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We resolve black hole information paradox within semiclassical gravity, in a manner that does
not depend on details of unknown quantum gravity. Our crucial insight is that outgoing Hawking
particles are physical only far from the black hole horizon, so they are created far from the horizon
and entangled with degrees of freedom closer to the horizon. The latter degrees of freedom can
be understood as quasi-classical coherent states, implying that Hawking radiation is accompanied
with additional radiation similar to classical radiation by which the black hole loses hair during the
classical gravitational collapse. The two kinds of radiation are entangled, which resolves black hole

information paradox.
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I. INTRODUCTION
A. Motivation

Black hole information paradox [IHIO] is one of the
greatest unsolved problems in theoretical physics. The
problem appears within semiclassical theory of gravity
[11} 12], which is an incomplete theory where only mat-
ter is quantized, while gravity is treated classically. It
is widely believed that the correct solution of black hole
information paradox depends on details of quantum grav-
ity, while our current understanding of quantum gravity
is still very incomplete, thus making the black hole in-
formation paradox very difficult to solve. In this paper,
however, we argue that the paradox can be solved within
semiclassical gravity itself, and that details of quantum
gravity are not necessary to understand it. We do not
claim that quantum gravity is entirely irrelevant, but we
argue that its details are not very important.

B. Where are the Hawking particles created?

One of the central questions that we deal with is where
are the outgoing Hawking particles created [I3HI6]? The
usual picture is that they are created near the horizon.
By contrast, we argue that they are created far from the
horizon, at a distance much larger than the Schwarzschild
radius 2M (with M being the mass of the black hole, and
we work in units h = ¢ =Gy = kg =1).

Our argument for this claim is based on considerations
of foundations of quantum mechanics itself [I7]. The con-
textuality theorems of quantum mechanics [I7H20] show
that it is not consistent to assume that measurements
just reveal the values of observables that the quantum
system possessed before measurements. Instead, it is
the measurement that creates physical reality as we per-
ceive it. Of course, the measurement does not need to
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be performed by a human made apparatus. Instead, the
measurement of a quantum subsystem is associated with
decoherence [21] 22] caused by its environment, which
makes the density matrix of a subsystem diagonal in a
certain “preferred” basis determined by interaction with
the environment.

Applying this logic to Hawking radiation, it follows
that it is inconsistent to speak of outgoing Hawking par-
ticles before they are measured by the environment. The
outgoing Hawking particles are defined as positive fre-
quency modes with respect to the Schwarzschild time co-
ordinate [IT], which is a physical time for observers static
with respect to the black hole. Such static observers are
approximately inertial when they are far from the hori-
zon, namely at r > 2M. But at smaller distances such
observers are non-inertial, so the corresponding “parti-
cles” can only be physical if the environment that mea-
sures the particles is itself static and thus non-inertial.
In principle it is possible to have such a measuring ap-
paratus, but then it measures the particles by the Unruh
effect [23], which requires its own source of energy (such
as the fuel of the rocket that keeps a detector hovering
at a static position with respect to the black hole), so
such a physical realization of Hawking particles at smaller
distances is compensated by the loss of energy of this
source [24], which does not need to decrease the black
hole mass. Thus only particles at r > 2M are created
by measurement without any additional source of energy
for the detector, which makes particles at r > 2M much
more typical than those at smaller . Hence, for practical
purposes, the creation of Hawking particles is naturally
interpreted as something that typically happens far from
the horizon, at r > 2M.

C. What are the Hawking particles entangled
with?

With this insight, which is missing in most of the pre-
vious approaches to black hole information paradox, it
is not difficult to understand how the black hole infor-
mation paradox resolves. In the usual picture, accord-
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ing to which the outgoing Hawking particles are created
near the horizon, they need to be entangled with black
hole interior degrees of freedom, which leads to the in-
formation paradox because the information encoded in
the interior degrees of freedom cannot escape from the
black hole, but also cannot be stored in its interior be-
cause the black hole, which is shrinking due to the mass
loss, cannot keep an arbitrary amount of information.
But in our picture, where the particles are created far
from the horizon, there is no such problem because the
particles can be entangled with all degrees of freedom at
r smaller than that at which the particles are created.
This not only creates much more room for information
storage, but also allows information to escape to infinity.
Indeed, we shall argue that Hawking particles are entan-
gled with additional gravitational waves created at those
smaller distances r outside the horizon, so that both can
escape to infinity, thus solving the black hole information
paradox.

