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Many large scale structure surveys sort their observations into redshift bins and treat every tracer as being
located at the mean redshift of its bin, a treatment which we refer to as the equal time approximation.
Recently, a new method was developed which allows for the estimation and correction of errors introduced
by this approximation, which we refer to as the unequal time correlator-level projection. For single tracer
power spectra, corrections arise at second order and above in a series expansion, with first order terms
surviving only in multitracer analyses. In this paper we develop a new method which we refer to as the
unequal time field level projection. This formalism projects the fields individually onto the celestial sphere,
displaced from individual reference times, before defining their correlators. This method introduces new,
first order correction terms even in the case of single tracer power spectra. Specifically, new first order terms
are introduced which apply to both cross-bin and single bin correlators. All of these new corrections
originate with derivatives over combinations of a delta function, a cross-bin phase term, and the power
spectrum itself and stem from the introduction of two unequal time Fourier transforms into the analysis.
We analyze these corrections in the context of a linearly biased power spectrum divided between two
redshift bins and find that they can lead to nontrivial corrections, particularly to cross-bin correlators.
We also show that these terms can be replicated by appropriately extending the correlator-level analysis to

include a second Fourier transform which allows for a full redshift bin integration.

DOI: 10.1103/mfzt-hn37

I. INTRODUCTION

Current and near future surveys of cosmological Large
Scale Structure (LSS) such as EUCLID [1], SPHEREX [2],
the Vera C. Rubin Observatory surveys [3], HSC [4],
SKA [5], DESI [6], WFIRST [7], 4MOST [8], PFS [9],
KiDS [10], BOSS [11], and eBOSS [12] will provide
enough data to allow for an unprecedented level of
precision in the cosmological analysis of fundamental
physics, such as the properties of dark energy [13-16],
primordial non-Gaussianity [17-20], neutrino masses
[21-24], and the assumption of approximate homogeneity
and isotropy on large scales [25-28].

LSS surveys study the overall matter distribution of the
Universe by observing tracers of that distribution, such as
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the number density field of galaxies or the integrated effect
of weak gravitational lensing. Primarily, the data is ana-
lyzed using the density contrast field, the normalized
difference between the observed density at a given point
in space and time and the mean density at that time.

In order to use measured data to place constraints on
fundamental physics, observations from LSS surveys are
studied through statistical objects such as correlators, the
expectation values of products of density contrast fields. By
theoretically modeling these objects [29-35] as functions
of the parameters describing fundamental physics [36—40]
and comparing these models to survey measurements
[41-47], constraints can be placed on those parameters.
Before such calibrations can be made, however, we must
note that theoretical models of LSS are generally studied in
what we call Hyperuranion space, which is a time evolving
3D grid in which the exact location of any given object at
any given time can be known with certainty. Of course,
surveys are limited to being able to observe the Universe in
a spherical grid centered on the telescope and, due to the
finite speed of light, cannot separate their radial coordinate
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from time. The projection from Hyperuranion space to this
spherical system, which we refer to as the celestial sphere,
and the effects which manifest in this operation but were
hitherto undiscovered constitute the subject of this paper.

When analyzing their data, LSS surveys often divide their
radial coordinate into redshift bins [48-50] and treat every
tracer located within a given bin as though it were located at
the mean redshift of that bin, an assumption which we refer
to as the equal time approximation. This is convenient and it
is usually assumed that any errors introduced by this
approximation will be below the precision limitation of
the survey. However, as we enter an era of unprecedentedly
precise cosmology, it is becoming important to test and
potentially correct such assumptions.

There are multiple possible approaches to the problem of
unequal time effects in cosmology, including formalisms
for introducing corrections to otherwise equal time power
spectra [51] as well as spectra which have been explicitly
integrated over the light cone [52,53]. In a recent series of
papers [54-57], a formalism was derived to introduce
corrections to otherwise equal time power spectra which
we refer to as the unequal time correlator-level projection.
In this formalism, correlators of tracers located at different
times were defined in Hyperuranion space via a Taylor
expansion around their mean time. A new projection
operation was then defined which allowed these unequal
time correlators to be projected onto the celestial sphere in a
manner that preserved information regarding their density
fields’ unequalness in time. It was found that multitracer
power spectra exhibit first order correction terms originat-
ing from their Taylor expansion, while single tracer power
spectra only exhibit corrections at second order and above.

In this paper, we define what we call the field level
projection. In this formalism, the time of observation of
each density field is defined by a Taylor expansion around
the mean redshift of the bin into which it is sorted. We then
project each field individually in a manner that preserves
information relating to this time displacement and only
correlate them once they have already been projected onto
the celestial sphere. The field level projection formalism
allows for the study of correlators within a given bin or split
between bins with equal efficiency. We find that three new
correction terms are introduced at first order in the context
of a single tracer power spectrum; one of these accounts for
the evolution of the matter field between different bins, one
for the evolution of the biasing between those same bins,
and one for the displacement of the fields from their bins’
mean redshifts. We show that these terms can lead to
nontrivial corrections which were hitherto unaccounted for,
both within single bin spectra and in the case of cross-bin
analyses. These terms arise due to the presence of two
Fourier analogs of unequalness in time parameters,
allowing the two fields to be individually displaced from
the mean redshift of their bin. In the correlator-level
projection that has been studied before, only a single

unequalness in time Fourier transform is defined and this
leads to the two fields having their redshift displacements
cancel one another out due to being equally displaced on
opposite sides of the reference redshift. In an Appendix, we
show that the single bin corrections can be rederived in the
context of an appropriately extended version of the corre-
lator-level projection which incorporates a second Fourier
transform to integrate our correlators themselves to be
displaced from the mean redshift of the bin.

