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Abstract
We study D-dimensional p-brane Galilean geometries via the intrinsic tor-
sion of the adapted connections of their degenerate metric structure. These
non-Lorentzian geometries are examples of G-structures whose characteristic
tensors consist of two degenerate ‘metrics’ of ranks (p+ 1) and (D− p− 1).
We carry out the analysis in two different ways. In one way, inspired by Cartan
geometry, we analyse in detail the space of intrinsic torsions (technically, the
cokernel of a Spencer differential) as a representation of G, exhibiting for
generic (p,D) five classes of such geometries, which we then proceed to inter-
pret geometrically. We show how to re-interpret this classification in terms
of (D− p− 2)-brane Carrollian geometries. The same result is recovered by
methods inspired by similar results in the physics literature: namely by studying
how far an adapted connection can be determined by the characteristic tensors
and by studying which components of the torsion tensor do not depend on
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the connection. As an application, we derive a gravity theory with underlying
p-brane Galilean geometry as a non-relativistic limit of Einstein–Hilbert grav-
ity and discuss how it gives a gravitational realisation of some of the intrinsic
torsion constraints found in this paper. Our results also have implications for
gravity theories with an underlying (D− p− 2)-brane Carrollian geometry.

Supplementary material for this article is available online

Keywords: Cartan geometry, intrinsic torsion, p-branes, Galilei gravity,
Carroll gravity
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1. Introduction

During the last hundred years or so, our description of spacetime, born out of Einstein’s
theories of Special and General Relativity, has been based on Lorentzian geometry, a vari-
ant of Riemannian geometry in which the metric tensor is no longer positive-definite. This
seemingly insignificant change has far-reaching consequences and makes Lorentzian geo-
metry in many ways richer than Riemannian geometry, cf the richer variety of submani-
folds that a Lorentzian manifold can admit. Nevertheless, for all their differences, Riemannian
and Lorentzian geometry share one important feature: the so-called Fundamental Theorem of
Riemannian Geometry, which states that there exists a unique metric-compatible torsion-free
affine connection: the Levi–Civita connection. Properly understood, this theorem contains two
separate statements. The first, which follows paying close attention to the usual proof of the
theorem, is that a metric-compatible affine connection is uniquely determined by its torsion.
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The second says that any metric-compatible connection, possibly with torsion, can be uniquely
modified (by the addition of a unique contorsion tensor) so that the resulting connection is still
metric-compatible but now also torsion-free.

There are two ways we can understand this result. This dichotomy is reflected in the two
seemingly different approaches followed in this paper to the study of non-Lorentzian p-brane
geometries. The approach we normally teach undergraduate students in a differential geometry
course is by explicit construction of the Levi–Civita connection—we actually solve for the
Levi–Civita connection in terms of the metric tensor. This can be done using notation with or
without indices. The version with indices results in the famous expression for the Christoffel
symbols of the metric g:

Γµ
λρ =

1
2g

µν (∂λgνρ + ∂ρgλν − ∂νgλρ) , (1.1)

where as usual gµν and gµν are the components of the metric tensor and its inverse relative to
local coordinates xµ. The Christoffel symbols enter in the definition of an affine connection
via∇µ∂ν = Γµν

ρ∂ρ. The version without indices results in the equally famous Koszul formula
and says that

2g(∇XY,Z) = Xg(Y,Z)+ Yg(X,Z)−Zg(X,Y)+ g(Z, [X,Y])− g(Y, [X,Z])− g(X, [Y,Z]) ,
(1.2)

where X,Y,Z are any three vector fields on the manifold. Both expressions have their virtues
and which one one prefers is largely a question of aesthetics.

There is, however, a different approach to prove the Fundamental Theorem of Riemannian
Geometry, which does not require deriving the explicit expression for the connection andwhich
is normally not taught to undergraduates. This approach is based on Cartan geometry, where
we work locally relative to a chosen local (pseudo)orthonormal frame ea with canonically dual
coframe θa. The coframe defines a fibrewise isomorphism of every tangent space withRD, with
D the dimension of the manifold. The metric tensor has a local expression g= ηabθ

aθb where
ηab = g(ea,eb) is constant and defines an inner product onRD. LetG denote (the identity com-
ponent of) the subgroup of GL(D,R)which preserves the inner product ηab: in the Riemannian
case G will be the rotation group SO(D), in the Lorentzian case G is the proper orthochronous
Lorentz group SO(D− 1,1)0, et cetera. A metric-compatible connection is locally given by
a one-form ω with values in the Lie algebra g of G. The torsion tensor of the connection is
described in this language by the torsion 2-formΘ defined via Cartan’s first structure equation:

Θa = dθa +ωa
b ∧ θb, (1.3)

where the condition that ω is g-valued simply says that ωab := ηacω
c
b =−ωba. Let ω ′ be the

connection one-form of another metric-compatible connection. Then κ := ω ′−ω is a one-
form with values in g, but unlike ω or ω ′, which transform as gauge fields under a change of
local (pseudo)orthonormal frame, κ transforms tensorially. It then follows from the structure
equation (1.3) that the torsion 2-forms of ω and ω ′ are related via

Θ ′a =Θa +κab ∧ θb. (1.4)

The linear map sending ω ′−ω to Θ ′−Θ is an instance of a so-called Spencer differential,
and it sends κ, which is a local 1-form with values in g to κab ∧ θb which is a local 2-form with
values in the so-called fake tangent bundle. This is induced from a linear-algebraic map

∂ : Hom
(
RD,g

)
→ Hom

(
∧2RD,RD

)
(1.5)
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where

(∂κ)(v∧w) = κ(v)w−κ(w)v. (1.6)

The kernel of ∂ consists of those κ which obey κab ∧ θb = 0; that is, those κ which do
not change the torsion 2-form. The image of ∂ are the possible changes of the torsion due
to changes in the connection. In this language, the Fundamental Theorem of Riemannian
Geometry simply says that ∂ is an isomorphism and, as intimated earlier, it consists of two
statements6: ∂ is surjective, so that given any connection ω we can find some κ so thatΘ ′ = 0
(existence of a torsion-free metric-compatible connection) and ∂ is injective, so that this κ is
unique. In other words, there exists a unique metric-compatible torsion-free connection.

Comparing this latter proof with the standard one, we see that in some sense the Cartan-
theoretic proof boils down to linear algebra, with the heavy lifting from the linear algebra to the
differential geometry being done by Cartan’s theory of moving frames, which is the traditional
name for what is now called the theory of G-structures, itself a special case of the notion of a
Cartan geometry.

It is by now well-understood that Lorentzian geometry stops being an adequate descrip-
tion of spacetimes in many limiting scenarios. For instance, this is the case for the so-called
non- or ultra-relativistic limits, where the local speed of light becomes infinite or zero, respect-
ively. In such limits, the metric degenerates and the resulting geometries, while no longer being
Lorentzian, are nevertheless still instances ofG-structures, only with a different choice of sub-
groupG of GL(D,R). (In the case of geometries obtained via limits from Lorentzian geometry,
the new G is a contraction of the Lorentz group.) Perhaps the simplest examples of these non-
Lorentzian geometries are Galilean, which is the relevant geometry for the non-relativistic
limit, and Carrollian, which is the relevant geometry for the ultra-relativistic limit [1, 2].
The relevant subgroups G⊂ GL(D,R) in these two cases are abstractly isomorphic to the
Euclidean group ISO(D− 1) and related by transposition inside GL(D,R), but crucially they
are not conjugate in GL(D,R) and hence describe truly different geometries7. Non-Lorentzian
geometries are defined by characteristic tensor fields other than a metric. These tensor fields
are constructed out of G-invariant tensors by the use of the moving frames and coframes in
precise analogy to how the metric tensor in (pseudo)Riemannian geometry is constructed as
g= ηabθ

aθb with ηab an invariant tensor of G. (In fact, that’s how G was defined.)
As an example, let us consider Galilean geometry. In the same way that a Lorentzian mani-

fold is said to look locally like Minkowski spacetime, a Galilean manifoldM looks locally like
Galilei spacetime. The characteristic tensors replacing the Lorentzian metric are now a clock
one-form τ ∈ Ω1(M), whose square may be interpreted as a very degenerate rank-1 ‘metric’
on M, and a ruler, which is a positive-definite metric on the distribution annihilated by τ . The
ruler so described is not actually a tensor field, being a section of a quotient of a tensor bundle,
so instead we replace it by a ‘spatial co-metric’ h, a positive-semidefinite metric on one-forms
which has rank D− 1 (so it is degenerate) and obeys h(τ,α) = 0 for all one-forms α. The
triple (M, τ,h) is sometimes called a weak Galilean structure, reserving the unadorned name
Galilean structure for a quartet (M, τ,h,∇)with∇ an affine connection which is adapted to the
G-structure and hence compatible with the characteristic tensors in that ∇τ = 0 and ∇h= 0.

6 In this case, the two vector spaces in equation (1.5) have the same dimension, so injectivity implies surjectivity (and
viceversa) by the Rank Theorem.
7 This serves to emphasise the fact that the G in a G-structure is not an abstract group but a group G together with
a faithful representation in RD or, equivalently, a subgroup of GL(D,R), analogously to the fact that the holonomy
group of a connection should more properly be referred to as the holonomy representation.
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But therein lies one crucial difference between Lorentzian and non-Lorentzian (e.g. Galilean)
geometries: there is no non-Lorentzian analogue of the Fundamental Theorem of Riemannian
Geometry.

The way this fact manifests itself in our two approaches to the proof of the Fundamental
Theorem of Riemannian Geometry is as follows. In the first approach, one simply cannot solve
for the compatible connection in terms of τ and h. There is always an ambiguity and hence
a choice to be made. In the second approach this follows from the linear algebraic fact that
the Spencer differential is no longer an isomorphism: it may have nontrivial kernel and/or
may fail to be surjective. In the case of Galilean and Carrollian G-structures, the two vector
spaces in equation (1.5) have the same dimension, so having a nontrivial kernel implies that
it is not surjective and vice versa. In the first approach, the lack of surjectivity manifests itself
in components of the torsion which do not actually depend on the connection one-form. Such
components signal the existence of nontrivial intrinsic torsion, which is more properly defined
as the cokernel of the Spencer differential: the quotient of the space of torsions by the image
of the Spencer differential.

Since the Spencer differential is G-equivariant, both its kernel and its cokernel are repres-
entations ofG. They are typically not irreducible, but neither are they typically fully reducible.
Every subrepresentation ofG in the cokernel of the Spencer differential defines an intrinsic tor-
sion class. This is not somethingwe are familiar with fromLorentzian geometry, since one con-
sequence of the Fundamental Theorem of Riemannian Geometry is that (pseudo)Riemannian
G-structures have zero intrinsic torsion. In contrast, as shown in [3] (but going back to the
work of Künzle [4]), in generic dimension there are three intrinsic torsion classes of Galilean
geometries, typically called torsion-free, twistless torsional and torsional [5]. Another side of
the same coin is that there is not a unique compatible affine connection to a given Galilean
structure, hence we cannot solve for the connection just from a knowledge of the clock and
ruler: the ambiguity is an arbitrary 2-form.

The study of intrinsic torsion for Galilean and Carrollian G-structures are by now well
understood (see, e.g. [3]) and the Galilean case will be briefly reviewed in our two formalisms
below. The aim of this paper is to initiate the systematic study of intrinsic torsion in more gen-
eral types of non-Lorentzian geometries, collectively called p-brane non-Lorentzian geomet-
ries, to be defined below, which can often be obtained from limits of Lorentzian geometry in
which the local speed of light is sent to infinity or zero in some of the spatial dimensions, while
keeping it finite and nonzero in the remaining dimensions. They form the natural spacetimes in
which non- or ultra-relativistic p-dimensional objects propagate. For instance, the target space-
times of non-relativistic string theory [6, 7] exhibit String Newton–Cartan geometry [8–10],
an example of p-brane non-Lorentzian geometry with p= 1. Here, we will confine ourselves
to p-brane Galilean and Carrollian geometry and mostly focus on the p-brane Galilean case;
although we will explain how to read off the results for p-brane Carrollian geometry from
those of (D− p− 2)-brane Galilean structures (cf the formal duality map of [11, 12]). We note
that our work has some overlap [13] where also p-brane Galilean geometries are discussed.
In particular, the same structure group is used and a partial classification of the geometries is
given.

In this paper, wewill study p-braneGalilean geometry in both a Cartan-geometric way in the
language of G-structures, but also in a more traditional treatment that is similar to discussions
of the p= 0 case that have previously appeared in the physics literature. The group G defining
the G-structure is isomorphic to

G∼= (O(1,p)×O(D− p− 1))⋉R(p+1)(D−p−1) , (1.7)
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but as mentioned above it is not the isomorphism class of the group that determines the G-
structure, but how it sits inside GL(D,R). There are many ways to embed (O(1,p)×O(D−
p− 1))⋉R(p+1)(D−p−1) inside GL(D,R), but each way requires a choice of splitting of RD

into a (p+ 1)-dimensional ‘longitudinal’ space and a (D− p− 1)-dimensional ‘transverse’
space. One of the things that the Cartan-geometric approach will teach us is that whereas
the transverse space is an invariant notion independent of the frame, the longitudinal space is
frame-dependent and hence not intrinsic to the geometry8. The first aim in this paper is the
determination of the intrinsic torsion classes of a p-brane Galilean geometry and their geo-
metric characterisation in terms of the characteristic tensors of the G-structure. We will do
this in two ways, which we could describe as with and without choices. We illustrate the two
approaches in section 2, where we revisit the classification of Galilean structures in terms of
intrinsic torsion.

This paper is organised as follows. In section 2, which we intend to serve as part of a Rosetta
Stone between our two approaches, we briefly review the classification of particle Galilean
geometries in the two languages used in the rest of the paper. We start with the standard
description of such geometries in the physics literature and then we translate into the Cartan-
geometric language of G-structures. Section 3 contains the classification of p-brane Galilean
structures in the language of Cartan geometry and at the start of that section we have a more
detailed description of its contents. Section 4, which we intend to serve as the second part
of our Rosetta Stone, contains a dictionary between the mathematical section 3 and the more
physical section 5. We continue with section 6 where we investigate, using a physics language,
which p-brane Galilean and Carrollian geometries can be obtained by taking a special limit
of the Einstein–Hilbert action of general relativity with its underlying Lorentzian geometry.
The intrinsic torsion classes play an important role in this discussion. They arise in different
ways depending on whether one takes a limit of the Einstein–Hilbert action in a first-order
or second-order formulation. In the first case we find that the limit leads to constraints on the
intrinsic torsion classes specifying which Galilean and Carrollian geometries can be obtained
in this way. In the second case, one finds an additional invariant, called ‘electric’ Galilei/Carroll
gravity in the physics literature, that does not have a first-order formulation and therefore does
not arise in the first case. To compare the remaining invariant that is common to the two limits
we need to apply a so-called Hubbard–Stratonovich transformation in the second-order for-
mulation introducing a Lagrange multiplier. Finally, section 7 contains some conclusions and
points to future work.

2. Galilean geometry

In this section wewill review the classification of Galilean geometries via their intrinsic torsion
in two different ways, illustrating in a simple (but nontrivial) example the two approaches
followed in this paper.

Roughly speaking, a D-dimensional Galilean manifoldM looks locally like D-dimensional
Galilei spacetime, which is a D-dimensional affine space, with a distinguished notion of clock
and ruler. The clock defines a fibration onto the affine line (‘time’) whose fibres are affine
hypersurfaces of simultaneity, copies of (D− 1)-dimensional affine space on which the ruler
agrees with the Euclidean distance.

8 This is, of course, physically desirable since the longitudinal space corresponds to the tangent space to the brane
worldvolume and if this were forced to coincide with a given subspace of the tangent space, it would not allow for
interesting brane dynamics.
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More precisely, then, a Galilean manifold is a triple (M, τ,γ), where τ ∈ Ω1(M) is a
nowhere-vanishing clock one-form defining a corank-1 subbundle E= kerτ ⊂ TM, and γ (the
ruler) is a Riemannian metric on E. This means that γ is a positive-definite section of �2E∗.
It is alas a linear-algebraic fact that the dual of a subspace is not a subspace of the dual, but
rather a quotient, and so too for vector bundles. For example, the dual of E is the quotient
E∗ ∼= T∗M/annE, where annE⊂ T∗M is the annihilator of E, which in this case is the line
bundle spanned by τ . Therefore γ, being a section of �2E∗, is not a tensor field on M, not
being a section of any tensor bundle9, but rather of a quotient of a tensor bundle. Since we
are used to working with tensor fields, the way to remedy this is to observe that a metric on E
defines a metric on E∗, which is then a section h, say, of �2E⊂�2TM and hence a bona fide
tensor field on M. This so-called spatial cometric h has corank 1 and is such that h(τ,−) = 0.
We may therefore rephrase a Galilean manifold as a triple (M, τ,h) with the above proper-
ties. Relative to a local chart with coordinates xµ, we have local expressions: τ = τµdxµ with
τµ = τ(∂µ) and h= hµν∂µ⊗ ∂ν , with hµν = h(dxµ,dxν), where hµντν = 0.

There is a Galilean analogue of the notion of ‘local orthonormal frames’ in Lorentzian
geometry. It is simpler to start by defining a distinguished family of coframes (τ,ea), for
a= 1, . . . ,D− 1, which are one-forms on some chart U⊂M. Whereas τ extends to a global
one-form, the ea are only locally defined, but they satisfy h(ea,eb) = hµνeaµe

b
ν = δab, with

δab the Kronecker delta. It is possible to cover M by charts on which we have such dis-
tinguished coframes and on the overlaps between two such charts, the coframes are related
via local G-transformations, where G is the subgroup of GL(D,R) which preserves τ and
h-orthonormality:

τ 7→ τ and ea 7→ ebRb
a + vaτ, (2.1)

with R ∈ O(D− 1) and v ∈ RD−1. This group G is abstractly isomorphic to the Euclidean
group O(D− 1)⋉RD−1, but there are many such subgroups of GL(D,R) and it is important
to describe it not up to isomorphism but as an actual subgroup of GL(D,R). As a matrix group,
G is given by D×D matrices of the form(

1 0T

v R

)
where v ∈ RD−1 and R ∈ O(D− 1) . (2.2)

Infinitesimally, the above transformations are

δτ = 0 and δea =−λabeb +λaτ. (2.3)

The index a will be freely raised and lowered with a Kronecker delta δab or δab in what fol-
lows. The parameters λab obey λab := δacλ

c
b =−λba and are those of an infinitesimal spatial

rotation, while λa are those of an infinitesimal Galilean boost.
It is now imperative to rewrite the above transformation law in terms of the components of

the coframe relative to a local chart:

δτµ = 0 , δeµ
a =−λab eµb +λa τµ , (2.4)

9 By a tensor bundle on a manifold M we mean a vector subbundle of TM⊗ ·· ·⊗ TM︸ ︷︷ ︸
r

⊗T∗M⊗ ·· ·T∗M︸ ︷︷ ︸
s

for some

non-negative integers r and s.
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since, following time-honoured tradition, we are going to use the same letters for the canon-
ically dual frame, namely (τµ,eaµ). Notice that were we to leave out the local coordinate
indices, we would not be able to tell whether τ was a one-form or a vector field. Notice also
that whereas the one-form τ is a global one-form, the vector field τ is only locally defined.
The dual frame fields τµ and eaµ are defined by the equations

τµτ
µ = 1 , τµea

µ = 0 , eµ
aτµ = 0 , eµ

aeb
µ = δab , τµτ

ν + eµ
aea

ν = δνµ ,

(2.5)

which are just the canonical dual relations expanded out.
In order to define parallel transport in Galilean geometry, we must introduce affine con-

nections. In the standard theoretical physics procedure one introduces a spin connection with
coefficients ωµ

ab =−ωµ
ba and ωµ

a for spatial rotations and Galilean boosts, respectively. This
spin connection transforms under infinitesimal local G-transformations according to the fol-
lowing rules:

δωµ
ab = ∂µλ

ab− 2λ[a|cωµ
c|b] , δωµ

a = ∂µλ
a−λabωµ

b +λbωµ
a
b . (2.6)

One then also defines an affine connection with coefficients Γµ
νρ, that is related to the spin

connection, via the following ‘Vielbein postulate’:

∂µτν −Γρ
µντρ = 0 , ∂µeν

a +ωµ
a
b eν

b−ωµ
a τν −Γρ

µνeρ
a = 0 . (2.7)

This postulate ensures that the connection is compatible with the rank-1 temporal met-
ric τµν = τµτν and the rank-(D− 1) spatial co-metric hµν = eaµebνδab of Galilean geo-
metry. The coefficients Γµ

νρ thus constitute a Galilean analogue of the Christoffel symbols
of (pseudo-)Riemannian geometry.

Anti-symmetrization of (2.7) leads to Cartan’s first structure equation of Galilean geo-
metry:

2∂[µτν] = Tµν
0 with Tµν

0 ≡ 2Γρ
[µν]τρ , (2.8a)

2∂[µeν]
a + 2ω[µ|

a
b e|ν]

b− 2ω[µ
a τν] = Tµν

a with Tµν
a ≡ 2Γρ

[µν]eρ
a , (2.8b)

where Tµν0 and Tµνa are the temporal and spatial components of the torsion tensor Tµνρ ≡
2Γρ

[µν].
Equation (2.8b) can be viewed as a system of linear equations for the spin connection com-

ponents ωµ
ab and ωµ

a. Solving it leads to expressions for some of these components in terms
of derivatives of the coframe fields, the frame fields and the spatial torsion tensor components
Tµνa. Note, however, that (2.8b) does not suffice to express all components of ωµ

ab and ωµ
a

in this way. In particular, one finds that the D(D− 1)/2 components τµωµ
ab and τµωµ

a are
not determined by (2.8b). Unlike what happens in Lorentzian geometry, one thus sees that
metric-compatible connections in Galilean geometry are not uniquely determined in terms of
the metric structure and torsion tensor. Rather, there is a family of metric-compatible connec-
tions with given torsion that is parametrised by the undetermined spin connection components
τµωµ

ab and τµωµ
a.

Another difference with Lorentzian geometry concerns the different role that the temporal
and spatial torsion tensor fields Tµν0 and Tµνa play in Galilean geometry. Whereas setting

8
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components of Tµνa equal to zero merely amounts to a choice of connection, setting compon-
ents of Tµν0 equal to zero also entails extra constraints on the geometry ofM. Indeed, there are
two possible ways in which components of Tµν0 can be set to zero in a G-covariant manner:

ea
µeb

ν Tµν
0 = 0 or Tµν

0 = 0 . (2.9)

From (2.8a), the first possibility implies that

ea
µeb

ν∂[µτν] = 0 ⇔ τ[µ∂ντρ] = 0 ⇔ ∂[µτν] = α[µτν] , (2.10)

for some (global) one-form αµ. It then follows from the Frobenius Integrability Theorem that
M is foliated by spatial hypersurfaces, whose tangent spaces are spanned by the D− 1 vector
fields eaµ. The second possibility Tµν0 = 0 implies that τµ is closed, a constraint stronger
than (2.10). In that case, if τ were to be exact (e.g. if M were simply connected), so that
τµ = ∂µT, the time function T would define an absolute time onM. If τ is closed but not exact,
then the time function only exists locally.

Torsion tensor components like those of Tµν0 in Galilean geometry, whose vanishing leads
to geometric constraints, are indicative of intrinsic torsion. From the above example one sees
that intrinsic torsion can be informally defined as those torsion tensor components for which
the corresponding structure equations (equation (2.8a) in Galilean geometry) do not contain
any spin connection components.

Let us now translate the above into the language of Cartan geometry andG-structures. First,
some notation: we introduce the shorthand V= RD for convenience. Notice that V is not to
be thought of as an abstract vector space, but is just a notation for RD. Let G⊂ GL(V) =
GL(D,R) be a Lie subgroup. A G-structure on a D-dimensional manifold M is a subset of
distinguished frames, which are related not by general linear transformations, but only by those
in G. A more precise definition is that it is a principal G-subbundle P, say, of the frame bundle
ofM. EveryG-structure comes with a soldering form θ, which is a one-form onPwith values in
V. Its value at a frame u ∈ P at p ∈M on a vector X ∈ TuP tangent to P at u is just the coordinate
vector of the projection of X to TpM relative to the frame u. The components of θ relative to
the canonical basis of V define local coframes10 θ0,θ1, . . . ,θD−1, where θ0 = τ and canonical
dual local frame e0,e1, . . . ,eD−1. The soldering form is instrumental in the dictionary between
the linear algebra of representations of G and the tensor bundles overM. Every representation
of G gives rise to an associated vector bundle over M. Since G⊂ GL(V), it acts naturally on
V and hence there is a vector bundle over M associated to V. This bundle is called the fake
tangent bundle and the soldering form, which defines a one-form onM with values in the fake
tangent bundle, defines an isomorphism from the real to the fake tangent bundles.

