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Freshwater biodiversity, ecosystem functions and services are changing at an
unprecedented rate due to the impacts of vast number of stressors overlapping in time
and space. Our study aimed at characterizing individual and combined impacts of
pollution with pharmaceuticals (PhACs) and endocrine disrupting compounds (EDCs)
and increased water temperature (as a proxy for climate change) on primary producers
and first level consumers in freshwaters. We conducted a microcosm experiment with a
simplified freshwater food web containing moss (Bryophyta) and shredding caddisfly
larvae of Micropterna nycterobia (Trichoptera). The experiment was conducted with
four treatments; control (C), increased water temperature +4 °C (T2), emerging
contaminants’ mix (EC = 15 PhACs & 5 EDCs), and multiple stressor treatment (MS =
EC + T2). Moss exhibited an overall mild response to selected stressors and their
combination. Higher water temperature negatively affected development of M.
nycterobia through causing earlier emergence of adults and changes in their lipidome
profiles. Pollution with PhACs and EDCs had higher impact on metabolism of all life
stages of M. nycterobia than warming. Multiple stressor effect was recorded in M.
nycterobia adults in metabolic response, lipidome profiles and as a decrease in total
lipid content. Sex specific response to stressor effects was observed in adults, with
impacts on metabolome generally more pronounced in females, and on lipidome in
males. Thus, our study highlights the variability of both single and multiple stressor
impacts on different traits, different life stages and sexes of a single insect species.
Furthermore, our research suggests that the combined impacts of warming, linked to
climate change, and contamination with PhACs and EDCs could have adverse
consequences on the population dynamics of aquatic insects. Additionally, these
findings point to a potential decrease in the quality of resources available for both
aquatic and potentially terrestrial food webs.
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Dear Prof. Sabater,

Thank you for the constructive comments that help to improve the manuscript. | would also like to
thank the reviewer for time and effort invested in the second round, we really appreciate the
constructive comments. We have integrated all the comments and suggestions and corrected the
manuscript accordingly. More specifically, we have reanalysed parts of the data as suggested and
subsequently rewritten parts of the manuscript.

We appreciate yours as well as the reviewer's feedback, which prompted us to revise and clarify our
sampling strategy description. Hence, we have included a paragraph explaining the background of our
sampling approach into the Methods section.

As instructed, we have added detailed clarifications to all comments, thus, please find attached the file
with a point-by-point response on the queries provided to our submission.

Thank you for giving us the opportunity to revise our work and | am looking forward to receiving your
reply.

Kind regards,
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Ana Previsi¢ on behalf of the authors



Response to Reviewers

Response letter
MS ref. STOTEN-D-23-17284R1

Title: Pharmaceuticals and endocrine disrupting compounds modulate adverse effects of climate change on resource
quality in freshwater food webs

Authors: Iva Kokotovi¢, Marina Veseli, Filip Lozek, Zrinka Kara¢i¢, Marko Rozman, Ana Previ$i¢

Following the suggestions of the reviewer, we have corrected the manuscript to improve the quality. All changes we
made are listed and explained in detail following the reviewers’ comments below (reply in green colour). Page and
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to changes in the document).

Reviewer #1:
General comments:

The authors have made substantial modifications, according to the reviewers' comments, which greatly improve the
manuscript's quality.

However, I have a significant concern regarding the differentiation between technical and biological replicates in the
methodology employed in this study. To detect the effects of the treatments on the caddisfly population accurately,
biological replicates are essential. While I understand that in some cases, pooling individuals may be necessary to
obtain sufficient tissue for analysis, it is crucial to emphasize that biological replicates are vital for extrapolating
observed effects on the samples to the entire population. Technical replicates, on the other hand, primarily assess the
reliability of the analytical method. Pooling individuals to reduce variability, as mentioned in the paper, is an
unconventional approach. Individual variation within biological replicates is essential for making meaningful
extrapolations to the broader population. Unless the authors can provide robust justification for this method, with
references to established practices or prior studies, it is challenging to validate such an approach.

Upon investigation, I found that in Previsi¢, et al. 2020, the authors employed 'at least two replicate samples' per
treatment, which aligns with common biological replicate practices. However, in Previsi¢, et al. 2021, a departure
from this approach is evident as samples were pooled also to reduce variability. This discrepancy raises concerns about
the consistency and reliability of the methodology employed in this study.

To maintain the rigor and validity of the research, it is advisable to reconsider the approach to replicates and justify
its use, especiall when it deviates from widely accepted scientific practices. For further clarification on this topic, I
recommend reviewing the following sources:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321166/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825082/#:~:text=Broadly%20speaking%2C%20biological%20repl
icates%?20are,the%20measuring%20equipment%20and%?20protocols.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/ej1t.201200260

Reply: We are grateful to the reviewer for highlighting areas in need of improvement. The initial description of our
sampling strategy was acknowledged as inappropriate, and we have rephrased it in response to the reviewer's valuable
feedback. The phrase "pooling biological replicates" has been reworked, recognizing its intuitive illogicality. We
aimed to avoid overemphasizing potential extreme effects of individual microcosms. Thus, we have added a paragraph
explaining the background of our approach (P7-8; L195-207) and two relevant references (Kraufvelin, 1998 and
Sanderson 2002).

In the context of working with micro and mesocosms, the conventional use of biological replicates for generalization,
widely accepted in ecology, faces challenges. As pointed out by (Kraufvelin, 1998), the high variability in these



systems often makes it difficult or impossible to find statistically significant deviations from the controls, even with
rigorous replication and large effect sizes. A review on replicability in pesticide studies found that 88% of test
biological variables showed no statistical significance, despite a theoretically adequate number of replicates
(Sanderson, 2002). Similar trends were observed across different systems and taxa groups (e.g. Knauer et al., 2005;
Pandey et al., 2017), leading to the recognition of these challenges in guidance on aquatic ecotoxicology assessment
(European Food Safety Authority, 2013). Moreover, the increasing complexity and duration of such test systems reveal
problems like "aquarium individuality," where initially identical replicates diverge from one another due to random
factors or chance events, even when no experimental errors are made (Kraufvelin, 1998).