This paper is structured as follows: in Sec. II, we
summarize known results on the definitions of correlators
and their role in modern cosmology. In Sec. III, we rederive
a formalism for describing time displaced density fields in
Hyperuranion space first developed in [54]. In Sec. IV we
review the well-known notion of projecting a power
spectrum onto the celestial sphere and discuss the
correlator-level projection. In Sec. V we introduce the
field level projection and analyze the newly discovered first
order corrections in the context of a linearly biased, single
tracer power spectrum split between two redshift bins. In
Sec. VII, we review our results and discuss their implica-
tions for cosmology. In App. A, we develop an extension of
the correlator-level projection formalism and show that it
replicates the results of a single bin, field level projection.
We note that throughout this paper we are working in
natural units such that ¢ = 1.

II. COSMOLOGICAL STATISTICS

The study of both the cosmic microwave background
and LSS is statistical in nature. In order to place constraints
on physical parameters, we describe the statistical distri-
bution of matter and its tracers as a function of those
parameters and fit their values to observations. The primary
statistical objects used in such studies are correlation
functions of density contrast fields and their Fourier space
counterparts, spectra, both of which we collectively refer to
as correlators. We define S, the spectrum of n density
contrast fields, as

<;[1 5(km,xm)>

= 0P (YK )kt ) (1)
m=1

where the density fields can represent different combina-
tions of tracers, the delta function accounts for cosmologi-
cal symmetries, and we note that the comoving distance is
defined as

A= [ @)

~Jo H(Z)
In the case where we are correlating two fields, we refer to
our spectrum as the power spectrum and label it
So(k, y1.02) = P(k,y1,x2), where we may note the
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implementation of the delta function from Eq. (1) and the
scalar dependency upon k due to assumed symmetries.

The definitions above can be applied to the underlying
gravitating matter structure of the Universe. However,
directly observable tracers such as galaxies follow a slightly
modified statistical distribution. Due to the mutual attrac-
tion between light and dark matter, galaxy distributions are
strongly correlated with underlying dark matter distribu-
tions, but their different masses and interactions with other
forces lead to the requirement for corrections. The
differences between observable tracer distributions and
underlying matter distributions are referred to as
biasing [58] and may be accounted for by including
appropriate parameters into the definitions of our density
fields: 6(k,y) — b(y)5(k, y), where we note the redshift
dependence of biasing parameters which allow for the
evolution of the disparity between light and dark matter
distributions with time.

The most commonly studied correlators are spectra of a
single tracer, particularly of matter fields through the study
of lensing and galaxy fields through direct observations
[59-61]. However, cross-correlators [62—-64] and correla-
tors of other observables such as matter velocity fields
[65-67] are becoming increasingly important as they often
contain additional information and can be used to break
degeneracies that arise in matter and galaxy autocorrelator
analyses [68-70].

III. TIME EXPANSION

In this section, we rederive an expression for time
displacement in Hyperuranion linear density fields that
was first explored in [54]. We do this, rather than accounting
for differences in time by directly giving different values to
the y,, in Eq. (1), in order to obtain a formalism which will
permit the averaging of small displacements from assumed
redshifts and the preservation of this displacement when
projected onto the celestial sphere.

We wish to describe a density contrast field which is at
some comoving distance y that is displaced by Jy from the
position j,

x=7+ 6. (3)

j could be the mean of the redshift bin into which an
observable at comoving distance y has been sorted, the
mean comoving distance of two radially separated observ-
ables being correlated, or any other chosen reference
distance. For the rest of this paper, we will work with
two formalisms, one in which it is taken to be the mean
redshift of a given correlator, which we make use of in the
correlator-level analysis, and one in which it is taken to be
the mean redshift of a redshift bin, which we make use of in
the field level analysis.

To derive a series expansion for a linear density field
located at y, we begin by Taylor expanding around j,

d
5(k.y) = 5(K. 7 —5k,’ 5
(kox) = ok ) + ook 1| ox

1 &
~ % 5(k,
+2d)(2 (k. x)

05;(2+---. (4)

Sy=
We can now reparametrize our derivatives,

dz d

%5(&;() = 007 = Fl)H ok 1), (5)

where we have used the fact that for a linear density field,
0.6(k,y) = —f(x)a(y)d(k,y) for the logarithmic growth
rate f(y) and scale factor a(y) and have defined

Faly) ==f)al)- (6)

Thus, up to first order in the time expansion, our field is
given by

6k, x) = 6(k, 7)[1 + Fo(r)H (7)) m]- (7)

If we are considering biased tracers by introducing
biasing parameters and repeating the above analysis,
Eq. (5) becomes

d dz d
gy Pak.z) = G b(alk. )

= F.()H()o(k,x)
+0:b()H(x)5(k. x) (8)

and we find that our biased analog of Eq. (7) is

b(r)o(k.x) = 6(k. 7)[b(x) + (Fa(r)b (k)
+0:b(0)H ()8 .- ©)

We note that this differs from Eq. (7) not only in the
multiplication of the existing terms by the biasing parameter
but also by the inclusion of the derivative of that parameter.

In this section, we have shown how we can derive
expressions for linear density fields displaced by a small
distance from a defined redshift in a manner that provides
explicit multiplicative corrections to correlators already
estimated at those defined redshifts. These corrections
account for the evolution of both the dark matter distribu-
tion and its relation to the overlaying galaxy number
distribution. Since the Universe is constantly evolving,
the assumption that all such fields can be treated as being
located at a single time has been shown to lead to errors
proportional to the rate of change with redshift of the
parameters representing both dark matter and biasing.
This analysis has taken place in Hyperuranion space and
has not accounted for projection effects that will become
relevant in the remainder of this paper.
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IV. IMAGE PROJECTION

In this section, we will review well-known results
relating to the transformation of a power spectrum onto
the celestial sphere and rederive the results of [54-56],
which constitute a new form of projection which allows for
the preservation of information related to the Hyperuranion
space-time displacements derived in Sec III.