Any G-equivariant linear map between representations of G induces a bundle map from
the corresponding associated vector bundles. For example, a subrepresentationW⊂ V defines
a subbundle E⊂ TM. Indeed, many of the natural maps between vector bundles in the dif-
ferential geometry of manifolds with a G-structure are induced from linear-algebraic maps
between representations of G. Similarly, G-invariant tensors on V give rise to tensor fields on
M which are said to be characteristic to the G-structure. For example, in Lorentzian geometry,
G is defined as the orthogonal subgroup of GL(V) preserving some inner product. That inner
product gives rise to a metric on M. In Galilean geometry, G is such that it leaves invariant
a covector in V∗ and a symmetric tensor in �2V, giving rise to the clock one-form and the
spatial cometric on M.

10 We choose to index them starting from 0 by analogy with the familiar Lorentzian case.
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In this language connections adapted to the G-structure arise as follows. One picks an
Ehresmann connection on the G-structure, which we recall is a principal G-bundle P over
M. It can be described in many equivalent ways: as a G-invariant horizontal distribution in
TP, as a g-valued one-form on P or, locally on M, as a g-valued one-form (i.e. a gauge field).
An Ehresmann connection in turn gives a Koszul connection on any associated vector bundle
to the G-structure, and therefore in particular on the fake tangent bundle. Since the soldering
form sets up a bundle isomorphism between the fake and real tangent bundles, we may trans-
port the Koszul connection on the fake tangent bundle to an affine connection on the tangent
bundle. This affine connection is said to be adapted to the G-structure and is compatible with
the characteristic tensor fields. We may contrast this with the approach outlined above, which
introduces both an affine and a spin connections subject to a Vielbein postulate. The Vielbein
postulate encodes the fact that the affine connection is the one obtained from the Koszul con-
nection on the fake tangent bundle via the soldering form. Indeed, the Vielbein postulate simply
says that the soldering form (as a one-form on M with values in the fake tangent bundle) is
parallel, where we use the affine connection on the one-form indices and the spin connection
on the frame indices. It is then an easy consequence of the fact that the characteristic tensor
fields come from G-invariant tensors, that any adapted affine connection is compatible with
the characteristic tensor fields.

It is often convenient to work on the total space P of the G-structure, since the objects
of interest are globally defined. Let ω be the g-valued one-form of the Ehresmann connection
and let θ be theV-valued soldering form. Cartan’s first structure equation defines theV-valued
torsion 2-form Θ by

Θ= dθ+ω ∧ θ, (2.11)

where the second term in the RHS involves the action of ω, which is g-valued, on θ which is
V-valued.Θ is a globally defined 2-form on P with values in V. It can also be understood as a
2-form onM with values in the fake tangent bundle or, via the soldering form, also as a 2-form
on M with values in the tangent bundle, which is the usual description of the torsion tensor of
an affine connection. Indeed, for any two vector fields X,Y ∈ X (M),

Θa (X,Y) = dθa (X,Y)+ωa
b (X)θ

b (Y)−ωa
b (Y)θ

b (X)

= Xθa (Y)−Yθa (X)− θa ([X,Y])+ωa
b (X)θ

b (Y)−ωa
b (Y)θ

b (X)

= θa (∇XY)− θq (∇YX)− θa ([X,Y]) (by the vielbein postulate)

= θa (∇XY−∇YX− [X,Y])

= θa
(
T∇ (X,Y)

)
,

where we have used the vielbein postulate in the form

Xθa (Y)+ωa
b (X)θ

b (Y)− θa (∇XY) = 0. (2.12)

Now suppose that ω ′ is the connection one-form of another Ehresmann connection. Then
ω ′ = ω+κ, where κ is a one-formwith values in g, descending toM as a one-formwith values
in the vector bundle AdP associated to the adjoint representation g. The torsion 2-form Θ ′ of
ω ′ is related to that of ω by

Θ ′ = dθ+ω ′ ∧ θ =Θ+κ∧ θ. (2.13)

The passage from κ to κ∧ θ can be described on many levels: it is a bundle map between
vector bundles on M and a tensorial map between the space of sections. These sections are

10
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Figure 1. This figure illustrates the different spaces in the 4-term exact sequence (2.15)
defined by the Spencer differential ∂. The larger of the two left ellipses stands for the
space Hom(V,g)∼= g⊗V∗ of differences of adapted connections, whereas the smal-
ler shaded ellipse is the subspace of such differences which do not alter the torsion:
the kernel of ∂. The larger of the two middle ellipses stands for the vector space
Hom(∧2V,V)∼= V⊗∧2V∗ of all torsion tensor components, whereas the smaller one
stands for the image of ∂. The rightmost ellipse stands for the quotient vector space
coker ∂ = Hom(Λ2V,V)/im ∂ of equivalence classes of torsion tensors, where two
torsion tensors are equivalent if their difference is due to a change in the connection.
Therefore these equivalence classes are, by definition, independent of the connection
and hence intrinsic to the G-structure.

G-equivariant functions on P with values in the corresponding representations of G and the
tensorial map is simply composition with a linear map between the corresponding represent-
ations. This linear map ∂ : g⊗V∗→ V⊗∧2V∗ is an instance of a Spencer differential11. We
also use the same notation for the associated bundle map and map between sections. In partic-
ular we can write Θ ′ =Θ+ ∂κ, where for any two vector fields X,Y ∈ X (M),

∂κ(X,Y) = κ(X)Y−κ(Y)X. (2.14)

Any linear map has a kernel and cokernel and ∂ is no exception. But there is more: since
∂ is G-equivariant, its kernel and cokernel are G-submodules, and we get a four-term exact
sequence of G-modules and G-equivariant linear maps:

0−−−→ ker∂ −−−→ g⊗V∗ ∂−−−→ V⊗∧2V∗ −−−→ coker ∂ −−−→ 0, (2.15)

where coker ∂ = (V⊗∧2V∗)/im ∂. This sequence is illustrated in figure 1.
The bundles associated to the representations in the sequence (2.15) have the following

geometric interpretation:

• g⊗V∗ corresponds to the differences between adapted connections;
• V⊗∧2V corresponds to the space of torsions;

11 Spencer cohomology is a bigraded cohomology theory which governs the obstructions to integrability of a G-
structure. The intrinsic torsion which occupies us in this paper is but one of these groups. Boris Kruglikov [14] has
recently calculated the full Spencer cohomology for the p-brane galilean/carrollian G-structures discussed in this
paper. In particular, he has calculated the prolongations of the Lie algebra of G and shown that these G-structures are
of infinite type, a result which for the (particle) galilean G-structure goes back to Künzle [4].

11
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• ker∂ ⊂ g⊗V∗ are the changes in the connection which do not alter the torsion; and
• coker ∂ is the space of intrinsic torsions, which is the main object of study in this paper.

The reason we say that coker ∂ consists of intrinsic torsions is that the difference in the tor-
sions of any two adapted connections lives in the image of the Spencer differential, hence the
projection of the torsion to coker ∂ is independent on the adapted connection. It is therefore
an intrinsic property of the G-structure. This means that we can calculate the intrinsic torsion
departing from any adapted connection.

For Galilean G-structures, as calculated in [3, 4], one has isomorphisms ker∂ ∼= coker ∂ ∼=
∧2V∗ as representations ofG. On the one hand, the isomorphism ker∂ ∼= ∧2V∗ implies that the
torsion does not uniquely determine an adapted connection: one may modify the connection
by a section of the associated vector bundle to ∧2V∗ (i.e. by a 2-form) without altering the
torsion. On the other hand, the isomorphism coker ∂ ∼= ∧2V∗ says that the intrisinc torsion of
a Galilean structure is captured by a 2-form, which one calculates to be the composition of the
torsion T∇ of the adapted affine connection ∇ with the clock one-form T∇ 7→ τ ◦T∇. Since
T∇ is a 2-form with values in vector fields, its composition with the one-form τ is simply a
2-form. Using that τ is parallel with respect to ∇, one calculates that τ ◦T∇ = dτ , which, as
expected, is independent of the connection.

The story does not end there. As a representation of G, the vector space ∧2V∗ is not irredu-
cible; although it is indecomposable. In generic dimension (here, dimV 6= 2) it has a unique
proper subrepresentation, whose associated vector bundle is the subbundle of the bundle of 2-
forms whose sections are characterised by the property that they are in the kernel of wedging
with τ . Therefore we have threeG-subrepresentations of∧2V∗ and hence three intrinsic torsion
classes:

• vanishing intrinsic torsion: dτ = 0;
• ‘twistless’ intrinsic torsion: dτ 6= 0 but τ ∧ dτ = 0; and
• generic intrinsic torsion: τ ∧ dτ 6= 0.

This classification agrees with the torsionless, twistless torsional and torsional Newton–Cartan
geometries introduced in [5].

3. p -brane Galilean geometries à la Cartan

In the previous section we have discussed the classification of Galilean geometries in terms of
the intrinsic torsion of the associated G-structure. In this paper we follow the philosophy that
such geometries describe the Galilean structure on amanifold onwhich a point particle propag-
ates. If instead we are interested in describing the propagation of extended objects (strings
or, more generally, p-branes), then the relevant structure is the so-called p-brane Galilean
structure.

Intuitively, a p-brane propagating in a D-dimensional manifold M is defined by an embed-
ding Σ→M, where the image of Σ in M is the (p+ 1)-dimensional worldvolume of the
p-brane. Let us consider Σ to be Lorentzian, for the sake of exposition, so that it has a
(pseudo-)orthonormal coframe ϑ0, . . . ,ϑp where the metric is given by−(ϑ0)2 +(ϑ1)2 + · · ·+
(ϑp)2. This suggests that in M we should have distinguished coframes (θ0, . . . ,θD−1) with
η =−(θ0)2 +(θ1)2 + · · ·+(θp)2 a global section of�2T∗M. The common kernel of θ0, . . . ,θp

defines a subbundle E⊂ TM. Dually, we say that θ0, . . . ,θp span the annihilator annE⊂ T∗M.

12
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We see that η is then a section of�2 annE⊂�2T∗M, which is nondegenerate in that it defines
a Lorentzian metric on TM/E. By analogy with the particle case, we take the ‘ruler’ now to be
a Riemannian metric γ on E, which as before we invert to a cometric h on E∗ which is a tensor
field onM, being a section of�2E⊂�2TM. Therefore we take a p-brane Galilean structure on
M to be a pair of tensors η and h, where η defines a metric on TM/E, with E⊂ TM a corank-
(p+ 1) subbundle of TM, and h, a section of �2E⊂�2TM, defines a Riemannian cometric: a
Riemannian metric on E∗. This gives rise to distinguished coframes (θ0, . . . ,θD−1) where the
θ0, . . . ,θp are such that η =−(θ0)2 + · · ·+(θp)2 and h(θi,θj) = δij for i, j = p+ 1, . . . ,D− 1.
Such distinguished coframes are related on the overlaps by local G-transformations where
G⊂ GL(D,R) is the subgroup which preserves η and h. The canonical dual frames to these
distinguished coframes define a G-structure on M and it is one of the aims of this paper to
explain the classification of such G-structures in terms of their intrinsic torsion classes.

Given a frame (e0,e1, . . . ,eD−1) in theG-structure, the tangent spaces toM break up into two
subspaces: a longitudinal subspace spanned by e0, . . . ,ep and a transverse subspace spanned by
ep+1, . . . ,eD−1. This latter subspace is the fibre to the subbundle E and hence it is well-defined
and independent of the frame. However, this is not so for the longitudinal subspace, which
is not preserved by G. Indeed, whereas θ0, . . . ,θp do transform into each other (analogous to
how θ0 is invariant in the particle case–i.e. p= 0), the remaining θp+1, . . . ,θD−1 do not. Dually,
whereas the span of the ep+1, . . . ,eD−1 is preserved, that of the e0, . . . ,ep is not. What this says
is that the defining representation of G is not irreducible (the transverse subspace is invariant),
but it is indecomposable in that the transverse subspace has no invariant complement. This
somewhat complicates the treatment and suggests rephrasing the discussion in terms of filtered
G-representations to be useful.

This section is organised as follows. In section 3.1 we briefly recap the basic language of
filtered modules and their associated graded modules. In section 3.2 we identify the group G
of interest. The group G is isomorphic to the semidirect product

Hom
(
Rp+1,RD−p−1

)
⋊ (O(p,1)×O(D− p− 1)) ,

but this isomorphism is not canonical. What we do have is an abelian extension of H :=
O(p,1)×O(D− p− 1) by the abelian normal subgroup B := Hom(Rp+1,RD−p−1), with
(g,h) ∈ H acting on b ∈ B by b 7→ h ◦ b ◦ g−1. This extension splits, but not canonically12.
In section 3.3 we briefly recall the notion of the intrinsic torsion of a G-structure and set up
the problem we wish to solve: in the first instance, the determination of the G-submodules
of the cokernel of the Spencer differential, and then the geometric characterisation of each of
the intrinsic torsion classes. In this section we work only with G-invariant objects: G-modules
and G-equivariant maps. This comes at a price: since the group G does not act fully reducibly
in the vector spaces of interest, we have G-modules and G-submodules without G-invariant
complements. In other words, we have filtered G-modules, with section 3.4 displaying the rel-
evant G-invariant filtrations of the vector spaces. In section 3.5 we determine the kernel of the
Spencer differential and its structure as a G-module. We do this while maintaining manifest

12 This is analogous to the Poincaré group being described as the semidirect product of the Lorentz group and the
translations, suggesting misleadingly that there is a preferred Lorentz subgroup of the Poincaré group: in fact, there is
one for every point in Minkowski spacetime and they are all conjugate (under translations) subgroups of the Poincaré
group. The translations, being a normal subgroup, are invariant under conjugation and hence they are unambiguously
defined.
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G-symmetry via the trick of passing from a filtered module to its associated graded module.
This results in non-isomorphic G-modules with isomorphic underlying vector spaces, hence
equivalent for the purposes of counting dimension. In section 3.7 we establish an explicit G-
equivariant isomorphism between the kernel and cokernel of the Spencer differential. This
allows us to transport the G-submodules of the kernel and arrive at the G-submodules of the
cokernel: that is, the intrinsic torsion classes, culminating in theorem 20. In section 3.8 we
describe each of the torsion classes algebraically as submodules of the space of torsions and
we derive alternative geometric characterisations of each of the classes in terms of the sub-
bundle E and the characteristic tensor fields of the G-structure. The main result is summarised
in theorem 29.

Throughout this section we have used the language of p-brane Galilean structures, which
assumes that η is Lorentzian and h Riemannian, but nothing in the formalism uses the signa-
tures. By taking η Riemannian and h Lorentzian, we can describe (D− p− 2)-brane Carrollian
structures. This means that the classification of standard (particle) Carrollian G-structures fol-
lows formally from that of the (D− 2)-brane Galilean structures, where the worldvolume of
the brane is a domain wall. In this section we are taking p to be generic, and this leaves some
special cases to be further discussed, chiefly stringy Galilean and Carrollian structures, which
will be the subject of a later work.

3.1. Brief recap of filtrations

In this section we will be making use of some basic language of filtered representations of a
Lie group G, or, with some abuse of language, filtered G-modules.

Suppose that V is a G-module which admits a G-submodule W⊂ V; that is, a vector sub-
space which is preserved by G, so that g · v ∈W for all v ∈W and g ∈ G. This gives rise to a
canonical short exact sequence of G-modules:

0−−−→W−−−→ V−−−→ V/W−−−→ 0. (3.1)

In an ideal world, one would expect that there should be a complementaryG-submoduleW ′ ⊂
V such that V=W⊕W ′. If so, we would say that the above sequence splits (in the category
of G-modules): the splitting being the G-module isomorphism V/W→W ′ ⊂ V. Alas, the real
world is far from ideal and it happens very often (and we will see plenty of examples below)
that no such complementary submodule exists. Of course, we always have a complementary
vector subspace, but it will not be preserved by G. This situation is a paradigmatic example of
a filtered G-module.

More generally, a (finite, descending) filtration V• of a G-module V is a sequence of G-
submodules

V= V0 ⊃ V−1 ⊃ V−2 ⊃ ·· · ⊃ V−N = 0, (3.2)

for someN ∈ N. We often find it convenient to extend the filtration infinitely in both directions,
declaring that Vi = V for all i ⩾ 0 and Vi = 0 for all i ⩽−N. We say that v ∈ Vi has filtration
degree⩽ i. It follows that every quotient Vi := Vi/Vi−1 is naturally a G-module. These are the
graded pieces of the associated graded module to the filtered module V:

grV=
⊕
i⩽0

Vi = V0⊕V−1⊕ ·· ·⊕V−N+1, (3.3)

14
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where V−N+1 = V−N+1, since V−N = 0. Again, we sometimes find it convenient to extend the
grading to a Z-grading, declaring that Vi = 0 for i> 0 and i⩽−N. If v ∈ Vi, we will let [v]
denote its image in Vi. We say that [v] has degree i. Counting dimensions, we see that

dimgrV= dimV0 + dimV−1 + · · ·+ dimV−N+1

=
(
dimV0− dimV−1

)
+
(
dimV−1− dimV−2

)
+ · · ·+

(
V−N+1− dimV−N

)
= dimV0− dimV−N

= dimV.

Despite the fact that grV and V are G-modules of the same dimension, they need not be iso-
morphic as G-modules. Nevertheless, it is often convenient to pass to grV in order to count
dimension. We shall see some examples of this procedure below.

A filtration V• induces a filtration of the dual module V∗:

0= annV0 ⊂ annV−1 ⊂ annV−2 ⊂ ·· · ⊂ annV−N+1 ⊂ annV−N = V∗, (3.4)

where ann denotes the annihilator of a subspace. The associated gradedG-module grV∗ is now
positively graded:

grV∗ =
⊕
i⩾1

(V∗)i , (3.5)

where

(V∗)i = ann V−i/ann V−i+1 ∼=
(
V−i+1/V−i

)∗
= V∗

−i+1. (3.6)

This implies that

grV∗ ∼=
⊕
i⩾1

V∗
−i+1 =

⊕
i⩽0

V∗
i , (3.7)

where we have re-indexed the direct sum.
Let V• andW• be two filtered G-modules and let φ : V→W be a G-equivariant linear map.

Assume further that φ is compatible with the filtration, in that φ : Vi →Wi for all i. Then φ
induces a linear map grφ : grV→ grW by declaring for all v ∈ Vi

grφ([v]) = [φ(v)] (3.8)

or, equivalently, grφ(v+Vi−1) = φ(v)+Wi−1. Since φ is G-equivariant, its kernel is a G-
submodule of V. Moreover, it is a filtered G-submodule, inheriting the filtration from that of
V via

(kerφ)i = Vi ∩ kerφ. (3.9)

Its associated graded G-module is grkerφ =
⊕

i(kerφ)i, where (kerφ)i consists of those [v]
where v ∈ (kerφ)i. How does this compare with the kernel of grφ? The kernel of grφ is a
graded G-submodule of grV, where kergrφ =

⊕
i (kergrφ)i with (kergrφ)i ⊂ Vi consisting

of those [v] ∈ Vi such that φ(v) ∈Wi−1. Therefore we see that grkerφ⊂ kergrφ as a graded
G-submodule. A natural question is when this inclusion becomes an equality.
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The linear map φ typically has pieces of different filtration degrees defined as follows. We
have vector space isomorphisms jV : V→ grV and jW :W→ grW, so that given φ : V→W we
obtain a map Φ := jW ◦φ ◦ j−1

V : grV→ grW defined by the commutativity of the following
square:

This map Φ between graded G-modules breaks up into pieces Φ = φ0 +φ−1 +φ−2 + · · · ,
where φj : Vi →Wi+j for all i and only non-positive degrees appear because φ respects the
filtration. It is clear that φ0 = grφ. Notice also that kerΦ = grkerφ and hence, as we saw
above, kerΦ ⊂ kerφ0. If Φ = φ0, so that φj = 0 for all j< 0, then clearly kerΦ = kerφ0 and
hence grkerφ = kergrφ. We summarise this discussion as follows:

Lemma 1. If Φ = φ0, so that φj = 0 for all j< 0, then kergrφ = grkerφ.

3.2. The Lie group G of interest

In this section we will define the Lie group G of the p-brane Galilean G-structure and will
identify it as a subgroup of GL(D,R). This structure group has also been discussed in [13].

Let V= RD and let W⊂ V be a nonzero subspace. We will let dimW= D− p− 1. Let
annW⊂ V∗ denote the annihilator ofW. It therefore has dimension dim annW= p+ 1. Notice
that W∗ 6⊂ V∗, but rather W∗ ∼= V∗/annW.

We let η ∈ �2 annW⊂�2V∗ and h ∈ �2W⊂�2V be non-degenerate, in the sense that we
have short exact sequences

0−−−→W−−−→ V η♭

−−−→ annW−−−→ 0, (3.11)

and

0−−−→ annW−−−→ V∗ h♯−−−→W−−−→ 0, (3.12)

where η♭ : V→ annW and h♯ : V∗→W are defined by

η (v,v ′) =
〈
η♭ (v) ,v ′

〉
and h(α,α ′) =

〈
α,h♯ (α ′)

〉
, (3.13)

for all v,v ′ ∈ V and α,α ′ ∈ V∗, where 〈−,−〉 : V∗×V→ R denotes the dual pairing. Notice
that η♭ ◦ h♯ = 0 and h♯ ◦ η♭ = 0, but in fact, more is true: im h♯ = kerη♭ and im η♭ = kerh♯, so
that we have an exact pair

V
η♭

⇄
h♯
V∗. (3.14)

It follows that η and h induce symmetric bilinear inner products η on V/W and h on W∗ ∼=
V∗/annW, respectively. Of course, h in turn defines an inner product on W, which we will
denote γ: explicitly,
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γ
(
h♯α,w

)
:= 〈α,w〉 . (3.15)

Since im h♯ =W, this allows us to calculate γ(w ′,w) simply by choosing α with h♯(α) = w ′.
Such α is not unique, but the ambiguity lies in annW and hence γ is well-defined13.

Let G⊂ GL(V) = GL(D,R) be the subgroup preserving η and h. In other words, g ∈
GL(V) belongs to G if and only if

η (g · v,g · v ′) = η (v,v ′) and h(g ·α,g ·α ′) = h(α,α ′) (3.16)

for all v,v ′ ∈ V and α,α ′ ∈ V∗. Here g· means the natural action of g ∈ GL(V) in V or V∗,
which are related by

〈g ·α,v〉=
〈
α,g−1 · v

〉
. (3.17)

Lemma 2. Let g ∈ GL(V). Then g ∈ G if and only if

g · η♭ (v) = η♭ (g · v) and g · h♯ (α) = h♯ (g ·α) , (3.18)

for all v ∈ V and α ∈ V∗.

Proof. This follows from the fact that the equations in (3.16) and (3.18) coincide. Let us
first discuss the first equation. Let g ∈ GL(V) and let v,v ′ ∈ V. Then from the first equation
in (3.13),

η (g · v,g · v ′) =
〈
η♭ (g · v) ,g · v ′

〉
=
〈
g−1 · η♭ (g · v) ,v ′

〉
and hence g satisfies the first equation in (3.16) if and only if for all v,v ′ ∈ V,〈

g−1 · η♭ (g · v) ,v ′
〉
=
〈
η♭ (v) ,v ′

〉
.

Since this holds for all v′, nondegeneracy of the dual pairing says that we may abstract v′ and
hence arrive at

g−1 · η♭ (g · v) = η♭ (v) for all v ∈ V,

which is equivalent to η♭(g · v) = g · η♭(v) for all v ∈ V, which is the first equation in (3.18).
To prove the equivalence between the second equations, we again let g ∈ GL(V) and now

α,α ′ ∈ V∗. From the second equation in (3.13), we have that

h(g ·α ′,g ·α) =
〈
g ·α ′,h♯ (g ·α)

〉
=
〈
α ′,g−1 · h♯ (g ·α)

〉
and hence g satisfies the second equation in (3.16) if and only if for all α,α ′ ∈ V∗,〈

α ′,h♯ (α)
〉
=
〈
α ′,g−1 · h♯ (g ·α)

〉
.

13 An alternative definition of γ is γ(w,w ′) = h(α,α ′) where α,α ′ ∈ V∗ are such that h♯α= w and h♯α ′ = w ′,
which again is well-defined despite the fact that α and α ′ are only defined up to annW.
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By non-degeneracy of the dual pairing we may abstract α ′, arriving at

h♯ (α) = g−1 · h♯ (g ·α) for all α ∈ V∗,

which is equivalent to h♯(g ·α) = g · h♯(α) for all α ∈ V∗, which is the second equation
in (3.18).