In our current experiment, as well as in the experiment presented in Previsi¢ et al. 2021 (ES&T), we incorporated
simplified food webs, exposing parts of natural systems to treatments over 2 months and spanning different life stages.
Despite efforts to achieve uniformity among individual microcosms, random effects leading to differences in the final
stages cannot be fully excluded. However, we ensured replication by employing three replicates for each treatment,
although we opted to pool tissue samples to address potential extreme effects. Additionally, the weight reduction of
adult aquatic insects during metamorphosis posed a challenge, resulting in high tissue demand. The applied approach
aims to strike a balance between providing ecologically meaningful results with non-model organisms and minimizing
methodological constraints.

European Food Safety Authority, 2013. Guidance on tiered risk assessment for plant protection products for aquatic
organisms in edge-of-field surface waters. EFSA J. 11. https://doi.org/10.2903/j.efsa.2013.3290

Knauer, K., Maise, S., Thoma, G., Hommen, U., Gonzalez-Valero, J., 2005. Long-term variability of zooplankton
populations in aquatic mesocosms. Environ. Toxicol. Chem. 24, 1182—-1189. https://doi.org/10.1897/04-
010R.1

Kraufvelin, P., 1998. Model ecosystem replicability challenged by the “soft” reality of a hard bottom mesocosm. J.
Exp. Mar. Bio. Ecol. 222, 247-267. https://doi.org/10.1016/S0022-0981(97)00143-3

Pandey, L.K., Bergey, E.A., Lyu, J., Park, J., Choi, S., Lee, H., Depuydt, S., Oh, Y.T., Lee, S.M., Han, T., 2017. The
use of diatoms in ecotoxicology and bioassessment: Insights, advances and challenges. Water Res. 118, 39-58.
https://doi.org/10.1016/j.watres.2017.01.062

Sanderson, H., 2002. Pesticide studies: Replicability of micro/mesocosms. Environ. Sci. Pollut. Res. 9, 429-435.
https://doi.org/10.1007/BF02987597

Other comments:

In reference to my previous comments on the use of PCA and PRC, I would like to clarify that I did not object to the
application of PRC to your data. Instead, my concern was the absence of the y-axis in the PRC representation.

Reply: We thank the reviewer for these remarks. As we did not focus on a few particular metabolites/lipids the y axis
would be filled with a lot of values representing m/z values as there are hundreds of metabolites/lipids extracted from
the data and that would not give any additional information to the reader (as an example on appearance we added a
raw figure with the y axis; Fig.1). Moreover, we were only able to identify some metabolites/lipids and those were
putatively annotated. However, putative annotation does not provide definitive identification of a metabolite/lipid, and
further verification is needed to confirm its identity using methods such as targeted metabolomics/lipidomics which
is beyond the scope of our study. Thus, we have chosen to omit the y axis when presenting the current results.
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Fig.1. Lipidome profiles of the caddisfly Micropterna nycterobia; PRC of changes in the lipidome profiles of caddisfly
life stages and female adults exposed to treatments in relation to control (please note that the figure is generated in R
without any editing so color of lines and treatment abbreviations differ from those in the manuscript).

Additionally, I suggested to consider running RDA as an alternative to PCA for two reasons: 1) PCA is primarily a
visual tool and not a formal statistical analysis; 2) given the notable time effect in your data, RDA would enable you
to include time as a covariate, enhancing the analysis.

We agree with the reviewer that PCA is primarily a visualization tool and we used it primarily as a method of
visualisation, moreover, formal statistical analysis was provided by the PRC (tables with statistics provided in
supporting information). However, due to the missing data for metabolome and lipidome of moss at day 30 (treatment
with ECs, as explained in the section 2.4.2. at P12) we did not run the PRC for that dataset. Therefore, in order to
compensate for this oversight and include a formal statistical analysis for this dataset, we added the RDA analysis for
moss metabolome and lipidome changes. Accordingly, parts of the text in materials and methods (P12 paragraph 2.4.2.
Lines 295-299) as well as results (P13 Lines 328-331) and discussion (section 4.1. P21-22) were rewritten. In addition,
new figures were created and integrated into the supporting information (Fig. S2).

However, as we wanted to emphasize the effect of time i.e. plant development and growth rather than the effects of
treatment in moss, as the latter was not evident in HSP response or total lipid content changes, we decided to keep the
previous PCA figures in the paper.

Introduction:

Line 112: a full stop is missing.
Line 117: shouldn't you say global warming then?
Line 127: aquatic organisms (plural)

Reply: Corrected as suggested.



Line 136: How do you want to address that? Or do you mean assess instead of address?
Reply: The sentence was rewritten as suggested (P4-5, Lines 115-118).

In your hypothesis, it is not explicitly stated that you also intend to test the response across the different stages. This
omission was the basis of my earlier comment that comparing data between different dates and life stages seems
incongruent with the study's objectives. It would be beneficial to explicitly include this in your hypothesis.

Reply: We thank the reviewer for pointing this out. We have added the information that changes in non-model
organisms were evaluated across their live cycles into the hypothesis section (P6, Lines 146-149).

Materials and methods:

Please provide clarification in the description of the Generalized Linear Models (GzLM) regarding which data you
analyzed using a normal distribution and which ones you analyzed using a gamma distribution.

Reply: Added as suggested, P11, Lines 277-279: “Normal distribution linear scale response was used for all data
except for body weight of adults where gamma scale response with log link was used as the data did not achieve
normal distribution.”

Discussion:

The discussion is clear and very well-written.
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Abstract

Freshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to
the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing
individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting
compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers
and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified
freshwater food web containing moss (Bryophyta) and shredding caddisfly larvae of Micropterna
nycterobia (Trichoptera). The experiment was conducted with four treatments; control (C), increased
water temperature +4 °C (T2), emerging contaminants’ mix (EC = 15 PhACs & 5 EDCs), and multiple
stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their
combination. Higher water temperature negatively affected development of M. nycterobia through
causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs
had higher impact on metabolism of all life stages of M. nycterobia than warming. Multiple stressor effect
was recorded in M. nycterobia adults in metabolic response, lipidome profiles and as a decrease in total
lipid content. Sex specific response to stressor effects was observed in adults, with impacts on
metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights
the variability of both single and multiple stressor impacts on different traits, different life stages and
sexes of a single insect species. Furthermore, our research suggests that the combined impacts of
warming, linked to climate change, and contamination with PhACs and EDCs could have adverse
consequences on the population dynamics of aquatic insects. Additionally, these findings point to a
potential decrease in the quality of resources available for both aquatic and potentially terrestrial food
webs.

