tau levels is
believed to indicate the neurodegenerative alterations linked to AD [48]. Finally, the study by
Alcolea et al. offers pathological confirmation that low levels of sAPPB and high levels of
chitinase-3-like protein 1 (CHI3L1 or YKL-40) in the CSF are linked to FTD [49]. Thus, these
biomarkers may be valuable, especially in specific clinical situations where FTD is suspected.

2.2 Markers of tau pathology

P-tau protein levels along with AB.. levels are known as “core CSF biomarkers” and are
assumed to have the highest diagnostic accuracy for the early diagnosis of AD [50-52]. The
NFTs are considered as second neuropathological hallmarks of AD, after AR plaques [53].
NFTs are composed of a highly-phosphorylated form of the microtubule-associated protein
tau [54]. Tau protein is mainly present in axons and plays an important role in connecting
microtubules and controlling axonal length and stability [55]. Abnormal phosphorylation of tau
proteins causes detachment of tau from microtubules, degradation of microtubules, which
affects axons, and ultimately leads to neuronal death [56]. Injury and degradation of axons
and neuronal cell death, lead to the release of tau protein to CSF, which is reflected as t-tau
levels [57,58]. Consequently, t-tau levels indicate the degree of neuronal loss and
neurodegeneration in AD [59].



A key component of NFTs in AD pathology, and more accurate biomarker for differentiating
AD from other dementias in contrast to t-tau, is p-tau. Recent study revealed at least 59
different p-tau phosphorylation sites which could be related to AD using mass spectrometry
[60]. CSF p-tau levels have demonstrated strong prognostic accuracy in AD, especially in
predicting cognitive decline in patients with AD and MCI [61,62]. Furthermore, the elevated
levels of p-tau in AD, compared to other neurodegenerative conditions, such as VaD,
FTD, progressive supranuclear palsy (PSP) or corticobasal syndrome (CBS), make it a
valuable marker in differentiating AD from other types of dementia [63,64]. Several p-tau
species have been reported to be increased in the very early stages of AD such as p-tauiss,
p-tauzs; and p-tausiz [65]. P-tauis: is one of the most studied variants of phosphorylated tau
protein, and it is considered a gold standard for AD diagnosis [66]. It is reported to be elevated
in patients with MCIl and AD continuum [67,68]. Even though p-tauis: is elevated in AD, in
other types of dementia, such as FTD, it is significantly decreased compared to healthy
controls [69,70]. However, p-tauig: is not significantly different between progressive
supranuclear palsy, corticobasal degeneration, or other variants of FTD [70]. Another variant
of p-tau is p-taus; that has been reported to be elevated in patients with AD and MCI,
compared to controls [71,72]. Previous studies also demonstrated the role of p-tauss; in
differentiating AD patients from FTD, VaD and LBD with the sensitivity of 90.2% and with 80%
of specificity [73]. More recent research has shown that p-tauz:7 exhibited higher accuracy
than p-tauis: and p-tauss; in distinguishing AD from non-AD dementia [74,75]. In a study
conducted by Barthélemy and colleagues, p-tauz:; was a better predictor of AB positivity than
p-tauis1 [74]. Compared to CSF p-tauisi, CSF p-tauzi7 showed a stronger correlation with CSF
AB42 and with AB and tau-PET [76]. Similarly, another study also reported better correlation of
p-tau.i7in differentiating AD from other neurodegenerative diseases with a 91% sensitivity and
specificity [77]. Additionally, in comparison to p-tauisi, p-tauzi; had a 90% accuracy rate in
separating AD from tauopathies such as Pick disease, progressive supranuclear palsy, and
corticobasal degeneration [78]. These studies suggest that p-tauzi7 is the most accurate tau
biomarker for AD in both pre-clinical and advanced stages.

