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ABSTRACT: In this work, we explore the discovery potential of the Inert Doublet Model (IDM)
via the vector boson fusion (VBF) channel at a muon collider with centre-of-mass energy of
10 TeV. The Inert Doublet Model is a two-Higgs-doublet model variant with an unbroken
discrete Zo symmetry, featuring new stable scalar particles that can serve as dark matter
candidates. Current dark matter data constrain the phenomenologically viable parameter
space of the IDM and render certain collider signatures elusive due to tiny couplings. However,
VBF-type processes can still exhibit significant enhancements compared to the Standard
Model, presenting a promising avenue to probe the IDM at a high-energy muon collider.
We consider as our specific target process p™pu~ — v, AA — v,0,jj00HH, where H and
A are the lightest and second-lightest new scalars and ¢ can be electrons or muons. We
perform both cut-based and machine-learning improved sensitivity analyses for such a signal,
finding a population of promising benchmark scenarios. We additionally investigate the
impact of the collider energy by comparing sensitivities to the target process at 3 TeV and
10 TeV. Our results provide a clear motivation for a muon collider design capable of reaching a
10 TeV centre-of-mass energy. We furthermore discuss constraints stemming from new-physics
corrections to the Higgs to di-photon decay rate as well as the trilinear Higgs coupling in
detail, using state-of-the-art higher-order calculations.
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1 Introduction

The current collider landscape promises quite a few options for the discovery — or exclusion
— of new physics scenarios in various realisations. However, some of these scenarios remain
elusive at hadron machines due to weak couplings implying small rates, and are not directly
accessible at low-energy lepton colliders as they feature new physics states with relatively large
masses. For such scenarios, one might instead turn to higher-energy lepton colliders, that
provide both access to heavier mass states as well as a relatively clean collider environment.

In this work, we investigate the production of new physics states at muon colliders.
The idea of a muon collider has recently experienced an incredible revival, documented in
various community efforts, including the recent Snowmass activities (see e.g. refs. [1-5]). A
particular feature of the new generation of proposed muon collider facilities is that they can
in principle go up to relatively larger centre-of-mass energies on the multi-TeV scale, while at
the same time featuring a cleaner environment than hadron colliders. At such high energies,
electroweak gauge bosons can effectively be considered massless, leading to a logarithmic
enhancement of colinear and soft emissions of such particles. In this way, vector-boson fusion
(VBF) processes can in principle be largely enhanced, as discussed for example in refs. [6-10],
and more recently in refs. [11-16].!

!See also [17] for related work.



We here concentrate on the investigation of the Inert Doublet Model (IDM) [18-20], a
two scalar doublet model that obeys an unbroken discrete Zo symmetry. One of the two
scalar SU(2), x U(1)y doublets acts like the doublet of the Standard Model (SM) and is
responsible for the electroweak symmetry breaking (EWSB). The lightest scalar of the second
doublet is the dark matter (DM) candidate which, at least in some regions of the parameter
space, can provide the full relic density as measured by the PLANCK experiment [21]. The
model has been vastly discussed in the literature, see e.g. refs. [22-42] for work that includes
general scans and updated constraints, as well as refs. [43-60] for dedicated collider studies
and recasts taking the 125-GeV Higgs mass into account.

As a concrete target, in this work we study the VBF-type pair production of the second
neutral scalar boson, A, in association with missing energy stemming from both neutrinos as
well as the dark matter candidates H that the A scalars decay into. The production of these
particles is largely suppressed at hadron machines due to direct detection constraints that
severely limit the respective new physics coupling, see e.g. ref. [35] for a comparison of possible
collider rates for various production modes within the Inert Doublet Model. However, at
high-energy lepton colliders, the respective VBF-type production process is largely enhanced.
In this work, we find a variety of benchmark scenarios of the IDM that can be probed with
the VBF-type A pair production process at a 10 TeV muon collider — reaching significances
of 5 or more employing a Machine-Learning (ML) improved analysis.

This paper is organised as follows: in section 2 we briefly introduce the IDM and then
discuss the different theoretical and experimental constraints that we take into consideration
throughout this work. We subsequently provide details on our parameter scan and the
different benchmark points (BPs) in section 3 while also motivating the signal process under
investigation. Our analysis strategy is described in section 4 where we also comment on the
difference between 10 and 3 TeV centre-of-mass energies, before concluding in section 5.

2 Model

2.1 Definitions and conventions

The IDM [18-20] adds a second SU(2), doublet of hypercharge Y = 1/2 to the particle content
of the SM. This additional doublet is charged under an unbroken Zo symmetry, while all
other, SM-like, states transform trivially under this symmetry. The IDM differs from standard
realisations of Two-Higgs-Doublet Models because the Zs symmetry remains unbroken, even
after electroweak symmetry breaking, which also implies that the new beyond-the-SM (BSM)
scalars do not mix with SM-like states, nor do they couple to fermions — for these reasons,
the BSM scalars are usually referred to as inert scalars in the IDM.

The SM-like and the new doublets, denoted respectively ®; and @9, can be expanded as

Gt Ht
@1 = 1 0 5 and @2 = 1 . y (21)

where h denotes the discovered Higgs boson with a mass of 125 GeV, G° and G* are the
neutral and charged would-be Goldstone bosons, and H, A, and HT are the inert scalars.
The lightest of the inert scalars is stable; it therefore constitutes a candidate for dark matter



and is treated as invisible in collider processes. Throughout this paper, we will consider
H to be the lightest scalar.?
The tree-level scalar potential of the theory can be written as

1 1
Vi = 151 @1]" -+ p8|2[* - 520|214+ 500 [@a" 4 21 | @a” + M|
1
+ 3% [(@]®5)" +he.] . (2.2)

All parameters in this potential can be taken to be real. In particular, a phase of A5 can
always be rotated away by an SU(2); transformation of ®9, and our choice of H as DM
candidate corresponds to taking A\; negative (we note that the roles of H and A can be in
principle exchanged by flipping the sign of As).

After EWSB, the mass parameter p; can be eliminated using the tadpole equation
u3 + %/\11}2 = 0. On the other hand, us is the mass parameter that controls the decoupling
of the inert scalars. The tree-level scalar masses read

M? = M2,
MIQJ = u% + %)\3451)2,
M3 = 1 + aust
Mps = 3 + %A3v2, (2:3)

where we have defined the short-hand notations Asq5 = Az + A + A5 and Asq5 = A3 + Ay — \s.
In addition to v and M}, the scalar sector of the IDM can be described in terms of
five free parameters, which we choose to be

MH, MA, MHi, )\2, and )\345. (2.4)

We note that the other commonly-used parameter As345 can be obtained from the above
set of parameters via the relation
2(M3 — M7)

02

X345 = Azas + . (2.5)

2.2 Theoretical and experimental constraints

The allowed parameter space of the IDM is subject to various theoretical and experimental
constraints. We review them briefly in this section. Most of the constraints follow the

implementation and prescriptions as given in [26, 35].

Inert vacuum condition. In order for the vacuum in which ®5 does not acquire a vacuum
expectation value to be a global minimum of the potential, and thus for the Z, symmetry
to remain unbroken after EWSB, the following condition [62] must be fulfilled at leading
order (LO)

i

N > Novh (2.6)

2In principle, one can also choose the charged inert scalar to be the DM candidate. However, there are

strong constraints on such scenarios [61], and we therefore disregard this possibility in this work.