Keywords:

climate change, pollution, caddisflies, sex specific stress response, aquatic-terrestrial subsidies, ecosystem
subsidies

Highlights:

e warming was a dominant stressor for development-related traits of the caddisfly

e negative effects of warming on lipids were increased by presence of PhACs&EDCs

e pollution with PhACs & EDCs has higher impact on caddisfly metabolism than warming
e trait-, sex- and life stage-specific responses to multiple stressors were observed

e impacts of warming and PhACs & EDCs cross the aquatic-terrestrial interface
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1. INTRODUCTION

Freshwater ecosystems are susceptible to various anthropogenic stressors (e.g. chemical
pollution, climate change, habitat loss, invasive species) which mostly coincide. Pharmaceuticals
(PhACs) and endocrine disrupting compounds (EDCs) are a diverse group of pollutants designed
to be biologically active at low doses, targeting specific metabolic and molecular pathways in
humans and animals, thus posing risk for aquatic organisms even at low environmental
concentrations (Ebele et al., 2017; Tijani et al., 2013; Wilkinson et al., 2017). Moreover, EDCs
encompass a wide range of chemicals (e.g. personal care products, cleaning products, food
preservatives, etc.) that interfere with normal function(s) of the endocrine system (Ebele et al.,
2017). PhACs and EDCs were shown to affect aquatic insects in many ways, causing changes in
growth and development (Jarvis et al., 2014), biomass (Lopez-Doval et al., 2012), enzymatic
activity (Pestana et al., 2014), metabolome composition (Grgi¢ et al., 2023; Previsi¢ et al., 2020;
Spath et al., 2022), behavior (Jarvis et al., 2014; Spath et al., 2022) and survival rate (Lopez-Doval
et al., 2012; Maenpaa and Kukkonen, 2006). Furthermore, PhACs and EDCs have the potential to
bioaccumulate in aquatic insects (Grabicova et al., 2015; Lagesson et al., 2016; Previsi¢ et al.,
2021; Veseli et al., 2022) and to cross ecosystem boundaries through emerging aquatic insects
and thus contaminate terrestrial habitats (Previsi¢ et al., 2021; Veseli et al., 2022). Moreover, in
freshwater ecosystems these compounds rarely occur one at a time but rather in complex
mixtures of several different emerging contaminants, thus making it harder to investigate their

effects (Wilkinson et al., 2017).

Climate change, with its long-term shifts in global weather patterns, poses significant challenges
to freshwater ecosystems. Within freshwater ecosystems, aquatic insect groups, such as
caddisflies, mayflies, and stoneflies, play a crucial role as inter-habitat linkages between aquatic
and terrestrial ecosystems, facilitating the flow of energy and nutrients (Huryn and Wallace,
2000). Additionally, they serve as valuable bioindicators for assessing the health of freshwater
environments (Water Framework Directive (WFD) 2000/60/EC). Their vulnerability to climate
change is influenced by their specific biological traits and ecological preferences, with a

considerable proportion of them belonging to cold-adapted taxa (Conti et al., 2014; Hershkovitz
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et al., 2015). The impact of climate change, characterized by rising temperatures and changes in
precipitation levels (Webb et al., 2008), is particularly profound on these cold-adapted taxa in
higher altitudes, making them highly vulnerable to warming (Krajick, 2004; Macadam et al.,
2022). As a consequence of climate change, temperature increase affects various aspects of
aquatic insects' lives. It directly impacts their growth, development, and body size (Cogo et al.,
2020), as well as their emergence patterns (Finn et al., 2022). The anticipated rise in the
frequency and extent of intermittent rivers and streams, which periodically cease flow or even
completely dry, is a direct consequence of global climate change and the increasing human
demand for freshwater resources (Blackman et al., 2021). This trend holds significant implications
for aquatic insect communities, as considerably altered environmental conditions not only
impact their geographic distribution (Cogo et al., 2020 and references therein), but also their

population dynamics (Nukazawa et al., 2018), and community structure (Dori¢ et al., 2023).

Global warmingEhmate-change is likely to exacerbate impact of other anthropogenic stressors
(Wrona et al., 2006). For instance, as temperature rises, the solubility and mobility of PhACs and
EDCs in water can increase, leading to higher concentrations and potentially greater toxicity
(Kazmi et al., 2022; Noyes et al., 2009). Temperature change may also alter degradation rates of
some chemical contaminants, with increasing temperature usually shortening their half-life and
reducing the overall risk (Bhangare et al.,, 2022; Noyes et al., 2009). While accelerated
decomposition reduces the concentration of the parent compound, it increases the
concentration of the degradation products, which in some cases could be even more toxic for
aquatic organisms (Noyes et al., 2009). Warmer water usually increases the metabolic rate of
aquatic organisms, thus leading to potentially increased uptake of these chemicals (Kazmi et al.,
2022). In addition to increasing uptake, warming can also affect behaviour and physiology of
aquatic organisms making them more susceptible to stressors (Polazzo et al., 2022). Toxicity of
chemicals in water can depend on variety of abiotic (e.g. photolysis, hydrolysis, etc.) and biotic
processes (e.g. biotransformation, biodegradation, etc.) (von Schiller et al., 2017). Moreover, the
impact of warming on the toxicity of PhACs and EDCs in water is complex and can depend on a
variety of factors, including the type of the chemical (Serra-Compte et al., 2018), aquatic species

(Duchet et al., 2023, preprint), and life-stage tested (DeCourten and Brander, 2017). Due to the
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increase in temperature caused by climate change, the temperature-dependent toxicity of PhACs

and EDCs in water will become_a matter of growing significance that warrants assessmentas