Although CSF t-tau and p-tau are well recognized biomarkers for differentiating AD from other
dementias, their diagnostic value is significantly enhanced when measured in combination
with AB42 [22,79-81]. Furthermore, the combination of tau and Ap markers was demonstrated
to be useful in predicting disease progression [82,83]. A recent study revealed that CSF p-
tau/AR4, ratio could be accurate predictor of conversion from MCI to AD dementia, with 82.9%
sensitivity and 90% specificity [84]. It was previously reported that individuals with FTD
exhibited the highest levels of A4, and the lowest levels of t-tau and p-tau in FTD, whereas
AD patients showed the highest levels of t-tau and p-tau, and the lowest levels of A3, and
AR4/p-tau ratios [85]. More recent study aimed to determine the CSF levels of tau and AR for
distinguishing FTD from AD [31]. This study reported that the p-tau/ABs. ratio might be
beneficial in distinguishing between AD and FTD characterized by primary language
impairments, but was not effective in discriminating AD from the behavioral variant of FTD, or
from FTD as a collective group [31]. Therefore, investigating and gaining a deeper
understanding of the role of the tau protein in the mechanisms and underlying pathology of
AD could enhance diagnostic and prognostic accuracy, particularly in distinguishing AD from
other forms of dementia.

2.3 Markers of neuroaxonal injury and degeneration



Recently, the question has been raised whether AD can be considered as an axonal
degeneration disease [86]. Both key factors in the pathogenesis of AD, tau and AB, have a
predominant expression and an important role in the physiological functions of axons. When
microtubules are broken or other axonal injuries occur, AR and tau may be abnormally
modified and the result is deteriorated neuroaxonal damage. Neuroaxonal injury and
consequential synaptic dysfunction are key features of AD, and synaptic loss is closely
associated with cognitive decline in the disease [87]. One of the earliest changes that occur
in early AD is axonal dystrophy which is associated with extracellular depositions of A and
has been observed to contribute to synaptic alterations occurring in AD [88]. As previously
mentioned, t-tau levels represent a general signal of neurodegeneration [65]. Different studies
reported a higher concentration of t-tau levels in CSF of AD patients in comparison to healthy
subjects [89-91]. Since CSF levels of t-tau protein are believed to reflect the extent of neuronal
damage, it is hypothesized that very high CSF t-tau levels, compared to moderately elevated
levels, may correspond to differences in the degree of cortical atrophy and various clinical
subtypes of AD [91]. Previous studies reported a faster rate of clinical progression in AD
patients with high CSF t-tau levels [92,93]. Recent studies also reported elevated CSF t-tau
levels in rapidly progressive AD (rpAD) [94] and in patients with atypical AD clinical
phenotypes [91]. High concentration of CSF t-tau levels may not be very specific for AD, since
high levels were observed in other types of dementia such as VaD [95] and FTD [95,96].
Furthermore, fluctuations in CSF t-tau levels also occur in cerebral ischemia [97], hemorrhage
and seizures [98], as well as in cases of encephalitis and acute neurodegenerative diseases
such as Creutzfeldt-Jakob disease (CJD) [99]. As a consequence of severe neuronal damage
in CJD, studies reported t-tau levels are much higher in CJD than in AD.

Neurofilament light chain (Nfl) is one of four subunits of neurofilaments, which are proteins
that are located in the neuronal cytoplasm that help maintain the structural stability of neurons
and enable the growth of axons [100]. Due to its presence in neurons, when neuroaxonal
damage occurs, Nfl levels increase in interstitial fluid and consequently, in CSF and plasma
[101]. Therefore, the Nfl level is increased in a whole variety of neurological disorders,
including neurodegenerative, inflammatory, traumatic and cerebrovascular diseases and is
not specific to the neurodegenerative changes present in AD [102]. Although nonspecific, Nfl
provides important information about the progress of neurodegeneration and should be used
as a biomarker in AD, but not as a biomarker of AD [66]. The presence of Nfl in CSF and
plasma correlates strongly, but concentrations in CSF are much higher and that is why it is
the sample of choice for clinical use [103]. The disadvantage of CSF sampling is the
invasiveness of the method and, consequently, the difficult implementation of longitudinal
studies. With the development of ultra-sensitive techniques for the determination of
biomarkers in plasma, such as Single molecule array (SIMOA), the determination of Nfl from
plasma has become much more accurate. Measuring Nfl from plasma would solve the problem
of invasiveness of sampling and enable longitudinal studies [104]. There is an increasing
number of studies that indicate that both CSF and plasma Nfl may serve as diagnostic,
prognostic and monitoring biomarkers in differential diagnosis between neurodegenerative
diseases, including AD, and nondegenerative disorder, highlighting the Nfl as one of the most
promising biomarkers to be used in clinical and research settings in the future [100]. This
conclusion is also supported by the results of a recent study that reported a good accuracy for
plasma Nfl levels in distinguishing between ATN+ and ATN- subjects in the group of patients
with subjective cognitive decline (AUC=0.815) and MCI patients (AUC=0.818) [105].
Visinin-like protein 1 (VILIP-1) is a neuronal calcium-sensor protein and a member of the
visinin-like protein subfamily [106]. Its physiological role is to regulate neuronal growth,