Boundedness-from-below of the potential. A second condition is that the scalar potential
should remain bounded from below. One can show that this leads to the conditions on the
quartic couplings [18, 63]

AM>0, X>0, VA4 A3+ min{O, A )\5} >0. (27)

Perturbative unitarity. Another theoretical constraint that we consider is perturbative
unitarity. We employ in our work both tree-level results from refs. [64, 65], via the public
code 2HDMC [66], as well as one-loop results from refs. [67, 68].

Perturbativity of the couplings. Finally, we check for perturbativity of the couplings.
For this we require all quartic scalar couplings (in the mass basis) to have absolute values
lower than 47, and require the same for the couplings in the potential. The former check
is again performed employing 2HDMC.

Gauge boson widths and electroweak precision observables. Turning now to con-
straints arising from experimental results, we must ensure that the decay widths of the W and
Z gauge bosons, which are measured very precisely [69], are not drastically modified by the
opening of new BSM decay channels, such as W* — HH* or AH*, or Z — HA or HtH™.
Requiring that these new channels remain kinematically forbidden leads to the inequalities

My + Mgs > My, Mg+ Mpge > My, Mg+Msg>Mz, 2Mgs > Mz. (2.8)

Moreover, electroweak precision observables (EWPO) provide stringent constraints on the
IDM parameter space, in particular in terms of allowed mass splittings. In this work, we follow
the common choice of parametrising the EWPO via the oblique parameters S, T, U [70-73],
for which fit results have been obtained by the GFitter collaboration [74]. All benchmark
points considered in the following have been required to fulfill a 20 level of agreement in the
oblique parameters with the allowed ranges from these fit results. The necessary calculations
of S, T, U were performed with the public tool 2HDMC.

Constraints from dark matter. We also take into account the DM relic density as well
as results from direct detection experiments in the checks of our benchmark scenarios. The
relic density Qzh? and direct-detection cross-section opp(Mp) of the DM candidate H
are computed® with the public tool micrOMEGAs_5.0.4 [75]. In order not to overclose the
Universe, it is required to fulfill the inequality

Quh? < Q.h? = 0.1200 + 0.0012 (2.9)

where Q.h? is the DM relic density determined with PLANCK data [21]. We take this
condition as an inequality, rather than an equality, meaning that we allow the possibility
that H is not the unique component constituting DM. Scenarios where the IDM can provide
the exact relic density have e.g. been discussed in ref. [35].

3A comparison of results using different versions and settings of micrOMEGAs for a set of benchmark points
can be found in [35].



Following refs. [26, 31], predictions for the direct detection cross-section are tested
against limits from the LUX-ZEPLIN experiment [76], taking into account a rescaling of
the cross-section for multi-component DM scenarios (i.e. when Qgh? < Q.h?). In practice,
we verify that

< ojii(Mp) . (2.10)

m

Qp

M
opp(Mp) .
Collider searches at LEP and LHC. Collider searches have so far only produced null
results for BSM scalars, which we take into account for our benchmark scenarios. Reinterpre-
tations of LEP searches for supersymmetric particles provide lower bounds on the masses of
the inert scalars: specifically, searches reinterpreted for the ete™ — H™H ™ process [77] yield

My 270 GeV (2.11)

while a recast of SUSY searches for neutralino pair-production to the e*e™ — H A process [78],
which would produce a visible di-jet or di-lepton final state, excludes the region of the IDM

parameter space where simultaneously
Mg <80 GeV and My < 100 GeV and |Mpy — M4| > 8 GeV . (2.12)

Recasts of different LHC searches for mono-jet signals [47], for signals with two [79, 80]
or more [80] leptons plus missing transverse energy and for invisible Higgs decays in VBF
production [50] provide constraints on the IDM parameter space. It should however be
noted that the regions where recasts of LHC data offer sensitivity are typically already in
tension with dark matter data (in particular the DM relic density). We are also checking
against HiggsBounds [81-84] and HiggsSignals [85-87]. Note that only the latter can give
constraints on the model due to the fact that the current versions of HiggsBounds do not
include final states with dark matter candidates that would require dedicated two-dimensional
limit grids, as required for our studies.* Furthermore, the main quantities that influence the
signal strength are the decays of Higgs to invisible as well as modifications of the di-photon
rate. We will comment on these separately below.

Properties of the 125-GeV Higgs boson. A first property of the 125-GeV Higgs boson
that provides a strong constraint on the IDM parameter space is its decay width to two photons
— see e.g. refs. [22, 44, 88, 89] for studies of this decay in the IDM. This decay is sensitive to
effects from BSM scalars, and in particular the charged inert scalar, already at leading order
(i.e. one loop). Typical BSM deviations in the corresponding effective coupling, defined as

L'(h = yy)ipm

1, 2.13
I'(h = yy)sm (2.13)

Akyy =
are of the order of a few percent, which is similar to the current precision with which the
coupling is constrained by LHC data, as well as future prospects at the HL-LHC. This is
illustrated in figure 1, which shows the BSM deviation in the effective Higgs-photon-photon

“We thank T. Biekotter for useful discussions regarding this.



coupling Ak, determined from a calculation up to dominant two-loop level [89], in the plane
of (Mpy=+,A3). For illustration purposes, we here fixed Mg+ = My and My = Mp+ —20 GeV,
and also set A\s = 0.01. We note that we choose My+ and A3 as axes of the parameter
plane because these are the parameters that enter the prediction for Ak, from the leading
(one-loop) order; the coupling As45 can straightforwardly be derived using eq. (2.3). The left
and right plot of figure 1 present the current and expected future bounds on Ak, for two
different central values of the signal strength: the left plot assumes a SM-like value of u?7 =1,
while the right plot uses the current experimental average of ;77 = 1.08. The latter number
is obtained by a naive combination of the signal strengths reported for the Higgs di-photon
decay channel by ATLAS [90], uXpag = 1.0470 09, and by CMS [91], udh,g = 1.12 £ 0.09,
which yields z)) = 1.08700%, leading to A, € [~2%;10%] at 2 standard deviations. The
asymmetry in bounds stems from the current enhanced central value. For future limits, we
take the expected 1o bounds on 7 of 6% for ATLAS and 4.4% for CMS from ref. [92]. A
naive combination would then lead to u = 1 4+ 0.037, if we assume a SM like central value,
leading® to Ak, € [—3.8%;3.6%] at the 20 level. All numbers for the di-photon signal
strength have been converted into numbers for Ak, according to eq. (2.13).

The red shaded regions in figure 1 are outside the current 20 experimental uncertainty
band, while the orange shaded regions are outside the expected 20 band at the HL-LHC. We
note that while M+ and A3 are the only free IDM parameters determining Ax,, at one loop
(i.e. LO), at next-to-leading order (NLO), My, M4 and Ay also enter the prediction for Ak, .