: _— : | be add ,

It is generally very challenging to gain empirical understanding of the effects of climate change
in comparison with other stressors (Halsch et al., 2021), as well as their combined effects (Dinh
et al., 2022). Consequently, there have been only a handful of studies investigating single and
combined effects of increased water temperature and PhACs and EDCs in aquatic invertebrates
(e.g. Barbosa et al., 2017; Cruzeiro et al., 2019; Heye et al., 2019). More specifically,
carbamazepine and higher temperatures increased Chironomus riparius mortality (Heye et al.,
2019); fluoxetine combined with higher temperature reduced reproductive success and
population growth in Daphnia magna (Barbosa et al., 2017), whereas levonorgestrel and
increased temperature did not cause DNA damage in Gammarus locusta cells (Cruzeiro et al.,
2019). To address this knowledge gap, we conducted a study aimed at characterizing effects of
increased water temperature and exposure to PhACs and EDCs on primary producers (non-
vascular macrophytes; moss) and first level consumers (shredding aquatic insects) in freshwaters.
Considering the importance of aquatic insects as fundamental links between aquatic and
terrestrial food webs and reliable bioindicators to pollution (Erasmus et al., 2021; Muiioz et al.,
2015) we chose caddisflies as our model organisms. Caddisflies are a species-rich and ecologically
diverse insect order, that is well-suited to reflect effects of various stressors on aquatic
ecosystems (Hering et al., 2009). Despite of the high ecological plasticity and thermal tolerance
of intermittent rivers specialists (Stubbington et al., 2017) we hypothesized that the individual
and combined stressor effects of both, increased water temperature and PhACs and EDCs, will
trigger a stress response in an intermittent river caddisfly, Micropterna nycterobia (MclLachlan,
1875). Chronic in situ exposure to pollution with ECs results in measurable changes of metabolite
levels in relatively pollution-tolerant caddisfly larvae (Previsi¢ et al., 2020), whereas increased
temperature results in depletion of lipids and reduces developmental period of mayfly larvae
(Chou et al., 2018). Moreover, variable impacts on emergence and survival were observed in
dragonflies and an aquatic heteropteran exposed to increased water temperature, PhACs and

their combination (Duchet et al., 2023, preprint). Hence, we conducted a 78-day microcosm
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experiment composed of a simplified freshwater food web exposed to a mixture of PhACs and
EDCs and increased water temperature as a proxy for climate change using the randomized
factorial design. We analyzed the physiological changes in caddisflies and moss via non-targeted
metabolomics and lipidomics, i.e. by evaluating alterations in the metabolite and lipid profiles of

non-model organisms_across their life cycles, as well as changes in emergence patterns, body

weight and total lipid content.

2. MATERIALS AND METHODS

2.1 Microcosm Experiment: Experimental Design and Sample Collection

We conducted the microcosm experiment with a simplified freshwater food web containing
nonvascular macrophytes (Bryophyta), hereafter moss and caddisfly larvae Micropterna
nycterobia (Mclachlan, 1875) (Limnephilidae, Trichoptera) feeding mainly as shredders.
Trichoptera larvae, moss (Cinclidotus aquaticus (Hedw.) Bruch & Schimp and Rhynchostegium
riparioides (Hedw.) Cardot), water, sand and stones collected from the pristine Krci¢ River
(N44.027321 E16.318936), minimally impacted by anthropogenic activity, were used for the
experiment. Microcosm setup followed Previsi¢ et al., 2021 with modifications in number of
microcosms, temperature regime and mixture of moss species. Upon collection, 12 microcosms
(aguaria 30 x 20 x 15 cm) were installed with 3 L of water,10 tablespoons of sand, 3 large stones
(> 10 cm),10 small stones (2—5 cm), 3 tufts of moss (6—8 cm in diameter and plants up to 15 cm
in length) and 5% instar M. nycterobia larvae (ca. 30 larvae per aquarium). Constant oxygen levels
were kept using aquaria air pumps, and to minimize evaporation, each microcosm was covered
with a glass cover. Natural light and day-night regime was supplemented with the artificial light
(with sunlight’s spectrum) in the regime of 12 hours of light followed by 12 hours without light.
All microcosms were acclimatized for 10 days at 10 °C under aforementioned conditions
preceding the start of the experiment. The experiment was conducted in the randomized
factorial design, with treatments as follows: Control (C), Increased temperature (T2), ECs mix
(EC), multiple stressor treatment = ECs mix + increased temperature (EC + T2 = MS), with three

replicates of each. Subsequently, 6 of them were exposed to a mixture of 20 ECs over a 78-days
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period. The composition of the ECs mixture was selected based on occurrence of particular
compounds in freshwaters in Europe (Mandaric et al., 2015), and included 15 PhACs; azaperol,
acetaminophen, thiabendazole, levamisol hydrochloride, dexamethasone, ketoprofen,
naproxen, ranitidine hydrochloride, soltalol hydrochloride, valsartan, diphenhydramine,
clopidogrel hydrogen sulfate, hydrochlorothiazide, sertraline hydrochloride, cimetidine and 5
EDCs; benylparaben, ethylparaben, propylparaben, estriol, estradiol-B. The volume of water was
kept constant by adding fresh dechlorinated tap water (ca. 100 mL every week), and the
concentration of each compound was kept at a pseudo-constant concentration of 500 ng L™,
Taking into consideration knowledge gained from our previous experiments (Cetini¢ et al., 2022;
Grgi¢ et al., 2023; Previsic et al., 2021), three stock solutions were prepared and 100 L of the
solution was added each day, every three days or once a month, depending on the compound.
In this way, abiotic attenuation (sorption and/or (photo)degradation) was taken in consideration
and the nominal concentration of each compound was maintained, more details provided in
Supporting information (SI 1). As different temperature regimes needed to be followed, aquaria
were placed in two different incubators (POL-EKO APARATURA, Poland). “Natural” temperature
regime (T1) mimicked the regime of the Krci¢ spring reach before the drying phase (10 °C) and
temperature was successively increased 0.5 °C every 15 days. Increased temperature regime (T2)
followed the same pattern but with temperature increased by 4 °C, in accordance with patterns
of reduced flow observed in the selected river coupled with projections of temperature increase

due to climate change in the Mediterranean montane regions (Bravo et al., 2008).

Biota sampling included initial (after the acclimatization period - day 0 (DO)) and several
consecutive collections (ca. day 15 (D15), day 30 (D30) and day 60 (D60) of exposure) including
different life stages (larvae, pupae and adult stage), in accordance with the life cycle of

holometabolous caddisflies. At each sampling date, we collected replicate samples from each

microcosm, consisting of 2 g of moss and 3-5 Trichoptera larvae/pupae. However, these samples

were pooled per treatment to mitigate the potential extreme effects of individual microcosms

(Kraufvelin, 1998). The complexity and extended duration of micro and mesocosm test systems

exacerbate issues like "aguarium individuality," where initially identical replicates diverge due to

random effects, introducing significant variability and complicating the identification of
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statistically significant deviations (Kraufvelin, 1998; Sanderson, 2002). Additionally, the weight

reduction of adult aquatic insects during metamorphosis (Huryn and Wallace, 2000) poses a

challenge, leading to high tissue demand. Consequently, analytical replicates for each treatment

per sampling date were created after homogenizing the pooled samples (details under 2.2, Biota

Sample Processing). The chosen approach aims to strike a balance between providing ecologically

meaningful results with non-model organisms and minimizing methodological constraints.