We begin by noting the usual definition of a projected
density field located within a chosen distance window

W x'),

(B(21.2)8(E212)) = / ‘jfjf‘ Wi )W) /

dy'\dy;
= e [ LWl Wl )P s + ko) [ 5

2

dk; 1 dk;
2w

~ d){l dkﬁ —iv ks
o, x) = )(—,2W()M(/)/ge “hag(ky, €, x),  (10)

where &(k;,?,y) with £ = k ' the angular field para-
metrized in a 4D spacetime without accounting for the
degeneracy between radial and temporal measurements.

Taking the correlator of two projected fields as given in
Eq. (10), we obtain an expression for the angular power
spectrum,

2:12 etk tka2) (5(ky 1, 1, x01)0(kias €au 22))

dkn —lk (Z/ _)(2

P(ka-€1.21:23)

dy! dy,
= (2’”)3/ Z/é)(/zz W(ZI’XII)W(ZZ’)(,Z)ézD(kJ_,I + kL,Z)C<t,1’)(/1’)(,2)’ (11)
42

where in the second step we have integrated over our
momentum delta function and on the last line we intro-
duced the angular power spectrum

1 / dk;
) 25 €

In Fig. 1 we illustrate the celestial sphere as divided into
three redshift bins and the notion of projected power spectra
within it. Every observed tracer is located within a given
redshift bin. Usually, every field within a given bin would
then be treated as being located exactly at the mean redshift
of that bin, shown in the figure with dashed grey lines; this

is the equal time approximation. In the following section,
we will show how a new projection can be defined which

C(fv)KI’)(Z) = lk i) P(k}’u fJ(l’)(Z)' (12)

<

allows for the preservation of information relating to the
displacement of each tracer field from its respective
bin mean.

Cross-bin correlators, shown in the figure as red dashed
lines, have been found in most analyses to be substantially
smaller in magnitude than correlators assessed within a
single bin unless integrated relativistic effects are accounted
for; however, the inclusion of such effects leads to
them having a similar magnitude to single bin correlators.
Furthermore, we note that the radial suppression is magni-
fied by the equal time approximation due to the fact that the
two density fields being correlated will be treated as being at
their respective bin means; in the event that the fields are
located between the means and the border between the two
bins, this suppression would be substantially reduced.

zZ3
)

22

z3

FIG. 1. TIllustration of a light cone through the celestial sphere showing the sorting of observables, represented by black dots, into a trio
of redshift bins and a selection of their correlations. In a standard analysis, every one of these observables would be treated as though it
was located at the mean redshift of its bin, shown in the figure by dashed grey lines. The black lines show examples of correlators of pairs
of density fields within given bins, while the red dot-dashed lines show examples of cross-bin correlators.
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A. Correlator-level projections

We will now briefly review the work first shown
in [54,55], in which power spectra are projected onto the
celestial sphere in a manner which allows unequal time
terms to manifest which correct power spectra estimated
with the equal time approximation. We begin by noting
that, in the case of a predefined correlator, we can treat jy as
being the arithmetic mean redshift of the correlator, such
that 8y, = —8y, = 38y, where 8y = y1 — y», allowing us
to reparametrize Eq. (12) as C(%, %, 5y).

We wish to expand upon Eq. (11) by incorporating new
parameters which will allow for the treatment of informa-
tion relating to time displacement. We do his by defining a
Fourier counterpart to §y, which we label ¢;, and corre-
sponding angular coordinates q, = €/, giving us a new
three dimensional momentum ¢ with which we can define

Pla.jp) =7 / déye 4 C(€,},5y),

dk; )
=) [ G [ dogelz e Pl 7).

(13)

where we have defined e(y,,x,) = 7%/ (rix3)-

Including the time expansion defined in Eq. (7) for each
of the two fields in the power spectrum and likewise Taylor
expanding e up to first order, noting that e(y,0) = 1 and
that the nth term is proportional to 1/p" = 0, this becomes

dk; )
P(q,)_() = (2ﬂ')3/ > n/d&){e“s)((kﬁ—q;a)
T

x (1 +§Fa<;?>Hoz>5;{) (1 —%Faozmoz)ax)
x Plka, €,7). (14)

As can be seen, the first order corrections in Eq. (14)
cancel one another out, leaving only second order and
above corrections to account for unequal time effects in the
case of an autocorrelator analysis. However, as shown
in [54,55], when performing a multitracer analysis with
differently biased populations, first order corrections sur-
vive and can be relevant for future galaxy surveys analyses.

The above analysis applies to a specific correlator with
its own mean redshift defined with respect to its constituent
tracers. To generate corrections applicable to a redshift bin,
we would wish to integrate over all values of jy that are
possible within that bin. A method to do this by defining a
Fourier analog of the difference between the correlator’s
mean and the bin’s mean, dy, is described in Appendix A.

The correlator-level projection of a power spectrum is
illustrated in Fig. 2. As can be seen, the radial coordinate is
translated into the time component in the projection as well
as the remaining Cartesian spatial coordinates being

(&

ot

¥
L

T

~~
SN
¥
L

T

—dt

¥
L

i

Y

to

,
A

Hyperuranion Space

Light Cone

FIG. 2. Illustration of the correlator-level projection of a power
spectrum from Hyperuranion space onto a light cone through the
celestial sphere. In Hyperuranion space, each field is separated by
+6t from the mean time of the power spectrum, 7. When the
power spectrum is projected, this corresponds to each field being
located at a comoving distance + %5)( from the mean comoving
distance of the galaxy pair, y. Both fields are located within the
same redshift bin, the mean redshift of which is shown as a
dotted line on the light cone. In order to generate an averaged
power spectrum over the bin, all y within that bin may be
integrated over.

converted into angular coordinates. The definition of the
q vector allows for the preservation of information relating
to the displacement of the two fields from the average of
their two times and its incorporation into the expression for
the measured power spectrum.