D. Organization of the paper

The rest of the paper is organized as follows. To build
intuition for our approach to black hole information para-
dox, in Sec. [[Il we consider two simple analogies, the hy-
drogen atom information “paradox”, and the case of two
entangled harmonic oscillators, in settings that resemble
our view of Hawking radiation. Then in Sec. [[TI] we con-
sider the quantum state of matter in a classical black hole
background and rewrite it in terms of physical Hawking
particle states at large distances from the horizon, en-
tangled with degrees of freedom at smaller distances. In
Sec. [[V] we rewrite the state of the latter degrees of free-
dom in the basis of quasi-classical coherent states, and
argue that radiation carried by Hawking particles is ac-
companied with an additional quasi-classical radiation,
the latter being similar to radiation produced during the
classical gravitational collapse by which a classical black
hole loses classical hair. In Sec. [l we discuss the role of
more exotic quantum gravitational objects, proposed in
the literature as possible solutions of black hole informa-
tion paradox.

II. SIMPLE ANALOGIES
A. Hydrogen atom information paradox

Consider a slow electron brought close to a proton.
Soon the electron will settle down into the ground state
[tho) of the hydrogen atom, independently of the initial
electron state. This already looks like an apparent loss of
information about the initial state, but, of course, the in-
formation is not lost, because it is encoded in electromag-
netic radiation that electron emits during the process.
This is analogous to the creation of a stationary black
hole during the gravitational collapse, where, according

to the no hair theorem [25] 26], most information about
the initial state is radiated away in the form of gravita-
tional waves, leaving a stationary black hole character-
ized by only a few parameters: mass, charge, and angular
momentum. The hydrogen atom in the ground state is
analogous to the stationary black hole, while information
about the initial state of the electron radiated away by
electromagnetic radiation is analogous to the initial black
hole “hair” radiated away by gravitational waves.

Introducing the unit operator in the position basis 1 =
J dz |x) (x|, the ground state can be written as

hjo) = / B2 |x) (x[tbo) = / Frgo(x). (1)

Now suppose that the electron, called particle-A for
convenience, is “measured” by another particle, called
particle-B. We assume that particle-B “measures” the
position of particle-A, so that the full state of the two
particles takes the entangled form
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describing a perfect correlation between positions of the
two particles. Particle-B is in the mixed state

o5 = / @32 460 () [ (x] . 3)

Next suppose that the interaction between the two
particles is turned off. The two particles remain entan-
gled. However, the electron (particle-A) is then captured
by the proton again, so it ends up in the ground state
|tho). The ground state is unique, so its entropy is zero.
Particle-B, on the other hand, remains in the mixed state
with non-zero entropy and it cannot longer be correlated
with particle-A, because the latter has zero entropy. This
establishes the hydrogen atom information “paradox”.

The solution of the “paradox”, of course, is that the
electron radiates again (see Appendix [A]), by the same
mechanism as the first time. This secondary radiation is
entangled with particle- B, which resolves the “paradox”.
We shall argue that the black hole information paradox
resolves in an analogous way, namely that, in addition to
the outgoing Hawking particles (analogous to particle-B)
there is also a secondary radiation of gravitational waves
(analogous to secondary electromagnetic radiation), so
that the outgoing Hawking particles are correlated with
the secondary radiation.

B. Two harmonic oscillators

Consider two uncoupled quantum harmonic oscillators,
each having the same characteristic frequency w and an
n-basis consisting of states of the usual form
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Suppose that the two oscillators are in the entangled state
of the thermal form
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where 3 is the inverse temperature and

N=y1-e B (6)

is the normalization factor. Suppose that the two oscilla-
tors are measured in different bases. Oscillator-B is mea-
sured in the n-basis, while oscillator-A is measured in the
basis of canonical coherent states [27] |z, p) = |z) obeying
1 = [ dz|z)(z|, where dz = dx dp/m. The basis of coher-
ent states is over-complete and non-orthogonal. Each |z)
is a Gaussian in the position and momentum space, spec-
ified by the average position x and average momentum p.
Physically, the measurement in such a basis can be per-
formed by a simultaneous measurement of position and
momentum [28] 29], resulting in a “collapse” into one of
the quasi-classical states |z) with uncertain value of both
position and momentum, such that the product of their
uncertainties is minimal, AzAp = 1/2 (recall that we
work in units & = 1). Thus it is natural to write as

vy = / 123" en(2)[2) aln)m, (7)
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where ¢, (2) = Ne /2 ,(z|n)a. The |c,(2)? is the
probability density that oscillator-B will be found in
the quantum state |n)p, and oscillator-A in the quasi-
classical coherent state |2) 4.