Trichoptera larvae were kept in clean aquaria for 24 h to allow for gut clearance prior to collection
(Van Geest et al., 2010). Additionally, emerging adult M. nycterobia were collected as they
emerged (daily), and sex of each individual was determined. These samples were pooled
depending on sex for subsequent analyses due to tissue requirements and to match the overall
sampling scheme, according to temperature treatments. Emergence following the ,natural”
temperature regime (T1) started ca. 2 weeks later than in T2, thus samples were pooled for dates
45-60 and 60-75 days of exposure. Samples in elevated temperature regime (T2) were pooled for
dates: 30-37 and 38-47 days of exposure. We combined adult M. nycterobia from 45-60 days of
exposure in T1 and 38-47 days of exposure in T2 to one time point (day 60 of exposure) in order
to have approximately the same time period of exposure to selected stressors. All samples were

freeze-dried upon collection and stored at —80 °C until further processing.

Oxygen concentration (mg L), oxygen saturation (%), pH and electrical conductivity (mS cm™?)
were measured in every microcosm at the beginning of the experiment (D0) and subsequently
every two weeks (D15, D30, D45 and D60) using Hach HQ40D portable multi-parameter probe
(Hach, Germany).
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Figure 1. A) Experiment design with the following treatments: C - Control (T1 = 10 °C), T2 -
Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (EC + T2) and b)

sampling scheme with caddisfly larvae, pupae and adults sampled at various days of exposure.

2.2. Biota sample processing: extractions of metabolites and lipids

Within this study, the term “metabolome” refers to the complete set of low molecular weight
molecules or metabolites present within an organism, while “lipidome” is used to describe the

complete lipid profile within an organism (i.e. all lipids).
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Biota samples processing, metabolite and protein extraction and metabolite profiling analyses
followed (Grgi¢ et al., 2023). In order to detect Hsp70 proteins, we performed Western blot
analysis of protein samples, the details are provided in Supporting Information (SI 2). As there

was no detection of the aforementioned proteins no results are shown.

The Folch lipid extraction method (Folch et al., 1957) was used and performed following the
protocol of (Sarafian et al., 2014) with modifications. Briefly, for lipidome profiling and
determination of the total lipid content (TLC), each sample (30 mg) was dissolved in 600 pL CHCl3
: MeOH (2:1 v:v). Samples were vortexed at medium speed (IKA® Vortex Genius 3, Germany) for
5 min. After 10 min of incubation at room temperature, samples were cooled at -20 °C for 10 min
and additional lysis was done via ultrasonic probe (Sonoplus HD4050, Bandelin electronic GmbH,
Germany) for 1 min at 50% of intensity. Samples were stored overnight at -20 °C to improve
protein precipitation and then centrifuged at 14 000g for 20 min (Tehtnica-Centric 200R,
Slovenia). The supernatant was collected (600 uL) in a previously weighed tube, filtered through
a PVDF filer (MILLEX® - GV Syringe Filter 0.22 um Hydrophilic PVDF, 13 mm, Sterile) and
evaporated to dryness. The tube was weighed to determine the TLC.TLC was determined using
the following equation; TLC = weight of “full” tube —empty tube. Samples were dissolved in 200uL
IPA : ACN : H20 (2:1:1, v:v:v) for subsequent LCMSMS non-target analysis.

For both metabolome and lipidome analysis, set of quality control samples was prepared by
taking small aliquot of the each sample solution from the entire set and pooling them together.

Subaliquots of this pooled sample are regarded as set of quality control samples.

2.3 Non-target metabolome and lipidome analysis

Non-target analyses of the metabolom and lipidome samples were performed using a high-
resolution mass spectrometry system; LTQ-Orbitrap VelosTM (Thermo Fisher Scientific, USA)
coupled with an ultra-performance liquid chromatography (UPLC) system (Ultimate 3000
RSLCnano system, Dionex, Amsterdam, Netherlands). Instrument parameters and UPLC gradients
are provided in Supporting Information (Sl). Data extraction, chromatographic deconvolution and
final alignment were done using the MZmine program (Katajamaa et al., 2006). Steps and settings

10
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used in the MZmine program are provided in Supporting information (Sl 3). The exported .csv
files were further filtered and sorted using modified parts of Bqunat script written in
Mathematica (Wolfram Research Inc.,Campaign, IL, USA) (RoZman et al., 2018). Data were
cleaned by removing of all blank-related features. Feature was considered as blank related if an
intensity ratio sample:blank was < 10. Quality acceptance criteria for each metabolite were:
detection rate > 70%, relative standard deviation < 30% and dispersion ratio < 40%. Based on the
exact mass match, metabolite and lipid identification was performed in

http://ceumass.eps.uspceu.es/ and by searching Metlin, Kegg, LipidMaps, PubChem, and HMDB

databases. It is worth noting that the metabolites and lipids reported here are only the

metabolites that were putatively annotated.

2.4 Statistical Analysis

2.4.1 Body weight changes & total lipid content of Micropterna nycterobia and non-vascular

macrophytes, and physico-chemical water parameters

The effects of experimental treatments on body weight (evaluated individually in M. nycterobia
specimens; N = 12 per treatment per collecting date) and total lipid content (TLC; evaluated in
composite samples of M. nycterobia pooled per life stage and treatment; N = 3 per treatment
per collection date) of different life stages of M. nycterobia were analysed using Generalized
Linear Models (GZLMs) constructed in IBM SPSS Statistics 27.0 (IBM Corporation). Additionally,
for adults the differences between the sexes were determined. Normal distribution linear scale

response was used for all data except for body weight of adults where gamma scale response

with log link was used as the data did not achieve normal distribution. Maximum likelihood
estimate was used for parameter estimation. Pairwise contrasts of estimated means were

performed using Wald’s statistics.

The changes in total lipid content in moss, as well as changes in the physico-chemical water
properties, between different treatments over time were tested using repeated measures

ANOVA using the IBM SPSS Statistics 27.0 (IBM Corporation). Pairwise comparisons were
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conducted with Bonferroni adjustment for multiple comparisons. Obtained data were analyzed

and visualized using Principal Component Analysis (PCA) in Primer 7.