V. FIELD LEVEL PROJECTIONS

We now introduce a concept which we refer to as field
level projection. This is a formalism for the projection of
density fields onto the celestial sphere followed by the
correlation of their projections, in contrast to the correlator-
level projection studied in Sec. VA 1 in which the density
fields were correlated in Hyperuranion space and their
correlator was then itself projected. Furthermore, unlike in
the correlator-level analysis above, we define each density
field as being located a given distance §y from the mean
redshift of the bin into which it is sorted, rather than from
the mean redshift of a given correlator within that bin.

We show that the projection of individual fields results in
the manifestation of first order correction terms within
redshift bins, which account for the difference between the
location of each field and the location of the bin’s mean.
Furthermore, the allowance for fields to be displaced from
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separate times before being projected results in new
correction terms which account for the evolution of the
Universe between those times and apply to cross-bin
analyses.

A. Projecting onto the celestial sphere

We wish to derive an alternative to Eq. (10) which will
allow for a time displaced density field to be projected onto
the celestial sphere in a manner which preserves an analog
of the information encoded in the corrections derived in
Sec. III. Beginning by Fourier transforming our density
field into our ¢ momentum space defined as in Sec. IV A,
we can define a time displaced density field on the celestial
sphere as

5(a.7) =7 / dspen(qL. ). (15)

where ¥ is the mean redshift of the bin into which the field
is sorted.
Inserting Eq. (10) into Eq. (15), we obtain

. dy'
2/‘15)(6_151%/%_),(2"‘/()(’/)

dk, .,
X / 0 ek q.. 7). (16)
2

Sa.7) =7

At this point we choose to set W(y, ') = 6° (¥’ — x). Thus,
we arrive at a final expression for the projected unequal
time density field that we will use throughout this section,

2 = dkn —i —i g
5(q.7) = / P / doye= " atai)y ()5 (ks q 1., %),

T

(17)

where y(y) = (7/x)*.

Now that we have defined a projection mechanism which
will allow Hyperuranion time displacements of individual
density fields to be projected onto the celestial sphere, we
introduce the results of Sec. III into Eq. (17). We begin by
Taylor expanding the time component of the Hyperuranion
density field around the mean redshift of the bin into which
the field is sorted, obtaining

R dk; :
6(q,)_() :/ 2" _U(kn/d(s)(e_l(sl(kﬁ+qﬁ>

7
© j . g
—— . q, o). (1
Z;] ¥ kiarx))| @) (18)
Recognizing that

‘ . o dl
/ ddye~ % \kitai) (5y)] = 2zl FéD(kﬁ +q;), (19)

i

this becomes

il dl { .
S
=0 J!d%

d(a.7) = (7()()( Ilsy=o|- (20)

The derivatives of y(y) in this limit are )y(y) =
(=1)/(1 + j)!/¥/ ~ 0. Inserting Eq. (7) into Eq. (20), we
now have

[1+iF,(7)H(})

To generalize this to the case of biased tracers, we include
biasing parameters by inserting Eq. (9) into Eq. (17); thus,
the biased projected field can be written as

8(q.7) = [b(y) + i(Fa(2)b(¥) + 0.b(¥))H(¥)0,,]
x e~ 795(q, ). (22)

5(q.7) = d,,]e % 8(q. 7). (21)

Equations (21) and (22) constitute expressions for an
individual density contrast field projected onto the celestial
sphere in a manner which preserves a displacement from a
predefined redshift, which we are taking to be the mean
redshift of the bin in which the field is measured.

We note that the phase term remaining from the Fourier
transforms is operated on by the derivative operator. As will
be seen in the following study of the power spectrum, this
results in new correction terms which apply to cross-bin
correlators.

We will now develop two methods for applying the field
level projection to power spectra. One of these methods will
consist of applying the transformations defined in Eq. (15)
to a Hyperuranion power spectrum, in effect, projecting the
two fields of a predefined power spectrum independently.
The other will consist of displacing the fields individually
as done in Eq. (7), applying the Fourier transform defined
in Eq. (15), and then taking the expectation value of the
product of a pair of the ensuing projected fields. We show
that both methods generate the same results and numeri-
cally analyze the results in the context of a biased single
tracer power spectrum.

These methods are physically distinct, one consisting of
correlating a pair of fields before projecting their correlator
onto the celestial sphere, while the other consists of
projecting the two fields individually before correlating
their projections. By showing that both methods give the
same results, we show that even though they are physically
distinct methods and are defined with a different ordering
of operators that cannot trivially be shown to commute,
they are mathematically equivalent.