Notice that W⊂ V and annW⊂ V∗ are G-submodules, since they are kernels of G-
equivariant linear maps. In other words, we have the following short exact sequences of G-
modules:

0−−−→W−−−→ V−−−→ V/W−−−→ 0 (3.19)

and, dually,

0−−−→ annW−−−→ V∗ −−−→ V∗/annW−−−→ 0. (3.20)

Neither of these sequences splits (as G-modules), so that there is no G-submodule of V
(resp. V∗) complementary to W (resp. annW). The exact sequences (3.11) and (3.12), as well
as the exact pair (3.14), are also exact sequences ofG-modules withG-equivariant linear maps.
Indeed, these sequences exhibit V and V∗ as filtered G-modules.

Lemma 3. G preserves the inner product γ on W defined by equation (3.15).

Proof. Let w= h♯(α) and w ′ = h♯(α ′) for some α,α ′ ∈ V∗ and let g ∈ G. Then

γ(g ·w,g ·w ′) = γ(g · h♯(α),g · h♯(α ′)

= γ(h♯(g ·α),h♯(g ·α ′)) (by the second equation in (3.18))

= h(g ·α,g ·α ′) (by definition of γ)

= h(α,α ′) (since h is G-invariant)

= γ(h♯(α),h♯(α ′)) (by definition of γ)

= γ(w,w ′).

Let g denote the Lie algebra of G. Since G⊂ GL(V), we have that g is a Lie subalgebra of
gl(V). This means that we may identify every X ∈ g with the corresponding endomorphism
X ∈ EndV. The dual representation on V∗ is such that X 7→ −Xt ∈ EndV∗, where Xt ∈ EndV∗

is the transpose map, defined by

〈Xt ·α,v〉= 〈α,X · v〉 , (3.21)

for all α ∈ V∗ and v ∈ V.
The following lemma follows from lemma 2 by taking g= exp(tX) in equation (3.18) and

differentiating with respect to t at t= 0.
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Lemma 4. The Lie algebra g of G consists of those endomorphisms X ∈ End V such that

η♭ ◦X+Xt ◦ η♭ = 0 and X ◦ h♯ + h♯ ◦Xt = 0. (3.22)

The G-submodule W⊂ V defines a G-invariant filtration of V and a corresponding dual
filtration of V∗:

0⊂W⊂ V and 0⊂ annW⊂ V∗ (3.23)

and these in turn give rise to the following G-submodules of EndV∼= V⊗V∗:

with arrows depicting inclusions. This results in a filtration14 of V⊗V∗:

0⊂W⊗ annW⊂W⊗V∗ +V⊗ annW⊂ V⊗V∗. (3.25)

By intersecting with g we get G-submodules of g⊂ EndV

which in turn gives rise to a filtration of g:

0⊂ g∩ (W⊗ annW)⊂ g∩ (W⊗V∗)+ g∩ (V⊗ annW)⊂ g. (3.27)

Let us now start to understand the structure of g.

Lemma 5. Let X ∈ EndV.

(a) The condition imX⊂W implies that η♭ ◦X+Xt ◦ η♭ = 0.
(b) The condition W⊂ kerX implies that X ◦ h♯ + h♯ ◦Xt = 0.

14 We use the notation V1 +V2 for the vector space sum of subspaces V1 and V2 which need not be direct, since
V1 ∩V2 need not be 0. Indeed, in the filtration of EndV given by equation (3.25), the intersection of W⊗V∗ and
V⊗ annW is precisely W⊗ annW.
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Proof. (a) SinceW= kerη♭, if imX⊂W, then η♭ ◦X= 0. But this means that for all v,v ′ ∈ V,

0= η (v,Xv ′)

=
〈
η♭v,Xv ′

〉
=
〈
Xtη♭v,v ′

〉
so that Xt ◦ η♭ = 0.

(b) Since W= imh♯, the fact that W⊂ kerX says that X ◦ h♯ = 0. But this means that for all
α,α ′ ∈ V∗,

0=
〈
α ′,Xh♯α

〉
=
〈
Xtα ′,h♯α

〉
= h(Xtα ′,α)

= h(α,Xtα ′)

=
〈
α,h♯Xtα ′〉

and hence h♯ ◦Xt = 0.

The endomorphisms in W⊗ annW—i.e. those whose image lies in W and whose kernel
contains W—belong to g and can in fact be interpreted as the p-brane analogue of Galilean
boosts.

Lemma 6. W⊗ annW⊂ g.

Proof. Any endomorphism X ∈W⊗ annW is such that W⊂ kerX and imX⊂W, hence by
lemmas 5 and 4, X ∈ g.

The spaces in the above filtration (3.27) of g can be characterised as follows:

W⊗ annW=
{
X ∈ EndV

∣∣ imX⊂W and W⊂ kerX
}

g∩ (W⊗V∗) =
{
X ∈ EndV

∣∣ imX⊂W and X ◦ h♯ + h♯ ◦Xt = 0
}

g∩ (V⊗ annW) =
{
X ∈ EndV

∣∣ W⊂ kerX and Xt ◦ η♭ + η♭ ◦X= 0
}
.

(3.28)

The fact thatW⊂ V is a G-submodule can be rephrased as saying that every X ∈ g is a sum
X= Y+Z of an endomorphism Y with W⊂ kerY and an endomorphism Z with imZ⊂W.
A consequence of that observation is that whereas (W⊗V∗)+ (V⊗ annW)⊊V⊗V∗, it is
nevertheless true that

g∩ (W⊗V∗)+ g∩ (V⊗ annW) = g. (3.29)

It follows that g is a filtered Lie algebra:

0⊂W⊗ annW⊂ g, (3.30)

where W⊗ annW= g∩ (W⊗V∗)∩ (V⊗ annW).
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Recall that the filtration of V induces a filtration of V∗, by declaring that the dual pairing
should have degree zero. This in turn induces a filtration of EndV∼= V⊗V∗ and hence of
g⊂ EndV. One way to rephrase all this is that the filtration of the Lie algebra g is compatible
with the filtrations of the modules V and V∗. Indeed, letting g0 = g, g−1 =W⊗ annW and
g−2 = 0 and similarly V0 = V, V−1 =W and V−2 = 0, then it is clear that gi ×Vj→ Vi+j

under the action of g15. Similarly, if we let (V∗)1 = V∗, (V∗)0 = annW and (V∗)−1 = 0, then
gi × (V∗)j→ (V∗)i+j. Of course, the adjoint module of g itself is filtered: [gi,gj]⊂ gi+j, since
g is a filtered Lie algebra.

Lemma 7. The subspaces g∩ (W⊗V∗) and g∩ (V⊗ annW) are Lie subalgebras of g con-
taining W⊗ annW as an abelian ideal.

Proof. This follows easily from the characterisations (3.28) of the subspaces g∩ (W⊗V∗) and
g∩ (V⊗ annW). For example, let X,Y ∈ g∩ (W⊗V∗). Then the image of [X,Y] = X ◦Y−Y ◦
X is certainly contained in W since this is true for X and Y separately. The condition X ◦ h♯ +
h♯ ◦Xt = 0 says that h is invariant, which is preserved under commutators of endomorphisms:

[X,Y] ◦ h♯ = X ◦Y ◦ h♯−Y ◦X ◦ h♯

=−X ◦ h♯ ◦Yt +Y ◦ h♯ ◦Xt

= h♯ ◦Xt ◦Yt− h♯ ◦Yt ◦Xt

= h♯ ◦ [Xt,Yt]

= h♯ ◦ [Y,X]t

=−h♯ ◦ [X,Y]t .

The proof that g∩ (V⊗ annW) is a Lie subalgebra is similar, mutatis mutandis. Finally, let us
show that both Lie algebras haveW⊗ annW as an abelian ideal. ThatW⊗ annW is abelian is
clear since if X,Y ∈W⊗ annW, then X ◦Y= 0. To show that it is an ideal of g∩ (V⊗ annW),
let X ∈ g∩ (V⊗ annW) and Y ∈W⊗ annW. Then X ◦Y= 0 and Y ◦X has image inW because
Y does and annihilatesW since X does. Therefore [X,Y] =−Y ◦X ∈W⊗ annW. The proof for
g∩ (W⊗V∗) is similar, and results in [X,Y] = X ◦Y for X ∈ g∩ (W⊗V∗) and Y ∈W⊗ annW,
which is clearly in W⊗ annW.

We now identify the quotient Lie algebras of g∩ (W⊗V∗) and g∩ (V⊗ annW) by their
ideal W⊗ annW. As discussed above, η induces a non-degenerate inner product η on the
quotient vector space V/W. Let so(V/W,η) denote the η-skewsymmetric endomorphisms of
V/W. To be more concrete, let us denote by v 7→ v the canonical surjection V→ V/W. Then
η(v,v ′) = η(v,v ′), which is well defined since W= kerη♭. Let X ∈ EndV preserve W, so that
Xw ∈W for all w ∈W. Then X induces an endomorphism X ∈ End(V/W) by Xv= Xv, which
is well-defined precisely because X preserves W. Moreover, all endomorphisms of V/W are
of the form X for some X ∈ EndV preserving W. Finally, so(V/W,η) consists of those endo-
morphismsX ofV/W such that η(Xv,v ′) =−η(v,Xv ′) for all v,v ′ ∈ V/W. Similarly, so(W,γ)
are those endomorphisms Y of W such that γ(Yw,w ′) =−γ(w,Yw ′)for all w,w ′ ∈W.

15 For this to hold for every i, j, it is necessary to extend the filtrations in both directions, by declaring gi = g for all
i ⩾ 0 and gi = 0 for all i ⩽−2 and similarly for V. We similarly extend the filtration of V∗ for what follows.
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Proposition 8. There are Lie algebra isomorphisms

g∩ (W⊗V∗)

W⊗ annW
∼= so(W,γ) and

g∩ (V⊗ annW)

W⊗ annW
∼= so(V/W,η) . (3.31)

Proof. Let X : V→W and let X| ∈ EndW denote its restriction to W. This defines a surjective
map Hom(V,W)→ EndW with kernel W⊗ annW. This map is actually a Lie algebra homo-
morphism. Indeed, if we let X,Y ∈ Hom(V,W), then[

X|,Y|
]
= X| ◦Y|−Y| ◦X|

= X ◦Y|−Y ◦X| (since imX⊂W and imY⊂W)

= (X ◦Y)|− (Y ◦X)|
= [X,Y]| .

If in addition X ∈ g, so that X ∈ g∩ (W⊗V∗) then X| ∈ so(W,γ). Indeed, let w= h♯α and
w ′ = h♯α ′, then

Xw= Xh♯α=
(
X ◦ h♯

)
(α) =−

(
h♯ ◦Xt

)
(α) =−h♯ (Xtα)

and hence

γ (Xw,w ′) =−γ
(
h♯ (Xtα) ,h♯ (α ′)

)
=−

〈
Xtα,h♯α ′〉 (by definition of γ)

=−
〈
α,Xh♯α ′〉 (by definition of Xt)

=
〈
α,h♯ (Xtα ′)

〉
(since X ∈ g)

= γ
(
h♯α,h♯ (Xtα ′)

)
(by definition of γ)

=−γ (w,Xw ′) .

Furthermore, we claim that the linear map g∩ (W⊗V∗)→ so(W,γ) is surjective. Indeed, let
X| ∈ so(W,γ) for some X ∈W⊗V∗ where X is defined up toW⊗ annW. Wewant to show that
X ∈ g∩ (W⊗V∗), which, by the characterisation (3.28) and since imX⊂W, is tantamount to
showing that X ◦ h♯ + h♯ ◦Xt = 0. The first observation is that if it holds for some X ∈W⊗V∗,
it holds for X+B for any B ∈W⊗ annW, since B ◦ h♯ = 0 (since imh♯ =W) and h♯ ◦B= 0
(since kerh♯ = annW). So it is enough to show it for any such X. Since the restriction to W
lies in so(W,γ), we have that for all w,w ′ ∈W,

γ (w,Xw ′)+ γ (w ′,Xw) = 0.

Since h♯ : V∗→W is surjective, this is equivalent to

γ
(
h♯α,Xh♯β

)
+ γ

(
h♯β,Xh♯α

)
= 0 (3.32)
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for all α,β ∈ V∗. Therefore,

0= γ
(
h♯α,Xh♯β

)
+ γ

(
h♯β,Xh♯α

)
(by equation (3.32))

=
〈
α,Xh♯β

〉
+
〈
β,Xh♯α

〉
(by definition of γ)

=
〈
α,Xh♯β

〉
+
〈
Xtβ,h♯α

〉
(by definition of Xt)

=
〈
α,Xh♯β

〉
+
〈
α,h♯Xtβ

〉
(since h is symmetric)

=
〈
α,
(
X ◦ h♯ + h♯ ◦Xt

)
β
〉
.

Sinceα,β ∈ V∗ are arbitrary, this shows that X ◦ h♯ + h♯ ◦Xt = 0 and hence X ∈ g∩ (W⊗V∗).
In summary, we have a surjective Lie algebra homomorphism g∩ (W⊗V∗)→ so(W,γ) with
kernel the ideal W⊗ annW, which proves the first isomorphism.

To prove the second isomorphism, we observe that we have an isomorphism V⊗ annW∼=
Hom(V/W,V). Composing with the projection V→ V/W we obtain a surjective map V⊗
annW→ End(V/W), sending X 7→ X with kernel W⊗ annW. This map is again a Lie algebra
homomorphism. Indeed, if X,Y ∈ V⊗ annW, then

[
X,Y
]
v= X

(
Y(v)

)
−Y

(
X(v)

)
= X

(
Yv
)
−Y

(
Xv
) (

by definition of X,Y
)

= XYv−YXv
(
by definition of X,Y

)
= [X,Y]v

= [X,Y]v.
(
by definition of [X,Y]

)
Since this holds for every v, we may abstract it and hence [X,Y] = [X,Y].

If now X ∈ g∩ (V⊗ annW), then for all v,v ′ ∈ V,

η
(
Xv,v ′

)
= η

(
Xv,v ′

)
= η (Xv,v ′)

=−η (v,Xv ′) (since X ∈ g)

=−η
(
v,Xv ′

)
=−η

(
v,X · v ′

)
,

so that X ∈ so(V/W,η). Furthermore, we claim that this map g∩ (V⊗ annW)→ so(V/W,η)
is surjective. Every X ∈ End(V/W) comes from some X ∈ V⊗ annW, which is only defined
up to the addition of some B ∈W⊗ annW. We want to show that if X ∈ so(V/W,η), then
X ∈ g∩ (V⊗ annW). From the characterisation (3.28) and since for X ∈ V⊗ annW, it follows
that kerX⊃W, we need only show that Xt ◦ η♭ + η♭ ◦X= 0. As before, we observe that if this
holds for some X ∈ V⊗ annW, it holds for X+B for any B ∈W⊗ annW. This is because
Bt ◦ η♭ = 0 (since imη♭ = annW⊂ kerBt) and η♭ ◦B= 0 (since imB⊂W= kerη♭). Now let
u,v ∈ V be arbitrary and consider
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〈(
Xt ◦ η♭ + η♭ ◦X

)
u,v
〉
=
〈
Xtη♭u,v

〉
+
〈
η♭Xu,v

〉
=
〈
η♭u,Xv

〉
+
〈
η♭Xu,v

〉
(by definition of Xt)

= η (u,Xv)+ η (Xu,v) (by definition of η)

= η
(
u,Xv

)
+ η

(
Xu,v

)
(by definition of η)

= η
(
u,Xv

)
+ η

(
Xu,v

) (
by definition of X

)
= 0.

(
since X ∈ so(V/W,η)

)
.

Therefore we have established a surjective Lie algebra homomorphism g∩ (V⊗ annW)→
so(V/W,η) with kernel the ideal W⊗ annW, which proves the second isomorphism.

Finally, we can characterise the Lie algebra g.

Proposition 9. The Lie algebra g is isomorphic to an abelian extension

0−−−→ Hom(V/W,W)−−−→ g−−−→ so(W,γ)⊕ so(V/W,η)−−−→ 0, (3.33)

where the action of (X|,Y) ∈ so(W,γ)⊕ so(V/W,η) on Z ∈ Hom(V/W,W) is given by

[(
X|,Y

)
,Z
]
= X ◦Z−Z ◦Y. (3.34)

Proof. Recall that g admits the filtration (3.30) and that a filtered Lie algebra is isomorphic
(as a vector space) to its associated graded Lie algebra, giving a vector space isomorphism

g∼= (W⊗ annW)⊕ g∩ (W⊗V∗)

W⊗ annW
⊕ g∩ (V⊗ annW)

W⊗ annW
∼= Hom(V/W,W)⊕ so(W,γ)⊕ so(V/W,η) ,

(3.35)

where we have used proposition 8.
We show that W⊗ annW is an ideal of g. Indeed, let X ∈ g and Y ∈W⊗ annW. Then

[X,Y] = X ◦Y−Y ◦X.

Since imY⊂W and W⊂ V is a submodule, we see that im[X,Y]⊂W. If w ∈W,

[X,Y]w= X(Yw)−Y(Xw) .

The first term is zero because W⊂ kerY and the second term is zero because, in addition,
Xw ∈W. Therefore W⊂ ker[X,Y] and hence [X,Y] ∈W⊗ annW.

The subalgebras g∩ (V⊗ annW) and g∩ (W⊗V∗) do not commute: if X ∈ g∩ (V⊗
annW) and Y ∈ g∩ (W⊗V∗), then since imY⊂ kerX, we have X ◦Y= 0 and hence their com-
mutator is [X,Y] =−Y ◦X, which belongs to the idealW⊗ annW. Therefore they do commute
when we quotient by the ideal.
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Using the shorthand A= g∩ (V⊗ annW) and B= g∩ (W⊗V∗) and observing that W⊗
annW= A∩B, we have the following exact sequence

0−−−→ A∩B−−−→ A+B−−−→ (A+B)/B⊕ (A+B)/A−−−→ 0,

where the middle map is made out of the two canonical surjections A+B→ (A+B)/B and
A+B→ (A+B)/A. Applying twice the Second Isomorphism Theorem to conclude that (A+
B)/B∼= A/(A∩B) and (A+B)/A∼= B/(A∩B), we obtain

g/(W⊗ annW) = (A+B)/(A∩B)∼= (A/A∩B)⊕ (B/A∩B) ,

so that by proposition 8 the quotient is the direct sum so(W,γ)⊕ so(V/W,η).
Finally, that the action of so(W,γ)⊕ so(V/W,η) on W⊗ annW is as stated, follows from

the proof of lemma 7.

The ideal Hom(V/W,W) is abelian, whereas when dimW,dimV/W⩾ 3, the Lie
algebra so(W,γ)⊕ so(V/W,η) is semisimple. Therefore, the extension (3.33) splits: indeed,
Hom(V/W,W) is the radical of g and it follows from the Levi–Malcev Theorem that g splits
over its radical and the Levi factor (i.e. a Lie subalgebra of g isomorphic to so(W,γ)⊕
so(V/W,η)) is only defined up to conjugation. Even if either dimW= 2 or dimV/W= 2,
so that so(W,γ)⊕ so(V/W,η) fails to be semisimple, the sequence again splits, but the split-
ting in any case is never canonical. Every such splitting implies a choice of complementary
subspace toW in V. Without making this choice, proposition 9 is the best description possible
of the Lie algebra of G⊂ GL(V).

3.3. G-structures and adapted connections

We will briefly review the basic definitions of G-structure and adapted connections and use
them to state the problem we wish to solve. We shall make a simplifying assumption on our
manifolds in that they admit a G-structure which reduces to the connected component of the
identity of the group we have been discussing. This would be automatic if, for example, M
were simply-connected.

Hence from now on we will let G be the connected subgroup of GL(V) generated by g;
that is, the identity component of what we used to call G in the previous section. We now
let M be a D-dimensional manifold admitting a G-structure π : P→M. In other words, P is
a (right) G-principal subbundle of the bundle of frames of M. As reviewed in [3], we will
go back and forth between representations E of G and the corresponding associated vector
bundles P×G E→M, and between G-equivariant linear maps φ : E→ F and the correspond-
ing bundle maps Φ : P×G E→ P×G F. An Ehresmann connection ω ∈ Ω1(P;g) on P gives
rise to a Koszul connection on any associated vector bundle P×G E. In particular, if we take
E= V, we get a Koszul connection on the fake tangent bundle P×G V. The soldering form
θ ∈ Ω1(P;V) defines an isomorphism between P×G V and the tangent bundle TM and the
Koszul connection on P×G V induces an affine connection∇ on TM which is said to be adap-
ted to the G-structure. Adapted connections parallelise the characteristic tensor fields of the
G-structure.
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Let ∂ : Hom(V,g)→ Hom(∧2V,V) denote the Spencer differential, defined as the
composition

Hom(V,g)
∼=−−−→g⊗V∗ ρ⊗idV∗−−−→ V⊗V∗⊗V∗ idV⊗∧2

−−−→ V⊗∧2V∗ ∼=−−−→Hom(∧2V,V), (3.36)

where ρ : g→ V⊗V∗ is the representation map g→ EndV (which is just the inclusion) com-
posed with the isomorphism EndV∼= V⊗V∗.

Lemma 10. The linear map ∂ : Hom(V,g)→ Hom(∧2V,V) defined in equation (3.36) is G-
equivariant.

Proof. We argue that all the maps in equation (3.36) are G-equivariant. This is clear for the
isomorphisms Hom(V,g)∼= g⊗V∗ andV⊗∧2V∗ ∼= Hom(∧2V,V) and similarly for the map
idV⊗∧2, since the identity and the alternation ∧2 are GL(V)-equivariant, so in particular
equivariant under any subgroup, such as G. It remains to show that ρ : g→ V⊗V∗ is G-
equivariant. This is equivalent to showing that the inclusion g→ EndV, is G-equivariant, but
this is almost a tautology. Indeed, let X ∈ g and g ∈ G. Then AdgX= gXg−1, and the LHS can
be interpreted as the inclusion of g ·X in EndV, whereas the RHS is the composition of the
inclusion of X with the action of g on EndV. The equality between the LHS and the RHS is
precisely G-equivariance.

The explicit form of the Spencer differential on κ : V→ g is given by ∂κ : ∧2V→ V, where
for all v,v ′ ∈ V,

(∂κ)(v∧ v ′) = κ(v)v ′−κ(v ′)v, (3.37)

and we extend linearly to all of ∧2V. Being a linear map and G-equivariant, the Spencer dif-
ferential belongs to an exact sequence of G-modules:

0−−−→ ker∂ −−−→ Hom(V,g) ∂−−−→Hom
(
∧2V,V

) pr−−−→coker ∂ −−−→ 0, (3.38)

resulting in a corresponding exact sequence of associated vector bundles. The bundle cor-
responding to Hom(V,g) is the bundle of one-forms with values in the adjoint bundle adP:
this is the bundle of differences between two adapted connections. The bundle associated to
Hom(∧2V,V) is the bundle of 2-forms with values in TM, where the torsion tensor of an
affine connection lives. The image under (the bundle version of) the Spencer differential of
κ ∈ Ω1(M;adP) is the effect on the torsion of an adapted connection of modifying the con-
nection by adding κ. Symbolically, T∇+κ = T∇ + ∂κ. Therefore the bundle corresponding to
coker ∂ is the bundle of intrinsic torsions: the part of the torsion which is independent of the
connection and hence intrinsic to the G-structure.

We now proceed to determine the G-module structure of coker ∂ more precisely, in order
to arrive at the G-submodules of coker ∂ and hence at the intrinsic torsion classes.

3.4. Some filtered G-modules

We now start the study of the G-modules appearing in the intrinsic torsion exact
sequence (3.38). We will first exhibit them as filtered G-modules.
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We have already seen three filtered G-modules: V, V∗ and g, where the G-invariant filtra-
tions are given as follows:

0⊂W⊂ V, 0⊂ annW⊂ V∗ and 0⊂W⊗ annW⊂ g. (3.39)

These filtrations give rise to the following G-submodules of Hom(V,g)∼= g⊗V∗:

and of Hom(∧2V,V)∼= V⊗∧2V∗:

We have written these submodules as submodules of g⊗V∗ and V⊗∧2V∗, respectively, but
it is convenient to understand them in terms of linear maps in Hom(V,g) and Hom(∧2V,V).
This is easy to do by inspection, obtaining the following characterisations of theG-submodules
of Hom(V,g):

g⊗ annW=
{
κ ∈Hom(V,g)

∣∣ κ(w) = 0, ∀ w ∈W
}

W⊗ annW⊗V∗ =
{
κ ∈Hom(V,g)

∣∣ κ(v)w= 0 and κ(v)v ′ ∈W ∀ v,v ′ ∈V, w ∈W
}

W⊗ annW⊗ annW=

{
κ ∈Hom(V,g)

∣∣ κ(w) = 0,
κ(v)w= 0 and κ(v)v ′ ∈W

∀ v,v ′ ∈V, w ∈W

}
,

(3.42)
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and those of Hom(∧2V,V):

W⊗∧2V∗ =
{
T ∈ Hom

(
∧2V,V

) ∣∣ T(v∧ v ′) ∈W, ∀ v,v ′ ∈ V
}

V⊗ annW∧V∗ =
{
T ∈ Hom

(
∧2V,V

) ∣∣ T(w∧w ′) = 0, ∀ w,w ′ ∈W
}

W⊗ annW∧V∗ =

{
T ∈ Hom

(
∧2V,V

) ∣∣T(w∧w ′) = 0 and
T(v∧ v ′) ∈W,

∀ w,w ′ ∈W, v,v ′ ∈ V
}

V⊗∧2 annW=
{
T ∈ Hom

(
∧2V,V

) ∣∣ T(v∧w) = 0, ∀ v ∈ V, w ∈W
}

W⊗∧2 annW=

{
T ∈ Hom

(
∧2V,V

) ∣∣T(v∧w) = 0 and
T(v∧ v ′) ∈W,

∀ w ∈W, v,v ′ ∈ V
}
.