2.4.2. Data analysis of non-target metabolomic and lipidomic profiles of Micropterna nycterobia

and non-vascular macrophytes

Obtained metabolomic and lipidomic data matrices were forth root transformed andwas

analyzed using Principal Component Analysis (PCA) and Principal Response Curves (PRC) in
package vegan (version 2.5-7) RStudio version 4.1.2 (Oksanen et al., 2020). PRCanalysis—was
performed-usingferth-reottransfermed-data—Additionally, significance of the results was tested
using the Monte Carlo test in the '‘permute' package, with 99 permutations, more specifically
significance of the 1st canonical axis of the PRC and significance of sampling date/insect stage

was tested. Due to the missing moss sample D30 EC, Redundancy Analysis (RDA) was performed

instead of PRC for moss metabolome and lipidome data using CANOCCO software (version

5.11,ter Braak and Smilauer, 2012). We used treatment as the categorical explanatory variable,

metabolites and lipids as response, respectively and time as a covariate. The RDA significances

were tested using Monte Carlo test with 999 permutations. Values of MZ masses of the

metabolome dataset were normalized and processed by Principal Component Analysis (PCA) in
Rstudio. The PCA was visualized in Primer 7 (Clarke and Gorley, 2015). The first 100 variables (MZ
masses) that contribute most to separation along certain PCs were selected for identification of

metabolites.
3. RESULTS

3.1. Physico-chemical properties of water during microcosm experiment

Oxygen concentration (mg L-1) and oxygen saturation (%) throughout the experiment did not
differ significantly among treatments, they were impacted only by the day of measurement
(repeated measures ANOVA, Table S1, S2; and PCA analysis, the total variance accounted by the
two components shown was ~69 %; variance from [PC1, PC2]=[46.4 %, 22.6 %]; Fig. S1). Day of

measurement and interactive effects; temperature x ECs, temperature x time and ECs x time

12



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334
335
‘336
337
338
‘339

340

caused changes in pH levels (repeated measures ANOVA, Table S3). Specifically, pH was higher
on D15 and D60 in treatments with ECs mixture (EC and MS). Additionally, on D30 and D45 in
treatments with elevated water temperature (T2 and MS) pH was higher and lower, respectively
(repeated measures ANOVA, Table S3). Electrical conductivity differed between treatments, i.e.
treatments with increased water temperature (T2 and MS) had higher conductivity compared to
the “natural” temperature regime (C and ECs) (repeated measures ANOVA, Table S4). Moreover,
electrical conductivity was generally rising throughout the whole experiment in all treatments,

thus it was also impacted by the day of exposure (repeated measures ANOVA, Table S4).

3.2. Total lipid content, metabolome and lipidome profiles of hon-vascular macrophytes

Principal component analysis (PCA) based on non-target metabolic profiles and lipidome profile
of moss revealed clustering primarily based on the duration of the experiment rather than
treatment (Fig. 2A&B). In the analysis of the metabolome and lipidome, the total variance
accounted by the first two components was ~45.5 % (variance from [PC1, PC2]=[31.9 %, 13.6 %]
and ~41,5 % (variance from [PC1, PC2]=[28.8 %, 12.7 %]), respectively. In both analyses, the first
principal component (PC) axis separated the profiles between DO and D15 from D60, with D30
lacking a consistent grouping patterns (Fig. 2A&B; note however, that D30 EC samples are

missing, as they were lost during the processing). In addition, RDA analyses shows that

metabolome and lipidome profiles differed significantly among treatments (RDA: pseudo-F = 3.0,

p = 0.002, explained variability = 12.1 %; Fig. S2A and RDA: pseudo-F = 2.2, p = 0.004, explained

variability = 7.7 %; Fig. S2B, respectively). Majority of metabolite groups (17 in total) showing the

most significant changes in abundance to stressor treatments were terpenoids, terpenes class
(50%) followed by lipids and fatty acids (29%), amino acids, peptides and proteins (11%), carbonyl
compounds (5%), organic acids, carboxylic acids and monocarboxylic acids (5%) (Fig. S3, Table
S5). Within the lipidome, most significant changes in abundance of 51 lipids to stressor
treatments were noticed in glycerophospholipids (51%) followed by glycerolipids (20%), sterol
lipids (12%), sphingolipids (8%), prenol lipids (8%) and fatty acyls (2%) (Fig. S4, Table S6). The

lowest total lipid content in all treatments was measured on D 15, however, no significant

13
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changes in TLC was observed related to days of exposure or treatments (Fig. S5, repeated

measures ANOVA, Table S7).
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Figure 2. PCA plot showing separation based on A) metabolome and B) lipidome of moss in
different treatments. Abbreviations of treatments are as follows: C — Control (T = 10 °C), T2 -
Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2 + EC); Day 0 —

pre-exposure sample.

3.3. Phenology (emergence patterns) of the caddisfly Micropterna nycterobia

Increased water temperature caused earlier emergence of both males and females, resulting in
approximately three-week shift in peak emergence between the normal (C and EC) and elevated
temperature (T2 and MS) treatments (Fig. 3). Overall, more males emerged throughout the
experiment, however, the majority of pupae that did not emerge by the end of experiment were
females. Only minor differences between emergence patterns of males and females were

observed within treatments (Fig. 3).
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Figure 3. Three-day simple moving average (SMA3) of emerged A) male and B) female adults of
Micropterna nycterobia across treatments. Abbreviations of treatments are as follows: C - Control

(T=10°C), T2 - Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2
+ EC).

3.4. Body weight and total lipid content changes of the caddisfly Micropterna nycterobia

Overall, a loss in body mass was recorded in M. nycterobia throughout the life cycle, with larvae
having the highest body weight and adults the lowest (Fig. 4A-D). A statistically significant drop
in body weight was observed in larvae in T2 compared to control (4A, Table S8). All experimental
treatments increased the body weight of pupae compared to control (Fig. 4B, Table S9). Adult
females had significantly higher body weight compared to males (Fig. 4C & 4D, Table S10),
however, in adults of both sexes a statistically significant drop in body weight was observed in T2

compared to control (Fig. 4C & 4D, Table S11 and S12).
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Figure 4. Model predictions illustrating the effect of treatment on body weight of A) larvae B)
pupae C) adult males and D) adult females of M. nycterobia. Mean values of twelve replicates are
presented with 95% confidence intervals. Different letters indicate significant differences among
treatments (p < 0.05). Abbreviations of treatments are as follows: C — Control (T = 10 °C), T2 -

Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2 + EC).
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Figure 5. Model predictions illustrating the effect of treatment on total lipid content of A) larvae
B) pupae C) adult males and D) adult females of M. nycterobia. Mean values of three replicates
are presented with 95% confidence intervals. Different letters indicate significant differences
among treatments (p < 0.05). Abbreviations of treatments are as follows: C— Control (T = 10 °C),

T2 - Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2 + EC).