survival, and synaptic plasticity [107]. Disturbance of calcium homeostasis in neurons, that
occurs in AD, causes degeneration of vulnerable neurons and release of VILIP-1 into the
extracellular fluid [108]. Because of this characteristic, VILIP-1 has been rated as a marker of
neuronal injury. Other biomarkers based on the same pathophysiological process are
stanniocalcin-1 [109] and pre-synaptic vesicle protein synaptotagmin [110]. Many studies have
confirmed that CSF VILIP-1 is significantly increased in both AD and AD-MCI patients
compared to controls and therefore VILIP-1 represents a good diagnostic and prognostic
biomarker [111] but unlike Nfl, the correlation between plasma and CSF levels is poor [108].

2.4 Markers of synaptic dysfunction

Synaptic loss and dysfunction are considered to be one of the earliest signs of
neurodegeneration [112]. This has led to a high interest in researching synaptic proteins as
potential biomarkers that could be useful in diagnosis, prognosis, and guiding treatment of
neurodegenerative diseases. Synaptic proteins were first detected in CSF almost 30 years
ago [113] and since then the methods for their detection and quantification have advanced
significantly, thus increasing their biomarker potential. Today, markers of synaptic dysfunction
are mainly focused on one postsynaptic protein, neurogranin, and three presynaptic markers,
synaptosomal-associated protein 25 (SNAP-25), synaptotagmin-1, and growth-associated
protein 43 (GAP-43) [114].

Neurogranin (Ng), a small calmodulin-binding protein, is expressed mainly by pyramidal cells
in the hippocampus and cortex, where it forms granule-like structures [115]. This postsynaptic
protein regulates calcium influx via calmodulin and mediates the plasticity, regeneration of
synapses, and long-term potentiation [116]. Despite being a good general marker of
neurodegeneration, Ng has actually been shown to be more specific for AD then for other
neurodegenerative diseases [117,118]. In CSF samples it is possible to detect both full-length
Ng and its fragments, mostly short C-terminal peptide species [119]. The function of these Ng
fragments is still unknown. However, the evidence suggests that these different fragments
have similar predictive value regarding AD [120]. Overall, the research so far points to elevated
CSF Ng levels in patients diagnosed with AD, even in prodromal phase of the disease
[119,121-133]. Also, it has been show that CSF Ng levels could be used to predict the
progress from MCI to AD [119] and distinct typical from atypical AD forms [134]. A recent meta-
analysis [135] confirmed the potential of CSF Ng in predicating memory and executive function
decline in subjects diagnosed with MCI. The study also suggests the potential use of CSF
Ng/AB42 as cognitive function biomarker [135]. These results point to CSF Ng as an useful
biomarker for detecting neurodegeneration in the early stages of AD and for differentiating AD
from several other AD tauopathies. However, it should be kept in mind that there are also data
that do not support the specificity of Ng in AD diagnosis [136].

Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a presynaptic protein which is, along
with the vesicle-associated membrane proteins (VAMPs) and syntaxins, a component of the
SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) complex, thus
playing a role in vesicle formation and neurotransmitter release during synaptic transmission
[137]. This presynaptic protein is important in neuronal survival, in the process of neurite
outgrowth and long-term potentiation (LTP) [138]. Studies focused on the role of SNAP-25 in
AD confirmed higher CSF SNAP-25 levels in AD patents compared to healthy controls, and
have demonstrated that these changes can even be detected in the early stages of the disease
[75,122-124,139-145]. A recent meta-analyses confirmed that increased CSF SNAP-25
levels can be used to differentiate AD and/or MCI patients from healthy control subjects, which