(3.43)

It follows from the description of the G-submodules of Hom(V,g) in equation (3.42) that

(g⊗ annW)∩ (W⊗ annW⊗V∗) =W⊗ annW⊗ annW (3.44)

and hence we may derive the following filtration of g⊗V∗ from (3.40)

0⊂W⊗ annW⊗ annW⊂ (g⊗ annW+W⊗ annW⊗V∗)⊂ g⊗V∗. (3.45)

Similarly, it follows from the description of the G-submodules of Hom(∧2V,V) given
in (3.43) that

W⊗ annW∧V∗ =
(
W⊗∧2V∗)∩ (V⊗ annW∧V∗) (3.46)

and that

W⊗∧2 annW= (W⊗ annW∧V∗)∩
(
V⊗∧2 annW

)
. (3.47)

This results in the following filtration of V⊗∧2V∗:

0⊂W⊗∧2 annW⊂
(
W⊗ annW∧V∗ +V⊗∧2 annW

)
⊂
(
W⊗∧2V∗ +V⊗ annW∧V∗)⊂ V⊗∧2V∗. (3.48)

As discussed in section 3.1, every filteredG-module has an associated gradedmodule which
is the direct sum of the consecutive quotients in the filtration. Of course a filtered G-module
and its associated graded G-module are not necessarily isomorphic as G-modules; although
they are of course isomorphic as vector spaces. Therefore their utility in this paper lies mostly
in counting dimensions.

It may help the discussion to assign explicit filtration degrees. Recall that we have filtered
V asV= V0 ⊃ V−1 =W⊃ V−2 = 0 andV∗ asV∗ = (V∗)1 ⊃ (V∗)0 = annW⊃ (V∗)−1 = 0.
The associated graded modules are grV= V0⊕V−1 with V0 = V and V−1 =W, where we
have introduced the shorthandV= V/W, and grV∗ = V∗

1 ⊕V∗
0 , withV∗

1 = V/annW∼=W∗ and
V∗

0 = annW∼= V∗. These assignments then force η (and hence η♭) to have degree 0 and h (and
hence h♯) to have degree−2. The filtration of g is induced from that of V⊗V∗ by demanding
that the representation map g→ V⊗V∗ should preserve the filtration. Its associated graded
Lie algebra is grg= g0⊕ g−1, with g−1 =W⊗V∗ and g0 = so(W)⊕ so(V), where we have
used the isomorphism annW∼= V∗ and abbreviated so(W,γ) to so(W) and so(V,η) to so(V).
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We may work out gr(g⊗V∗) simply by declaring it to inherit the grading from g and V∗,
resulting in

gr(g⊗V∗) = (g0⊕ g−1)⊗ (V∗
1 ⊕V∗

0)

= (g0⊗V∗
1)⊕ (g0⊗V∗

0 ⊕ g−1⊗V∗
1)⊕ (g−1⊗V∗

0) ,
(3.49)

from where we read off (now reverting to writing g⊗V∗ as Hom(V,g))

grHom(V,g) =
1⊕

i=−1

Hom(V,g)i , (3.50)

where

Hom(V,g)−1 = Hom(V,Hom(V,W))

Hom(V,g)0 = Hom(W,Hom(V,W))⊕Hom(V,so(V)⊕ so(W))

Hom(V,g)1 = Hom(W,so(V)⊕ so(W)) .

(3.51)

Similarly, we grade ∧2V∗ as

gr∧2 V∗ = ∧2 (V∗
1 ⊕V∗

0) = ∧2V∗
1 ⊕ (V∗

1 ∧V∗
0)⊕∧2V∗

0 = ∧2W∗⊕ (V∗ ∧W∗)⊕∧2V∗

(3.52)

and in turn this allows us to grade V⊗∧2V∗ as

gr
(
V⊗∧2V∗)= (V0⊕V−1)⊗

((
∧2V∗)

2
⊕
(
∧2V∗)

1
⊕
(
∧2V∗)

0

)
=
(
V0⊗

(
∧2V∗)

2

)
⊕
(
V−1⊗

(
∧2V∗)

2
⊕V0⊗

(
∧2V∗)

1

)
⊕
(
V0⊗

(
∧2V∗)

0
⊕V−1⊗

(
∧2V∗)

1

)
⊕
(
V−1⊗

(
∧2V∗)

0

)
,

(3.53)

from where we read off

grHom
(
∧2V,V

)
=

2⊕
i=−1

Hom
(
∧2V,V

)
i
, (3.54)

where

Hom
(
∧2V,V

)
−1

= Hom
(
∧2V,W

)
Hom

(
∧2V,V

)
0
= Hom(V∧W,W)⊕Hom

(
∧2V,V

)
Hom

(
∧2V,V

)
1
= Hom

(
∧2W,W

)
⊕Hom(V∧W,V)

Hom
(
∧2V,V

)
2
= Hom

(
∧2W,V

)
.

(3.55)

This now allows us to determine the kernel and cokernel of the Spencer differential as G-
modules. We will first deal with the kernel.
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3.5. The kernel of the Spencer differential

Since the Spencer differential ∂ : Hom(V,g)→ Hom(∧2V,V) is G-equivariant, we may
restrict it to the G-submodules of Hom(V,g) listed in equation (3.42).

Lemma 11. The Spencer differential induces the following G-equivariant linear maps:

W⊗ annW⊗ annW
∂1−−−→W⊗∧2 annW

W⊗ annW⊗V∗ ∂2−−−→W⊗ annW∧V∗

g⊗ annW
∂3−−−−−→V⊗ annW∧V∗,

(3.56)

whose kernels are given by

ker∂1 =
{
κ ∈Hom(V,g)

∣∣ κ(w) = 0 and κ(v)v ′ = κ
(
v ′
)
v ∈W, ∀ w ∈W, v,v ′ ∈V

}
ker∂2 =

{
κ ∈Hom(V,g)

∣∣ κ(w)w ′ = 0 and κ(v)v ′ = κ
(
v ′
)
v ∈W, ∀ w,w ′ ∈W, v,v ′ ∈V

}
ker∂3 =

{
κ ∈Hom(V,g)

∣∣ κ(w) = 0 and κ(v)v ′ = κ
(
v ′
)
v, ∀w ∈W, v,v ′ ∈V

}
,

(3.57)

which are G-submodules of ker∂. Furthermore, ∂1 is surjective and ker∂1 = ker∂2 ∩ ker∂3.

Proof. We must work out the codomains of the linear maps ∂1,∂2,∂3 in equation (3.56) and
their kernels. We do this one map at a time.

(∂1) Suppose that κ ∈W⊗ annW⊗ annW, so that κ(w) = 0, κ(v)w= 0 and κ(v)v ′ ∈W for
all v,v ′ ∈ V and w ∈W. Let T= ∂κ. Then

T(v∧w) = κ(v)w−κ(w)v= 0 (since κ(w) = 0 and κ(v)w= 0 ∀v ∈ V,w ∈W)

T(v∧ v ′) = κ(v)v ′−κ(v ′)v ∈W, (since κ(v)v ′ ∈W for all v,v ′ ∈ V)

so that T ∈W⊗∧2 annW. Therefore ∂1 :W⊗ annW⊗ annW→W⊗∧2annW is simply
the skew-symmetrisation of the last two tensorands, which is clearly surjectivewith kernel
the symmetrisation W→�2 annW.

(∂2) Now suppose that κ ∈W⊗ annW⊗V∗, so that κ(v)w= 0 and κ(v)v ′ ∈W for all v,v ′ ∈
V and w ∈W. Let T= ∂κ. Then

T(w∧w ′) = κ(w)w ′−κ(w ′)w= 0 (since κ(v)w= 0 for all v ∈ V and w ∈W)

T(v∧ v ′) = κ(v)v ′−κ(v ′)v ∈W, (since κ(v)v ′ ∈W for all v,v ′ ∈ V)

so that T ∈W⊗ annW∧V∗. Therefore ∂2 :W⊗ annW⊗V∗→W⊗ annW∧V∗.
(∂3) Finally, let κ ∈ g⊗ annW, so that κ(w) = 0. Let T= ∂κ. Then

T(w∧w ′) = κ(w)w ′−κ(w ′)w= 0. (since κ(w) = 0 for all w ∈W)

Therefore T ∈ V⊗ annW∧V∗ and hence ∂3 : g⊗ annW→ V⊗ annW∧V∗.

Finally, the intersection ker∂2 ∩ ker∂3 = ker∂1 is evident from the descriptions of the kernels.

The following result allows to better understand ker∂ as a G-module.
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Lemma 12. Let κ ∈ ker∂. Then

(a) For all v,v ′ ∈ V, κ(v)v ′ ∈W;
(b) for all w,w ′ ∈W, κ(w)w ′ = 0.

Proof. Both results follow from the well-known fact (see, e.g. [3, lemma 2]) that for any vector
space U, the two subspaces U⊗∧2U and�2U⊗U of U⊗3 have zero intersection. Dually, any
third-rank tensor S ∈ (U∗)⊗3 satisfying S(v1,v2,v3) = S(v2,v1,v3) =−S(v1,v3,v2) is identic-
ally zero.

(a) Let S ∈ (V∗)⊗3 be defined by

S(v1,v2,v3) := η (κ(v1)v2,v3) for all v1,v2,v3 ∈ V,

which obeys

S(v1,v2,v3) = S(v2,v1,v3) (because ∂κ= 0)

=−S(v1,v3,v2) . (because κ(v1) ∈ g)

Therefore S= 0 and hence for all v1,v2 ∈ V, κ(v1)v2 ∈ kerη♭ =W.
(b) Define S ∈ (W∗)⊗3 by

S(w1,w2,w3) := γ (κ(w1)w2,w3) for all w1,w2,w3 ∈W,

which obeys

S(w1,w2,w3) = S(w2,w1,w3) (because ∂κ= 0)

=−S(w1,w3,w2) . (because κ(w1) ∈ g)

This says that S= 0 and hence, since γ is an inner product onW, this shows that κ(w1)w2 =
0 for all w1,w2 ∈W.

It follows from lemmas 11 and 12 that ker∂ ⊂ ker∂2, but since ∂2 is the restriction of ∂ to
a subspace, we also have that ker∂2 ⊂ ker∂, hence we conclude that they are the same.

Proposition 13. The kernel of the Spencer differential ∂ : Hom(V,g)→ Hom(∧2V,V) is
given by

ker∂ =
{
κ ∈Hom(V,g)

∣∣ κ(w)w ′ = 0 and κ(v)v ′ = κ
(
v ′
)
v ∈W, ∀ w,w ′ ∈W, v,v ′ ∈V

}
.

(3.58)

In particular, this shows that ker∂3 = ker∂1 and we arrive at the following G-invariant fil-
tration of ker∂:

0⊂ ker∂1 ⊂ ker∂. (3.59)

The map ∂1 :W⊗ annW⊗ annW→W⊗∧2 annW is simply skew-symmetrising the last two
tensorands; that is, ∂1 = idW⊗∧, whose kernel is the symmetric partW⊗�2 annW. Since η ∈
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�2 annW is G-invariant, ker∂1 has a submodule16 W⊗Rη, where Rη is the one-dimensional
subpace of annW⊗ annW spanned by η; that is,

W⊗Rη =
{
κ ∈ Hom(V,g)

∣∣ κ(v)v ′ = wη (v,v ′) for some w ∈W and all v,v ′ ∈ V
}
.

(3.60)

Alternatively, we see that W⊗Rη is the image of the G-equivariant linear map W→
Hom(V,g) given by w 7→ w⊗ η♭ ∈W⊗ annW⊗V∗ ⊂ g⊗V∗.

The G-submodule W⊗Rη admits a G-invariant complement, described as follows. Recall
that we are using the shorthandV= V/W. There is a canonical isomorphism annW∼= V∗ under
which any τ ∈ �2 annW is sent to τ ∈ �2V∗. This applies in particular to η, resulting in the
inner product η on V which was introduced at the start of this section. Being an inner product,
it defines a musical isomorphism η♯ : V∗→ V and this allows us to define a linear map

trη :�2 annW→ R (3.61)

as the following composition of linear maps:

�2 ann W ↪→ ann W⊗ ann W
∼=−−−→ V∗⊗V∗ η♯⊗ id−−−→V⊗V∗ ∼=−−−→End V

tr−−−→R, (3.62)

where the last map is the usual trace of endomorphisms. Notice that we may apply this to η
itself, resulting in the trace of the identity endomorphism, so that trηη = dimV= dim annW=
p+ 1. This allows us to decompose every τ ∈ �2 annW uniquely into

τ = τ0 +
trητ
p+ 1

η, (3.63)

where τ0 = τ − trητ
p+1η ∈ �

2
0annW, with �2

0 annW the kernel of the trace map trη :�2 annW→
R defined in equation (3.61). We may summarise this discussion as follows.

Lemma 14. The G-submodule �2 annW⊂�2V∗ is reducible:

�2 annW=�2
0 annW⊕Rη. (3.64)

In summary, letting K = ker∂1 = K0⊕Ktr denote the above decomposition with K0 =
W⊗�2

0annW and Ktr =W⊗Rη, we have the following G-submodules of ker∂:

16 If p= 0, so that dim annW= 1, then this is all of the kernel of ∂1. That was the case treated in [3], which results in
the filtration 0 ⊂W⊗Rη ⊂ ker∂, which as we will see below induces a similar filtration of coker ∂ resulting in the
well-known classification of Galilean structures into torsionless, twistless torsional and torsional.
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Lemma 11 defines K = ker∂1 and ker∂ = ker∂2. The two G-submodules of K can be
characterised as follows:

Ktr =
{
κ ∈ Hom(V,g)

∣∣ κ(v)v ′ = η (v,v ′) w̃ ∀ v,v ′ ∈ V and some w̃ ∈W
}

K0 =
{
κ ∈ Hom(V,g)

∣∣ κ(w) = 0 ∀ w ∈W and trηκ= 0
}
,

(3.66)

where in the second line trη : Hom(�2V,W)→W is the η-trace of the linear map �2V→W
induced by the linear map �2V→W given by sending (v,v ′) 7→ κ(v)v ′, which is symmetric
for κ ∈ ker∂.

Up to this point we have been agnostic as to the signatures of γ and η, only assuming
that they are nondegenerate. However, their signatures do play a rôle when discussing the
(ir)reducibility of Ktr and K0, to which we now turn.

It is clear that if dimW⩾ 3, then Ktr, which is isomorphic to W as a G-module, is irredu-
cible, since G acts on W via SO(W,γ) and the vector representation of the special orthogonal
group is irreducible in dimension ⩾ 3. Of course, if dimW= 1, then W is, by definition, irre-
ducible. It remains to discuss dimW= 2. If γ is positive-definite, then W (being real) is also
irreducible, but if γ is indefinite then it breaks up into a direct sum of two one-dimensional
irreducible submodules. Indeed, let e± be aWitt (a.k.a. lightcone) basis forW relative to which
γ(e+,e−) = 1 and γ(e±,e±) = 0. The Lorentz group consists only of boosts. Infinitesimally,
the boost generator B is such that Be± =±e± and hence W=W+⊕W−, where W± = Re±.
In summary, Ktr is irreducible unless dimW= 2 and γ is indefinite.

Similarly, K0
∼=W⊗�2

0 annW is irreducible unless dimW= 2 and γ is indefinite (as for
Ktr) or dim annW= 2 and η is indefinite, since in that case dim�2

0 annW= 2 and again it
breaks up into a direct sum of two one-dimensional submodules. Indeed, in terms of a Witt
basis θ± for annW, a basis for �2

0annW is given by their symmetric squares (θ±)2 and under
the action of the infinitesimal boost generator B, B(θ±)2 =∓2(θ±)2.

We have not made a choice of signature for γ and η, but there are two perspectives we
can take. On the one hand, we can think in terms of p-brane Galilean structures, where η has
signature (1,p) and γ is positive-definite of size D− p− 1. This means that Ktr is always irre-
ducible, but K0 is only irreducible if p 6= 1. The reducible case corresponds to stringy Galilean
structures.

On the other hand, if we were to think in terms of (D− p− 2)-brane Carrollian structures,
then η would be positive-definite of size p+ 1 and γ would be indefinite of signature (1,D−
p− 2) and hence both Ktr and K0 would fail to be irreducible when p= D− 3, which is the
case of stringy Carrollian structures.

Hence our results in this section are incomplete for the stringy Galilean and Carrollian
structures. In terms of our original data, we will therefore not claim completeness for p= 1 (η
indefinite), and p= D− 3 (γ indefinite). We reiterate that most of our treatment goes through
in these cases as well, but there will be more intrinsic torsion classes than in the generic case
due to some of the representations occurring no longer being irreducible.

3.6. The associated graded Spencer differential

The Spencer differential ∂ : Hom(V,g)→ Hom(∧2V,V) is a G-equivariant map and it pre-
serves the filtrations on both the domain and codomain. In section 3.4 we discussed the
associated graded modules grHom(V,g) and grHom(∧2V,V), which are given respectively
by equations (3.50) and (3.51) for grHom(V,g) and by equations (3.54) and (3.55) for
grHom(∧2V,V). These associated gradedG-modules are isomorphic (as vector spaces, but not
necessarily as G-modules) to the filtered G-modules. Let j1 : Hom(V,g)→ grHom(V,g) and
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j2 : Hom(∧2V,V)→ grHom(∧2V,V) be the corresponding vector space isomorphisms. Then
the Spencer differential induces a map∆ := j2 ◦ ∂ ◦ j−1

1 : grHom(V,g)→ grHom(∧2V,V) by
demanding the commutativity of the following square

This linear map∆ between two graded vector spaces may have components of different (non-
positive, since ∂ preserves the filtration) degrees: ∆= ∂0 + ∂−1 + ∂−2 + · · · . The degree-0
component ∂0 is the associated graded map gr∂, but there could in principle be components
of negative degrees. To see that this does not actually happen, we study the map ∆. From the
explicit form of the Spencer differential in equation (3.36), we see that

so(V)⊗W∗⊕ so(W)⊗W∗ ∆−−−→V⊗V∗ ∧W∗⊕W⊗∧2W∗

so(V)⊗V∗⊕ so(W)⊗V∗⊕W⊗V∗⊗W∗ ∆−−−→V⊗∧2V∗⊕W⊗V∗ ∧W∗

W⊗V∗⊗V∗ ∆−−−−−−−−−−−−−−−→W⊗∧2V∗

(3.68)

so that ∆ maps Hom(V,g)i → Hom(∧2V,V)i for all i =−1,0,1. Hence ∆= ∂0 = gr∂ and
hence by lemma 1, kergr∂ = grker∂. It follows therefore that dimker∂ = dimgrker∂ =
dimkergr∂ and from the Rank Theorem also that rank∂ = rankgr∂.

We now analyse gr∂ in more detail to determine its kernel and count its dimension.

Proposition 15. The linear map gr∂ : grHom(V,g)→ grHom(∧2V,V) induced by the
Spencer differential, decomposes into the following maps:

1. a surjective map Hom(V,Hom(V,W))↠ Hom(∧2V,W), sending κ to ∂κ(v∧ v ′) =
κ(v)v ′−κ(v ′)v, whose kernel is given by

K−1 =
{
κ ∈ Hom(V,Hom(V,W))

∣∣ κ(v)v ′ = κ(v ′)v ∈W, ∀ v,v ′ ∈ V
}
; (3.69)

2. a surjective map

Hom(V,so(V))⊕Hom(V,so(W))⊕Hom(W,Hom(V,W))↠ Hom
(
∧2V,V

)
⊕Hom(V∧W,W) ,

(3.70)

which itself breaks up into two maps:

(a) an isomorphism Hom(V,so(V))
∼=−→ Hom(∧2V,V), and

(b) a surjective map Hom(V,so(W))⊕Hom(W,Hom(V,W))↠ Hom(V∧W,W), whose
kernel given by

K0 =

{
κ+λ ∈Hom(V,so(W))⊕Hom(W,Hom(V,W))

∣∣∣∣∣ κ(v)w= λ(w)v ∈W
∀ v ∈ V, w ∈W

}
;

(3.71)
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3. an injective map Hom(W,so(W))⊕Hom(W,so(V)) ↪→ Hom(∧2W,W)⊕Hom(V∧W,V),
which itself breaks up into two maps:

(a) an isomorphism Hom(W,so(W))
∼=−→ Hom(∧2W,W), and

(b) an injective map Hom(W,so(V)) ↪→ Hom(V∧W,V), which sends κ to ∂κ(v∧w) =
−κ(w)v.

Proof. The fact that the domains and codomains of the maps are as described follows by
inspection as was stated above.

That the maps in (2)(a) and (3)(a) are isomorphisms can be proved as follows. Let κ ∈
Hom(V,so(V)) be in the kernel of gr∂. Then κ(v1)v2 = κ(v2)v1 for all v1,v2 ∈ V. This shows
that η(κ(v1)v2,v3) is symmetric in v1↔ v2 and, since κ(v1) ∈ so(V), it is also skew-symmetric
in v2↔ v3. Hence as in the proof of lemma 12, we conclude that η(κ(v1)v2,v3) = 0 for all
v1,v2,v3 ∈ V, and since η is an inner product, this implies that κ= 0. Therefore the map
in (2)(a) is injective, but since it maps between two spaces of equal dimension, the Rank
Theorem says that it is an isomorphism. A similar argument shows that the map in (3)(a)
is an isomorphism.

It is clear from the explicit expression that the map in (3)(b) is injective, since if κ(w)v= 0
for all v ∈ V and w ∈W, then κ(w) = 0 for all w ∈W and thus κ= 0. The kernels K−1 in (1)
and and K0 in (2)(b) follow from the explicit expression of the Spencer differential. The fact
that the map in (1) is surjective can be seen as follows: the map in question is the composition
Hom(V,Hom(V,W)∼= Hom(V⊗V,W)→ Hom(∧2V,W), where the first map is the inverse of
the currying isomorphism and the second is skew-symmetrisation, which is certainly surject-
ive. Finally, the map in (2)(b) is surjective already when restricted to Hom(W,Hom(V,W))
since it is up to a sign the inverse of the currying isomorphism Hom(W,Hom(V,W))∼=
Hom(V⊗W,W) composed with the isomorphism V∧W∼= V⊗W.

It follows from the previous discussion and the fact that the rank and nullity of ∂ and gr∂
agree, that

rank ∂ = rank gr ∂ = dimHom
(
∧2V,W

)
+ dimHom

(
∧2V,V

)
+ dimHom (V∧W,W)

+ dimHom
(
∧2W,W

)
+ dimHom (W,so(V))

= 1
2D

2
(
(D− p− 1)2 +Dp

)
(3.72)

and from the Rank Theorem

dimker∂ = dimkergr ∂ = dimHom (V,g)− rank ∂ = 1
2D(D− p− 1)(p+ 1) . (3.73)

Notice that grker∂ = K−1⊕K0, so that dimker∂ = dimK−1 + dimK0. Together with the fact
that K−1

∼= Hom(�2V,W) has dimension dimK−1 =
1
2 (D− p− 1)(p+ 1)(p+ 2), we see that

dimK0 =
1
2 (D− p− 1)(p+ 1)(D− p− 2).

3.7. Intrinsic torsion classes

Notice that dimg= dim∧2V, so that dimHom(V,g) = dimHom(∧2V,V) and applying
the Euler–Poincaré principle to the exact sequence (3.38), we conclude that dimker∂ =
dimcoker ∂. More is true, however, and they are isomorphic as G-modules, as we now show.

Define ϕ : Hom(∧2V,V)→ Hom(V,EndV) by T 7→ ϕT where
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〈α,ϕT (v)v
′〉 := η

(
T
(
v∧ h♯α

)
,v ′
)
+ η

(
T
(
v ′ ∧ h♯α

)
,v
)

(3.74)

for all α ∈ V∗ and v,v ′ ∈ V.

Lemma 16. ϕT(v)v ′ = ϕT(v ′)v ∈W for all v,v ′ ∈ V.