III. SEMICLASSICAL BLACK HOLE

Consider a black hole of mass M, described either
by Schwarzschild S-coordinates with coordinate singu-
larity at the horizon at r = 2M (where r is the
usual Schwarzschild radial coordinate), or by Kruskal K-
coordinates without a coordinate singularity. The initial
state of the quantum field ¢(x) in the classical black hole
background is the Kruskal vacuum |O) [I1] (known also
as Hartle-Hawking vacuum), naturally associated with
K-coordinates. It is related to the S-vacuum |Og), natu-
rally associated with S-coordinates, through the formula
i
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Here g = 87 M is the inverse black hole temperature, bJ{ %
creates “particles” in zone-1 (black hole interior r < 2M),
and b;k creates “particles” in zone-2 (black hole exterior
r > 2M).

Before proceeding, a few notes are in order consider-
ing the choices of vacua above. K-coordinates and S-
coordinates are both analogous to Minkowski coordinates
in flat spacetime, but in a different sense. K-coordinates
are analogous to Minkowski coordinates in the sense that
they do not contain a coordinate singularity at the hori-
zon. In this sense S-coordinates are analogous to Rindler
coordinates in flat spacetime, because both contain a co-
ordinate singularity at the horizon. But S-coordinates
are analogous to Minkowski coordinates in the sense that
the components of the metric tensor in Minkowski co-
ordinates look like that in S-coordinates at r > 2M.
Hence the assumption that the initial state is the K-
vacuum corresponds to the assumption that there was
no physical Minkowski particles before the black hole
was formed. But after the formation of the black hole,
the physical particles at » > 2M are to be defined with
respect to the S-vacuum. Of course, this refers to the
Schwarzschild black hole, which does not have charge
and angular momentum. For more general black holes,
with charge and angular momentum, one would need to
define analogous vacua with respect to coordinates that
generalize K-coordinates (by not having coordinate sin-
gularities) and S-coordinates (by having components of
the metric tensor far from the black hole like that in
Minkowski coordinates), but in this paper only the sim-
plest Schwarzschild black hole will be considered explic-
itly.

At r > 2M, the “particles” created by bgk behave
as ordinary particles in quantum field theory in flat
Minkowski spacetime. For that reason, those “particles”
are considered in the literature to be the actual phys-
ical particles, so @D is interpreted as physical particle
creation in zone-2. However, the black hole interior in
zone-1 has a limited number of degrees of freedom, i.e.
limited entropy, and it turns out that it does not have
enough entropy to explain the entropy of particles cre-
ated in zone-2, through the entanglement between zone-2
and zone-1. This is the essence of black hole information
paradox [IHI0].

Our crucial new insight is the following. As we al-
ready explained in Sec. the particles created by b;k
are physical at very large distances r > 2M, where the
spacetime is essentially Minkowski spacetime, but they
are not physical at intermediate distances r. Hence we
split zone-2 into two zones, called zone-A and zone-B,
defined as follows:

zone-A: 2M <r < R/, (11)
zone-B: r > R/,

where R’ is some fixed large radius R’ > 2M. (The pre-
cise value of R’ is not important. The two zones with a
sharp boundary serve as a simplified model, while in a
more realistic model there would be no sharp boundary



between the two zones.) Hence, as shown by in Ap-

pendix the creation operator bgk can be decomposed
into two operators

b;k = aqubixk + O‘*Bkbglw (12)

which is a “trivial” Bogoliubov transformation, in the
sense that it does not mix creation and destruction op-
erators. Since the new creation and destruction op-
erators must satisfy the usual commutation relations
[bAk,bZk] =1, [ka,bTBk] = 1, etc., the Bogoliubov co-
efficients must satisfy

|04Ak|2+|a3k|2: 1. (13)