confirms the potential of this biomarker in the early diagnosis of AD [125,139]. However,
elevated CSF levels of SNAP-25 have also been detected in patients diagnosed with other
neurodegenerative disorders, including PD, CJD, HD, and it has been associated with
psychiatric conditions, including attention deficiency hyperactivity disorder, schizophrenia, and
bipolar disorder [146]. The other two presynaptic markers, GAP-43 and synaptotagmin-1, have
been less investigated as potential CSF biomarkers in AD. Nevertheless, the level of GAP-43
has been found to be increased in preclinical AD [147—-149]. The above discussed synaptic
biomarkers were found to have a good discriminating power when trying to distinguish patients
with AD from the ones with non-AD dementia [124]. The highest discriminating power for
distinguish patients with AD from neurologic controls was suggested for the soluble form of
SNAP-25 (SNAP-25aa40) [124].

In addition to the previously mentioned reliable biomarkers of synaptic impairment, other
markers of synaptic disfunction should also be considered in the future studies. One of these
markers is a member of the epithelial growth factor (EGF) family, neuregulin 1 (NRG1). NRG1
is involved in neural development, migration and survival of neurons, axon pathfinding,
development of glia cells, myelination, and synaptogenesis [150,151]. Proteolytic processing
of NGR1 leads to the formation and secretion of soluble forms which interact with post-
synaptic receptor tyrosine-protein kinase erbB4 (ErbB4). The levels of NRG1 and ErbB4 were
found to be altered in hippocampus and cortex of subjects diagnosed with AD [152,153].
Recent study has shown increased CSF NGR1 levels in subjects with AD and MCI-AD, in
comparison to healthy controls and other non-AD dementias [154]. The CSF levels of NGR1
also positively correlated with CSF A4z, and negatively with MMSE scores [154]. However,
the results showed that CSF NRG1 levels, which were found increased in AD and MCI-AD
subject compared to controls, had lower discriminatory power than AB.., t-tau, and p-tau [154].
These results lead to conclusion that markers of synaptic loss and dysfunction poses a great
promise as biological measures that could be useful in diagnostics and in therapeutic
successes monitoring.

2.5 Markers of neuroinflammation

The presence of neuroinflammation has been well recognized as a concurrent pathological
condition in AD. The existence of localized low-level inflammation in the initial stages of AD
has been firmly confirmed [155]. Neuroinflammation and cerebrovascular dysfunction are the
first occurrences that manifest during the presymptomatic phases of AD and have a role in the
further development of the disease [67,83,156]. Both microglia and astrocytes are essential
for the initiation and regulation of neuroinflammation [157]. Activated microglia are present in
the vicinity of amyloid plaques and play a role in the generation of neurotoxic substances that
accelerate neuronal harm [158]. Pathogenic stimuli also trigger astrocytes in AD. Astrocytes
have a role in neuroinflammation through the release of pro-inflammatory cytokines, reactive
oxygen species, and the facilitation of blood-brain barrier dysfunction [159]. Consequently,
this process intensifies the damage to neurons.

The glycoprotein YKL-40, often referred to as Chitinase-3-like protein-1 (CHI3L1), is classified
as a member of the chitinase family, although it lacks chitinase activity [160]. In the central
nervous system, activated astrocytes and microglia are the main source of YKL-40, which they
secrete in response to different inflammatory stimuli and neurodegeneration [161,162]. YKL-
40 is involved in several biological processes, including inflammation, extracellular matrix
remodeling, cell proliferation, and tissue healing [163]. However, its precise biological role
remains incompletely elucidated. The role of YKL-40 in the development of AD and in the