To illustrate the relevance of including dominant two-loop corrections in Ax.., we present
in figure 2 contours for this quantity (in %) computed at both one loop (dashed lines) and
two loops (solid lines), for the same type of scenario as in figure 1. For a given charged
Higgs mass Mp=, we observe that the bound from Ak,, constrains the parameter space
to lower values of the coupling A3 at two loops, which can be understood from the fact
that both one- and two-loop BSM corrections contribute to the di-photon signal with the
same, negative, sign. For smaller coupling values, the difference between one- and two-loop
contours becomes smaller, as expected.

A second property of the 125-GeV Higgs boson that offers a powerful probe [93] of the
IDM parameter space is its self-coupling Appn. The current experimental bounds on this
coupling, obtained mostly from searches for di-Higgs production (with additional information
from single-Higgs production measurements), are significantly looser than the ones on the
di-photon decay, or other Higgs couplings. Upper limits on the di-Higgs cross-section can
be translated into bounds on the coupling modifier k), defined as

Ahhh

()@

K = (2.14)
where (AN} )(©) = 3m? /v is the tree-level prediction for the trilinear Higgs coupling in the
SM.5 The respective ATLAS and CMS observed bounds at 95% Confidence Level (CL) are
given by k) € [—1.4;6.1] [94] and k) € [—1.4;7.8] [95] for a combination of di-Higgs and single-
Higgs final states with all other relevant coupling modifiers floating, and k) € [—1.2;7.2] [96]

SIf the central value 7 remains at its current value, we instead would have [0%;7.7%] as the allowed
interval.
5We use the normalisation £ D —%)\hhhhg’ of the trilinear Higgs coupling throughout this paper.



A in the IDM, My = Mj = My +20 GeV, Ay = 0.01
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Figure 1. Contour lines of the BSM deviation in the Higgs decay width to two photons, shown in
%, and computed at two loops using expressions from ref. [89], in the plane of the charged Higgs
mass Mg+ and the coupling A\3. The differently shaded regions correspond to points that are already
excluded at the 20 level by current LHC results (red), points that are expected to be probed at the
HL-LHC (orange), and points that will remain allowed even after HL-LHC (white), respectively. The
left and right figures differ only by the central value assumed for the v+ signal strength: the left plot
assumed a central value of " = 1 while the right plot takes the current experimental average of
177 =1.08, and the corresponding 20 bounds are discussed in the text. We impose a mass difference
of 20 GeV between Mg+ = M4 and My (the mass of the DM candidate) and set Ay = 0.01.

IDM, My= = My = My +20 GeV, Ay = 0.01
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Figure 2. Comparison of contour lines for Ak, (shown in %), computed in the IDM at one loop
(dashed lines) and two loops (solid lines), in the (M g+, A3) plane, for the same scenario as in figure 1.



from di-Higgs searches only. Meanwhile, it is known [44, 93, 97-105, 105-120] that this
coupling can exhibit significant BSM deviations, of several tens or even hundreds of percent,
for points that are allowed by all relevant state-of-the-art theoretical and experimental
constraints. As shown in refs. [93, 117], the current bounds on k) are already sufficiently
stringent to constrain otherwise unconstrained regions of the parameter space of various BSM
models, including the IDM. Moreover, the experimental limits on x) will be considerably
improved at the HL-LHC [92] and at possible future colliders [121-126]. These improvements
also benefit from the inclusion of the analysis of multi-scalar final states, see e.g. [127-129]
for analyses of triple-Higgs production.

Finally, another important property of the 125-GeV Higgs boson to verify is its decay width
to invisible states — specifically a pair of DM candidates H, when the decay channel h — HH
is kinematically allowed. The current most stringent bound BR(h — invisible) < 10.7 %
from ATLAS [130] implies that

0.107
Thonng < mriM ~ 0.1205M (2.15)

where I‘,SLM denotes the 125-GeV Higgs boson width in the SM. In turn, this bound yields an
upper limit on As45, which is related to the hH H coupling. At the same time, for the mass
range My < M}, /2, a lower value of A345 would lead to over-closing the Universe, because the
cross-section of the DM annihilation process HH — h — bb would become too suppressed.
One can therefore show [26, 28, 30, 35, 50] that dark matter results together with the limits
on BR(h — invisible) produce a lower bound on the DM mass of My 2 40 GeV.

3 Process generation and benchmarks

We concentrate on the VBF-type pair production of heavy scalars A at a muon collider with
a centre-of-mass energy of 10 TeV. The specific target signal process that we consider is

wruT = v AA = vp,Gi0 0 HH, (3.1)

where the final state leptons ¢ can be either electrons or muons and the scalar H is a stable
dark-matter candidate contributing to missing energy. We consider the decay of the heavy
scalar A — ZH with the two Z bosons producing respectively a jet pair and a lepton pair.
Background contamination arises from p*pu~ — jj€T ¢~ v with neutrinos of any flavour. The
presence of a heavy state contributing to the missing energy of the signal process results in
distinctive kinematical characteristics that can be exploited to isolate signal events.

3.1 IDM parameter scan

By scanning over the parameter space of the IDM, we obtain points that fulfil the theoretical
and experimental constraints described in section 2.2. In general a large mass splitting
between the scalar A and the dark matter candidate H is kinematically favourable, leading
to larger cross-sections for the target process. We note however that on the other hand mass
splittings in the model are in general subject to several constraints such as perturbative
unitary or bounds from electroweak precision observables. The mass splitting is correlated



Feature My [GeV] My, Mg+ [GeV] A345
Initial scan 55-100 < 500 [-0.01; 0.01]
Large mass gap 110-200 < 640 [-0.3; 0.4]
Large mass range | < 1000 < 1000 [-0.02; 0]

Table 1. Different scan regions used within this work, characterised by the dark matter mass My, an
upper mass scale (i.e. an upper limit on the considered ranges of M4 and Mp+), as well as allowed
values of A\345 after all constraints are taken into account.

with the coupling As45, defined in eq. (2.5), and the minimal values for the quantities entering
this coupling are |Ag45] = 0 and My = 40 GeV. The minimal scale for the dark matter
candidate stems from a combination of signal strength and dark matter constraints, cf. the
discussion section 2.2 and in refs. [26, 35].

For this work, we combine several scan samples. As the most important parameters are
given by the dark matter mass My, the upper scale of the additional new scalar masses,
as well as the allowed values for Ag45 after all constraints have been applied, we briefly list
the ranges we considered for these quantities in table 1.

For the first sample, we scan the parameter space for low-mass dark matter candidates,
while we in general allow for masses up to 500 GeV. In principle, such points generally lead
to cross-section enhancements due to the available phase space. The second sample was
designed to generate a large mass gap between the second inert neutral scalar A and the
dark matter candidate H, in order to enhance the respective coupling Asss. In the third
sample we allow in general for large masses of all inert scalars. For the selection of benchmark
points, we make use of all three available samples.