Changes in the TLC were more pronounced post-metamorphoses (Fig. 5A-D). Experimental
treatments had no effect on TLC on larvae (Fig. 5A, Table S13), while pupae exhibited an increase

in the EC treatment compared to control (Fig. 5B, Table S14). Total lipid content of adults was
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lower compared to control in treatments with increased temperature (T2 and MS) (Fig. 5C & 5D,
Table S15 & S16). Moreover, the greatest drop in TLC of adults was observed in the MS treatment
((Fig. 5C & 5D, Table S15 & S16), corresponding with the negative synergistic effect according to
(Piggott et al., 2015). Females had significantly higher total lipid content compared to males
(Figure 5C & 5D, Table S17).

3.5. Metabolome profiles of the caddisfly Micropterna nycterobia

Principal Response Curves (PRC) of non-target metabolome profile of larvae, pupae and adult
caddisflies show that the metabolome of all caddisfly life stages was mostly affected by the ECs
mixture (EC and MS), as evident by the highest deviation from the control (Fig. 5A & B). Deviations
were observed in larvae at D15 already, and further increased in pupae and adults. The MS
treatment showed highest impact on metabolome of both male and female adult caddisflies (Fig.
5A & B). Additionally, 62.6 % of total variance in males and 59.5 % in females could be attributed
to time, whereas 22.1 % in males and 25.8 % in females could be attributed to the treatment
(including its interaction with time, Table S18). The first PRC axis was significant (males —F (1, 32)
=18.714 p < 0.05, females — F (1, 32) = 28.172, p < 0.05) and based on the Monte Carlo tests per

sampling date, the treatment regime had a significant influence on all sampling dates.

Principal component (PCA) analysis based on non-target metabolic profiles of all life stages of M.
nycterobia revealed clear separation of pre-metamorphosis larvae and post-metamorphosis
pupae and adult imagines (Fig. S6, PC1). However, when particular life stages were analyzed
separately, the PCA also revealed separation into distinct groups based on treatments. In larvae,
for instance, PC1 axis separating larvae in ECs and MS treatments from DO, C and T2 treatments

accounted for 37.7 % of variability (Fig. 4C; variance from [PC1, PC2]=[37.7 %, 15 %]).

Majority of metabolite groups (18 in total) showing the most significant changes in abundance to
stressor treatments in M. nycterobia were lipids and fatty acids (39%) followed by amino acids
(22%), quinones (6%), acylcholine (6%), adrenergic agents (6%), lactones (6%), alcohols (5%),
pyridines (5%), alkaloids (5%) (Fig. S7, Table S19.
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Figure 5. Metabolome profiles of the caddisfly Micropterna nycterobia; PRC of changes in the
metabolic profiles along the caddisfly life cycle in A) male and B) female adults exposed to
treatments in relation to control. Numbers on x-axis denote days of exposure. C) PCA plot
showing separation based on metabolome of M. nycterobia larvae in different treatments at 15
days of exposure. Abbreviations of treatments are as follows: C — Control (T = 10 °C), T2 -
Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2 + EC); Day 0 —

pre-exposure sample.

3.5. Lipidome profiles of the caddisfly Micropterna nycterobia

Principal Response Curves (PRC) of non-target lipidome profile of larvae, pupae and adult
caddisflies shows the highest deviation from the control in male and female adults, with an
opposing individual stressor effect (EC vs T2; Fig. 6A & B). In MS treatments, increased
temperature was the dominant stressor for both sexes, however, there were differences
between sexes, as male caddisflies lipidome was more affected in T2 and MS treatments,
whereas female caddisflies lipidome was more affected in the EC (Fig. 6A & 5B). Moreover, table

S$20 shows that 79.8 % of total variance in male and 68.4 % in female caddisflies can be attributed
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to time, whereas 13.3 % in male and 17.3% in female can be attributed to the treatment
(including its interaction with time). The first PRC axis was significant (males - F (1, 32) = 17.475
p <0.05, females — F (1, 32) = 14.583, p < 0.05) and based on the Monte Carlo tests per sampling

date, the treatment regime had a significant influence on all sampling dates.
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Figure 6. Lipidome profiles of the caddisfly Micropterna nycterobia; PRC of changes in the
lipidome profiles of caddisfly life stages and A) male and B) female adults exposed to treatments
in relation to control. Numbers on x-axis denote days of exposure. C) PCA plot showing separation
adult M. nycterobia separated by sex in different treatments. Abbreviations of treatments are as
follows: C — Control (T = 10 °C), T2 - Increased temperature (14 °C), EC - ECs mix, MS - multiple

stressor treatment (T2 + EC); Day 0 —pre-exposure sample.

Principal component (PCA) analysis based on non-target lipidome profiles of all life stages of M.
nycterobia showed clear separation of three major life stages, larvae, pupae and adults (Fig. S8).
The total variance accounted by the three clusters was ~68.8 % (variance from [PC1, PC2,
PC3]=[47.7 %, 14.8 %, 6.3 %]). Clustering of particular treatments was particularly evident in
separate analyses of each life stage. The highest degree of clustering based on treatments was

inferred for adults, with the first principle component axis (PC1 = 34.7 %) separating adults based
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on increased water temperature (T2 and MS treatments), whereas the second axis separated

males from females (PC2 = 19.7 %, Fig. 6C).

Within the lipidome, most significant changes in abundance to stressor treatments were noticed
in glycerophospholipids (67%) followed by fatty acyls (12%), sphingolipids (12%), glycerolipids
(5%), prenol lipids (2%) and sterol lipids (1%) (Fig. SS, Table S21).

4. DISCUSSION

Water pollution has far-reaching consequences for the ecosystem health and functioning, and it
is important to understand these impacts, especially in a context of climate change. Here we used
simplified freshwater food web exposed to a mixture of PhACs and EDCs and increased water
temperature to broaden our understanding of the impacts of climate change and pollution on

freshwater ecosystems.