1. Displaced correlators

Transforming a power spectrum with two instances of
the operation given in Eq. (17) gives us
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<8(q1’)‘(1>3(q2712 (27) /dknl/ 12 o=i(7ik +72ki2) /d(s)(l/dé)(ze_i(‘s)(l(kﬁ.l+qﬁ4l)+5)(2(kﬁ.2+qﬁ.2))

X y()r ()P (ki + ko) Pk, ko, 11, 22).- (23)

Implementing Eq. (18) into Eq. (23), we obtain

<8(q1’)‘(1>3(q2712 (27) /dknl/ 12 o=i(7ik+72kin) /d(s)(l/d5){2€_i(5)(1(kﬁ.1+qﬁ4l)+5)(2(kh.2+qr‘z.2))

X [1+ F,(71)H (1) 1[1 + Fo(72)H(72) 121680 (K + ko) P(Ky, ko, 71, 72)- (24)

Expanding upon Eq. (19) by recognizing that

dk,, e~ 7§30 (k, + Kk, dye~ o kitai) (5y)] = iiie—iiqﬁ53D qQ +qo), 25
271' dqj

Eq. (24) becomes

(5(q1.21)8(a2.72)) = (22)3[1 + iF ,(71)H(71)9y, 11 + iF o(22) H(72)9,, e "191.14220:2) 80 (q + q,)
XP(ql’q21)_(l’)_(2)' (26)

In order to generalize our results to biased tracers, we will now incorporate a linear biasing parameter into each field. Using
Eq. (8) and repeating the above analysis, the biased generalization of Eq. (26) can be seen to be

(6(a1.71)8(d2.72)) = 27)*[b1(71) + i(F o (71) by (1) + 0.5y (71))H (71)0,, ]
X [by(72) + 1(Fo(72)b2(72) + 0:b2(72))H (72)9y, ]
x e~ 411 t220:2) 830 (q; + q2)P(qy. Q2. 71, 72)- (27)

2. Displaced fields

We will now rederive the above equations from the point of view of projecting the fields individually onto the celestial
sphere and only then correlating them. We do this by taking the expectation value of the product of two individually
projected fields, each as described in Eq. (18). Up to first order in the time expansion, this gives us

<3(Q1,)?1)3(Q2’)?2)> =[l+ iFa()_(l)H()_(l)a%_l][l + iFa(;‘(2)H(;?2)aqm]e—i<)?1f1ﬁ,l+;?zqﬁ,z)<5(q1’)—(1)5(q2’)—{2)>
= (27[)3[1 +iF, ()?I)HO?I)a%,l][l + iFa()?Z)H()?z)aqm]e—i(ﬂ?l%.lﬂ?zqa.z)
x 8°(q; + q2) P, (41, 2. 71 72)- (28)

Including biasing and repeating the derivation, we see that

(5(q1.71)5(q2. 72)) = (27)*[by (1) + i(Fo(71)b1 (1) + 0:b1(x1))H (71)9,,,]
X [by(72) + i(F o (72)b2(72) + 0.b2(72))H (72)9y, ]
x e~ 12:42) 5P (q) + ) P(a1, Q2. 710 72)- (29)

We note that Eq. (28) is the same as Eq. (26) and Eq. (29) is the same as Eq. (27), thus confirming that the two approaches to
unequal time field level projections give the same results.
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3. Summary

Having defined the two point unequal time ensemble
average in momentum space and shown that, using the field
level projection formalism shown in Eq. (18), the oper-
ations of correlation and projection commute, we may now
note that the field level projection formalism places the
phase terms and the delta function within the domain of the
derivative operator. Taking these derivatives yields correc-
tion terms which were not present in the correlator-level
analysis as previously defined. The magnitude of these
corrections in the context of a linearly biased, single tracer
power spectrum is the subject of the next section.

In Appendix A, we show that with a suitable bin averaging
scheme based around a Fourier transform of the comoving
distance between the bin’s mean redshift and the mean
redshifts of its contained correlators, these corrections can be
replicated at least in the context of a single bin analysis.

These corrections arise from the introduction of two
Fourier transforms. This allows the two fields to be
independently displaced from the reference redshift, taken
in this analysis to be the mean of the bin into which the field
is sorted. This removes the assumption that dy; = —dy»
which leads to the cancelation of first order corrections in
the unextended correlator-level projection.

The field level projection of a pair of density fields in
preparation for their correlation into an unequal time power
spectrum is illustrated in Fig. 3. The unique times of the

2 /i ,,,,, e

Light Cone

Hyperuranion Space

FIG. 3. Tllustration of the field level projection of a pair of fields
from Hyperuranion space onto a light cone through the celestial
sphere. In Hyperuranion space, each field is separated by a given
ot from its assumed time 7. When projected, this corresponds to
each field being defined at a distance 5y from the mean comoving
distance of its redshift bin, y. After having been projected, the
fields may then be correlated.

two fields are defined with respect to assumed times
corresponding to the mean redshifts of the bins into which
they will be sorted. We note that we can set y; = jy, to sort
them both into the same bin or treat them in the context of
cross-bin analyses.

VI. EVALUATING THE POWER SPECTRUM

We now have a projected two-point correlation function
on the celestial sphere and have confirmed that two
physically distinct methods for creating it lead to the same
results. We now wish to evaluate the projected power
spectrum in order to quantify the corrections that will be
necessary when accounting for unequal time effects.

We begin by noting the presence of the momentum delta
function in any power spectrum definition and integrating
over one of the two momenta. Taking Eq. (28) and
integrating over (,, we obtain

/ da2(5(q1.71)3(a2. 22)

= (2n)3e! ) (1 + F,(7,)H(71) (71 — 72 + i9,,,)]
X P(qy.71.72)
= (27)3e! B0 [1 + R(71.7) + Y(q1.71.72)]
PQ1.71.72)- (30)

where we have defined the phase independent cross-bin
correction function R and the phase independent within-bin
correction function Y

R(p1.J2) = F,(0)H( ) (0 — 22). (31)
¥ah1o7a) = i () ) e SR )

and can now see the unequal time power spectrum to be

P(q.71.02) = €G]+ R(71.72) + Y (. 71. 7))
X P(q.71.72)- (33)

It is important to note that R(jy,7.) # R(¥2.)1) and
Y(q,j1.)2) # Y(q, 72, )1), following from the dependence
in Eq. (30) on the choice of which momentum to integrate
over. This dependence originates with the derivative of the
delta function in Eq. (28), which negates the derivative of
the exponential in the case where the derivative is with
respect to the same momentum being integrated over and
generates a new derivative of the phase term otherwise.
R originates with the integral over the derivative of the
phase term and delta function and accounts for the
evolution of the Universe between the two assumed red-
shifts the fields have been displaced from. Y originates with
the integral over the derivatives of the delta function and the
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power spectrum and accounts for the displacements them-
selves; specifically, it accounts for integrated effects of time
displacement along the length of the bin.