Before turning to the impact of Ass5 on our target collider process, we note that this
coupling can be constrained indirectly, via its correlation with corrections to Higgs properties
like the trilinear Higgs coupling Apppn. At higher orders (i.e. from two loops and beyond),
Annnh depends on all the BSM parameters of the IDM, namely My, M4, Mg+, Asq5 and As.
However, the overall behaviour of Ay, follows that of the dominant one-loop corrections
involving the inert scalars. In turn, these are controlled by the couplings As4s, 5\345, and \3 —
which enter the hHH, hAA, hH™ H™ interactions respectively. While for phenomenologically
allowed points, dark matter data always constrain As4s to be small, large values of the
coupling Asss (or equivalently of the splitting between My and My) are especially interesting
for our target collider process and are usually correlated with a significant BSM deviation
in Appp from radiative corrections involving A. This illustrated in figure 3, which displays
one- (crosses) and two-loop (circles) predictions for the coupling modifier k) as a function
of \345 for the parameter scan points discussed above — for the later, the leading two-loop
corrections to Appp are computed using the results from refs. [89, 110, 111], while for both
the one-loop corrections are obtained with the public code anyH3 [117]. The results shown
in this figure confirm that the general behaviour of k) with 345 is relatively well-described
by the one-loop corrections alone (i.e. the lowest order in perturbation theory at which
contributions involving As45 enter), while two-loop corrections can be numerically significant
— with relative magnitudes of up to 26% of the one-loop contributions — especially for large
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Figure 3. One- (blue crosses) and two-loop (red points) predictions for k) for our IDM parameter
scan points. The vertical black lines indicate the expected experimental bounds on xy, at the 95%
confidence level, from the HL-LHC (dotted) and from a 10-TeV muon collider (dashed).

coupling values. It should be noted that the points with lower predictions for k) throughout
the range of As45 feature heavier masses of the dark matter candidate H — as can be seen
from eq. (2.3), this translates into higher values of the BSM mass scale o (as A345 must
remain small), and to heavier BSM scalars A and H * for fixed A345 and A3, which suppresses
the corrections to Appp. The dotted and dashed black vertical lines correspond to the 2o
expected limits on k) respectively from the HL-LHC [92], with 0.1 < k) < 2.3 at the 95%
CL using 3 ab™! of data, and from a high-energy muon collider, employing here the estimate
of dAh = 3.7% at 68% CL from ref. [3]. We can observe that the current constraints on ry,
discussed in section 2.2, do not reach the parameter space available from our scan. However,
we can expect exclusion bounds on some of the model realisations for values of 345 down to
about ~ 7 and ~ 2 for the HL-LHC and the muon collider, respectively.

3.2 Event generation and benchmark points

Aiming to identify relevant observables for the target process in eq. (3.1) at a muon collider,
we perform a numerical simulation generating events for both signal and background with
MADGRAPHS5 AMC@NLO [131]. We use the UFO [132, 133] model implementation of the
IDM from refs. [79, 134] with the following input parameters, obtained from the Particle
Data Group [69]

as = 0.1179, (em) ™t = 132.19, Gr = 1.1663788 x 107° GeV 2,
my = 80.38 GeV, my = 91.188 GeV, mp, = 125.3GeV,

me = 0.51099895 MeV, m,, = 0.113428926 GeV, m, = 1.7769 GeV, (3.2)

ms = 0.093 GeV, me = 1.27 GeV, mp = 4.18GeV, my = 172.7GeV.

,10,



Additionally, we are using a non-diagonal CKM matrix in the Wolfenstein parametrisation,
with the newest input parameters given by [69]”

A = 0.2250(7), A =0.83(2), i = 0.35(1) and p = 0.16(1) . (3.3)

For all cross-sections stated below that include the full final state, we are using the
following pre-cuts at the generator level
T](f) < 2.5, ARZ',J' > 0.4, (’L,j) € [],f]

(3.4)

The background cross-section at 10 TeV collisions for the electron (muon) final state with
these pre-selection cuts is 3.47 (3.59) fb, while for 3 TeV it reduces to 1.4 (2.1) fb.

Furthermore, we are generating the total widths for the new scalars for each parameter
point explicitly via the three-body decays

A — Hzy, and HY¥ — Huy, (3.5)

where x, y denote stable SM final state particles. For the decay width of the 125-GeV Higgs
boson, we obtain the tree-level value

ryPMSMdees 5 973(1)MeV

that includes both two- and three-body decays, as well as unstable electroweak gauge bosons
in the final state. If non-vanishing, the partial decay width I'j, _. gy g needs to be added to
obtain a consistent total decay width.®

Scalar masses in the interval M4 € [400,600] GeV allow for a large mass splitting when
My is kept close to 40 GeV and As45 is small, while also maintaining M35 < 47. For all scan
points, all constraints described above are fulfilled.” This parameter region yields the largest
cross-sections for the channel under consideration. The cross-sections for the target process
of the parameter scan points are displayed in figure 4.

Out of these parameter scan points, we select 11 benchmark points (shown in table 2)
with various mass splittings to use for optimising our analysis and for comparisons. We
additionally display the total decay widths of the scalar A and the charged Higgs H*, along
with the cross-sections at 3 and 10 TeV collisions for these benchmark points in table 3.

"Note that the UFO model file available at [135] previously contained a faulty implementation of the CKM
matrix, which however has recently been updated. We thank A. Goudelis for useful discussions regarding this
point.

8Care must be taken when comparing this to the decay width that is given in the Yellow Report [136, 137]. In
the latter, the most up-to-date higher-order calculations are taken into account via the code HDecay [138, 139].
In particular, the running of the masses is taken into account for quark decays, leading e.g. to the bottom mass
my (my) = 2.78859 GeV and therefore a modified leading order partial decay width of I‘bLEO = 1.8894 MeV.
This discrepancy of roughly 2 MeV then is transferred also to the total width of the 125 GeV particle, where
HDecay gives 4.091 MeV.

9During the completion of this work new results from the LUX-ZEPLIN collaboration for direct detection
limits became available [76]. Two of the benchmark points we chose — BP1 and BP4 — are currently in
tension with the corresponding bounds. In principle, these bounds can be avoided by setting Azss to smaller
values, which would only lead to sub-permille level changes in the corresponding production cross-sections,
and thus not significantly modify our results for the sensitivities for these BPs at a 10 TeV muon collider.
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Figure 4. Total cross-section, with pre-cuts, for the channel (3.1) at 10 TeV in the plane of M4
and Ass5. The dashed line corresponds to the maximal possible value of Ag5 as a function of My,
computed using eq. (2.5) for Asq5 = 0 and My = 40 GeV. Points lying on or near the dashed line
come from the parameter scan with maximal Agy5 coupling. Red circled points mark the benchmark
points defined in table 2.

In table 2, we also give the values for the NLO (i.e. two-loop) corrected di-photon decay
rate, as well as the trilinear Higgs coupling modifier ), computed at two loops. From the
bounds presented in section 2.2, we observe that with the current central value for the
di-photon rate, most points are in principle in disagreement with current measurements.
However, we prefer to allow for a possible future shift of that rate to more SM-like values,
which would then bring all points again into agreement assuming current uncertainties.

