

P-338 - Application of nmr spectroscopy and statistical analysis in characterization of crude oil samples

Mrs Jelena Parlov Vukovic¹, Professor Predrag Novak², assistant profesor Tomislav Jednačak², Dr.sc. Vilko Smrečki¹, Professor Tomica Hrenar²

¹Ruđer Bošković Institute, NMR Centre, Zagreb, Croatia, ²University of Zagreb, Faculty of Science, Department of Chemistry, Zagreb, Croatia

Poster Session 2, Hall 1 & 2, SEC, July 11, 2023, 13:45 - 15:45

Detailed characterization of petroleum samples is of highest priority for quality evaluation of crude oils and crude oil product performances. [1] The crude oil components are usually divided into four main groups: asphaltenes, saturates, aromatics and resins. Asphaltenes are the most complex crude oil components which can aggregate and precipitate during petroleum processing, causing different problems in crude oil industry. [1-3]

Many different analytical techniques and approaches were used to investigate properties and composition of such complex systems as crude oils. [1] In this work it will be demonstrated that NMR spectroscopy is an indispensable tool for investigating crude oil samples. Although 1D NMR spectra of asphaltene samples consist of many overlapping signals, they still provide useful information on composition and aggregation process. It will be demonstrated with several examples that ¹H and DOSY NMR techniques in combination with statistical methods such as principal component analysis and machine learning provide powerful approach to identify and classify crude oil samples of different origin. A model can be proposed for prediction of the crude oil stability as an essential parameter that affect oil properties, thus showing potential for practical applications. [3]

[1] J. Parlov Vuković, P. Novak, T. Jednačak, Croat. Chem. Acta 2019, 92, 323-329.

<https://doi.org/10.5562/cca3543>

[2] J. Parlov Vuković, T. Hrenar, P. Novak, M. Friedrich, J. Plavec, Energy Fuels 2017, 31, 8095–8101.

<https://doi.org/10.1021/acs.energyfuels.7b01358>

[3] D. Raljević, J. Parlov Vuković, V. Smrečki, Lj. Marinić Pajc, P. Novak, T. Hrenar, T. Jednačak, L.

Konjević, B. Pinević, T. Gašparac, Fuel 2021, 305, 121561, 7.

<https://doi.org/10.1016/j.fuel.2021.121561>