disease's progression is still unclear, but it may be useful as a biomarker for long-lasting brain
diseases that have an inflammatory background [164]. People with neurodegenerative
diseases have elevated YKL-40 CSF levels, prompting research into its potential involvement
in neuroinflammation and neuronal injury [156,165]. YKL-40 has been investigated as a
potential therapeutic target, considering its role in various physiological processes and
pathological disorders. Modifying its activity or expression may offer promise for treating
inflammation, tissue remodeling, and related disorders. A meta-analysis demonstrated that
individuals with AD exhibit higher levels of YKL-40 in CSF and plasma compared to healthy
controls [166]. These data also suggest a noteworthy association between elevated levels of
YKL-40 in CSF and AD. An additional cohort study encompassing 288 people, including both
healthy controls and patients diagnosed with various kinds of dementia, assessed the amounts
of CSF YKL-40 [167]. Compared to controls, CJD and AD showed higher YKL-40 levels.
However, these levels were not significantly higher in VaD or DLB [167]. Wang et al. studied
how APOE ¢4 affected the levels of YKL-40 in CSF in subjects who were cognitively normal,
or were diagnosed with MCI or AD [168]. APOE €4 carriers had higher levels of CSF YKL-40
than noncarriers with MCI [167]. CSF tau and p-tau concentrations significantly correlated with
CSF YKL-40 concentrations in the MCI group [167]. These results show that APOE €4 may
be associated with the amount of CSF YKL-40 in MCI subjects [168]. Another study found an
increase in CSF YKL-40 levels in individuals with MCI compared to controls [166]. However,
the area under the curve (AUC) was smaller, indicating that YKL-40 has only a modest
potential as a biomarker in the context of AD. In a recent study, Abu-Rumeileh et al. discovered
that YKL-40 had a moderate diagnostic value, with a sensitivity and specificity of 80% or
higher, when comparing controls to AD [169]. A novel study showed that reactive astrocyte
biomarkers, like YKL-40, contribute to the impairment of neuronal function and cognitive
impairment [170].

Microglia in the CNS predominantly express the cell surface receptor Triggering receptor
expressed on myeloid cells 2 (TREM2) [171]. It is a member of the immunoglobulin
superfamily and has a vital function in controlling innate immune responses and phagocytosis
[171]. The role of TREM2 in microglial activation and response to Ap pathology has attracted
major attention in the area of AD research. Microglia activation leads to the cleavage and
subsequent generation of soluble TREM2 (sTREMZ2), a measurable indicator of microglial
activity in the CSF [172]. Previous research has shown a link between AD pathology and
elevated CSF sTREMZ2, suggesting a strong diagnostic capability [173,174]. The increase in
CSF sTREM2 occurs before symptoms appear, but after amyloidosis and neuronal damage
[175]. According to a recent study, CSF sTREM2 levels drop in the presence of AB pathology
but not tau-related neurodegeneration [175,176]. Just the opposite, the levels of CSF sTREM2
rise in the interaction with tau-related neurodegeneration [175,176]. A notable elevation in
CSF sTREM2 levels in non-AD neurodegenerative disorders was found [177]. However, each
neurodegenerative disorder has distinct pathological and clinical characteristics. Monitoring
TREMZ2 and YKL-40 may facilitate the assessment of microglial activation and its involvement
in the pathogenesis of AD. Moreover, it is important to acknowledge that these indicators
possess the capacity to serve as targets for treatment strategies aimed at modulating
microglial activation. The therapeutic implications of targeting microglial activation through
TREM2 and YKL-40 modulation require further research.

Glial Fibrillary Acidic Protein (GFAP) is a protein that is fundamental in the formation and
maintenance of the cytoskeleton of glial cells, specifically astrocytes. It is a reliable marker for
reactive astrogliosis and a biomarker for neurodegenerative disorders [178,179]. GFAP can
serve as a potent biomarker for predicting dementia risk over a decade before clinical



diagnosis [180]. Elevated CSF GFAP initial levels are indicative of accelerated cognitive
decline and associated with significant alterations in other AD biomarkers [181,182]. Given its
close proximity to the brain, CSF GFAP is considered to be a precise indicator of brain
pathological processes [183]. In the hippocampus of AD patients, especially those with the
APOE ¢4/¢4 genotype, GFAP levels are significantly elevated [184]. Greater accumulation of
tau in the lateral temporal and frontal areas of the brain was found to strongly correlate with
higher levels of GFAP in the periphery [185]. Blood GFAP levels were shown to exhibit a
robust correlation with amyloid pathology, making it a more reliable indicator then CSF GFAP
[186—-188], particularly in predicting the transition from MCI to dementia [189-191]. It is more
appropriate to use GFAP as an initial screening strategy rather than a final diagnostic indicator,
as it is not exclusive to AD and is implicated also in other neurological disorders [192—-194].
Higher levels of GFAP generally correlate with faster declines in cognitive function and
contribute to the connection between amyloid pathology and tau protein buildup, ultimately
leading to cognitive decline.