— 12 —



1D My My My Ao A345 A345 AH%) %] ”&2)
BP1 171.52 618.899 628.841 3.066190 0.14400 11.8307 —5.98 5.22

BP2  766.72 964.775 974.106 1.495400 —0.00590 11.3277 —2.56 2.33
BP3  60.975 496.049 498.244 2.337340 —0.00480 8.00454 -5.93 2.80
BP4  59.000 300.700 316.100 0.188496 —0.00384 2.86943 —5.39 1.19
BP5  60.905 400.325 406.473 3.430620 0.00396  5.17782 —3.71 1.73
BP6  62.400 199.800 230.000 0.138230 0.00486  1.19550 —5.16 1.00
BP7  535.36 614.813 617.601 2.626370 —0.00044 3.01578 —1.42 1.00
BP8  553.60 799.566 799.566 0.766550 —0.01734 10.9825 —3.36 2.83
BP9  474.88 600.384 618.238 3.593980 —0.00328 4.45670 —2.41 1.21
BP10 501.76 670.165 678.137 2.827430 —0.01498 6.50753 —2.74 1.52

BP11 736.00 941.656 947.464 0.942478 —0.00926 11.3933 —2.66 241

Table 2. Definition of benchmark points used in this work. The last two rows show the two-loop
predictions for A/i%) and /1&2) for these points. Dark matter variables are given in appendix B.

ID | |y=es oe (10TeV) 0. (3TeV) o, (10TeV) o, (3TeV)
BP1  56.83 63.41 3.80-1072 3.68-1073% 3.80-1072 3.68-1073
BP2  10.11 13.02 1.30-1072  1.51-107% 1.30-1072 1.52-1074
BP3  34.43 36.79 3.71-1072 5.89-1073% 3.71-1072 5.89-1073
BP4  5.63 7.45 3.00-1072 8.88-107% 299-1072 8.88-1073
BP5 16.36 18.29 3.55-102 7.71-1073% 3.55-1072 7.71-1073
BP6  6.57-107! 1.89 2.14-1072 8.74-1073% 2.13-1072 8.75-1073
BP7 5.44-1073 265-1072 227-107% 1.97-107* 227-1073 1.97-107%
BPS  18.58 19.92 1.93-1072 6.95-107* 1.93-1072 6.97-107*
BP9 1.18 2.98 1.16-102 1.03-10* 1.18-107%2 1.03-1073
BP10 4.86 6.61 1.48-1072  9.79-107% 1.48-1072 9.79-1074
BP11 11.42 13.73 1.36-1072  1.89-10~%* 1.36-1072 1.89-104

Table 3. Widths (in GeV) of the BSM particles and cross-sections (in fb) at 3 and 10 TeV for the
benchmark points of table 2. o, (0,) denotes the cross-sections with electrons (muons) as the leptons
in the final state.
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Figure 5. Main topologies contributing to the target process (3.6). Top row and bottom left: processes
governed by SM electroweak gauge boson couplings. These diagrams lead to large cancellations in the
interference. Bottom right: additional diagram, s-channel contribution governed by Asss. This is the
dominant contribution after cancellation of the other diagrams. In these graphs, h3 denotes A. This
figure has been generated using MADGRAPH5__AMC@NLO.

BP1 BP7
My [GeV] 618.899 614.813
X345 11.8307 3.01578

[(a) + (b) + (c)]? 0.00820(3)  0.00600(4)
(d)|? 2.19(2)  0.1468(7)

(@) + () + ()2 +|(d)|?> | 220(2)  0.1528(7)
(@) + (b)) + () + ()> | 2.37(2)  0.1641(7)
All diagrams 2.35(1) 0.164(1)

Table 4. Important IDM parameters (top rows) and total integrated cross-sections, in fb, for the
process given by eq. (3.6), using subselections of diagrams from figure 5, as well as the total cross-
sections without preselection of diagrams (last row). We compare contributions for two benchmark
points with similar masses for A but different values for 345, namely BP1 and BP7. There are large
cancellations between different diagrams governed by electroweak gauge couplings. The remaining
cross-sections are proportional to AZ,s. All cross-sections are shown for 10 TeV.
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Figure 6. The ratio of the cross-section from s-channel diagrams in uu — AAvv divided by the
total cross-section is shown. The contribution from the s-channel diagram (d) is dominating for larger
values of A3s5. The benchmark points contained in the considered random sub-sample are labelled
with red circles.

In order to understand the behaviour of the signal cross-section, it is instructive to
consider different diagrammatic contributions to the target process,

ptum — AAv,, (3.6)

prior to decays. As an example, we compare BP1 and BP7, that feature similar masses for
the scalar A but largely different values for Asus.

In figure 5, we display dominant contributions from VBF-type topologies, which we
denote (a), (b), (c¢), and (d). It is known that there are large cancellations for different
contributions that are related via unitarity considerations. In our scenario, we therefore
group processes that stem from VBF-type topologies and are governed by SM electroweak
gauge couplings. For the process at hand, these are VBF processes that have a charged
scalar in the ¢-channel — cf. (a) and (b) in figure 5 — as well as the VBF topology with the
quartic A AWT W~ coupling — diagram (c) in figure 5. In these processes, the couplings
are determined by SM parameters, and the only new physics parameter that enters is the
mass M4 (at leading order). Table 4 shows the different contributions from these channels
for the two benchmark points under consideration. In addition, we list the process where an
s-channel SM-like Higgs boson mediates the process — i.e. diagram (d) in figure 5 — as well
as the sum with and without interference. We see that there is an additional interference
effect of around 7% for both considered scenarios. We equally in the last row display the
total cross-section using all diagrams that are generated by MADGRAPHS__AMCQ@NLO for
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Figure 7. Transverse momentum distributions for the leading lepton and jet for BP2 (red) and BP7
(blue), normalised to unity.

this process. In addition, for diagram (d) the ansatz

Od) ~ 5\:2345

is found to be satisfied at the percent level.

One can furthermore investigate which contribution of the total cross-section stems from
the diagram with an s-channel Higgs-like particle, given by diagram (d) in figure 5. We show
the percentage in colour coding of this contribution with respect to the total cross-section
in figure 6 for a smaller subset of randomly chosen scan points. The contributions from
s-channel diagrams are dominating for larger values of Asys.

As we later plan to compare with results achievable at a centre-of-mass energy of 3 TeV,
we already comment on this setup here. Indeed, a similar investigation for a centre-of-mass
energy of 3 TeV gives results similar to those shown in table 4; we find the above diagrams to
be dominant, with large cancellations between contributions governed by electroweak gauge
couplings, as well as a proportionality of diagram (d) contributions to Az45. However, the
total cross-sections are reduced by about one order of magnitude.

We can also check the impact of different masses with a similar value for A345. BP1 and
BP11 have a similarly large value for this coupling, but different masses M 4. A calculation
of the s-channel contribution alone at 10 TeV reveals that an increase from M4 ~ 620 GeV
to ~ 940 GeV leads to a decrease of the putu~ — v,1,AA cross-section (before cuts) by
roughly a factor 4.4.

Additionally, we investigate the contribution of different channels for the benchmark
point with the smallest value of 5\345, BP6. For this point we find that the contributions
from the subprocesses mediated by electroweak gauge bosons amount to roughly 9% of the
total cross-section. The s-channel mediated diagram still contributes about 56%, followed by
34% from the interference terms. We note that for all discussions above, we have considered
contributions in the unitary gauge.