Proof. The symmetry in v↔ v ′ is clear from the definition. To show that the result lies in W,
let v ′ ′ ∈ V be arbitrary and calculate

η (v ′ ′,ϕT (v)v
′) =

〈
η♭v ′ ′,ϕT (v)v

′
〉

(by definition of η)

= η
(
T
(
v∧ h♯η♭v ′ ′

)
,v ′
)
+ η

(
T
(
v ′ ∧ h♯η♭v ′ ′

)
,v
)

= 0,
(
since h♯ ◦ η♭ = 0

)
so that ϕT(v)v ′ ∈W.

Lemma 17. The image of ϕ lies in ker∂ ⊂ Hom(V,g).

Proof. It is clear from the definition that ϕT(v)v ′ = ϕT(v ′)v, so that provided its image lies in
Hom(V,g) then it lies in ker∂. From lemma 16, we see that ϕT : V→ Hom(V,W) and hence
ϕT(v) trivially preserves η: not just is η(ϕT(v)v ′,v ′) = 0, but in fact η(ϕT(v)v ′,v ′ ′) = 0.

To see that ϕT(v) also preserves h, let α1,α2 ∈ V∗, and calculate

h
(
ϕT (v)

t
α1,α2

)
=
〈
ϕT (v)

t
α1,h

♯ (α2)
〉

=
〈
α1,ϕT (v)h

♯ (α2)
〉

= η
(
T
(
v∧ h♯α1

)
,h♯α2

)
+ η

(
T
(
h♯α2 ∧ h♯α1

)
,v
)

=−η
(
T
(
h♯α1 ∧ h♯α2

)
,v
)
,

(
since h♯α2 ∈W

)
which is clearly skew-symmetric in α1 and α2, so that

h
(
ϕT (v)

t
α1,α2

)
+ h
(
ϕT (v)

t
α2,α1

)
= 0.

As a result of the lemma, we will henceforth think ofϕ as a linear mapϕ : Hom(∧2V,V)→
Hom(V,g), which is clearlyG-equivariant, since it is constructed out of theG-invariant tensors
η and h.

Just like the Spencer differential, themapϕ too induces a linear mapΦ : grHom(∧2V,V)→
grHom(V,g) between graded vector spaces, which can be seen to be of degree −2: the dual
pairing and η have degree 0, whereas h♯ has degree −2. Therefore Φ : Hom(∧2V,V)i →
Hom(V,g)i−2, where i =−1,0,1,2.

Lemma 18. The linear map Φ : grHom(∧2V,V)→ grHom(V,g) induced by ϕ has two
nonzero components:

1. a map Hom(V∧W,V)→ Hom(V,Hom(V,W)) whose image is K−1 in equation (3.69), and
2. a map Hom(∧2W,V)→ Hom(V,so(W))⊕Hom(W,Hom(V,W)) whose image is K0 in

equation (3.71).

36



J. Phys. A: Math. Theor. 57 (2024) 245205 E A Bergshoeff et al

Proof. As stated above, Φ has degree −2 and hence it has only two nonzero components:
Hom(∧2V,V)1→ Hom(V,g)−1 and Hom(∧2V,V)2→ Hom(V,g)0. In the former case, we
have

grϕ : Hom
(
∧2W,W

)
⊕Hom(V∧W,V)→ Hom(V,Hom(V,W))

but the map is identically zero on Hom(∧2W,W) since any T ∈ grHom(∧2V,V) with values
in W is clearly in the kernel of ϕ. In the latter case, we have

Φ : Hom
(
∧2W,V

)
→ Hom(W,Hom(V,W))⊕Hom(V,so(V)⊕ so(W)) ,

but it follows from lemma 16 that ϕT(v)v ′ ∈W, so that for no T ∈ Hom(∧2W,V) does ϕT

have a component along Hom(V,so(V)). In summary, there are only two nonzero components
of Φ:

Hom(V∧W,V)→ Hom(V,Hom(V,W))

and

Hom
(
∧2W,V

)
→ Hom(V,so(W))⊕Hom(W,Hom(V,W)) ,

which we now analyse in turn.

1. Firstly, we observe that lemma 16 says the image of this map lies in K−1. Secondly, we
observe that there is an isomorphism

Hom(V∧W,V)
∼=−−−→Hom(V,Hom(V,W)) , (3.75)

sending T 7→ κ, where for all α ∈ V∗, 〈α,κ(v)v ′〉= 2η(T(v∧ h♯α),v ′) for all v,v ′ ∈ V,
where the factor of 2 is for convenience. Now suppose that κ ∈ K−1 ⊂ Hom(V,Hom(V,W))
and let T be the corresponding vector in Hom(V∧W,V) which maps to κ under the above
isomorphism. Then

〈α,ΦT (v)v
′〉= η

(
T
(
v∧ h♯α

)
,v ′
)
+ η

(
T
(
v ′ ∧ h♯α

)
,v
)

= 1
2 〈α,κ(v)v

′ +κ(v ′)v〉 (by (3.75))

= 〈α,κ(v)v ′〉 , (since κ ∈ K−1)

so that κ=ΦT and hence ϕ : Hom(V∧W,V)→ Hom(V,Hom(V,W)) has image K−1.
2. Now we depart from the isomorphism

Hom
(
∧2W,V

) ∼=−−−→Hom(V,so(W))

sending T 7→ κ, where 〈α,κ(v)w〉= η(T(w∧ h♯α),v) for all v ∈ V, α ∈ V∗ and w ∈W, and
the injective map

Hom
(
∧2W,V

)
↪→Hom(W,Hom(V,W))

sending T 7→ λ, where 〈α,λ(w)v〉= η(T(w∧ h♯α),v) for all v ∈ V, α ∈ V∗ and w ∈W.
Putting them together we obtain the second nonzero component of Φ as an injective map
Hom(∧2W,V) ↪→ Hom(V,so(W))⊕Hom(W,Hom(V,W)) sending T 7→ κ+λ, where
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〈α,λ(w)v〉= η
(
T
(
w∧ h♯α

)
,v
)
= 〈α,κ(v)w〉 .

It follows that κ+λ ∈ K0. Since the map is injective, its rank is 1
2 (p+ 1)(D− p− 1)(D−

p− 2) = dimK0 and hence its image is all of K0.

Proposition 19. We have an exact pair of G-modules

Hom(V,g)
∂
⇄
φ
Hom

(
∧2V,V

)
; (3.76)

that is, im ∂ = kerϕ and imϕ = ker∂.

Proof. From lemma 17 it follows that imϕ⊂ ker∂, but then lemma 18 shows that

rankϕ = dimK−1 + dimK0 = dimker∂,

and hence imϕ = ker∂.
To show that kerϕ = im ∂ we first show that im ∂ ⊂ kerϕ and then we count dimensions

to show the equality. To prove that im ∂ ⊂ kerϕ, let κ ∈ Hom(V,g), then for all α ∈ V∗ and
v ∈ V,

η
(
∂κ
(
h♯α∧ v

)
,v
)
= η

(
κ
(
h♯α
)
v−κ(v)h♯α,v

)
= η

(
κ
(
h♯α
)
v,v
)
− η

(
κ(v)h♯α,v

)
,

but the first term vanishes because the image of κ lies in g and the second term vanishes because
h♯α and hence κ(v)h♯α lie in W. By polarisation, we see that ∂κ ∈ kerϕ.

Finally, by the Rank Theorem, we have that

dimkerϕ + rankϕ = dimHom
(
∧2V,V

)
= dimHom(V,g) = dimker∂+ rank∂.

Since we have already shown that rankϕ = dimker∂, it follows that dimkerϕ = rank∂ and
hence im ∂ = kerϕ.

It follows that from the First Isomorphism Theorem that ϕ induces a G-module isomorph-
ism ϕ : coker ∂→ ker∂, whose inverse allows us to determine the G-module structure of
coker ∂ by transporting the diagram (3.65) to coker ∂. It will be convenient to actually con-
sider the preimages in Hom(∧2V,V) of the G-modules appearing in the diagram (3.65) under
the surjection ϕ : Hom(∧2V,V)→ ker∂. Let us define T := ϕ−1(K ), with K = K0⊕Ktr

the G-submodule of ker∂ in the diagram (3.65). Since ϕ is G-equivariant, we have that T =

38



J. Phys. A: Math. Theor. 57 (2024) 245205 E A Bergshoeff et al

T0⊕Ttr, where T0 = ϕ−1(K0) and Ttr = ϕ−1(Ktr). Using that ϕ−1(0) = kerϕ = im ∂, this
results in the following G-submodules of ϕ−1(ker∂) = Hom(∧2V,V):

which may be quotiented by im ∂ = kerϕ to give the desired description of coker ∂:

where T = ϕ−1(K ) = ϕ−1(K )/im ∂, et cetera. This results in five G-submodules of
coker ∂ and hence five intrinsic torsion classes of G-structures. In summary, we have the fol-
lowing:

Theorem 20. There are five G-submodules of coker ∂ and hence five intrinsic torsion classes
of G-structures: 0 (vanishing intrinsic torsion),T tr,T 0,T = T 0⊕T tr and coker ∂ (generic
intrinsic torsion).

We recapitulate that this theorem gives a complete list of the intrinsic torsion classes
(i.e. neither more nor fewer) except in the following cases: p= 0 and p= 1 with η indefinite
and p= D− 2 and p= D− 3 with γ indefinite. The cases p= 0 (η indefinite) and p= D− 2
(γ indefinite) can be found in [3] and in any case will be shown later to follow from this. The
cases p= 1 (η indefinite) and p= D− 3 (γ indefinite), corresponding to stringy Galilean and
stringy Carrollian structures, respectively, will be treated elsewhere.

3.8. Geometric interpretation

A natural question is now to characterise the intrinsic torsion classes in theorem 20 geomet-
rically. The intrinsic torsion is a section of the associated vector bundle P×G coker ∂ to the
G-structure P→M. This bundle is a quotient bundle of P×G Hom(∧2V,V)∼= TM⊗∧2T∗M,
which is the bundle of which the actual torsion T∇ of an affine connection is a section.
Equivalently, we may view the torsion as a G-equivariant function T∇ : P→ Hom(∧2V,V),
whereas the intrinsic torsion can be described as a G-equivariant function [T∇] : P→ coker ∂.
By the use of local frames in P, we may view the torsion and the intrinsic torsion as locally
defined functions on M with values in Hom(∧2V,V) and coker ∂, respectively.

Now suppose that [T∇] takes values in a G-submodule T ⊂ coker ∂. What does this say
about the actual torsion T∇?
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Locally on M and relative to a frame in P, it is given by a function with values in the G-
submodule T̃ ⊂ Hom(∧2V,V)which projects down to T ⊂ coker ∂. In other words, the sub-
module T̃ is the preimage in Hom(∧2V,V) under the projection π : Hom(∧2V,V)→ coker ∂
which is part of the short exact sequence

0−−−→ im ∂ −−−→ Hom
(
∧2V,V

) π−−−→coker ∂ −−−→ 0, (3.79)

which typically will not split. In other words, we cannot view T as a G-submodule of
Hom(∧2V,V). In practice we may split the sequence as vector spaces by choosing a vec-
tor subspace T ′ of Hom(∧2V,V) that projects isomorphically to T . But since T ′ is not a
G-submodule, this has the consequence that whereas we are able to modify the connection so
that, relative to a given local frame in P, T∇ takes values in T ′, this will not necessarily be
the case relative to other local frames. If we change frames, we have to modify the connection
again so that its torsion takes values in T ′. This is why it is important to derive geometric
interpretations for the different intrinsic torsion classes which make no mention of the actual
connection andwhyweworkwith the full preimage T̃ ofT . This is what we do in this section.
First, we will characterise the G-submodules in question algebraically and then geometrically.

3.8.1. Algebraic characterisation. A necessary first step is then to characterise the G-
submodules of Hom(∧2V,V) which were determined in (3.77): im ∂, T , Ttr and T0. These
are vector subspaces of Hom(∧2V,V) and hence they are determined by linear equations. The
case of generic intrinsic torsion corresponds to Hom(∧2V,V) itself, hence to no conditions at
all on the torsion. Any other proper G-submodule of coker ∂ will lift to a proper G-submodule
of Hom(∧2V,V) determined by some non-trivial linear equations. We now determine those
linear equations for all but the generic intrinsic torsion classes.

From proposition 19, it follows that im ∂ = kerϕ, so that

im ∂ =
{
T ∈ Hom

(
∧2V,V

) ∣∣ η (T(v∧w) ,v ′)+ η (T(v ′ ∧w) ,v) = 0
}
, (3.80)

where the condition holds for all v,v ′ ∈ V and all w ∈W.

Proposition 21. The G-submodule T ⊂ Hom(∧2V,V) is given by

T =
{
T ∈ Hom

(
∧2V,V

) ∣∣ η (T(w∧w ′) ,v) = 0
}
, (3.81)

where the condition holds for all w,w ′ ∈W and all v ∈ V.

Proof. By definition, T ∈T if and only if ϕT ∈K , where

K =
{
κ ∈ Hom(V,g)

∣∣ κ(w) = 0 and κ(v)v ′ = κ(v ′)v ∈W, ∀ w ∈W, v,v ′ ∈ V
}
.

From lemma 16, it follows that ϕT(v)v ′ = ϕT(v ′)v ∈W, so the only condition we need to
consider is ϕT(w) = 0. Let α ∈ V∗ and v ∈ V be arbitrary and calculate

〈α,ϕT (w)v〉= η
(
T
(
w∧ h♯α

)
,v
)
+ η

(
T
(
v∧ h♯α

)
,w
)

= η
(
T
(
w∧ h♯α

)
,v
)

(since η (−,w) = 0 for w ∈W.)
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Therefore

ϕT (w) = 0 ⇐⇒ η
(
T
(
w∧ h♯α

)
,v
)
= 0 for all v ∈ V and α ∈ V∗

⇐⇒ T
(
w∧ h♯α

)
∈W for all α ∈ V∗

⇐⇒ T(w∧w ′) ∈W for all w ′ ∈W.
(
since h♯ : V∗ ↠W

)
Proposition 22. The G-submodule Ttr ⊂ Hom(∧2V,V) is given by

Ttr =
{
T ∈ Hom

(
∧2V,V

) ∣∣ η (T(v∧w) ,v ′
)
+ η

(
T
(
v ′ ∧w

)
,v
)
= γ (w̃,w)η

(
v,v ′

)
for some w̃ ∈W

}
(3.82)

where the condition holds for all v,v ′ ∈ V and all w ∈W.

Proof. By definition T ∈Ttr if and only if ϕT ∈Ktr. From equation (3.66), this condition
becomes ϕT(v)v ′ = w̃η(v,v ′) for some w̃ ∈W. Let α ∈ V∗ be arbitrary, then T ∈Ttr if and
only if

η
(
T
(
v∧ h♯α

)
,v ′
)
+ η

(
T
(
v ′ ∧ h♯α

)
,v
)
= η (v,v ′)〈α, w̃〉

for all α ∈ V∗ and all v,v ′ ∈ V. Using that h♯ : V∗ ↠W, this is equivalent to

η (T(v∧w) ,v ′)+ η (T(v ′ ∧w) ,v) = η (v,v ′)γ (w, w̃) ,

for all w ∈W and v,v ′ ∈ V.

To describe T0 requires introducing a notion of trace. Every T ∈ Hom(∧2V,V) defines
a linear map W→�2V∗ by sending w 7→ Tw, where Tw(v,v ′) = η(T(v∧w),v ′)+ η(T(v ′ ∧
w),v). If T ∈T , then if either v or v′ belongs to W, we get zero, so in fact Tw ∈ �2 annW and
thus every T ∈T defines a linearmapW→�2 annW. The η-trace trηT is the component of this
map along Rη ⊂�2 annW= Rη⊕�2

0 annW. We may describe this alternatively as follows.
We observe that T defines a linear map W→ End(V/W) sending w to Tw, where, denoting by
v 7→ v the linear map V→ V/W,

Tw (v) = T(w∧ v), (3.83)

which is well-defined because T(w∧w ′) ∈W, by proposition 21. Then the condition trηT= 0
is simply the condition tr Tw = 0 for all w ∈W. This trace map plays a rôle in the algebraic
characterisation of T0.

Proposition 23. The G-submodule T0 ⊂ Hom(∧2V,V) is given by

T0 =
{
T ∈ Hom

(
∧2V,V

) ∣∣ η (T(w∧w ′) ,v) = 0 and trηT= 0
}
, (3.84)

where the condition holds for all w,w ′ ∈W and all v ∈ V.

Proof. By definition, T ∈T0 if and only if ϕT ∈K0. From equation (3.66), this condition
becomes ϕT(w) = 0 and trηϕT = 0. As shown in the proof of proposition 21, the former
condition is simply T(w∧w ′) ∈W for all w,w ′ ∈W. The latter condition says that the map
(v,v ′) 7→ ϕT(v)v ′ ∈W has zero component alongW⊗Rη, or equivalently that for all α ∈ V∗,
〈α,ϕT(v)v ′〉 has no component along Rη. But this simply says that for all α ∈ V∗, the map
(v,v ′) 7→ Th♯α(v,v

′) has no component along Rη, which since h♯ is surjective, is the same as
the map (v,v ′) 7→ Tw(v,v ′) having no component along Rη for every w ∈W.
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3.8.2. Geometric characterisation. We are now finally in a position to characterise the dif-
ferent intrinsic torsion classes geometrically. Our first observation is that the G-submodule
W⊂ V defines subbundles E⊂ TM and annE⊂ T∗M under the isomorphisms P×G V∼= TM
and P×G V∗ ∼= T∗M defined by the soldering form. The characteristic tensor fields of the
G-structure are η ∈ Γ(�2 annE), h ∈ Γ(�2E) and, since we restrict to the identity compon-
ent of G, also an (p+ 1)-form Ω ∈ Γ(∧p+1 annE) defined as follows. Since annW is an
(p+ 1)-dimensional G-submodule of V∗, the one-dimensional vector space ∧p+1 annW is a
G-submodule of ∧p+1V∗. Let Ω ∈ ∧p+1 annW be any nonzero vector. It is characterised up to
scale by the condition that ιwΩ= 0 for allw ∈W. This means thatΩ inducesΩ ∈ ∧p+1(V/W)∗

under the G-module isomorphism annW∼= (V/W)∗. Now the action of G on V/W preserves
the inner product η ∈ �2(V/W)∗, so the representation map sends G→ O(V/W,η). Since G
is assumed connected, it actually lands in SO(V/W,η), and hence g ·Ω= (detg) Ω = Ω. This
says that Ω (and hence Ω itself) is G-invariant and hence defines a characteristic tensor field
also denoted Ω ∈ Γ(∧p+1 annE) on any manifold with a G-structure. This is in fact the main
technical reason why we assumed that we could restrict to the identity component of G.

The characteristic tensor fields are parallel relative to any adapted connection and the dif-
ferent intrinsic torsion classes of adapted connections can be characterised by what they imply
on the subbundle E⊂ TM and the characteristic tensor fields. We hope it causes no confusion
that we use the same notation for the characteristic tensor fields as we do for the G-invariant
tensors: namely, η, h and Ω.

Lemma 24. Let ∇ be an adapted connection. Then ∇ preserves E; that is, ∇XY ∈ Γ(E) for
all Y ∈ Γ(E) and X ∈ X (M).

Proof. Notice that η ∈ Γ(�2 annE) is nondegenerate, so that η(Z,X) = 0 for all X ∈ X (M) if
and only if Z ∈ Γ(E). Hence let Z ∈ Γ(E) and X,Y ∈ X (M). Since∇η = 0, we see that for all
X,Y ∈ X (M),

0= (∇Xη)(Y,Z)

= X · η (Y,Z)− η (∇XY,Z)− η (Y,∇XZ)

=−η (Y,∇XZ) . (since Z ∈ Γ(E))

Since this is true for all Y, it follows that ∇XZ ∈ Γ(E).

Proposition 25. T∇ ∈T if and only if E⊂ TM is involutive.

Proof. Suppose that T∇ ∈T . From proposition 21, this is equivalent to η(T∇(X,Y),Z) = 0
for all X,Y ∈ Γ(E) and Z ∈ X (M). In other words, T∇(X,Y) ∈ Γ(E) for all X,Y ∈ Γ(E). But
then, by lemma 24,

[X,Y] =∇XY−∇YX−T∇ (X,Y) ∈ Γ(E) . (3.85)

It follows from the Frobenius integrability theorem that if E is involutive, M is foliated by
integral submanifolds of E. Moreover h ∈ Γ(�2E) is non-degenerate on each leaf and hence
can be inverted to define a metric γ on each leaf.

Since the remaining intrinsic torsion classes are contained in T , we will assume from now
on that E is involutive.

42



J. Phys. A: Math. Theor. 57 (2024) 245205 E A Bergshoeff et al

Proposition 26. T∇ ∈Ttr if and only if for all X ∈ Γ(E),

LXη = 2γ (X,Z)η, (3.86)

for some Z ∈ Γ(E).

Proof. Let us calculate the Lie derivative of η along X ∈ Γ(E):

(LXη)(Y,W) = X · η (Y,W)− η ([X,Y] ,W)− η (Y, [X,W])

= η (∇XY− [X,Y] ,W)+ η (Y,∇XW− [X,W]) (using that ∇η = 0)

= η
(
T∇ (X,Y)+∇YX,W

)
+ η

(
Y,T∇ (X,W)+∇WX

) (
by definition of T∇

)
= η

(
T∇ (X,Y) ,W

)
+ η

(
Y,T∇ (X,W)

)
. (since ∇YX,∇WX ∈ Γ(E))

From proposition 22, it follows that T∇ ∈Ttr if and only if

η
(
T∇ (X,Y) ,W

)
+ η

(
T∇ (X,W) ,Y

)
= 2γ (X,Z)η (Y,W) (3.87)

for all X ∈ Γ(E), Y,W ∈ X (M) and for some Z ∈ Γ(E). In other words, T∇ ∈Ttr if and
only if

(LXη)(Y,W) = 2γ (X,Z)η (Y,W) (3.88)

for some Z ∈ Γ(E). Since this holds for all Y,W ∈ X (M), we may abstract them and conclude
that LXη = 2γ(X,Z)η for some Z ∈ Γ(E) and all X ∈ Γ(E).

Remark. We remark that equation (3.86) implies that E is involutive. Indeed, we simply
take Y ∈ Γ(E) in equation (3.87), from where we see that T∇(X,Y) ∈ Γ(E) and appeal to
proposition 25.

The geometric characterisation of the intrinsic torsion classT0 imposes a condition which is
easier to describe in terms ofΩ ∈ Γ(∧n annE). We remark that X ∈ Γ(E) if and only if ιXΩ= 0.

Let us now assume that T∇ ∈T0.

Proposition 27. T∇ ∈T0 if and only if dΩ= 0.

Proof. From the formula for the differential of Ω ∈ Ωp+1(M), we have that

dΩ(X0,X1, . . . ,Xn) =

p+1∑
i=0

(−1)i XiΩ
(
X0, . . . , X̂i, . . . ,Xp+1

)
+

∑
0⩽i<j⩽p+1

(−1)i+j
Ω
(
[Xi,Xj] ,X0, . . . , X̂i, . . . , X̂j, . . . ,Xp+1

)
, (3.89)

where the hat denotes omission. Using that ∇Ω= 0, we may express this purely in terms of
the torsion. (This is not unexpected, since the exterior derivative is the skew-symmetrisation
of the covariant derivative relative to any torsion-free connection, so if the connection were
torsion-free, Ω would be closed.) From ∇Ω= 0, we may write
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XiΩ
(
X0, . . . , X̂i, . . . ,Xp+1

)
=
∑
0⩽j<i

(−1)jΩ
(
∇XiXj,X0, . . . , X̂j, . . . , X̂i, . . . ,Xp+1

)
+

∑
i<j⩽p+1

(−1)j−1
Ω
(
∇XiXj,X0, . . . , X̂i, . . . , X̂j, . . . ,Xp+1

)
.

Relabelling the first sum, we find that

p+1∑
i=0

(−1)i XiΩ
(
X0, . . . , X̂i, . . . ,Xp+1

)
=

∑
0⩽i<j⩽p+1

(−1)i+j
Ω
(
∇XjXi−∇XiXj,X0, . . . , X̂i, . . . , X̂j, . . . ,Xp+1

)
.

Inserting this into equation (3.89) and using the definition of torsion, one finds

dΩ(X0,X1, . . . ,Xp+1) =−
∑

0⩽i<j⩽p+1

(−1)i+j
Ω
(
T∇ (Xi,Xj) ,X0, . . . , X̂i, . . . , X̂j, . . . ,Xp+1

)
.

(3.90)

For T∇ ∈T0, this expression vanishes if any two of the Xi belong to Γ(E), since either one of
the two is outside T∇, in which case the term vanishes because ιZΩ= 0 for all Z ∈ Γ(E), or
they are both in T∇, but then T∇(X,Y) ∈ Γ(E) for all X,Y ∈ Γ(E) and again it vanishes since
ιZΩ= 0 for all Z ∈ Γ(E).