2.6 Markers of a-synuclein pathology

Alpha-synuclein (a-syn) is a small (140 amino acids) ubiquitously expressed protein,
predominantly found in presynaptic sites in the central and peripheral nervous system [195].
It is encoded by SNCA gene and normally, it can exist in two forms, as unfolded monomer or
as a folded tetramer of about 58 KDa [196]. It participates in the regulation of synaptic vesicle
pool and trafficking [197] and has an important role in assembly of exocytosis mediating
SNARE complex [198]. Not only it can form a broad range of structures and associate with
lipid and protein chaperones, but under certain circumstances a-syn folds and aggregates into
pathogenic forms comprising oligomers, protofibrils, fibrils, which further bring to the formation
of protein inclusions [199]. Some post-translational modifications, including phosphorylation,
can promote a-syn folding and aggregation which are critical steps in synucleinopathies.
Namely, under physiological conditions, less than 5% of monomeric a-syn is phosphorylated,
while in pathological protein aggregations such as Lewy bodies, approximately 90% of a-syn
is phosphorylated. In typical synuleinopathies, PD, DLB, and multiple system atrophy,
neuronal loss is accompanied by the presence of a-syn inclusions. In AD there is an overlap
of a-syn, AB plaques, and tau tangle pathologies [200].

Accumulating evidence imply reduced levels of a-syn in CSF of patients with typical
synucleinopathies, PD and DLB [201], but a lack of association between PD severity and CSF
levels [202]. In a study by Lilamand et al. [203] a-syn levels were found to be significantly
lower in CSF of patients with DLB than in patients with AD and authors suggested that CSF
a-syn evaluation could improve the early differentiation between DLB and AD. There are also
studies showing increased CSF a-syn levels in patients with MCI and AD [204—-206], with
positive correlation detected between a-syn levels and disease progression [201] or severity
of cognitive decline [204,205]. More precisely, CSF a-syn levels were found to be significantly
higher in patients with AD with all positive CSF triple markers (AB42, total tau, and
phosphorylated tau) [205,207]. However, there are also opposite results indicating decreased
levels of CSF total-a-syn not only in patients with PD and DLB, but also in AD patients
compared to healthy control subjects [208]. Some studies demonstrated associations of CSF
a-syn concentrations with brain AB deposition measures as well as with CSF t-tau and p-
taul81 concentrations [209,210]. This can be further explained by functional studies indicating
that a-syn interacts with AD-related proteins. According to results of in vitro studies, the
interaction of AR with a-syn can accelerate the fibril formation by increasing the aggregation



rate of a-syn [211]. Also, a-syn oligomers can generate and stabilize AB oligomers, leading to
fibril-like conformations [212]. It was also shown that a-syn induces tau aggregation, while tau
accelerates the fibrillization of a-syn [213]. A study dealing with several plasma and CSF
biomarkers in different neurodegenerative disorders, reported significantly higher CFS a-syn
levels in patients with AD and MCI in comparison to respective control subjects [214].
However, no significant difference in plasma a-syn levels was found among the same groups
of subjects [214].

The a-syn levels are not associated only with AD-related proteins, but also with AD-related
genes, such as those coding for presenilin 1 (PSEN1) and apolipoprotein E (APOE). A recent
study found significantly increased tau/a-syn ratio in AD when compared with healthy controls
[207]. Additionally, the ratio was significantly higher in early than in late onset AD [207]. There
are reports about the dose-response relationship between the AD risk increasing allele,
APOE¢4, and CSF a-syn levels, with APOEg4 homozygotes having the highest CSF a-syn
levels [204]. Lewy body pathology in the amygdala was reported in the carriers of PSEN 1
mutation among AD patients [215]. Moreover, the frequency of Lewy body deposition was
higher in the cases with mutations in PSEN1 than in those with mutations in PSEN2 [215].
Although not completely straightforward, these findings imply the important role of a-syn in AD
pathology which can be reflected in a-syn measurable manifestations at the periphery.
Certainly, a complex interplay between numerous biological processes leading to
synucleinopathies still has to be investigated, but results of the studies so far support the idea
of a-syn as a biomarker that at least could add to the sensitivity and specificity of standard AD
biomarker panel.