Taking a toy model power spectrum, we calculate values
of Y as a function of g, for Z = 1 and plot them in the top left
panel of Fig. 4. As can be seen, the correction becomes more

0.00¢

-0.05¢

-0.10¢

-iY(q.x(1))

-0.15}

0.001 0.010

q: [hMpc™]

Z;
Z,

0.100 1 10

pronounced the smaller the value of ¢;,, which corresponds
to larger physical distances between the fields and the bin
mean redshift, as one could expect. The dependence of Y
upon the redshift of the bin is small, as the term accounts for
deviations of the field’s redshift from a bin’s mean and so is a
function of the bin’s width more than of its mean value.

Im{P(q,. xI1]]
RelP(q..x[1])]
0.10‘\ U,
0.08 \ -0.02
N \
Q A\
= \
< \ -0.04
% 0.06 \ |
13
& \
\ -0.06
-0.08
0.004 0.006 0.008 oo
a: . [ Mpc™] e
R(x(Z1),x(22))
~0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

FIG. 4. Top left panel: The magnitude of the within-bin correction factor Y as given by applying Eq. (32) to a toy model power
spectrum using the Bardeen, Bond, Kaiser, and Szalay (BBKS) function. As can be seen, the corrections become percent level when
deviations from the bin mean exceed g; ~ 107> hMpc~!. We have set z = 1, Q,, = 0.272, h = 0.67, and k,; = 0.3 hMpc~!. Top right
panel: The ratio of the imaginary correction term in Eq. (35) with the integrated, uncorrected power spectrum term from the same
equation. These calculations were done with a toy model power spectrum using the BBKS function at bin mean redshift 7 = 1 and the
axes show the limits of the integration, which correspond to the longest and shortest modes viable within a given redshift bin. In the case
of a bin with a width of O(100 Mpc h™!), the corrections become percent level with respect to the real power spectrum when the largest
modes studied correspond to scales of O(10 Mpch™!). We notice that the integrated values of ¥ vanish as the integrals limits diverge;
this is in keeping with the notion that the two momentum integrals commute, which must result in the loss of both fields’ single bin
correction terms. Botfom panel: The cross-bin correction factor R for the biased power spectrum as given in Eq. (37) with

b(y) =

1+ z(x). As can be seen, the corrections reach percent level even for closely spaced bins.
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The g; parameter represents deviation from the bin mean
redshift. As such, in order to generate an overall correction
for a redshift bin, we may wish to integrate over the values
that it can take. To this end, we define

P(q,.71.02) = /dLIﬁP(q,)?l,)?z)

—/ﬁ%J%%WU+M%Jﬁ
+ Y(q.71.72)P(Q. 71. 22)- (34)

We note that this takes the form of an inverse Fourier
transform from ¢, to the distance between the mean
redshifts of the bins in question and that in the case of a
single bin analysis it simplifies to

Pmbm—/d%u+ﬂq@wmj» (35)

The magnitude of the corrections introduced in Eq. (35) to a
single bin power spectrum centred at z = 1 is shown in the
top right panel of Fig. 4. As can be seen, the integrated
imaginary correction becomes percent level with respect to
|

the uncorrected, real integrated power spectrum when the
width of the bin is of order O(100 Mpch~!), which is
within the size range of many upcoming survey redshift
bins, and the modes are studied up to those with wave-
lengths of the order of O(10 Mpch™!).

The procedure shown in Eq. (30) can be interpreted as
measuring the correlation of a mode for one field with every
mode of the other. Due to the delta function in Eq. (1), this
would simply be equal to the correlation of the mode with a
mode of equivalent wave number when studied in the
context of the equal time approximation. As such, the new
correction terms can be seen as having arisen from off-
diagonal elements of the delta function which allow for
cross-mode correlation. The procedure shown in Eq. (34)
then consists of integrating over all of the modes of that first
field, generating the equivalent of a power spectrum
integrated over all modes within a redshift bin but in the
context of time displaced density fields.

A. Biased tracers

Generalizing Eq. (30) by repeating the derivation in the
context of biased tracers, we see that

/d(l2<3(qw_(1)3(%vﬂ?2)> = (27)3e! 1091 by (7,)[by (71) + (Fo(71)b1 (1) + 0,61 (1)) H(71) (71 = 22)

+ib (1) F (1) H(21)0g, 1P(a1. 715 72)
= (2r)* /0701y (71)by (72)[1 + R(71.702) + Y (@1 71.22)P(Q1. 71 72)- (36)

where

oo\ L 9G]
R(v1.72) = Fa()(1)+m H(y) (i —72) (37)

and Y is defined as in Eq. (32). We note the introduction of
a new correction term which we have incorporated into R,
which accounts for the evolution of biasing between the
two reference times. These new terms can be interpreted as
the evolution of the biasing between a given tracer and the
underlying matter field between the mean times of two
redshift bins.