Finally, the pre-cuts listed in eq. (3.4) also have a different impact on the different
benchmark points. As an example, we discuss BP7 and BP2. These two parameter points
differ both in the absolute scale of the inert scalar masses, given basically by My, as well as the
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mass difference M4 — Mp. In particular, for BP7 this difference is around 80 GeV, resulting
in softer decay products. For BP7 and BP2, the pre-cuts lead to a reduction to 38% and
73%, respectively, of the total cross-section without cuts. This is mainly due to the different
kinematics of the BPs. As an example, we therefore display the pr distributions of the leading
pr lepton and jet for these two processes in figure 7, which we normalise to unity. In particular
the cut on pr(j) > 20 GeV has a different impact on the two benchmark points, leading to a
reduction of the cross-sections to 60% and 89%, respectively. Transverse momentum cuts
reduce the cross-sections to 52% and 86% of the original rate for BP7 and BP2, respectively.

3.3 Signal contributions from additional processes

Additional channels could lead to the same signature as our target process. In principle, this
signature can be reached via production of two scalars A decaying as in the channel (3.1) but
with or without additional neutrinos or invisible scalars H. Furthermore the IDM charged
scalars H* decaying to W* H could also provide further contributions to the same final state.
We have therefore also investigated the following processes:

production of two scalars A through s-channel diagrams (without additional neutrinos),

prpT = (A= 0T H) (A= jiH),

e production of two BSM scalars H, which contribute to the missing energy, and two
scalars A,
ptp~ — HH(A— ("¢ H)(A— jjH),

e production of two scalars A and two non-muon neutrinos,

pr T = verter(A— 0T H)A— jjH),

« and production of two charged scalars H*,
ptp™ — (H* — (*vH)(HT — jj(FvH) .

We calculate the cross-sections for these additional channels for BP1, BP2 and BP3, using
the same generation-level cuts as the main channel for 10 TeV collisions. However, our findings
indicate that all channels are negligible, since the contributions are smaller than 1% of the
cross-sections in table 3. The largest contribution would be from the production of HXHT (i.e.
the last process in the list above) which is still subdominant. Thus, we do not include them
for our analysis in section 4. It should nevertheless be noted that these additional processes
would only enhance the rates of signal events leading to higher statistical significances.

4 Analysis

Evaluating the potential of a muon collider to uncover effects arising from IDM states requires
well-optimised signal-background discrimination to separate the BSM contributions from
the SM. On the one hand, cut-and-count analyses defining the signal region with cuts on
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appropriate observables are simple and rather intuitive. On the other hand, ML techniques
can greatly enhance the significance of a particular channel by setting highly sophisticated
non-rectangular cuts that define the optimal signal region. This is, however, done at the
cost of interpretability, as it is particularly hard to identify which kinematical quantities
allow obtaining a higher sensitivity.

The challenge in discriminating the signal from the background arises from the presence
of multiple particles in the final states and the fact that the missing energy is due to both
neutrinos and scalars H. We design two different analyses, one with traditional cuts and
one with Boosted Decision Trees (BDTs), aiming to identify the relevant observables for the
process (3.1). For the latter case we investigate which observables are crucial in order to
separate the background from the signal using Shapley values [140], see appendix A.

For both approaches we consider muon collisions at 10 TeV with an integrated luminosity
of 10 ab™!, following the relation [3]'

_ Ecm >2
int — 1 b ! . 4.1
Liny = 102 (10 TV (4.1)

4.1 Cut-and-count analysis

The cut-and-count analysis serves the purpose of a baseline indicating the potential prospects
of the muon collider and also allows quantifying the gain from using ML techniques. We
optimise our cuts for BP3, which has a relatively large cross-section at 10 TeV collisions,
and subsequently use the same cuts for all parameter points. For this benchmark point, we
present histograms for the observables with discriminating power in figure 8.

We note that while for some of the displayed variables — as e.g. the invariant mass
distributions — signal and background show similar shapes in particular in the dominant

regions, variables that include the missing momenta, as e.g. M5 O ET.  exhibit significant

miss
differences in particular in the region of low missing mass and high missing transverse energy.
We therefore take these as variables that can be used to discriminate signal from background
in this particular benchmark scenario.

Since the signal process proceeds via decays of A — ZH, a large contribution to the
signal comes from the case when the Z boson is on-shell and it is thus beneficial to remove
contributions from the background where the visible final states do not arise from a Z
resonance. We impose a cut on the invariant mass of the di-jet jj and di-lepton £/ states,
40 < mj;/e < 130 GeV to enforce this. The region of interest can be further restricted
with pjz. TAS 900 GeV, where pjj Jee is the z-component of the pair’s four-momentum. While
both signal and background have invisible particles leading to large missing momentum,
the presence of heavy particles among the missing energy final states of the signal leads to
differences in the distributions of related observables. In particular, we define the missing
four-momentum as pmiss = <\/§, 6) — > pyis. Where pyis. are the four-momenta of the jets and
leptons. The missing invariant mass Mmiss = /Pmiss - Pmiss 1S then an important observable
for discriminating purposes as the majority of signal events attain larger values of Mg
than the background. We therefore set a cut of My, > 8250 GeV and also impose a cut

L uminosity targets were updated in [5]. For 3 TeV, there is a 10% discrepancy between the cited
luminosities. We do not expect this to have a significant impact on the results of our study.
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Figure 8. Distributions of the most important observables utilised in both the cut-and-count and
ML analyses for the background (red) and for BP3 (blue).
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BP3 (e) Background (¢) BP3 (u) Background (u)

40 < mj; < 130 GeV  0.993 0.975 0.993 0.976
p%; < 900 GeV 0.943 0.824 0.943 0.827
40 < myp < 130 GeV 0.936 0.768 0.936 0.786
PG < 900 GeV 0.911 0.730 0.911 0.748
Mpiss > 8250 GeV 0.862 0.608 0.861 0.628
ET.. <2000 GeV 0.862 0.608 0.861 0.628

Table 5. Reduction of signal and background acceptances from the cut-and-count analysis cutflow
for the electron and muon cases.

on the missing transverse energy EL. = ./ Poniss.e + p?niss,y < 2000 GeV. These cuts have

been identified by scanning over different possible values and identifying the thresholds that
maximise the significance for our channel. The cutflow of the aforementioned cuts is shown
in table 5. The majority of the signal events is retained; however given the relatively large
acceptance of background events after the cuts it is also apparent that the simple rectangular
cuts do not drastically reduce the background contribution.!!

We sum the number of signal and background events that we observe in our signal region
for the muon and electron final states and subsequently evaluate the significance for each

parameter point with the formula [142]

Z:\/2(S+B)Iog{1—l—§]—5’, (4.2)

where S, B denote the signal and background, respectively. As customary, we here define
the expected discovery significance as the expected Z under the assumption of some nominal
signal model.

The resulting significances for the benchmark points under consideration are shown in
the left plot of figure 9. The largest values of ~ 3 are obtained for BP1, BP3 and BP5 and are
characterised by a substantial mass splitting between My and M 4. Smaller mass differences
are associated with a reduced sensitivity and for higher values of M4 the significance starts
again to drop. While the cut-and-count analysis does show promise of finding evidence of
phenomena arising from the IDM, a more optimal selection of the signal region with modern
ML techniques closer to what experiments are currently utilising would yield better results.
We therefore investigate this using BDTs in the next section.

4.2 ML analysis

While it is impossible to anticipate how advanced the performance of ML techniques will
be at the time scale of a muon collider, it would presumably surpass current techniques.