Let X1, . . . ,XD be a local frame in the G-structure P adapted to the subbundle E⊂ TM; that
is, such that Xp+2, . . . ,XD define a local frame for E and let θ1, . . . ,θD denote the canonically
dual local coframe.

Then dΩ(Xi0 , . . . ,Xip+1) = 0 unless precisely one of the ij ∈ {p+ 2, . . . ,D}: if this holds for
two of the ij then the expression is zero as argued above, and if this holds for none of the
ij the expression is zero because at least two of the arguments coincide, by the pigeonhole
principle. Without loss of generality, let us thus consider dΩ(Y,X1, . . . ,Xp+1) with Y ∈ Γ(E).
From equation (3.90),

dΩ(Y,X1, . . . ,Xp+1) =−
p+1∑
j=1

(−1)jΩ
(
T∇ (Y,Xj) ,X1, . . . , X̂j, . . . ,Xp+1

)
=Ω

(
T∇ (Y,X1) ,X2, . . . ,Xp+1

)
+ · · ·+Ω

(
X1, . . . ,Xp,T

∇ (Y,Xp+1)
)
,

(3.91)

since any term with Y sitting outside T∇ is zero because ιYΩ= 0. Now notice that in a term
such as

Ω
(
X1, . . . ,T

∇ (Y,Xi) , . . . ,Xp+1
)

(3.92)
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only the component of T∇(X,Xi) along Xi contributes. That component is θi(T∇(X,Xi) (no
sum) and hence

dΩ(Y,X1, . . . ,Xp+1) =

(∑
i

θi
(
T∇ (Y,Xi)

))
Ω(X1, . . . ,Xp+1) , (3.93)

where the prefactor
∑

i θ
i(T∇(Y,Xi)) is precisely the trace of the endomorphism of TM/E

defined by X 7→ T∇(Y,X), which, by proposition 23, vanishes if and only if T∇ takes values in
T0.

Remark. Weobserve that dΩ= 0 implies thatLXΩ= 0 for allX ∈ Γ(E). Indeed, by the Cartan
formula,LXΩ= dιXΩ+ ιXdΩ, with the first summand vanishing since ιXΩ= 0 and the second
since dΩ= 0. This implies that E is involutive, so that it does not not need to be assumed.
This follows from another of the Cartan formulae. Let X,Y ∈ Γ(E), then ι[X,Y]Ω= [LX, ιY]Ω,
but both LXΩ= 0 and ιYΩ= 0. But a vector field X ∈ Γ(E) if and only if ιXΩ= 0, hence
[X,Y] ∈ Γ(E).

Finally we treat the case of vanishing intrinsic torsion.

Proposition 28. An adapted connection∇ has vanishing intrinsic torsion if and only ifLXη =
0 for all X ∈ Γ(E).

Proof. The calculation in the proof of proposition 26 shows that for allX ∈ Γ(E) and all Y,W ∈
X (M),

(LXη)(Y,W) = η
(
T∇ (X,Y) ,W

)
+ η

(
T∇ (X,W) ,Y

)
(3.94)

and from equation (3.80), T∇ ∈ im ∂ if and only if

η
(
T∇ (X,Y) ,W

)
+ η

(
T∇ (X,W) ,Y

)
= 0, (3.95)

which implies that for all X ∈ Γ(E) and all Y,W ∈ X (M),

(LXη)(Y,W) = 0. (3.96)

Abstracting Y,W, we arrive at the desired expression.

Remark. Notice that one can see directly that LXη = 0 implies that E is involutive: if both
X,Y ∈ Γ(E), the above calculation shows that T∇(X,Y) ∈ Γ(E) and we can appeal to proposi-
tion 25.

We may finally summarise our main result as follows.

Theorem 29. Let M be a D-dimensional manifold with a G-structure, with G (the identity
component of) the group defined in section 3.2, and let E→M denote the vector bundle asso-
ciated to the G-submodule W⊂ RD, which is a real vector bundle of rank D− p− 1, where
1< p< D− 3. Let η ∈ Γ(�2 annE), h ∈ Γ(�2E) and Ω ∈ Γ(∧p+1 annE) denote the charac-
teristic tensor fields of the G-structure. There are five intrinsic torsion classes of adapted con-
nections to the G-structure, partially ordered as
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where the arrows indicate inclusions (or logical implication) and where T 0, . . . ,T 4 are
defined by

(T 0) generic intrinsic torsion;
(T 1) E is involutive, so that M is foliated by integral submanifolds of E with h inducing a

metric γ on each leaf of the foliation;
(T 2) LXη = 2γ(X,Z)η for all X ∈ Γ(E) and some Z ∈ Γ(E);
(T 3) dΩ= 0; and
(T 4) LXη = 0 for all X ∈ Γ(E) (vanishing intrinsic torsion).

Proof. The geometric characterisations of the intrinsic torsion classes T 1, . . . ,T 4 follow
from propositions 25–28, respectively. The inclusion T 4 ⊂T 2 follows by putting Z= 0 in
the definition ofT 2, whereas the inclusionsT 2 ⊂T 1 andT 3 ⊂T 1 follow from the remarks
after propositions 26 and 27, respectively. It remains to prove the inclusion T 4 ⊂T 3.

From the remark after proposition 28 we know that T 4 implies that E is involutive and
therefore for any X ∈ Γ(E), LX preserves Γ(annE): for α ∈ Γ(annE) and Y ∈ Γ(E)

(LXα)(Y) = Xα(Y)−α([X,Y]) = 0, (3.98)

where both terms are zero because Y and [X,Y] belong to Γ(E). Let X ∈ Γ(E) from now on.
Let θa = (θ0,θ1, . . . ,θp) be a local coframe for annE with η = ηabθ

aθb for some constant
ηab and Ω= θ0 ∧ θ1 ∧ ·· · ∧ θp. Since LX preserves Γ(annE), we have that LXθ

a = Xa
bθ

b for
some local functions Xa

b. Condition T 4 says that Xab =−Xba, where Xab := ηacXc
b. Then

LXΩ= τXΩ, where τX = Xa
a = 0. Since ιXΩ= 0, the condition LXΩ= 0 says that ιXdΩ= 0.

We now argue that, since X ∈ Γ(E) is arbitrary, it follows that dΩ= 0.
Since E is involutive, Γ(annE) is a differential ideal, so that dθa = αa

b ∧ θb for some local
one-forms αa

b. It follows that dΩ= α∧Ω, where α= αa
a is a local one-form. Then ιXdΩ=

α(X)Ω and this vanishes for all X ∈ Γ(E) if and only if α(X) = 0 for all such X. But this says
that α is a local section of annE and hence α∧Ω= 0 by dimension. Hence dΩ= 0.

Let us remark that we may read off the results for the particle Galilean and Carrollian G-
structures from this theorem. In the Galilean case, for which p= 0, η = τ 2 where τ ∈ Ω1(M) is
the clock one-form, which is actually Ω in the above theorem, so that E= kerτ . The intrinsic
torsion classes T 1 and T 2 coincide: kerτ is involutive if and only if dτ = τ ∧α for some
α ∈ Ω1(M), but then for any X ∈ Γ(kerτ)
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LXη = LXτ
2

= 2τLXτ

= 2τ (dιX + ιXd)τ

= 2τιX (τ ∧α)
= 2α(X)τ 2

= 2α(X)η.

Thus T 1 = T 2 agrees with the twistless torsional Galilean structure. Similarly, T 3 = T 4

corresponds to the case of torsionless Galilean structure, since dτ = 0 implies that LXτ = 0
for all X ∈ Γ(kerτ) as we saw above (for Ω) and hence LXη = 2τLXτ = 0.

In the case of particle Carrollian G-structure, which corresponds here to p= D− 2, E is of
rank 1 and hence it is trivially involutive, so that T 1 = T 0 is the generic case. The other cases
typically remain distinct, resulting in the four classes of Carrollian G-structures in [3].

In the degenerate case of D= 2, then as explained in [3, appendix B.1], Galilean and
Carrollian structures coincide. In the Galilean case, T 1 = T 0 since dτ ∧ τ = 0 by dimen-
sion. So we only have T 0 = T 1 = T 2 as generic intrinsic torsion and T 3 = T 4 as vanishing
intrinsic torsion. The same holds for the Carrollian case.

The only cases which remain are the stringy Galilean (p= 1) and Carrollian (p= D− 3)
G-structures, for which the intrinsic classes in theorem 29 must be refined further as discussed
already in section 3.5. We hope to treat these cases fully elsewhere.

4. Dictionary

In this section we will provide a dictionary to translate the mathematical treatment in section 3
to the more physical treatment in section 5. From this section onwards, we will continue to
denote the D-dimensional spacetime manifold we are working on by M. Furthermore, where
applicable, Einstein summations over uppercase Roman letters A,B,C etc run from 0 to p, over
lowercase Roman letters a,b,c etc run from p+ 1 to D− 1, and over hatted capital Roman
letters Â, B̂, Ĉ etc and Greek letters µ,ν,ρ etc run from 0 to D− 1.

To write objects such as Vielbeine and (affine) connections in indices, we need to locally
choose a basis of the tangent space at every point of spacetime which varies smoothly. As a
tangent space TpM at a specific point p ∈M of spacetime does not have a canonical basis,
we will have to choose the basis we want to work with ourselves. Such a choice of a basis
(i.e. linear isomorphism) u : RD→ TpM at a specific point p ∈M of spacetime is called a frame
at p. Such a choice is not unique: there are plenty of choices of a basis of a tangent space. As
we are considering spacetime however, we do not allow for all basis transformations any more,
that is to say, there is a group G⊂ GL(D,R) of all the basis transformations that we still allow
for, which we call the local structure group17. In the Galilean p-brane case, G is a Lie group
that is (abstractly) isomorphic to (the identity component of)

(O(1,p)×O(D− p− 1))⋉R(p+1)(D−p−1) . (4.1)

The group G can be characterised in terms of the tensors that it leaves invariant:

G= {g ∈ GL(D,R) | g · h= h,g · η = η} , (4.2)

17 Note that we are still free to choose a basis once, but after we do this, all other bases we could use are those related
to the one we chose by a transformation in G.
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where we have used · to denote the action of G on the relevant representations. In this defin-
ition, W is a (D− p− 1)-dimensional subspace of RD, and η ∈

⊙2 annW and h ∈
⊙2W

are symmetric tensors. Once we pick a basis of RD, these tensors can be expressed in
index notation. If we let (eÂ)

D−1
Â=0

be a basis of RD such that V := span{e0, . . . ,ep} and

W= span{ep+1, . . . ,eD−1}, and if we let (θÂ)D−1
Â=0

denote the canonical dual basis, we obtain

η = ηABθ
AθB and h= habeaeb . (4.3)

With respect to such a basis, the elements of G correspond to D×D matrices of the form:(
Λ 0
b R

)
, (4.4)

where Λ ∈ O(1,p), R ∈ O(D− p− 1), b is a real (D− p− 1)× (p+ 1) matrix and 0 denotes
the (p+ 1)× (D− p− 1) zero matrix. In the physics literature, the O(1,p) and O(D− p− 1)
factors are referred to as ‘longitudinal Lorentz transformations’ and ‘transversal orthogonal
transformations’, respectively, whereas transformations (in the R(p+1)(D−p−1) part of G) for
which Λ and R are the identity matrices are called ‘p-brane Galilean boosts’.

Picking a basis of RD, and in particular choosing a complement V ofW⊂ RD, allows us to
also find partial inverses of η and h, which are

η−1 = ηABeAeB ∈
⊙2

V (4.5)

and

h−1 = habθ
aθb ∈

⊙2
annV (4.6)

defined by ηABηBC = δAC and habhbc = δac , where δ is the Kronecker delta. In the rest of this
paper, we will frequently raise and lower indices with these tensors18. We remark that the sub-
spaceW⊂ RD remains invariant under a basis transformation in G, but picking a complement
of W in RD, however, is a choice made to simplify calculations, but one that is not invariant
under all the basis transformations that G allows. If this would have been the case, the move-
ment of p-branes would be confined to a fixed (p+ 1)-dimensional subbundle of TM, which
would severely hinder the potential of any possible dynamics. The desire to work with mani-
fest G-symmetry is the main reason why in section 3 we only use W and V/W. This results in
our treatment in terms of filtered representations of G; although by passing to their associated
graded representations allows us to make contact with the choice of complement V here, which
in section 3 appears as one of the graded pieces of the filtered representation V. The group G
respects the filtration, but not the grading, since the boosts have nonzero degree. This explains
why in section 5, the symmetry which is manifest is that associated to the degree-zero part of
G, namely O(1,p)×O(D− p− 1), and one has to explicitly check how the boosts act on the
resulting objects.

Furthermore, we do not want to solely study objects at one point of spacetime, but rather at
(local or global) manifolds of spacetime, which requires to also look at the smooth structure
of choosing bases. First, we note that for every point in our spacetime manifold, we have a

18 In section 3, the ‘raising and lowering’ of indices is achieved via the musical maps η♭ and h♯ associated to η and
h. Restricting to W or passing to the quotient V/W they become invertible.
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copy of the group G of ‘allowed’ basis transformations. To combine all of those into a smooth
structure, we discover the structure we are actually studying: a G-structure, that is, a principal
G-subbundle of the frame bundle of M. We call the principal bundle we are studying here P.
Its projection back to M we denote by π : P→M. Then a choice of basis for all points in a
local patch U⊂M of spacetime is given by an inverse Vielbein, or a moving frame, that is, a
local section of P, denoted by s : U→ P without indices19. To denote an inverse Vielbein with
indices, we first write E= s ∈ Γ(U,PU) with

E= EÂ
µ ∂

∂xµ
⊗ θÂ, (4.7)

where (xµ)D−1
µ=0 : U→ RD are local coordinates, and where EÂ

µ ∈ C∞(U) is given by

EÂ
µ (p) = dxµp

(
s(p)eÂ

)
. (4.8)

We can split EÂ
µ up in τAµ,eaµ ∈ C∞(U), which are given by

τA
µ (p) := EA

µ (p) = dxµp (s(p)eA) (4.9)

and

ea
µ (p) := Ea

µ (p) = dxµp (s(p)ea) . (4.10)

In the physics literature, τAµ(p) and eaµ(p) are referred to as the longitudinal and transversal
inverse Vielbeine, respectively.

Similarly, given an inverse Vielbein s : U→ P, we also have a notion for a choice of a dual
basis for all points in a local patchU⊂M. Such a dual basis is given by a Vielbein, or amoving
coframe, that is, a localRD-valued one-form ofU, denoted by s∗θ ∈ Ω(U,RD)without indices.
Here, θ ∈ Ω1(P,RD) is the soldering form on P. It picks out the part of tangent vectors at a
point of P that does not consider possible changes of bases above a point, projects it down to
a tangent vector on M and composes it with the (inverse of the) frame that is the considered
point of P. In a formula, it is given by

θu (Xu) = u−1 (π∗Xu) , (4.11)

where u ∈ P is a frame at a certain point of spacetime, and where Xu ∈ TuP is a tangent vector
of theG-structure. In words, it gives the components of the projection π∗Xu of Xu toM relative
to the frame defined by u. Note that this is well-defined because the G-structure is a subbundle
of the frame bundle.

To denote a Vielbein with indices, we first write Ẽ= s∗θ ∈ Ω1(U,RD) with

Ẽ= Eµ
ÂdxµeÂ, (4.12)

where Eµ
Â ∈ C∞(U) is given by

Eµ
Â (p) = θÂ

(
s∗ (θ)

(
∂

∂xµ
(p)

))
= θÂ

(
s(p)−1 ∂

∂xµ
(p)

)
. (4.13)

19 We note that the terminology diverges on the definition of (inverse) Vielbeine, as moving frames are also commonly
referred to as Vielbeine, and the term inverse Vielbein is in that case reserved for the moving coframes. We opt for
the other convention, as it is in line with [10].
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Similarly as before, we can split Eµ
Â up in τµA,eµa ∈ C∞(U), which are given by

τµ
A (p) := Eµ

A (p) = θA
(
s(p)−1 ∂

∂xµ
(p)

)
(4.14)

and

eµ
a (p) := Eµ

a (p) = θa
(
s(p)−1 ∂

∂xµ
(p)

)
. (4.15)

In the physics literature, τµA(p) and eµa(p) are usually referred to as the longitudinal, respect-
ively transversal Vielbeine. Equations (4.7) and (4.12) illustrate why (inverse) Vielbeine are
often thought of as connecting curved indices (that is, vector fields and differential forms on
the spacetime coordinates) to flat indices (a (dual) vector space with a preferred basis, such as
RD or (RD)∗).

Note that the above definitions imply that EÂ
µ and Eµ

Â are each other’s inverse as D×D
matrices, since

Eµ
Â (p)EB̂

µ (p) = θÂ
(
s(p)−1 ∂

∂xµ
(p)

)
dxµp (s(p)eB̂) = θÂ

(
s(p)−1 s(p)eB̂

)
= δÂ

B̂

(4.16)

and that

Eµ
Â(p)EÂ

ν(p) = dxνp

(
s(p)

(
eÂθ

Â

(
s(p)−1 ∂

∂xµ
(p)

))
= dxνp

(
∂

∂xµ
(p)

)
= δνµ. (4.17)

In terms of τµA, eµa, τAµ, eaµ, this invertibility is expressed as:

τA
µτµ

B = δBA τA
µeµ

a = 0 ea
µτµ

A = 0

eµ
aeb

µ = δab τµ
AτA

ν + eµ
aea

ν = δνµ .
(4.18)

As can be seen from the aforementioned definitions, the explicit formulation of an (inverse)
Vielbein depends on a chosen local frame field, that is, a section s : U→ P. Two different
sections s,s ′ : U→ P are related via a transformation g ∈ C∞(U,G), according to20:

s ′ (p) = s(p) ◦ g(p) , (4.19)

so g(p) = s(p)−1 ◦ s ′(p). In terms of indices, we thus find that the inverse Vielbeine transform
as follows when we choose a different (local) frame field:

E ′
Â
µ (p) : = dxµp

(
s ′ (p)eÂ

)
= dxµp

(
(s(p) ◦ g(p))eÂ

)
= EB̂

µ (p)θB̂g(p)eÂ. (4.20)

For the Vielbeine, we find

E ′
µ
Â (p) : = θÂ

(
s ′

∗
θ
)
p

(
∂

∂xµ
(p)

)
= θÂg(p)−1 s(p)−1

(
∂

∂xµ
(p)

)
= θÂg(p)−1 eB̂Eµ

B̂ (p) .

(4.21)

20 Technically, we would like to know how two different sections s : U→ P, s ′ : U ′ → P can be related on the overlap
U∩U ′ of their neighbourhoods, but for clarity, we will assume that U ′ = U.
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In the physics literature, one usually writes these transformation rules in infinitesimal form. To
do this, one writes g(p) = exp(−λ(p)), where λ is valued in the Lie algebra g ofG, i.e. its mat-
rix elements λ(p)ÂB̂ := θÂλ(p)eB̂ obey (omitting the underlying point of spacetime regularly
from now on):

λAB := λACη
BC =−λBA λab := λach

bc =−λba λ(p)A a = 0 . (4.22)

Using δEµ
Â to denote the difference E ′

µ
Â−Eµ

Â to first order in λ (and mutatis mutandis for
EÂ

µ), equations (4.20) and (4.21) then lead to:

δEµ
Â = Eµ

B̂θÂλeB̂ = λÂB̂Eµ
B̂

δEÂ
µ =−EB̂

µθB̂λeÂ =−EB̂
µλB̂Â ,

(4.23)

or equivalently:

δτµ
A = λABτµ

B δeµ
a = λabeµ

b +λaAτµ
A (4.24)

δτA
µ =−λBAτBµ−λaAeaµ δea

µ =−λbaebµ . (4.25)

To be able to relate different choices of basis at different points of spacetime, we also have to
introduce the notion of a connection. Without indices, a connection one-form ω ∈ Ω1(P,g) is
determined by a horizontalG-invariant distribution kerωu, which says, among other things, that
ker(π∗)u⊕ kerωu = TuP for all u ∈ P and ω(ξx) = x for x ∈ g, where ξx ∈ X(P) is defined by
ξx(u) = d

dt

(
u ◦ etx

)∣∣
t=0

21. Given a choice of inverse Vielbeine s ∈ (U,PU), we can also deduce
the expression of the spin connection Ω := s∗ω ∈ Ω1(U,g) with indices by writing

Ω= Ωµdx
µ = JÂ

B̂ωµ
Â
B̂dx

µ, (4.26)

with ωµ
Â
B̂ ∈ C∞(U) given by

ωµ
Â
B̂ (p) = J

Â
B̂

(
(s∗ω)p

(
∂

∂xµ
(p)

))
= J

Â
B̂

(
ωs(p)

(
dsp

∂

∂xµ
(p)

))
. (4.27)

In these equations, the maps JÂ
B̂ ∈ End(RD) are defined by JÂ

B̂eĈ = δB̂
Ĉ
eÂ and the J

Â
B̂ ∈

End((RD)∗) form the canonical dual basis. Note that, since ω is valued in the Lie algebra
g of G, one has:

ωµ
AB := ωµ

A
Bη

BC =−ωµ
BA ωµ

ab := ωµ
a
bh

bc =−ωµ
ba ωµ

A
a = 0 . (4.28)

In the physics literature, one refers to ωµ
AB, ωµ

ab and ωµ
a
A as the spin connections for longit-

udinal Lorentz transformations, transversal rotations and p-brane Galilean boosts.
As can be found in [3], an equivalent way to express the connection 1-forms is the affine

connection∇ : X (M)→ Ω1(M,TM), which is given with indices in local coordinates by

∇= Γρ
µνdx

µ⊗ ∂

∂xρ
dxν , (4.29)

21 Note that this definition of a connection is equivalent to that of an Ehresmann connection, where the horizontal
G-invariant distribution of P is given by Hu = kerωu for every u ∈ P.
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with Γρ
µν ∈ C∞(U) given by

Γρ
µν (p) = dxρp

(
∇ ∂

∂xµ

∂

∂xν

)
. (4.30)

The affine connection∇ is induced from the connection 1-form ω (as described in [3]), i.e.∇
and ω are related via the Vielbein postulates

∂µτν
A−ωµ

A
Bτν

B−Γρ
µντρ

A = 0

∂µeν
a−ωµ

abeνb−ωµ
aAτνA−Γρ

µνeρ
a = 0 .

(4.31)

The affine connection∇ is induced from the spin connection ω in such a way that it preserves
the local smooth versions of the rank-(p+ 1) ‘longitudinal’ metric

η = dxµ� dxντµν ∈ Γ
(
U,
⊙

2T∗U
)

with τµν = τµ
Aτν

BηAB (4.32)

and the rank-(D− p− 1) ‘transversal’ co-metric

h=
∂

∂xµ
� ∂

∂xν
hµν ∈ Γ

(
U,
⊙

2TU
)

with hµν = ea
µeb

νhab. (4.33)

Similarly as in the case with the Vielbeine, we would like to know how the spin connection
transforms under a change of local frame field. When we reintroduce our local sections s,s ′ :
U→ P, we find that the spin connection transforms by(

(s ′)
∗
ω
)
p
= Ad

(
g(p)−1

)
◦ (s∗ω)p + g(p)−1 ◦ dg(p) . (4.34)

In infinitesimal form, this transformation rule is given by:

δωµ
AB = ∂µλ

AB + 2λ[A|C|ωµC
B] δωµ

ab = ∂µλ
ab + 2λ[a|c|ωµc

b]

δωµ
aA = ∂µλ

aA +λABωµ
aB +λabωµ

bA−λaBωµ
A
B +λbAωµb

a . (4.35)

Using a connection 1-form, we can now discuss the Spencer differential. In the math-
ematics section, this is given by as a map ∂ : Hom(V,g)→ Hom(∧2V,V). This is a point-
wise map that suffices for the mathematical treatment we are considering, because it is a
map of G-representations. To be more concrete, because ∂ : Hom(V,g)→ Hom(∧2V,V) is
G-equivariant, it induces a bundle map

P×G Hom(V,g)→ P×G Hom
(
∧2V,V

)
[(u,κ)] 7→ [(u,∂κ)] ,

(4.36)

which in turn induces the Spencer map ∂ : Ω1(M,P×G g)→ Ω2(M,P×G V), from the space
of differences of connection 1-forms Ω1(M,P×G g) to the space of all possible torsions
Ω2(M,P×G V), by identifying the associated vector bundles P×G ∧kV∗ to the space of dif-
ferential k-forms Ωk(M) on M using the soldering form.