The binomial theorem applied to implies
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are the binomial coefficients. Hence, using also
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the state @ can finally be written as
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where
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The upshot of this calculation is Eq. , which shows
that physical particles in zone-B are entangled with the
states in zone-(1UA), the union of zone-1 and zone-A.
Since R’ > 2M, zone-(1UA) is much larger than the
black hole interior zone-1. Moreover, most of the zone-
(IUA) is outside of the black hole. Thus the zone-(1UA)
contains a plenty of space for storing entropy, and most
of it is not hidden behind the horizon. Since the “parti-
cles” in zone-(1UA) are not physical particles, the phys-
ical particle creation in our model can be considered to
occur at the sphere of radius R’ > 2M [44]. The entan-
glement entropy of particles created at R’ can easily be
explained through entanglement with degrees of freedom
in zone-(1UA), which, in principle, resolves the black hole
information paradox.

Furthermore, since zone-B is naturally defined as ex-
tending to r — oo, its volume Vg is essentially infinite.
Hence (BY) implies |aax|?/|apk|?> = 0, which, in combi-
nation with (13)), implies |apg|? = 1, |aax|? = 0. Hence
g = e Bk o, =0, and only ny —I; = 0 contributes
to (18). Thus, absorbing the phase e~ ¥2* into a redefi-
nition of |Ix) g, Eq. simplifies to

oo
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This looks very similar to (9)), which, of course, is not a
coincidence because @ are (20) are two representations
of the same state. The difference is that only is
expressed in terms of physical particles in zone-B, while
@[) is expressed in terms of particles in zone-2, which
are not entirely physical. Again, shows that the
physical particles in zone-B are entangled with degrees
of freedom in the entire zone-(1UA), which is sufficiently
large to resolve the black hole information paradox.

Finally note that, even though R’ > 2M, it would
not make much sense to take the limit R’ — co. In this
limit zone-A would take all of the black hole exterior, so
zone-B would not exist. This would mean that physical
particles could not exist at any finite distance from the
black hole. And this would refer not only to Hawking
particles, but to all particles that we usually describe by
quantum field theory in flat spacetime, such as those that
we observe by standard detectors in particle physics, e.g.,
at CERN. Infinite R’ would contradict the fact that we,
of course, do observe such particles, despite the existence
of black holes at finite distance from Earth. Hence we
must render R’ finite.

IV. WHAT HAPPENS IN ZONE-(1UA)?

So far we explained that zone-(1UA), bounded by the
surface of large radius R’ > 2M, is sufficiently large
to accommodate all the entropy needed to resolve the
black hole information paradox. Nevertheless, since the
particle states in that zone are not physical particles,
the question is how to understand that zone in terms
of physical objects? In other words, what an inertial
observer in that zone would observe?

In principle, this question should be answered by the
theory of decoherence [2T], 22]. In quantum field the-
ory, depending on details of interaction with the envi-
ronment, decoherence explains why the quantum states
are typically observed either as states with definite num-
ber of particles, or as quasi-classical coherent states re-
sembling classical fields [30, BI]. In particular, decoher-
ence explains under which conditions acceleration of an
environment creates particles [32H34], rather than quasi-
classical coherent states of fields. Since, as we have ex-
plained, there is typically no creation of physical particles
in zone-(1UA), it is natural to assume that quantum states
manifest themselves as quasi-classical coherent states of



fields. This refers to matter fields, but also to gravita-
tional fields. Hence, in principle, some elements of quan-
tum gravity also need to be taken into account, but here
we do it in a minimal manner that does not depend on
details of the quantum theory of gravity. We assume
that the quantum state of matter and gravity has a form

similar to ,
M) =TT 1M, k), (21)

k
where M denotes that the state describes a black hole of
mass M, and the state | M, k) is a quantum-gravitational

extension of
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Then we assume that, in zone-(1UA), there is an over-
complete basis of quasi-classical coherent states |Z1,4)
for both gravitational and matter fields, |Ziya) =
|Zgravitationa17 Zmatter>v Obeying

Lioa = / (dZ104] 1 Z104) (Zrosa). (23)

Hence can be written as
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If we restrict it to the terms [, = ny as in , then
simplifies to

o0
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(26)
The [1; [¥nn,[Z1uall* is the probability density that
there will be ny particles (in the k-modes) in zone-B,
and that the fields will be in the quasi-classical coherent
state |Z1u4) in zone-(1UA).