3 Conclusions

Biomarkers that have entered routine clinical use (ABa2, t-tau, p-taul81, t-tau/ABa42ratio), along
with other markers that show great potential to be included in the practice itself, are of the
great importance in AD diagnosis, not only because they can help distinguish AD from healthy
controls, but also due to their ability to help differentiate between different neurodegenerative
disorders. In conclusion, CSF biomarkers provide significant additional value in the AD
assessment by offering more precise, timely and differential clinical diagnosis of AD at different
stages and across different ages. In future, the role of CSF biomarkers in AD will be even
more prominent in guiding targeted therapeutic interventions and tailoring patient individual
management and support in order to improve the quality of life of both AD patients and their
caregivers.

4 Expert Opinion

Considering the direct interaction of CSF with the brain, CSF biomarkers closely reflect the
pathophysiological alterations occurring in AD brain. Therefore, it is not surprising that, in
addition to neuropsychological evaluation, core CSF biomarkers (AB42, t-tau, and p-taul81)
have been recommended for improvement of timely, accurate and differential diagnosis of AD,
as well as to assess the risk and rate of disease progression [20]. Specifically, decreased
AB42 and elevated p-tau levels in CSF suggest AB and tau neuropathology of AD, while
increased total-tau concentrations represent a non-specific marker of injured neurons.

There are various advantages of CSF biomarkers. In contrast to PET imaging biomarkers,
CSF biomarkers are much cheaper, and could be quickly and simply obtained in a clinical
setting [216]. In addition, CSF may enable detection of some biomarkers, which could not be



identified by brain imaging; whereas some CSF biomarker alternations may precede PET
biomarker changes; such as elevation of p-tau during AD progression and related cognitive
decline [20,83]. However, CSF biomarkers are unable to reflect regional differences in the
brain neuropathology that may be particularly important during early AD [83].

Moreover, studies demonstrated that CSF biomarker ratios (AB42/AB4o, p-tau/ARa4z, t-tau/AB42)
could perform even better than individually measured values and may correct for inter-
individual differences. In that way, CSF AD biomarker ratios may add relevant information in
the differential diagnosis of neurodegenerative diseases, as well as predict the risk of
progression from MCI to AD [217].

On the other hand, use of CSF testing may be limited due to perceived invasive nature of
lumbar puncture (LB), although several large multicenter studies demonstrated that this
procedure is easy, safe and tolerable, with very rare occurrence of serious complications.
Further limitations to the routine use of CSF biomarkers include a lack of skills and training in
LB procedure, the inability to collect samples from large populations, complex interpretation
of the test results, and still present skepticism about their clinical value.

Nevertheless, advanced detection technologies, uniform protocols and standards, as well as
fully automated testing procedures that can measure multiple CSF biomarkers in the same
sample are now available [20]. Therefore, CSF biomarkers hold promise for a more
personalized medicine approach in staging, tracking, and categorization of AD, as well as for
the assessing the effects of potential therapeutics [83].

More precise and personalized AD diagnosis may result in lower care costs, delayed
institutionalization and reduced mortality, and could be useful for selection of patients suitable
to receive novel disease-modifying therapies (DMTs), such as immunotherapies
(aducanumab, lecanemab, donanemab) targeting aggregated forms of A [218]. Specifically,
via CSF analysis these anti-Apf mAbs have been confirmed to affect both AB plaques, as well
as t-tau and p-tau levels [219].

In addition to the core CSF biomarkers, various other CSF markers related to synaptic
dysfunction, neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40,
TREM2) are now investigated and have yet to be validated for future potential clinical use in
early and differential diagnosis, as well as prognosis of AD [20,83].

Moreover, although intensively investigated blood-based biomarkers, as well as biomarkers
measured in other fluids, offer relatively non-invasive approach, which is cost-effective and
simple to carry, further studies are needed to establish if their clinical utility in AD is comparable
to CSF biomarkers [216].
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Figure 1. Diagnostic Process in Alzheimer’s Disease.
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Figure 2. Overview of the most promising CSF biomarkers for Alzheimer’s disease diagnosis.
AB, Amyloid-beta; a-syn, Alpha-synuclein; NFL, Neurofilament light protein; SNAP-25;
Synaptosomal-Associated Protein, 25kDa; TREM2, Triggering receptor expressed on myeloid
cells 2; VILIP-1, Visinin-like protein 1; YKL-40, Chitinase-3-like protein-1.