This procedure of first considering the associated vector bundle and secondly its iso-
morphism under the soldering form to (co)tangent bundles applies also for G-submodules
such as the subspace W⊂ V from the mathematics section, and the intrinsic torsion classes
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T i (i = 0,1,2,3,4)22, but also the (partial) metrics η ∈
⊙2 annW and h ∈

⊙2W, which are
already given in equation (4.32) and (4.33). One of the consequences hereof is that all con-
nection 1-forms ω ∈ Ω1(P,g) (and thus also all affine connections) are compatible with the
(partial) metrics. It also allows us to do the mathematics in section 3 pointwise, as long as the
objects we study are invariant under G-transformations.

Since the submodule in which the intrinsic torsion resides is an invariant for the (space-
time) manifold M, that is, the constraints the intrinsic torsion satisfies do not change under
a transformation of bases, it encodes geometric information about the manifold. The specific
geometric characterization of those different constraints is given in theorem 29 and we will
elaborate on this result and its physical implications in section 5.

5. p -brane Galilean Geometries with Indices

The aim of this section is to discuss the results on p-brane Galilean geometries of section 3
using a physics language and index notation, explained in the dictionary 4, which is less pre-
cise but hopefully more easily accessible to a physics audience. Here, we will study p-brane
Galilean geometries by trying to obtain explicit expressions for their spin connection compon-
ents from Cartan’s first structure equation and we will explain how this analysis reflects the
results of that of the Spencer differential of section 3.

We start from Cartan’s first structure equation of p-brane Galilean geometry, which is
obtained by antisymmetrizing the Vielbein postulates (4.31):

Tµν
A = 2∂[µτν]

A− 2ω[µ
A
Bτν]

B (5.1)

Eµνa = 2∂[µeν]
a− 2ω[µ

abeν]b− 2ω[µ
aAτν]A . (5.2)

Here, we have split the torsion tensor 2Γρ
[µν] into ‘longitudinal torsion tensor’ components

TµνA along τAρ and ‘transversal torsion tensor’ components Eµνa along eaρ as follows:

2Γρ
[µν] = τA

ρTµν
A + ea

ρEµνa or Tµν
A = 2Γρ

[µν]τρ
A and Eµνa = 2Γρ

[µν]eρ
a .

(5.3)

Note that under local SO(1,p), SO(D− p− 1) and p-brane Galilean boosts, TµνA and Eµνa
transform as follows:

δTµν
A = λABTµν

B δEµνa = λabEµνa +λaATµν
A . (5.4)

Rewriting (5.1) and (5.2) as

T̂µν
A =−2ω[µ

A
Bτν]

B (5.5)

Êµν
a =−2ω[µ

abeν]b− 2ω[µ
aAτν]A , (5.6)

with T̂µν
A ≡ Tµν

A− 2∂[µτν]
Aand Êµν

a ≡ Eµνa− 2∂[µeν]
a , (5.7)

one can attempt to solve these equations for the spin connection components. In doing so, one
however finds that they do not determine the spin connections uniquely. In particular, careful

22 We note that the way mathematicians and physicists denote the classes of intrinsic notion is different, as math-
ematicians like to denote the G-submodule in which the torsion resides, such as T ∈ T0, whereas physicists prefer to
denote equations that the torsion has to satisfy, such as TaAA = 0.
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analysis shows that some (combinations of) spin connection components do not occur in any
of the above equations for the T̂- and Ê-components. These spin connection components can
thus not be expressed in terms of T̂/Ê-components and instead parametrize a family of adapted
connections. Furthermore, some of the equations (5.5) and (5.6) for the T̂/Ê-components do
not contain any of the spin connection components so that those T̂/Ê-components vanish. The
torsion tensor components that appear in them then constitute the intrinsic torsion of p-brane
Galilean geometry.

Below, we will verify these statements explicitly. Our findings can however be anticipated
from the analysis of the Spencer differential ∂ in p-brane Galilean geometry of section 3.
Indeed, the existence of (combinations of) spin connection components that do not occur in
any of the T̂- and Ê-components in equations (5.5) and (5.6) reflects that ker∂ is non-trivial and
the number of such (combinations of) spin connection components is given by dimker∂. The
fact that some of the T̂/Ê-components in (5.5) and (5.6) do not contain any of the spin connec-
tion components is related to the non-triviality of coker ∂. The dimension dimcoker ∂ equals
the number of such T̂/Ê-components, while dimim ∂ gives the number of T̂/Ê components
that do contain connection components. The information about the system of equations (5.5)
and (5.6) that is encoded in the kernel, cokernel and image of the Spencer differential can thus
be summarized as follows:

ker∂↔ those combinations of spin connection components that do not

occur in any of the T̂− and Ê− components; (5.8)

coker ∂↔ those T̂− and Ê− components that do not contain any of the

spin connection components; and (5.9)

im ∂↔ those T̂− and Ê− components that do contain a spin connection

component. (5.10)

In order to make the above discussion explicit, we distinguish the different spin connection
and T̂- and Ê-components, by decomposing curved µ-indices into longitudinal A- and trans-
versal a-indices using the following decomposition rule (illustrated here for a one-form Vµ):

Vµ = τµ
AVA + eµ

aVa or VA = τA
µVµ and Va = ea

µVµ . (5.11)

Equations (5.5), (5.6) can then be decomposed as follows23:

T̂BC,A =−2ω[B,|A|C] Êbc,a =−2ω[b,|a|c]

T̂a[A,B] = ωa,AB ÊA[a,b] = ωA,ab +ω[a,b]A

T̂a(A,B) = 0 ÊA(a,b) = ω(a,b)A

T̂ab,A = 0 ÊAB,a =−2ω[A,|a|B] . (5.13)

23 Sometimes, if confusion could arise, we put a comma between the indices to indicate which two indices form (the
projection of) an anti-symmetric pair, e.g.

ωA,BC = τA
µωµBC or ÊA[b,c] = τA

µe[b
ν Ê|µν|c] . (5.12)

.
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The two equations on the first line can be seen to be equivalent to:

T̂C[A,B]−
1
2
T̂AB,C = ωC,AB Êc[a,b]−

1
2
Êab,c = ωc,ab . (5.14)

From this and the remaining equations in (5.13), one sees that the following (combinations of)
spin connection components can be expressed in terms of T̂- and Ê-components:

dependent spin connection components : ω[A
a
B] , ω

(ab)C , ωc,ab , ωµ
AB and ωC

ab +ω[ab]
C .
(5.15)

The remaining spin connection components do not occur in any of the T̂- and Ê-components
and remain as independent components that parametrize a family of adapted connections in
p-brane Galilean geometry:

independent spin connection components (↔ ker∂) : ω{A
a
B} ,ω

Aa
A and ωC

ab−ω[ab]
C ,
(5.16)

where the notation {AB} is used to indicate the symmetric traceless part of AB. These inde-
pendent spin connection components parametrize a physics language avatar of the kernel
of the Spencer differential ∂ that was computed in proposition 13 of section 3.5. The cases
p= 0 (p= D− 2) are special with only one longitudinal (transverse) direction. In those cases,
the first (last) spin connection component vanishes. Note that the number of independent
spin connection components is equal to D(p+ 1)(D− p− 1)/2, which indeed agrees with
the dimension of the kernel of the Spencer differential ∂ in p-brane Galilean geometry (see
equation (3.73)):

#(independent spin connection components) = dimker∂ =
1
2
D(p+ 1)(D− p− 1) .

(5.17)

From the equations (5.13) we also see that there are certain components of T̂µνA that do
not contain any spin connection component. These are a manifestation of the non-triviality of
coker ∂ and their corresponding torsion tensor components TµνA = T̂µνA + 2∂[µτν]A are the
intrinsic torsion components of section 3. Setting (some of the) intrinsic torsion components
to zero leads to geometric constraints and it is these different geometric constraints that lead to
a classification of the possible p-braneGalilean geometries. Using (5.13), we find the following
intrinsic torsion components:

intrinsic torsion components (↔ coker ∂) : Ta
{AB} , Ta

A
A and Tab

A . (5.18)

Note that there are no Ê-components that give rise to intrinsic torsion24. The number of intrinsic
torsion components is given by the dimension of coker ∂:

#(intrinsic torsion components) = dimcoker ∂ =
1
2
D(p+ 1)(D− p− 1) . (5.19)

24 This is related to the fact that according to (5.6) these Ê-components contain two different spin connection com-
ponents which, as it turns out, cannot be projected away both at the same time. Note that it can also be seen directly
from equation (3.80) that every component of torsion that lies in Hom(∧2V,W) (including all the Ê-components) is
in the image of ∂.
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Note that this equals the number (5.17) of independent spin connection components.
Furthermore, the intrinsic torsion components (5.18) fall in the same representations of the
structure group as the independent spin connection components (5.16). This reflects the fact
that ker∂ and coker ∂ are isomorphic as G-modules, as was shown in section 3.7.

The remaining T̂- and Ê-components all contain a spin connection component. They
constitute the physics language incarnation of the image of the Spencer differential (see
equation (3.80)) and their number is accordingly given by the dimension of im ∂. In the
(super-)gravity literature, the equations of (5.5) and (5.6) that correspond to these T̂- and Ê-
components are often called conventional constraints. They do not lead to constraints on the
geometry but can instead be used to solve some of the spin connection components in terms of
the Vielbein fields and their derivatives. In the case at hand we find the following conventional
T̂- and Ê-components:

conventional T̂- and Ê-components (↔ im ∂) : T̂a
[AB] , T̂AB

C , Êµν
a . (5.20)

It should be emphasized that the (combinations of) spin connection components given in
equation (5.15) are dependent only if we impose the maximum set of conventional constraints
(corresponding to the components given in (5.20)). Later, in section 6, we will encounter an
examplewhere we only apply those conventional constraints that follow as equations ofmotion
of a first-order action. In that case we will not impose the maximum set of conventional con-
straints and consequently we cannot solve for all the spin connection components given in
equation (5.15). Assuming that the maximum number of conventional constraints is imposed,
we find the following solutions for the spin connection components:

ωC,AB (τ,T) = T̂C[A,B]−
1
2
T̂AB,C , ωa,AB (τ,e,T) = T̂a[A,B] , (5.21)

ωc,ab (e,E) = Êc[a,b]−
1
2
Êab,c , ω[A|,a|B] (τ,e,E) =−

1
2
ÊAB,a , (5.22)(

ωA,ab +ω[a,b]A

)
(τ,e,E) = ÊA[a,b] , ω(a,b)A (τ,e,E) = ÊA(a,b) , (5.23)

where T̂µνA and Êµν
a should be replaced by their expressions given in (5.7).

We now continue with phrasing the classification of the Galilean p-brane geometries of
section 3.8 in the language of the physics literature. We will only classify the representations
of coker ∂, i.e. the intrinsic torsion tensors, since these can give rise to geometric constraints25.
The different intrinsic torsion components given in equation (5.18) transform under longitud-
inal Lorentz transformations, transversal spatial rotations and p-brane Galilean boosts. Under
Galilean boosts, some components of the intrinsic torsion tensors transform to other compon-
ents, and hence, those torsion tensors cannot be set to zero independently from other torsion
components. The way that these boost transformations act on the torsion components are dis-
played in figure 226. Since some of the intrinsic torsion components are identically vanishing
for particles (p= 0) or domain walls (p= D− 2), we will discuss these two special cases sep-
arately, see figures 3 and 4 below.

25 A classification of the other torsion tensor components in the case of string Galilei geometry has been given in [10].
26 Note that when compared to the Hasse diagram of G-submodules presented in section 3 (see equation (3.78)), the
arrows that indicate the way that boosts act are oriented the opposite way. This is due to the fact that in mathematics,
for a vector v= ∂µvµ it is conventional to consider the change in the basis ∂µ, while in physics one usually considers
the change of the coefficients vµ.
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Figure 2. This figure indicates the non-vanishing intrinsic torsion components for p ̸= 0
and p ̸= D− 2. The arrow indicates the direction in which the p-brane Galilean boost
transformations act. For instance, the boost transformation of Ta{AB} gives Tab

A, but not
the other way around.

Figure 2 shows that, besides generic intrinsic torsion and zero intrinsic torsion, one may
consider three boost-invariant sets of constraints. Their geometric interpretation was discussed
in section 3.8.2 and is in physics language expressed as follows:

TabA = 0. This case was discussed in proposition 25. According to the Frobenius theorem,
this constraint implies that the foliation by transverse submanifolds of dimension D− p− 1 is
integrable, i.e. given two transverse vectorsX andYwith τµAXµ = τµ

AYµ = 0, the commutator
of these two vector fields is also transverse. The proof follows from the fact the longitudinal
part of the commutator is given by

τµ
A
(
Xλ (∂λY

µ)− (∂λX
µ)Yλ

)
= τµ

A
(
Xλ (∇λY

µ)− (∇λX
µ)Yλ + 2XλYρΓµ

[λρ]

)
. (5.24)

Using the Vielbein postulate (4.31), one can pull the τµA in the first two terms at the right-hand-
side through the covariant derivative after which these two terms vanish upon using the fact
thatX andY are transverse vectors. In the last term we use the fact that transverse vectors only
have transverse components, i.e. Xµ = eaµXa and Yµ = eaµYa, after which this term becomes
proportional to the intrinsic torsion component TabA which we assume is zero27.

T{AB}
a = TabA = 0. This case was considered in proposition 26. To discuss it in the manner of

the physics literature, it is convenient to first consider the constraint Ta(AB) = 0 without taking
the traceless part:

Ta
(AB) = ea

µτ (A|ν|
(
∂µτν

B)− ∂ντµB)
)
= 0 . (5.25)

Using the orthogonality condition eaµτµA = 0 one can show that this equation is equivalent to

KABa = τA
µτB

ν Kµνa = 0 , (5.26)

where Kµνa = Kνµa is the Lie derivative of τµν with respect to eaλ:

Kµνa = ea
λ∂λτµν + 2

(
∂(µea

λ
)
τλν) . (5.27)

27 We note that the arguments used to conclude that the different terms are zero coincide with those in lemma 24 and
proposition 25.
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Using boost symmetry this leads to the following boost-invariant set of constraints28,

KABa = KbBa = Kbca = 0 (5.28)

and hence that the full Lie derivative is zero:

Kµνa = 0 . (5.29)

We now consider the traceless part of equation (5.25):

Ta
(AB)− 1

p+ 1
ηABηCDTa

(CD) = 0 . (5.30)

This leads to an extra term in the above derivation giving the following modified constraint

Kµνa =
1

p+ 1
(τρσKρσa)τµν . (5.31)

This shows that eaµ are conformal Killing vectors with respect to the longitudinal metric τµν .
TA
aA = TabA = 0. This case was discussed in proposition 27. To clarify the geometric implic-

ation of these constraints in the formalism used in the physics literature we first define the
worldvolume (p+ 1)-form

Ω= εA1···Ap+1τµ1
A1 · · ·τµp+1

Ap+1 . (5.32)

We will now show that this worldvolume form is closed, i.e.

dΩ= 0 . (5.33)

Taking the exterior derivative of Ω, one finds an expression that involves the curl τρµ1
A1 ≡

2∂[ρτµ1]
A1 . Due to the intrinsic torsion constraint TabA = 0 and the fact that the non-intrinsic

torsion component TABC has been set to zero to solve for some of the spin connection com-
ponents, the only nonzero component is given by

τρµ1
A1 = eρ

aτµ1BTa
{BA1} . (5.34)

Writing all the flat indices on the longitudinal Vielbeine as an epsilon symbol, one now has
two epsilon symbols that combine into the longitudinal Minkowski metric as follows:

εA1A2···Ap+1εB
A2···Ap+1 ∼ ηA1B . (5.35)

The resulting Minkowski metric ηA1B projects out the trace of the traceless intrinsic torsion
components in (5.34), which is zero and hence we find that dΩ= 0.

Equation (5.33) is the natural generalization of the notion of absolute time for a particle
to the notion of an absolute worldvolume for a p-brane: independent of how a p-brane trans-
gresses from one transverse submanifold to another transverse submanifold the worldvolume
swept out by this p-brane is the same. More details about this for the case of strings, i.e. p= 1,
leading to the notion of an absolute worldsheet, can be found in [10].

28 To show that KbBa = 0, one needs to use the boost transformation of the constraint Ta(AB) = 0, i.e. TabA = 0.
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Figure 3. This figure indicates the non-zero intrinsic torsion components for p= 0
where, with A= 0, we have written Ta = Ta00 and Tab = Tab

0.

We can summarize the above geometrical constraints for p 6= 0 and p 6= D− 2 by giving a
physics language analogue of theorem 29.

Five p−brane Galilean Geometries

The above geometrical constraints lead for p 6= 0 and p 6= D− 2 to five distinct p-brane
Galilean geometries:

1. The intrinsic torsion is unconstrained.
2. TabA = 0: the foliation by transverse submanifolds is integrable. This case was called

Aristotelian in [13].
3. T{AB}

a = TabA = 0: the spacetime manifold is foliated by transverse submanifolds and the
vectors eaµ are conformal Killing vectors with respect to the longitudinal metric.

4. TA
aA = TabA = 0: the foliation is integrable and the worldvolume is absolute.

5. Tµν
A = 0: the foliation is integrable, the vectors eaµ are conformal Killing vectors with

respect to the longitudinal metric and the worldvolume is absolute. This case was called
Augustinian in [13].

The cases of particles (p= 0) and domain walls (p= D− 2) are special29. In the particle
case we find that there are three distinct geometries (see figure 3).

Three particle Galilean Geometries

1. The intrinsic torsion is unconstrained.
2. Tab= 0: the foliation by transverse submanifolds is integrable. A torsion with this con-

straint is called twistless torsional. Alternatively, the foliation is called hypersurface ortho-
gonal. This geometry occurs in Lifshitz holography [5].

3. Tµν = 0: the foliation is integrable and time is absolute.

29 Note that for D= 2 these two special cases coincide.
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Figure 4. This figure indicates the non-zero intrinsic torsion components for p= D− 2
where, with a= z, we have written T{AB} = Tz{AB} and TAA = TzAA.

On the other hand, in the domain wall case there are four distinct geometries (see figure 4).

Four domain wall Galilean Geometries

1. The intrinsic torsion is unconstrained.
2. T{AB} = 0: the vector ezµ = eµ is a conformal Killing vector with respect to the longitudinal

metric.
3. TA

A = 0: the worldvolume is absolute.
4. T(AB) = 0: the vector ezµ = eµ is a conformal Killing vector with respect to the longitudinal

metric and the worldvolume is absolute.

This finishes our classification of the p-brane Galilean geometries. In the next section we
will show how some of these geometries arise when taking special limits of general relativity.

6. p-brane Galilean gravity

In this section we will generalize the ‘particle’ limit of general relativity that we considered in
[15] to a so-called ‘p-brane’ limit such that we end up with a gravity theory with an underlying
p-brane Galilean geometry. This will lead to a ‘p-brane Galilei gravity’ model that for p= 0
reduces to the Galilei gravity theory constructed in [15]. We will show how for general p we
will get a gravity realization of several of the geometries that we found in the previous section.

Before we start we would like to emphasize that the results obtained below can also be
applied to construct p-brane Carroll gravity theories. This is due to a formal duality between
Galilei geometry and Carroll geometry from a brane point of view [11, 12]. More explicitly,
we will make use of the following duality:

p− brane Galilean geometry ←→ (D− p− 2)− brane Carroll geometry . (6.1)

Keeping the convention that the time direction is always one of the longitudinal directions
characterized by the indices A and that the transverse directions are labeled by the index a, the
duality (6.1) between Galilei and Carroll geometry implies that the corresponding Vielbein
fields are related by the following formal interchange:(

τµ
A ,eµ

a
)
←→

(
eµ

b , τµ
B
)
, (6.2)

where range A = range b and range a = range B. In performing this formal interchange, one
also has to change the signatures of the degenerate metrics accordingly, i.e. one has to replace
ηAA ′ by hbb

′
and haa

′
by ηBB ′ . Galilean and Carroll geometries physically correspond to very

different (non-relativistic vs. ultra-relativistic) limits of Lorentzian geometry. This (along with
the signature interchange needed to implement (6.2)) justifies distinguishing p-brane Galilean
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and (D− p− 2)-brane Carroll geometry, even though they are formally related via the above
duality. A special example of this duality is that domain wall Galilean gravity is dual to particle
Carroll gravity via the formal interchange

domain wall Galilean gravity with
(
τµ

A,eµ
)
↔ particle Carroll gravity with (eµ

a , τµ)
(6.3)

with range A = range a= D− 1.
A special role in the discussion below is played by branes with one or two transverse dir-

ections. To distinguish them from the generic case, we will call these special branes domain
walls and defect branes, respectively. We will indicate the generic case with three or more
transverse directions, i.e. with 0⩽ p⩽ D− 4, as p-branes.

To move towards p -brane Galilei gravity, we start with theD-dimensional Einstein–Hilbert
action

SEH =− 1
16πGN

ˆ
EEÂ

µEB̂
νRµν

ÂB̂ (Ω) (6.4)

in a first-order formulation. Here, GN is Newton’s constant, Eµ
Â (µ, Â= 0,1, · · · ,D− 1) is the

relativistic Vielbein, we have defined the inverse Vielbein EÂ
µ by

Eµ
ÂEB̂

µ = δÂ
B̂
, Eµ

ÂEB̂
ν = δνµ , (6.5)

and E= det(Eµ
Â) denotes the determinant of the Vielbein. Furthermore, the curvature

Rµν
ÂB̂(Ω) is defined in terms of the relativistic spin connection field Ωµ

ÂB̂ as follows:

Rµν
ÂB̂ (Ω) = 2∂[µΩν]

ÂB̂− 2Ω[µ
B̂ĈΩν]

Â
Ĉ . (6.6)

To define the p-brane Galilean limit we decompose the index Â into a longitudinal index
A (A= 0,1, · · · ,p) and a transverse index a (a= p+ 1, · · · ,D− 1), i.e. Â= (A,a). We then
redefine the Vielbeine and spin connection fields with a dimensionless contraction parameter
ω as follows:

Eµ
A = ωτµ

A Ωµ
Aa = ω−1ωµ

Aa Eµ
a = eµ

a

Ωµ
ab = ωµ

ab Ωµ
AB = ωµ

AB .
(6.7)

Performing these redefinitions in the action (6.4) and redefining Newton’s constant in such
a way that the leading power in ω is ω0, we obtain, for general values of p, three separate
curvature terms Rµν

AB(M),Rµν
Aa(G) and Rµν

ab(J)30 that scale with relative powers ω−2,ω−2

andω0, respectively. An exception is formed by domain walls, i.e. p= D− 2, in which case the
Rµν

ab(J) curvature vanishes and, upon making an adapted redefinition of Newton’s constant,
we end up with two curvature terms: Rµν

AB(M) and Rµν
Aa(G), which scale like ω0. We will

discuss the generic case of p-branes below first and the special cases of defect branes and
domain walls next.

30 After the ω →∞ limit, the curvatures Rµν
AB(M), Rµν

Aa(G) and Rµν
ab(J) correspond to curvatures of the spin

connections of longitudinal Lorentz transformations, p-brane Galilean boosts and transversal rotations respectively.
Since the letters M, G and J are often used in the literature to denote the generators of these transformations, we use
them here to denote these three curvatures.
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p-branes (0 ⩽ p ⩽ D− 4). In this case, after taking the limit ω→∞, the action takes the
form

Sp-brane =−
1

16πGNL

ˆ
eea

µeb
νRµν

ab (J) , (6.8)

where, before taking the limit, we have redefined GN = ωp+1GNL. In (6.8), the symbol e
denotes e= det(τµA ,eµa) and the non-relativistic curvature Rµν

ab(J) is defined by

Rµν
ab(J) = 2∂[µων]

ab− 2ω[µ
acων]c

b . (6.9)

One may verify that the action (6.8) is invariant under the following emerging local anisotropic
scale transformations:

δτµ
A =−D− p− 3

p+ 1
λ(x) τµ

A , δeµ
a = λ(x) eµ

a . (6.10)

This implies that, compared with the relativistic case, one field is lacking. Consequently,
one should consider the action (6.8) as a pseudo-action that reproduces all non-relativistic
equations of motion except for one.

Not all components of the spin connection ωµ
ab are determined by the equations of motion

corresponding to this action. Any component that does not occur in the quadratic spin connec-
tion term given in the curvature (6.9) becomes a Lagrange multiplier imposing a geometric
constraint. To identify these components, we decompose the curved index of the spin connec-
tion as follows:

ωµ
ab = τµ

CωC
ab + eµ

cωc
ab . (6.11)

Substituting this decomposition into the action (6.8), it is easy to see that the only surviv-
ing term quadratic in ωµ

ab is a term quadratic in the ωc
ab components. The other possible

terms involving ωA
ab are projected out by the inverse transverse Vielbeine in front of the

curvature term in (6.8). This ωA
ab component occurs only linearly in the action and has become

a Lagrange multiplier imposing the following geometric constraint:

Tab
A = 0 . (6.12)

This is case 2 in the classification of p-brane Galilean geometries given in section 5.

defect branes (p= D− 3). This case is special, because the group of transverse rotations is
abelian. There are therefore no quadratic spin connection terms in the first-order Einstein–
Hilbert action (6.4) and the action (6.4) can be written as

Sdefect brane =−
1

16πGN

ˆ
e
(
Tab

CωC
ab− 2TaC

Cωb
ab
)
. (6.13)

We see that all transverse rotation components of the spin connection are independent
Lagrange multipliers leading to the following set of geometric constraints:

Tab
A = TaA

A = 0 . (6.14)

This corresponds to case 4 in the classification of p-brane Galilean geometries given in
section 5. Note that in this case we haveD− p− 3= 0 and hence only the transverse Vielbeine
eµa transform under the anisotropic scale transformations (6.10). A special case amongst the
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defect branes is the 3D particle in which case the above geometric constraints are equivalent
to setting all torsion components to zero, i.e.