Without a full theory of quantum gravity, we cannot
specify the coherent states |Z1u4) explicitly. Neverthe-
less, their essential properties can easily be inferred by
heuristic arguments. It is natural to expect that a typ-
ical coherent state resembles a classical configuration of
gravitational and matter fields. Hence, a typical coherent
state behaves approximately classically. In other words,
it behaves as a classical hair in zone-(1UA). But we know
from classical no hair theorems [25] [26] that classical hair
soon gets radiated away, in terms of gravitational (and
matter) waves. Thus our approach predicts that there
are two kinds of radiation from the black hole. First
there are Hawking particles created in zone-B, and sec-
ond there is a quasi-classical radiation of gravitational
and matter waves created in zone-A. The two kinds of
radiation are entangled with each other, which resolves
the black hole information paradox.

V. DISCUSSION AND CONCLUSION
A. Quantum gravity exotics?

Our approach, which does not depend on details of
quantum gravity, predicts that Hawking radiation is en-
tangled with additional quasi-classical radiation, the lat-
ter being similar to classical radiation produced by clas-
sical gravitational collapse. In this sense, our approach
does not predict any exotic quantum gravitational ob-
jects, such as firewalls [35], fuzzballs [36], wormholes [37],
islands [38], baby-universes [I], white holes [39], super-
translation hair [40] and gravitational crystals [41], that
have been proposed in other approaches to the black hole
information paradox. But our approach does not exclude
such exotics either. Instead, all such exotic states can be
implicitly included in the set of all coherent states con-
tributing to . In principle, there may be a non-zero
probability for formation of various kinds of such exotic
states, depending on details of the unknown quantum
theory of gravity. Perhaps even all exotic objects men-
tioned above have a non-zero probability. But if more
than one kind of states |Z1,4) contributes, the relevant
question is which of these contributions dominates. Such
a question cannot be definitely answered without a full
theory of quantum gravity. Nevertheless, the most con-
servative, and perhaps the most plausible, is the sce-
nario in which is dominated by the configurations
that maximally resemble the known field configurations
in classical general relativity, namely classical hair radi-
ated away by classical mechanisms, as we explained in

Sec. [Vl

B. Tunnelling picture

The description of Hawking radiation in this paper is
based on Bogoliubov transformation, which describes the
radiation as a state in the Hilbert space and makes the
quantum entanglement explicit. However, such a descrip-
tion lacks a simple physical intuitive picture of particle
creation. Alternatively, to make particle creation more
intuitive, Hawking radiation can be described as quan-
tum tunnelling [42][43]. Even though quantum tunnelling
in this context is not explicitly formulated in the Hilbert
space, so the entanglement is not seen explicitly, a possi-
ble resolution of the information paradox can be formu-
lated in terms of energy correlations between particles
that tunnel at different times [43].

In our resolution of the paradox there is no correlation
between particles created at different times, but there is
a correlation between particles and quasi-classical radia-
tion created at about the same time. In principle, this
could also be understood in terms of tunnelling, in a pro-
cess in which both the radiation and the particles tunnel.
Since the quasi-classical radiation is created in zone-A,
in the tunnelling picture it tunnels through the horizon.
By contrast, since the particle is created in zone-B, the



whole zone-A can be thought of as a classically forbid-
den zone for the particle, so the particle tunnels not only
through the horizon but also through zone-A. An ex-
plicit technical analysis of such a tunnelling picture is
beyond the scope of the present paper, but it can be an
interesting challenge for the future work.

C. Conclusion

The crucial ingredient of our approach is the idea that
Hawking particles are physical only at large distances
r > 2M from the black hole, where inertial observers are
approximately static with respect to the black hole. At
smaller distances it is more physical to describe physics
in terms of different objects, that can be entangled with
Hawking particles at large distances. Those different
objects are most naturally described in terms of quasi-
classical fields, leading to the picture in which black hole
produces two kinds of radiation, Hawking particles and
quasi-classical radiation similar to the radiation produced
during the classical black hole collapse. The entangle-
ment between the two kinds of radiation resolves black
hole information paradox.