HWe also have considered other observables such as the stransverse-mass mrs [141] and angular quantities
(e.g. differences of pseudorapidities and azimuthal angles of the lepton and jet pairs). However, they are not
particularly useful for reducing the background in this channel.
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BDTs are amongst the most popular ML techniques utilised in High-Energy Physics, able to
yield improved results for various tasks ranging from triggers at experiments to event-level
classification of different contributions (for an exhaustive review see ref. [143]). We therefore
choose to utilise gradient BDTs to showcase what significance a muon collider would likely
reach. We use the XGBOOST [144] library, interfaced through SCIKIT-LEARN [145], in order
separate the signal and background IDM contributions at the 10 TeV muon collider. For each
benchmark point under consideration, we train a separate XGBOOST tree which is used to
identify the signal region and train different BDTs for the electron and the muon final states.
The loss function used during training is the log-likelihood of the Bernoulli distribution
and the step size shrinkage [144] (or learning rate) is set to 0.034. The maximum number of
trees in the ensemble is 267 and the depth of each tree can not exceed 11. We fix the minimum
sum of the weight instances to 7. For each event, the following observables are included:

o the pseudorapidities 1 and transverse momenta pr of the jets and leptons,

« the azimuthal angle difference between the jets (leptons) A¢j; (Agee) and the pseudo-
rapidity difference An;; (Ane),

» the invariant dilepton and dijet masses my, and mj;, respectively, as well as their
momenta along the z-direction pj,, p3;,

o the missing invariant mass My,iss and the missing transverse energy E:‘fliss.

A total of 200,000 signal and 200,000 background events are considered for each benchmark
point and each final state. We retain 10% of the events to evaluate the performance of
the algorithm and train on the rest.

Signal and background efficiencies are calculated for different thresholds of the XGBoosT
output score for each trained tree. By identifying the working point yielding the highest
significance, the signal region is algorithmically defined and we extract the number of
signal and number of background events for the electron and muon final state channels.
Subsequently, we add the events from the two processes and evaluate the final significance
for each benchmark point with the expression in eq. (4.2). We show the significances for our
identified benchmark points in the right plot of figure 9. In comparison with the cut-and-count
analysis, the ML approach expectedly achieves higher sensitivity, reaching significances of
~ 6 for BP1. The overall pattern remains similar, with larger mass differences between the
dark-matter candidate H and the scalar A resulting in larger sensitivity. The fact that large
mass differences lead to large sensitivity is related to the increased cross-section for these
points, exactly like the cut-and-count analysis. However, the ML method is insensitive to
the cross-section itself, it only defines the appropriate signal region (in other words we do
not use the cross-section as an input to the BDT). Therefore, the increase of the significance
compared to the cut-and-count analysis mainly stems from kinematics.

Finally, we apply our cut-and-count and ML analyses to a larger set of parameter points
allowed by theoretical and experimental constraints. The results are shown in figure 10 and
indicate that a large statistical significance is expected for points characterised by a small M
value but also a large mass separation M4 — M. As expected by the previous discussion, the
ML approach outperforms the cut-and-count analysis yielding significances larger than Z =5
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Figure 9. Significance using cuts (left) and ML (right) for the benchmark points of table 2.
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Figure 10. Subset of parameter points that were used for the cut-and-count analysis (left) and the
ML analysis (right) shown on the M4 — My vs. My plane.

(red points). Figure 11 showcases the correlation between large mass differences and larger
cross-sections that leads to an enhanced significance. One can roughly state that production
cross-sections > 0.07 (0.05) fb lead to significances > 5 (3) using our methodology.

Aiming to interpret the behaviour of our ML approach and enhance our understanding
of the results, we have utilised Shapley values [140] in appendix A.

The technical development of a muon collider with a 10 TeV center of mass energy is
currently ongoing. Therefore, clear estimates of systematic uncertainties are not yet available.
Assuming these to be small due to the relatively clean environment of a lepton collider, we
briefly investigate how the significance would change if such uncertainties were taken into
account. We use the expression [142, 146, 147]

B (S+ B)(B+0%)| B2 %S
Z(S,B) = 2<[S+B}1n B2+(S+B)UB]23 —U%mlumb, (4.3)

where op is an estimate of the background systematic uncertainty. The impact for systematic
uncertainties equal to 1% and 5% background events is shown in figure 12 along with the
highest significance in each case and the corresponding signal and background events. With
1% systematic uncertainties the maximum significance is slightly below the discovery limit,
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Figure 12. The significance for each parameter point with an assumed op = 1%B and o = 5%B
systematic uncertainty is shown on the left and right plot, respectively. We additionally indicate the
maximum significance for each case along with the corresponding number of signal and background
events for the particular parameter point.

while for 5% the significance of all parameter points is substantially reduced. This is due to
the large number of background events compared to signal events for all the parameter points.
Signal events after the ML selection are in the range S € [1,426], while background events
are considerably higher B € [354,10521]. The precise determination of the background is
therefore crucial for the scenario under investigation.

4.3 Comparison with 3 TeV collisions

In order to understand whether there is sufficient motivation to increase the energy to 10
TeV, we revisit the case of 3 TeV muon collisions with a luminosity of ~ 0.9 ab™!, obtained
from eq. (4.1) (we note that if we used instead as target luminosity at 3 TeV the value of 1
ab~! from e.g. ref. [148], our results would not be drastically modified). The cross-sections
for the benchmark points are shown in figure 13, where we include additional parameter
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Figure 13. Cross-sections for the production cross-section of electron final states for all parameter
points used in our study are shown on the left for a 10 TeV muon collider. The starred points
correspond to the benchmark points of table 2 which are also shown for 3 TeV collisions on the right.

points from the scans for the 10 TeV case. We display case of electrons in the final state as
an example, with similar values attainable for the case of muons.

A few comments are in order regarding the cross-sections in this figure. First, as already
discussed above, the total cross-sections depend both on the scale of the process, set by M4,
as well as on the value of Ags5. In addition, kinematics differ between the benchmark points,
leading to different cut efficiencies for the precuts. Independently of this, we found that
figure 13 displays well the overall behaviour of the total cross-sections. In particular, we
see that the energy that is available to the initial electroweak gauge bosons that enter into
the VBF-type topology and constitute the dominant contributions for our target process
largely differs for the different centre-of-mass energies.

We can investigate this behaviour for BP1, which features the largest difference in
production cross-sections prior to decays between the two different centre-of-mass energies
(the comparison is done normalising the cross-sections to that of BP6 at 10 TeV). In order
to simulate the events on a similar level, we decide to include an invariant mass cut of
maa < 3TeV in both cases for this comparison. The total production cross-sections for
these two centre-of-mass energies before decays are ~ 2.2fb and ~ 0.18 fb for 10 TeV and 3
TeV, respectively. As the dependence of matrix element for W+ W~ — A A on the actual
parton-level centre-of-mass energy for this subprocess is unaffected by the total centre-of-mass
energy of the collider, this change of cross-section for a given benchmark point by an order
of magnitude can only be attributed to the available energy of the W bosons, that are
governed by the so-called “WW content of the muon” (see e.g. [14, 15, 149] for details). In
addition to this, the estimated total integrated luminosity for a 3 TeV machine is lower
by about one order of magnitude.