Tµν = 0 . (6.15)

This is case 3 in the classification of particle Galilean geometries given in section 5. This
special case corresponds to the 3D Chern–Simons gravity action discussed in [15]. Using the
identity eεabeaµebν = 2εµνρτρ, one can show that the particle defect brane action is propor-
tional to the following Chern–Simons action:

SChern−Simons =−
1

16πGN

ˆ
εµνρτµ∂νωρ , (6.16)

where we havewrittenωµ
ab = εabωµ. Note that not all gauge fields corresponding to the Galilei

algebra occur in this action. This is due to the fact that the Galilei algebra has a degenerate
invariant bilinear form.

domain walls (p= D− 2). This case is special because there is only one transverse direction
a= z and hence ωµ

ab = 0. Writing eµ := eµz and ωµ
A := ωµ

zA we obtain, after taking the limit
ω→∞, the following action:

Sdomain wall =−
1

16πGNL

ˆ
e
(
τA

µτB
νRµν

AB (M)+ 2eµτA
νRµν

A (G)
)
, (6.17)

where, before taking the limit, we have redefinedGN = ωp−1GNL andwhere the non-relativistic
curvatures are given by

Rµν
AB (M) = 2∂[µων]

AB− 2ω[µ
ACων]C

B , (6.18)

Rµν
A(G) = 2∂[µων]

A− 2ω[µ
ACων]C . (6.19)

Note that the action (6.17) does not exhibit a local scale symmetry like it did for the general
p-brane case. This implies that this action is a true action yielding all non-relativistic equations
of motion.

To see which flat spin connection components become Lagrange multipliers, we first make
the following decompositions31:

ωµ
AB = τµ

CωC
AB + eµωz

AB , ωµ
A = τµ

CωC
A + eµωz

A . (6.20)

Substituting these decompositions into the action (6.17) we see that the component ωC
A can

be the Lagrange multiplier for a geometric constraint provided the contraction

ωz
ABωAB (6.21)

vanishes. Decomposing ωAB further as

ωAB = ω[AB] +ω{AB} +
1

p+ 1
ηABω, (6.22)

31 We use a notation where we only once omit the single spatial transverse index z to indicate a boost spin connection
component, i.e. ωµ

zA = ωµ
A. If we further decompose the curved index µwe keep writing the z index. In this way we

have the simple rule that every spin connection component with three indices refers to a transverse rotation component
of the spin connection, whereas each connection with only two indices refers to a boost spin connection component.
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we conclude that the componentsω{AB}andω are Lagrangemultipliers. From the action (6.17),
we derive that they impose the geometric constraints

T{AB} = TAA = 0 . (6.23)

Thus the total symmetric intrinsic torsion T(AB) is zero, corresponding to case 4 in the classi-
fication of domain wall Galilean geometries given in section 5.

The second-order formulation of the above p-brane Galilean gravity theories has been
given in [15] for particle Galilei, i.e. for p= 0, and for particle Carroll, i.e. upon using the
duality (6.3), for domain wall Galilei gravity. The particle case p= 0 can easily be extended
to the general p-brane case with 0⩽ p⩽ D− 4. We first discuss this general case. Among
the equations of motion corresponding to the action (6.8), there are two conventional con-
straints32:

Eabc−
2

D− p− 2
E[a|d|dδcb] = 0 , Eabb +

D− p− 2
D− p− 3

TaC
C = 0 , (6.24)

where Eµνa is defined by the right-hand-side of equation (5.2). These conventional constraints
can be used to solve for the transverse rotation part ωµ

ab of the spin connection, except for the
component ωC

ab. Due to the transverse projections of Eµνa, this spin connection component
does not occur in the above conventional constraints. The solution for the components ωc

ab is
dilatation-covariant and can be written as [15]

ωc
ab(e,T) = ωc

ab(e)− 2
D− p− 3

δ[ac T
b]
C
C ,

with ωc
ab(e)≡ eaµebν∂[µeν]c− 2ec

µe[a|ν|∂[µeν]
b] . (6.25)

We note that, after solving for ωc
ab, the dependent spin connection components ωc

ab(e,T)
obtain extra terms in their boost transformation rule, since the conventional constraints (6.24)
are not invariant under boosts. Using the conventional constraints (6.24), one can rewrite the
first-order action (6.8) in the following second-order form:

S2nd-orderp-brane =− 1
16πGNL

ˆ
e
(
ωa

bc (e,T) ωb
a
c (e,T)−ωa

ac (e,T) ωb
b
c (e,T)+ Tab

CωC
ab
)
,

(6.26)

where we have explicitly indicated which are the dependent and which are the independent
spin connection fields.

The case of defect branes is special in the sense that all components of the spin connection
fields in the action (6.13) occur as independent Lagrange multipliers. Since there are no spin
connection components to be solved for, one cannot consider a second-order formulation in
this case.

In the case of domain walls, the conventional constraints that follow from the domain wall
Galilean gravity action (6.17) can be found from the particle Carroll gravity case discussed in
[15] by using the duality (6.3) between these two gravity theories. In this way one finds the
following conventional constraints:

Tz
[AB] = TAB

C = Eµν = 0 . (6.27)

32 The first conventional constraint is invariant under the anisotropic scale transformations (6.10) by itself, the second
term in the second conventional constraint acts like the transverse components of a dependent dilatation gauge field.
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These equations can be used to solve for the longitudinal rotation components ωµ
AB of the

spin connection and for the boost spin connection components ωµ
A, except for the component

ω(AB). The explicit solutions are given by

ωA
BC(τ) =−τA[BC] + 1

2 τ
BC,A

ωz
AB(τ,e) =−eµτµ[AB]

ω[AB](τ,e) = τAµτBν∂[µ eν]

ωz
A(τ,e) = 2eµτAν∂[µ eν] ,

(6.28)

with τµνA ≡ 2∂[µτν]A. Note that the above dependent spin connection components acquire
extra terms under boost transformations since the conventional constraints (6.27) are not invari-
ant under boosts. An exception are the (unprojected) longitudinal rotation components of the
spin connection ωµ

AB(τ), since they are independent of eµ and therefore are invariant under
boosts. Using the conventional constraints (6.27), one can rewrite the first-order action (6.17)
in the following second-order form:

S2nd-orderdomain wall =−
1

16πGNL

ˆ
e
(
ωA

B
C(τ)ωB

AC(τ)−ωA
AC(τ)ωB

B
C(τ)

+ 2ωz,AB(τ,e)ω
[AB](τ,e)− 2ωA

AC(τ)ωzC(τ,e)

− 2TC
CωA

A + 2T(AB)ω(AB)

)
,

(6.29)

where we have explicitly indicated which spin connections components are dependent and
which are independent.

It is instructive to compare the above second-order actions (6.26) and (6.29) with the actions
that one obtains by directly taking the limit of general relativity in a second-order formulation.
This should answer the following puzzle:

How do we obtain independent spin connection components acting as Lagrange multipliers
if we take the non-relativistic limit of general relativity in a second-order formulation where
all spin connection components have already been solved for?

The answer to this puzzle lies in the fact that when taking a limit we need to do a different
calculation than before, since in a second-order formulation the spin connection components
are not redefined according to equation (6.7), but according to their dependent expressions (see
below). At leading order, both in the general p-brane case and in the special defect brane and
domain wall cases, a different invariant is found that is given by the square of a boost-invariant
intrinsic torsion tensor component in each case. At this point one can do one of three things:

1. One can take these new invariants as a limit of general relativity in the second-order formu-
lation by redefining Newton’s constant such that the leading term scales as ω0. Following
the convention in the literature, we will call these invariants ‘electric’ gravity theories. A
noteworthy feature of these electric invariants is that they are independent of the spin con-
nection and correspond to geometries without any geometric constraints. Due to the absence
of a spin connection, these invariants do not have a first-order formulation.

2. The second option is to first tame the leading divergence by performing a Hubbard–
Stratonovich transformation. One then finds an invariant at sub-leading order. The
Hubbard–Stratonovich transformation is based upon the fact that any quadratic divergence
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of the form ω2X2 for some X can be tamed by introducing an auxiliary field λ and rewriting
the quadratic divergence in the equivalent form

− 1
ω2
λ2− 2λX . (6.30)

Solving for λ and substituting this solution back, one finds the original quadratic divergence
ω2X2. The transformation rule of this auxiliary field, before taking the limit, follows from
its solution λ=−ω2X. After taking the limit ω→∞, λ becomes a Lagrange multiplier
imposing the constraint X= 0. The transformation also applies if X and λ carry longitudinal
and/or transverse indices. We will show below that in this way one finds a gravity theory in
a second-order formulation that
(i) for p-branes is not quite the same as the second-order formulation of p-brane Galilean

gravity that we found above,
(ii) for defect branes gives an action different from the defect brane action found above,

which is not truly second-order in the sense that the dependent spin connection com-
ponents can be redefined away into a Lagrange multiplier, and

(iii) for domain walls gives precisely the second-order formulation of the domain wall
Galilean gravity theory found above.

3. A third option that we will not discuss here is to cancel the leading divergence by adding
a (p+ 1)-form field to the Einstein–Hilbert term and to redefine it such that the leading
divergence is cancelled. This should lead to a Newton–Cartan version of p-brane Galilei
gravity33.

We continue with options 1 and 2. Before taking the limit in a second-order formulation, it
is convenient to write the Einstein–Hilbert action (6.4) in the following second-order form

SEH =− 1
16πGN

ˆ
E
(
ΩÂ

B̂ĈΩB̂
Â
Ĉ−ΩÂ

ÂĈΩB̂
B̂
Ĉ

)
, (6.31)

where the dependent part of the spin connection is defined by the equation

∂[µEν]
Â−Ω[µ

Â
B̂Eν]

B̂ = 0 , (6.32)

whose solution is given by

ΩÂB̂Ĉ =
1
2
ĒB̂Ĉ,Â− ĒÂ[B̂,Ĉ] . (6.33)

Here we have used the notation where

Ēµν
Â = 2∂[µEν]

Â, (6.34)

and where the comma in ĒB̂Ĉ,Â indicates that the first two indices are anti-symmetric.

33 In ordinary Newton–Cartan geometry, the Vielbeine τµ and eµa of (0-brane) Galilean geometry are supplemented
with an extra one-form bµ that transforms non-trivially into eµa under local Galilean boosts according to δbµ =
λaeµbδab. In the p-brane analogues of Newton–Cartan geometry that we have in mind here, the Vielbeine τµA and
eµa of p-brane Galilean geometry ought to be supplemented with an extra (p+ 1)-form bµ0···µp that transforms to τµA

and eµa under p-brane Galilean boosts; see [10] for details on the p= 1 case. Note that bµ0···µp is an extra independent
field and thus differs from the (p+ 1)-form Ω that was considered in (5.32) and that is a wedge product of all τA

µ.
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Writing Â= (A,a) and redefining the Vielbein fields as

Eµ
A = ωτµ

A Eµ
a = eµ

a (6.35)

induces expansions of the different spin connection components. It turns out that for p-branes
and defect branes only the expansion of the transverse rotation components of the spin con-
nection contributes to the action. This expansion is given by

ΩCab =
ω

2
Tab,C +

1
ω
(ωC,ab +ω[a,b]C)(τ,e)≡

ω

2
Tab,C−

2
ω
τC

µe[a|
ν∂[µeν]|b] (6.36)

Ωc,ab = ωc,ab(e)≡ ea
µeb

ν∂[µeν]c− 2ec
µe[a|

ν∂[µeν]|b] (6.37)

ΩA,Ba =−Ta(A,B)−
1
ω2
ω[A,|a|B](τ,e)≡−Ta(A,B)−

1
ω2
τA

µτB
ν∂[µeν]a , (6.38)

Ωa,Ab =
ω

2
Tab,A−

1
ω
ω(a,b)A(τ,e)≡

ω

2
Tab,A +

2
ω
τA

µe(a|
ν∂[µeν]|b) , (6.39)

ΩC,AB =
1
ω
ωC,AB(τ)≡

1
ω

(
τA

µτB
ν∂[µτν]C− 2τC

µτ[A|
ν∂[µτν]|B]

)
(6.40)

Ωa,AB = ωa,AB(τ,e)+
1
ω2
ω[A,|a|B](τ,e)≡−2eaµτ[A|ν∂[µτν]|B] +

1
ω2
τA

µτB
ν∂[µeν]a , (6.41)

where TabA are the intrinsic torsion components of figure 2.
In the case of domain walls, we only need the expansion of the longitudinal rotation

and boost components of the spin connection. For this special case, we find the following
expansions:

ΩC,AB =
1
ω
ωC,AB(τ)≡

1
ω

(
τA

µτB
ν∂[µτν]C− 2τC

µτ[A|
ν∂[µτν]|B]

)
(6.42)

Ωz,AB = ωz,AB(τ,e)+
1
ω2
ω[AB](τ,e)≡−2eµτ[A|ν∂[µτν]|B] +

1
ω2
τA

µτB
ν∂[µeν] (6.43)

ΩAB = T(AB) +
1
ω2
ω[AB](τ,e)≡ T(AB) +

1
ω2
τA

µτB
ν∂[µeν] (6.44)

ΩzA =
1
ω
ωzA(τ,e)≡

2
ω
eµτA

ν∂[µeν] , (6.45)

where T(AB) are the intrinsic torsion components of figure 3. Note that the spin connection
components ω(AB) do not occur in the above expressions, since, according to the previous
section, these particular spin connection components are independent and therefore cannot
arise in the limit of a second-order formulation of general relativity where all spin connections
have been solved for.

We now continue to compare the second-order actions for the cases of general p-branes,
defect branes and domain walls with the second-order actions that we obtained before when
taking the limit of general relativity in a first-order formulation.

p-branes. Substituting the redefinitions (6.42)–(6.45) into the Einstein–Hilbert action (6.31)
and following option 1 above, we redefine GN = ωp+3GNL and obtain the following electric
p-brane Galilei gravity action:

Selectric p-brane =−
1

16πGNL

ˆ
e
4
Tab

ATabA . (6.46)
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Since this action is quadratic in the intrinsic torsion tensor TabA, a general class of solutions to
the equations of motion corresponding to this action is given by all manifolds with TabA = 0,
i.e. all manifolds that have an integrable foliation by the transverse submanifolds.

The second option is that we redefine GN = ωp+1GNL and tame the leading divergence by
performing the Hubbard–Stratonovich transformation (6.30), introducing a Lagrange multi-
plier λCab imposing the constraint TabA = 0. In that case one finds in subleading order, which
has now become the leading order, the following magnetic p-brane Galilei gravity action:

Smagnetic p-brane =−
1

16πGNL

ˆ
e

[
ωa,bc(e)ωb,ac(e)−ωb

ba(e)ωc
c
a(e)+ 2TaA

Aωb
b
a

−TaA
ATaB

B +Ta(A,B)Ta(A,B) +
(
λA,ab− (ωA,[ba] +ω[b,a]A)(τ,e)

)
Tab,A

]
.

(6.47)

Comparing with the previously found second-order p -brane action, we find, in fact,

Smagnetic p -brane = S2nd-orderp -brane −
1

16πGNL

ˆ
e

[
Ta

{BC}Ta{BC} +
(D− 2)

(p+ 1)(D− p− 3)
TaA

ATaB
B

]
,

(6.48)

where it is understood that in the action S2nd-orderp-brane , see equation (6.26), the term TabCωC
ab has

been replaced by

Tab
C
(
λC

ab +ωC
ab(e)

)
. (6.49)

This answers the puzzle that we posed above: the role of the independent spin connection
ωC

ab that arises when taking the limit in a first-order formulation is taken over by (a redefini-
tion of) the Lagrange multiplier field λCab that arises when taking the limit in a second-order
formulation after performing a Hubbard–Stratonovich transformation. From the above, we see
that

Smagnetic p-brane 6= S2nd-orderp-brane . (6.50)

The additional Ta(BC)Ta(BC) term plays a crucial role when we consider the limit in the case
of domain walls, see below. Another consequence of this term is that it breaks the anisotropic
dilatation symmetry (6.10). Due to this the magnetic p-brane Galilei action (6.47) is, unlike
the second-order p-brane Galilei action (6.26), a true action without a missing equation of
motion. One lesson we draw from this is that taking the limit in a first-order formulation and
then going to a second-order formulation is not always the same as first going to a second-order
formulation and then taking the limit.

defect branes (p= D− 3). In the case of defect branes there are only independent spin con-
nections and intrinsic tensors. The action for the electric defect brane is given by the same
action (6.46) as for p-branes, while the action for the magnetic defect brane is given by the
action (6.47), with the only difference being that all quadratic spin connection terms vanish
identically. Because there are only independent spin connection components, there is no com-
parison that can be made here.
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domain walls (p= D− 2). This case is dual to Carroll gravity, which has been discussed
recently as part of a so-called Carroll expansion of general relativity [16]. The discussion that
follows here has some overlap, although in a different language, with that of [16]. A special
feature of domain walls is that the intrinsic tensor TabA is identically zero. Similarly, the whole
magnetic p-braneGalilean action vanishes except for the T-squared terms.We can again follow
options 1 and 2 for this leading term. Following option 1 and redefining GN = ωp+1GNL one
finds the following electric invariant34:

S(1)electric domain wall =−
1

16πGNL

ˆ
e
[
T(AB)T(AB)−TA

ATB
B
]
. (6.51)

The Carroll gravity dual to this is known in the literature as ‘electric Carroll gravity’ and was
first found in [17] in a Hamiltonian formulation, and has recently been re-investigated in [16,
18–20]. A similar action occurs in [21]. Again, it is independent of the spin connection and
therefore it did not arise in the first-order formulation. Solutions to the equations of motion
have been discussed in [16]. Using the geometric interpretation of the constraint T(AB) = 0, we
find that a general solution to the equations of motion corresponding to this invariant is given
by all manifolds where the vector ezµ = eµ is a conformal Killing vector with respect to the
longitudinal metric and where the worldvolume is absolute.

We should note that this electric limit is not unique, since we can apply the Hubbard–
Stratonovich transformation to either T-squared term separately, i.e.

−TAATBB→−2ω−2λTA
A +ω−4λ2, (6.52)

or

T(AB)T(AB)→ 2ω−2λ(AB)T(AB)−ω−4λ(AB)λ(AB). (6.53)

These two procedures result in two additional electric domain wall actions,

S(2)electric domain wall =−
1

16πGNL

ˆ
eT(AB)T(AB) (6.54)

and

S(3)electric domain wall =−
1

16πGNL

ˆ
−eTAATBB (6.55)

respectively.
Following option 2 we redefine GN = ωp−1GNL and tame the leading divergence by per-

forming the Hubbard–Stratonovich transformation (6.30) on both terms simultaneously, intro-
ducing a Lagrange multiplier λ(AB), that imposes the constraint T(AB) = 0. Substituting the
redefinitions (6.42)–(6.45) for p= D− 2 into the Einstein–Hilbert action (6.31), one ends up
with the action

Smagnetic domain wall = S2nd-orderdomain wall , (6.56)

34 Our notation for the domain wall intrinsic tensor components is explained in the caption of figure 4.
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where it is understood that S2nd-orderdomain wall is the action given in equation (6.29), but with the terms
−TCCωA

A +T(AB)ω(AB) replaced by

T(AB)λ(AB) . (6.57)

The Carroll gravity dual to the domain wall Galilei gravity with a magnetic invariant (6.56) is
known in the literature as ‘magnetic Carroll gravity’. It was obtained in a Hamiltonian formu-
lation in [18] and has recently been discussed in [16, 19, 22].

7. Conclusions

In this paper we have classified p-brane Galilean and Carrollian geometries via the intrinsic
torsion of the correspondingG-structures.We presented our results both in the Cartan-theoretic
language of contemporary mathematics and in a formulation much more familiar to theoretical
physicists. We hope that we contributed in this way to an improved communication between
these two communities.

Our classification is incomplete for the cases of stringy Galilean and Carrollian geomet-
ries, since some of the representations appearing in the space of intrinsic torsions are further
reducible: in the stringy case (and independent on dimension), one can use a lightcone frame
for the two longitudinal directions [23], and these transform independently under boosts. We
hope to extend our classification to these cases as well elsewhere.

To extend the p-brane Galilean geometry studied in this work to a p-brane Newton–
Cartan geometry underlying non-relativistic p-branes the following three ingredients need to
be added:

1. The geometry underlying non-relativistic p-branes contains an additional (p+ 1)-form
bµ1···µp+1 , whose mathematical description seems to require, according to some of the lit-
erature, the introduction of the notion of gerbes (see, e.g. [24, 25]). It transforms under
p-brane boost transformations and plays an important role in describing the geometry35.

2. The frame fields of p-brane Newton–Cartan geometry transform under an emergent aniso-
tropic local scale symmetry [26], like the one we found for p-brane Galilean gravity, see
equation (6.10). This extra gauge symmetry requires an additional dilatation gauge field bµ
beyond the spin connection. It has the effect that one should define new dilatation-covariant
tensor components

T̃a
A
A = Ta

A
A− ba . (7.1)

This has the effect that the new torsion tensor components T̃aAA are conventional instead
of intrinsic. Setting these components to zero leads to an equation that can be used to solve
for the transverse components ba of the dilatation gauge field in terms of TaAA.

3. In the presence of supersymmetry, the p-brane Newton–Cartan geometry needs to be
embedded into a so-called supergeometry which also contains fermionic intrinsic torsion
tensor components. To enable this embedding, we need to impose constraints on some of
the intrinsic torsion tensor components.

35 In the case of membranes in D = 11 dimensions, one needs to add a 3-form cµνρ with a 4-form curvature which
allows a self-duality condition with respect to the transverse rotation group SO(8) of the type discussed above.

70



J. Phys. A: Math. Theor. 57 (2024) 245205 E A Bergshoeff et al

Writing Carroll geometry as a special domain-wall case of p-brane Galilean geometry
allows one to export techniques from Galilean to Carroll geometry. An example of this is the
construction of a Carroll fermion as the limit of a relativistic fermion. Carroll fermions have
been discussed in [27, 28]. In the Galilean case, to obtain a domain-wall Galilean fermion from
a relativistic fermion ψ, one first redefines [29]

ψ =
√
ωψ+ +

1√
ω
ψ− , (7.2)

where the projected spinors are defined by

ψ± =
1
2
(1±Γ01···D−2)ψ, (7.3)

and then one takes the limit ω→∞. Using the duality between Galilean and Carroll geometry
given in equation (6.1), this suggests that one can obtain a Carroll fermion from a relativistic
fermion ψ by redefining ψ as in (7.2), with the projected spinors given by

ψ± =
1
2
(1±Γ12···D−1)ψ , (7.4)

where 12 · · ·D− 1 refer to the D− 1 directions transverse to the Carroll particle. It would be
interesting to compare these Carroll fermions with the ones introduced in [27, 28].

It would be interesting to consider a Carroll limit of general relativity inD spacetime dimen-
sions à la Newton–Cartan using the third option discussed in the last section by writing it as
a Galilean domain wall. This would require the addition of a (D− 1)-form field that is dual
to a cosmological constant. Such a cosmological constant arises in the 10D massive Romans
supergravity theory [30] that has been formulated in terms of a 9-form potential [31]. This
would suggest a limit defined by the redefinition

Cµ1···µ9 = εA1···A9τµ1
A1 · · ·τµ9

A9 + cµ1···µ9 . (7.5)

It would be interesting to see whether the Carroll theory dual to this could lead to a 10D
Carrollian supergravity theory.

Finally, we have only considered the (intrinsic) torsion of the G-structures and, as has been
amply demonstrated in (pseudo-)Riemannian geometry, the classification of holonomy groups
of adapted connections becomes a very convenient further organising principle for the geomet-
ries. Not much is known beyond the strictly Riemannian and Lorentzian geometries when it
comes to the possible holonomy representations on a pseudo-Riemannian manifold. The prob-
lem in the case of geometries with nontrivial intrinsic torsion seems to be harder still, but one
worthwhile of investigation. Is there a Berger-like classification for adapted connections to a
Galilean or Carrollian structure?
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