Furthermore, we note that a full integral over Y should
result in the vanishing of the remaining single bin correc-
tions. This can be established by noting that, for physical
reasons, the integrals over the two momenta g, must
commute, such that the loss of one of the field’s correction
terms by the integral over the other field’s momentum
indicates a loss of that correction term with an integral over
the other. We also note that the integral over the delta
function was taken in the above analysis to have infinite

|
limits, in accordance with the usual definition of a Fourier
transform. This fact does allow for a certain asymmetry
inasmuch as an integral with different limits over the
remaining momentum would be expected to retain some
corrections, as the operations over the two momenta are not
the same and so should not be expected to commute. This is
shown in Fig. 4, where we see that an integral over only a
part of the momentum’s space retains a correction while the
full integral with divergent limits does not.

Taking as an example a single tracer analysis with biasing

given by b(y) = \/1+ z(y), we calculate R as given in

Eq. (37) over a range of redshifts and obtain the results
shown in the bottom panel of Fig. 4. As can be seen, the
corrections increase with redshift spacing and are substantial
even with closely spaced bins; however, accounting for the
suppressed nature of cross-bin spectra, the importance of
these terms will remain uncertain until integrated relativistic
effects are accounted for in a future paper.

A detailed analysis for the magnitude of such corrections
for different models of the bias including multitracer
correlators will be presented in a follow up work.
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VII. DISCUSSION

The statistical analysis of LSS traditionally consists of
modeling the evolution of density fields and their corre-
lators in a 4D universe which we refer to as Hyperuranion
space and, in the case of angular correlators, projecting
them onto the celestial sphere, in doing so removing the
time dimension. In many cases, the analysis of LSS data
has consisted of sorting observables into redshift bins,
treating every tracer in a bin as being located exactly at the
effective mean redshift of that bin, and measuring their
correlators in the context of this equal time approximation.
This leads to errors that have however traditionally been
assumed to be below the precision limitations of the
surveys in question. In the era of precision cosmology, it
is becoming increasingly important to test such approx-
imations, estimate the errors they cause, and correct for
those errors if they are large enough to affect the results of
an analysis.

A method intended to address this issue has existed in the
literature for several years [71] in the context of accounting
for redshift space distortion (RSD) effects, which locally
expands around a projected power spectrum using a Fourier
transform of the difference between the redshifts of the
tracers. This formalism consists of defining an unequal
Fourier space term, assumed to encompass all unequal time
effects without recourse to a Hyperuranion correction, and
applying it to a projected correlator.

In [54,55,57], a new formalism was derived to both
quantify and correct for the errors caused by the equal time
approximation, which we refer to as correlator-level pro-
jection. This formalism consists of defining the redshifts of
the two density fields in terms of a Taylor expansion around
their mean and projecting them onto the celestial sphere
with a Fourier analog of the expansion parameter. This
method differs from that shown in [71] through the
incorporation of an expansion around the mean redshift
of the correlator in Hyperuranion space prior to projection,
rather than the incorporation of a new Fourier term in the
angular correlator after projection. This allows for the direct
estimation of unequal time corrections separately from
those of observational effects such as RSDs.

In this paper, we derived a new method which we refer to
as field level projection. In this method, each field is
assigned a reference redshift, which could be taken to be
the mean redshift of the bin into which the field is sorted.
The field’s individual redshifts are then displaced from this
reference redshift through a Taylor expansion. Having been
so displaced, the fields are individually projected onto the
celestial sphere with a Fourier analog of their redshift
displacement, before being correlated. We showed that this
formalism reveals first order corrections to the single tracer
power spectrum. There are three such corrections: one
accounts for deviations of the individual fields from their
bin means, one accounts for the distances between their
reference redshifts in the case of cross-bin analyses, and

one accounts for the disparity in the time evolution of
matter and biasing.

We showed that the corrections within a given redshift bin
can lead to percent level corrections for fields spaced over
bins with widths of the order of 100 Mpc h~! or more. These
corrections account for deviations of the correlated fields
from the mean redshift of the bin and show only a minimal
dependence on the value of that redshift, instead being
functions of the bin’s width. These results indicate that they
may lead to nontrivial corrections, particularly in the case of
wide bins as used in some high redshift surveys. These terms
originate from allowing the two fields to be displaced
independently from the bin’s mean redshift, removing the
assumption that their deviations from a reference point are
equal and opposite, as is the case in the correlator-level
projection of a power spectrum. In Appendix A, we show
that an extended version of the correlator-level projection
formalism manifests these corrections after introducing a
Fourier transform of deviations of the mean redshift of a
power spectrum’s two fields from the mean of the bin into
which the power spectrum is sorted. In the Appendixes, we
also show that these corrections can be obtained from an
appropriately extended correlator-level projection for the
sake of consistency checking. These extensions incorporate
an additional Fourier transform which, through a change of
variables, allows the fields to be displaced to different
amounts from the bin’s mean redshift.

We also showed that the cross-bin corrections become
percent level for radial bins when the reduced ratio of their
mean redshifts is of the order of 10%. Cross-bin correlators
are usually much smaller than equal time correlators.
However, we emphasize that our formalism allows for
the correlation of tracers close to the border between their
respective bins which would ordinarily be treated as being
at their bin’s mean redshifts. This substantially reduces the
radial distance between the correlated fields and by
extension may lead to a more significant correlation
amplitude. Furthermore, integrated relativistic effects lead
to cross-bin correlations that are orders of magnitude larger
than those of Newtonian analyses. We are currently
developing a relativistic version of our formalism which
will be presented in a future paper. Furthermore, the
splitting of data into distinct redshift bins potentially
reduces the information obtainable in LSS analyses. The
introduction of cross-bin correction terms provides the
potential for accounting for this and reintroducing the lost
information without altering the binning of a given survey.