As the background rate is also reduced, one may wonder whether it might be possible
to have enough sensitivity already at lower-energy collisions. Therefore, we follow the same
procedure as for the 10 TeV ML analysis, generating signal and background samples of the
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same size. We train new BDTs using the same hyperparameters and identify thresholds on
the ML output score that maximise the significance as before.

Overall, our findings after combining the two final states as before indicate that muon
collisions at 3 TeV will be unable to uncover signs of the IDM in this channel. The highest
significance of 0.53 is achieved for BP6, which highlights the limited sensitivity. While the cross-
section rates are not reduced that drastically, the analysis suffers from the notably reduced
integrated luminosity. With the current target luminosity, see eq. (4.1), we conclude that a
10 TeV muon collider is needed to explore the parameter space of the IDM considered here.

5 Conclusion

In this work, we discussed the discovery potential of a 10 TeV muon collider for novel
scalar production in the Inert Doublet Model using VBF-type production modes. We briefly
presented the current state-of-the-art constraints on the parameter space of the model,
including higher-order corrections to the trilinear Higgs coupling and Higgs to di-photon
decay width. We investigated in detail the mechanism for A A production including its
dependence on the BSM input parameters, and performed a comparison of the 10 TeV collider
case to one with a centre-of-mass energy of 3 TeV. After including relevant background
processes, we found that relatively high significances can be achieved using both cut-based as
well as ML-improved methods, where the latter surpasses the former in terms of the discovery
potential. We can set approximate lower limits on production sections of about 0.07 (0.05) fb
needed for discovery or exclusion, respectively, applying our ML methodology. Furthermore,
we found the highest significances for low DM masses My < 200 GeV in combination with
mass gaps M — My around 400 GeV. While for a number of the benchmark points we
considered, measurements of properties of the 125-GeV Higgs boson could in principle exhibit
deviations from SM predictions by the time a muon collider would be built — thereby
providing indirect evidence for BSM Physics — the direct searches, presented in this work, of
the VBF-type A pair production at a muon collider would be paramount to test the IDM as
a possible underlying model of new physics. Nevertheless, our analysis can be impacted by
systematic uncertainties. An accuracy below 5% on the background is a necessity to achieve
a sizeable significance in the direct detection channel. While such precision may be achievable
for a muon collider in the future (especially given the clean environment), more detailed
studies are required to improve our understanding of the background systematics. Our work
offers motivation for targeting reduced uncertainties at the level of a few percent.

Muon colliders have recently undergone a novel resurrection, with increased and renewed
interest within the international collider community. The process we chose is typically
suppressed at hadron as well as low-energy lepton colliders, and requires a high centre-of-mass
energy collider with sufficiently high energies for the radiated gauge bosons. We demonstrated
that a 10 TeV machine is needed to discover or exclude the large number of benchmark points
we proposed, rendering motivation for further investigation of the feasibility of such a machine.
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A ML interpretation plots

To understand the importance of each feature and identify the ones that contribute most to
the decision of XGBO0O0OST, we turn to techniques used for explainable artificial intelligence.
Shapley values [140], which were initially introduced in the context of game theory, can be
utilised to identify the gain from participating input variables in ML models and have been
also explored within particle physics applications [150-153]. For a model fg trained on a set
of features F' and a feature of interest m, one can create subsets S C F'\ {m} that exclude
m and models fs,} and fg that are trained on the corresponding subsets. The effect of
removing a feature is then obtained by the difference of the predictions and the Shapley
value is the weighted average over all possible subsets

om= D

SCF{m}

[SIE] = 151 = 1)
I

! [fsugmy (S U{m}) = fs(S)] - (A1)

The model yields large positive (negative) values when it predicts a signal (background)
event. Therefore, a feature of interest m that significantly impacts the predictions leads to
Shapley values that deviate significantly from zero.

While Shapley values provide a mathematically well-defined approach to fairly distribute
importance attributions between input variables, they can be challenging to compute. We use
the algorithms for explaining trees implemented in the SHAP [154, 155] package to obtain
the importance of the input features for the test data of the BP1 point at 10 TeV. The SHAP
values are shown in figure 14 for all the input features. It can be seen that large values of
M s are consistently classified as signal, while low values are decisively pushing the SHAP
value to negative values which would imply that an event is characterised as background. For
mye the SHAP values indicate that values close to the Z boson mass (55 < my < 95 GeV)
receive a positive attribution. This is relaxed for m;; where low values can still receive a
positive contribution. These three variables along with the transverse momenta of the leptons
and jets are particularly important for the classification of an event. It is indicated that the
missing transverse energy is not as important as the aforementioned variables, which may

seem surprising. However, it should be noted that ET.  and M, are correlated and a cut

miss

on the latter can already remove events that would be removed from EL.  (this behaviour

miss
is also inferred from our cut-and-count analysis). The SHAP value for each observable for

one signal and one background point is also shown as an example in figure 15.
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Figure 14. SHAP values for a collection of events evaluated for all the observables considered in our
ML analysis.

It should be noted that the usefulness of ML interpretations goes beyond the identification
of important input features. Mistakes in the implementation that are normally hard to spot
become transparent when the importance attribution of certain input variable is illogical.
Furthermore, in cases with limited resources, unimportant features with almost no contribution
to the ML output can be clearly identified and removed.
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Figure 15. SHAP values for a signal (left) and a background (right) point.
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ID Mpy Ma Mp+ A2 A345 A345 Qp h? opp[pb]

BP1 171.52 618.899 628.841 3.066190  0.14400 11.8307 0.000216 6.25 x 10~?
BP2  766.72 964.775 974.106 1.495400 —0.00590 11.3277 0.000142 5.30 x 1013
BP3  60.975 496.049 498.244 2.337340 —0.00480 8.00454 0.001263 5.39 x 10~
BP4 59.000 300.700 316.100 0.188496 —0.00384 2.86943 0.011338 3.68 x 10~ !
BP5 60.905 400.325 406.473 3.430620 0.00396 5.17782 0.001941 3.68 x 10~
BP6 62.400 199.800 230.000 0.138230 0.00486  1.19550 0.000223 5.28 x 10~
BP7 535.36 614.813 617.601 2.626370 —0.00044 3.01578 0.000757 6.03 x 10715
BP8 553.60 799.566 799.566 0.766550 —0.01734 10.9825 0.000120 8.77 x 10~!2
BP9  474.88 600.384 618.238 3.593980 —0.00328 4.45670 0.000316 4.26 x 1013
BP10 501.76 670.165 678.137 2.827430 —0.01498 6.50753 0.000214 7.96 x 102
BP11 736.00 941.656 947.464 0.942478 —0.00926 11.3933 0.000138 1.42 x 10~ '2

Table 6. Benchmark points used in this work. The last two columns show relic density and direct
detection cross-sections, respectively.

B Dark matter properties of benchmark points

We here list the dark matter properties of the benchmark points, derived using micrOMEGAs.
We note that all but BP1 and BP4 currently fulfil all dark matter constraints. In addition,
as discussed in section 3 a small decrease in A345 would also allow BP1 and BP4 to satisfy
the latest direct detection bounds from the LUX-ZEPLIN experiment without significantly
modifying the collider phenomenology of these points.
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