Such resolution of the paradox does not depend on any
details of quantum gravity and does not involve any ex-
otic phenomena that would contradict general expecta-
tions from semiclassical gravity. In particular, the resolu-
tion does not involve exotic objects near the horizon, such
as firewalls and fuzzballs, so a freely falling observer near
the horizon will not observe anything out of the ordinary.
Moreover, while in the standard approach, where parti-
cles are created near the horizon, one can wonder whether
the particle creation will be observed by a freely falling
observer, in our approach it is clear that a freely falling
observer near the horizon will not observe any Hawking
particles, because in our approach Hawking particles are
unphysical in the whole zone-(1UA), including the region
near the horizon.

To conclude, we believe that our resolution of black
hole information paradox offers a very plausible picture
worth of further research.

Appendix A: The effect of measurement on the
quantum state

In this Appendix we present the basic scheme describ-
ing how measurement affects the quantum state. For
illustration purposes we describe it for the case of posi-
tion measurement of electron in the hydrogen atom, but
essentially the same scheme works also for measurements
in semiclassical and quantum gravity.

To give an operational meaning to the mixed state ,
the position of particle-B must actually be measured by
a macroscopic measuring apparatus M. Hence the state

(2) generalizes to

) o / o)A s, (AL

where |My) is the state of the measuring apparatus M
corresponding to the measurement outcome x. So, if the
measurement outcome of a single measurement turns out
to be x, we have an effective measurement-induced “col-
lapse”

[0) = %) al) 5 M). (A2)
Hence the electron is in the state |x) 4, namely, in a state
with a well defined position different from the ground
state |t)g) 4. The state |x) 4 is not stationary, so the elec-
tron soon settles down into the ground state and produces
electromagnetic radiation during this process. The state
of radiation depends on the pre-radiation state |x) 4, so
radiation is correlated with particle-B in the state |x)p.

Appendix B: Bogoliubov coefficients

The field operator in zone-2 can be expanded as [11]

b2(@) = 3 (borfonl@) + Wy S (@) . (BY)

k

Alternatively, it can also be expanded as

62(2) = Y (barfar(@) + by fin (@)
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where the modes far(xz) and fpr(xz) have support in
zone-A and zone-B, respectively. In principle one would
need to construct the modes far(x) and fpr(z) explic-
itly, but that would be complicated. Fortunately, a lot
can be concluded without an explicit construction.
Consider the Klein-Gordon scalar products (fox, fax),

(fors fBR), (for, far) @nd (for, fEi ), where the Klein-
Gordon scalar product is defined as [I1]

(fh) =i /E dsP £ (2) 0 h(x), (B3)

with d¥* being the integration measure over a 3-
dimensional spacelike hypersurface ¥. The typical wave-
lengths associated with Hawking radiation are of the or-
der of 2M. Since the sizes of zone-A and zone-B are much
larger than those typical wavelengths, for typical k and &’
the Klein-Gordon scalar products above are negligible for
k # k'. Hence only the k = k' terms are non-negligible,

$0 (for, ¢2) applied to both (B1) and (B2]) gives

bor, = aarbar + ﬂAkbLk + arbpr + 5BkaBk7 (B4)



where

aar = (fors far), Bar = (for, far),
apr = (fors [BR), BBk = (for, fBE) (B5)

are the Bogoliubov coefficients. For the same reason,
the scalar products (for, i) and (fox, f55), i-e., the 8-
coefficients in (B5|), are also negligible, so (B4]) reduces
to

bak = aarbar + aBrbpr. (B6)

Furthermore, the order of magnitudes of the -
coefficients can also be estimated. Since the Klein-
Gordon scalar product involves an integration over
the 3-volume, and since norms of all modes must be

unit, (for, for) = (fak, fax) = (fBr, fer) = 1, these
modes must have a normalization factor proportional to

1/v/3-volume, namely

1 1 1
o ——, . fmrx ———. (BT
for 7 far o 7 fBr v (B7)
Hence
Va Vi
YA ~_ B BS
lovar| T |l A (B8)

where the numerators V4 and Vg arise from integration

in (B3] over the support of fax(x) and fpr(z), respec-
tively. Hence

anl _ Va
lapr? VB’

(B9)
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