In Appendix B, we show that both the single bin and
cross-bin corrections can be obtained from an extended
correlator level projection applied to an angular power
spectrum. This, together with the single bin extended
correlator level projection derived in Appendix A, con-
stitutes a confirmation of consistency between the corre-
lator and field level projections when they are appropriately
established.
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This work aimed to develop the first expression for
unequal time correlators using a field level approach and
highlight the introduction of first order correction terms to
the single tracer power spectrum. We will present a full
analysis of field level unequal time correlations including
projection effects, multitracer correlators and forecasts for
future surveys in a future paper that is currently in
preparation.
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APPENDIX A: EXTENDED CORRELATOR-
LEVEL PROJECTION

We will now show that, with a suitable extension, the
correlator-level projection can replicate the results of the
field level projection. This extension consists of defining a
Fourier analog of the deviation of a correlator’s mean
redshift from the bin’s mean redshift, substituting our
integrals for those used in the field level analysis, and
demonstrating that this leads to equations of the same form
as those shown in Sec. V.

dk;,
2

P(q;. 9. Zbin) :/

dky )
= / o [1 = iF ,(Zin) H (Tbin) (0, + 04,,)16° (g1 + k3)8° (g5 — ki) P(Kis €. Zin)-

Integrating over one of the ¢;, this becomes

P(q’)_(bin) = [1 + iFa()_(bin)H()_(bin)aq;,],P(q’)_(bin)’ (A4)
which is the same as the field level projection in a single bin
as shown in Sec. VL.

As with the field level projection, these corrections arise
from the fact that we are allowing the two tracers to vary
independently around the bin’s mean redshift and generat-
ing a Fourier transform of the ensuing distribution. In the
case of the field level projection, this allowance was
explicitly stated by defining separate projections for each
field, while in the case of the extended correlator-level

We begin by recognizing that the mean redshift of a
given correlator can be written in terms of the mean redshift
of its redshift bin as y = y;, + d¥, such that y corresponds
to what was labeled ¥ in Sec. IV A and y;, corresponds to
what was labeled jy in Sec. V. Defining a Fourier analog of
Oy, which we label pj, and multiplying our transformed
power spectrum by a factor of the bin mean redshift squared
for dimensional consistency, we obtain

P(Pi- 4. Zbin) E)?%in/dé)?e_ip’"’éip(q,)?)

:)_(gin/d@_(/cékﬁ/d&){e—i@mei‘s}r(kﬁ—%)
T

x (¥, 8y)P(kn, €. 71, 5x). (A1)

Recognizing that y, = i, + 67 + 33y, such that &y, =
8¢ +18y, and y; = jpin + 8¢ —38y, such that Sy, =
oy — %5;{, we can substitute our integrals to obtain

Y y dki —i67pi iy (kn—q5
P(pi- Q. Zoin) = T2 / S / déy, / dsyye570s b=a5)

x €(y,6y)P(ky, €., 7, 0x). (A2)

Now, 87 =4(8y1+68x>) and 8y = 8y, — 5x,. Furthermore,
we may recognize that 2 €(x1,x2) = r(x1)r(r2) in the
single bin case upon Taylor expanding and remember that
when expanded, y%.€(r1.x2) ~ 1. Now defining g;, =
%p;, +¢q; and g;, = %pﬁ — ¢4, Taylor expanding the

power spectrum around the bin mean, and only keeping
terms up to first order, we have

/dé)(l/d‘s)(Ze_i&Z‘(q’“+k”’)e_i5“(q“_kﬁ)[1+Fa()?bin>H()?bin)5)?]2P(kﬁ’f’)(hlz)

(A3)

[

projection, it was derived by a change of variables after
allowing both the fields to be displaced from the mean of
their correlator and their correlator’s mean to be displaced
from the mean of the bin.

APPENDIX B: DISPLACING C

The formalism in Appendix A shows that an extended
version of the correlator level projection can recreate the
results of the field level projection in a single bin, but does
not extend to cross-bin correlators. We now wish to develop
a formalism which directly projects the angular power
spectrum while allowing the fields to be located in
separate bins.

063538-12



PROJECTING UNEQUAL TIME FIELDS AND CORRELATORS OF ...

PHYS. REV. D 112, 063538 (2025)

We begin by applying the operation defined in Eq. (15) to the function defined in Eq. (12) and dividing by a factor of y 7,

for dimensionality,

P(‘lh(h,)?h)_(z)E)?l)_(z/d(s)h@_i&x‘q“ /d5)(2€_i5){2%'2@(f,)(1,)(2>,

dk; L )
= (27[)3/ zn/dﬁ}//]/d&}(2v(}?’5x)elkﬁ(X]_XZ)el5Xl(kﬁ_th)e_l§X2<kﬁ+qﬁ.2)P(kﬁ’f7)(l7x2)’ (Bl)
T

where v(y1,x2) = \V/€(x1,x2)- Introducing our Taylor expansion to Eq. (B2) and noting that, as was the case with y in
Sec. VA, v(}y,7,) = 1 and the higher order terms in its expansion vanish, we have

dk

P((Iu(IzJ(lJ{z) — (2ﬂ)3/2ﬁeikﬁ()ﬁ—){z)/d§){l /dé)(zu()_{’5){)ei5)(1(kﬁ—%.l)e—itslz(kfr%‘z)

T

x [1+Fo(r)H)o |1+ Fo(22)H(72) 022 Pki, €. 001, 2)

dky . s e _ e -
= () [ SEMOTIIL 4 i () H GO, +F (7220,

x 8P (ky = q5.1)8° (ki + qa2)P(ka. €. 1. 72)-

(B2)

Integrating over one of the momenta then gives the same results as were obtained in Sec. VI and setting jy; = j, gives the
same results as were obtained in Appendix A, demonstrating that the formalism of operating directly upon the angular
power spectrum obtains the same results as the other methods discussed in this paper.
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