4.1. Warming and pollution with PhACs & EDCs triggered a mild response in moss

A mild response of the moss to both individual stressors (increased water temperature and
contamination with ECs) and their combination suggests mosses’ resilience. It has been shown
that plants have specific temperature and pollution thresholds that trigger or inhibit certain
physiological processes, allowing them to respond to stressful conditions (Firmansyah and
Argosubekti, 2020; Gorovits et al., 2020; Sun et al., 2018; Zezulka et al., 2013). One of the most
common physiological responses includes production of heat shock proteins (HSPs), and lack of
observable change in regulation of HSPs may suggest that the thermal and pollution threshold
necessary to trigger stress response in the moss was not reached. This observation is in
agreement with established thermal threshold of plants of minimum 5 °C (Firmansyah and

Argosubekti, 2020). Even though changes in metabolomic and lipidomic profiles among

treatments were significant, one should keep in mind that changes in metabolite and lipid

composition can be related to stress response but also developmental stages (Lu et al., 2019;

Mikami and Hartmann, 2004). In addition, the biotic stress induced by the feeding of M.

nycterobia larvae on the moss might have masked the impact of the pollution and increased
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temperature. Plants can prioritize their responses to address individual stressors when exposed
to multiple abiotic and/or biotic stressors (Rejeb et al., 2014; Suzuki et al., 2014). We argue that
the moss in the current experiment might have prioritized biotic stress over abiotic stressors and
activated different defence mechanisms to mitigate larval feeding. However, we could not test
for the latter, since feeding of M. nycterobia larvae on the moss was also present in control
treatments. Moreover, research has shown that different stress combinations activate different
pathways and signals thus making it harder to predict multiple stressor effects (Rejeb et al., 2014;

Suzuki et al., 2014; Vescio et al., 2022).

4.2. Single stressor impacts: effects of warming and pollution with PhACs and EDCs on M.

nycterobia

In the current experiment, we recorded a body mass loss in M. nycterobia that is in line with the
usual life cycle patterns of the holometabolous caddisflies, with larvae having the highest body
weight and adults the lowest (Huryn and Wallace, 2000). Increased temperature during insect
development typically leads to reduced adult body size, negatively influencing fecundity and
longevity (Mirth and Riddiford, 2007), this effect was however, not observed in the current study.
Our observations are in line with data on chronic exposure to pesticides in the caddisfly
Limnephilus lunatus, where reduced body weight of adults was observed only if younger instar
larvae were exposed, and not the fifth-instars (Liess and Schulz, 1996; Schulz and Liess, 2001,

1995).

M. nycterobia inhabits clean crenal and rhithral sections and is therefore expected to be sensitive
to presence of contaminants (Graf et al., 2023). Indeed, sensitivity is displayed through intense
change in regulation of both metabolites and lipids in respect to control, however, the
contaminants seem to have a more significant impact on metabolome than temperature. More
precisely, the most pronounced metabolome response was post-metamorphosis, yet changes in
metabolite regulation are already notable in larvae at D15. Notably, the sampled caddisflies'
metabolome contained the biogenic amine octopamine, a significant neurotransmitter,

neuromodulator, and neurohormone influencing various physiological functions, behaviour and
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endocrine activity (Farooqui, 2012) Changes in octopamine levels due to PhACs and EDCs during
metamorphosis could affect not only the subsequent life stage but potentially extend across

multiple generations.

Observed difference in dynamics of regulation of metabolites vs lipids can be related to
physiological roles of metabolites and lipids which response tends to differ depending on the
type of stress and the metabolic pathways involved (Kainz and Fisk, 2009; Snart et al., 2015).
Generally, lipids serve as a long-term energy source and are stored in lipid droplets, which can
be mobilized to provide energy during times of starvation, embryogenesis, prolonged periods of
flight and stress (Arrese and Soulages, 2010; Kainz and Fisk, 2009). Here, metabolites were more
regulated than lipids in response to stress probably in order to maintain cellular homeostasis and
ensure energy reserves (lipids) for the emerging adults (Arrese and Soulages, 2010). Glycerolipids
such as triglycerides are stored in the core of the lipid droplets surrounded by
glycerophospholipids (Arrese and Soulages, 2010). As glycerophospholipids were mostly affected
by experimental treatments, this further supports the fact that lipid reserves were preserved for
adults. However, changes in glycerophospholipids of insects can also be related to development
and metamorphosis (Bashan et al., 2002; Cargill et al., 1985; Duarte, 2019) as well as food source

(Hanson et al., 1985; Torres-Ruiz et al., 2010).

The lack of strong effects of increased water temperature on metabolite regulation, as well as
absence of heat shock protein HSP70 expression, is most likely due to adaptation of M. nycterobia
to thermal stress regularly occurring in intermittent streams (Qin et al., 2003). This finding
suggests that M. nycterobia and possibly other intermittent habitats indicators may have
metabolic flexibility to cope with thermal stress, allowing them to survive extreme climatic events
characterised by fluctuating temperature regimes. In addition, the regulation of lipidome of M.
nycterobia aquatic stages exhibited intriguing resilience to both increased water temperature
and pollution with PhACs and EDCs. The limited impact on lipid regulation suggests that the stress
response threshold triggering significant lipid mobilisation may not have been surpassed.
Instead, the priority for the aquatic stages was directed towards lipid accumulation rather than
mobilization in response to stress challenges (Arrese and Soulages, 2010; Hoppeler et al., 2018).

Emphasis on lipid accumulation was evident through the observed increase in total lipid content
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from larval to pupal stages, serving as a crucial energy source to sustain adult insects during non-
feeding periods and fuel their flights (Arrese and Soulages, 2010; Hoppeler et al., 2018). While
the anticipation of intense lipidome activity in adult insects is well-founded, it is surprising that
so distinct regulatory mechanisms are operating in response to different stressors. However,
lipidomic profiles of multiple stressor treatment were in both males and females congruent with
those of increased temperature, implying the dominant impact of increased water temperature

on regulation of lipids in aquatic insects.

Increased water temperature accelerated development of M. nycterobia, resulting in earlier
adult emergence and lower total lipid content of all life stages in treatments with increased
temperature. Similarly, the mayfly larvae chronically exposed to increased temperature used
lipids and amino acids as alternative energy sources to support their growth and maintenance
costs, ultimately resulting in reduced total lipid content (Chou et al., 2018). Furthermore,
sensitivity of the temporal emergence patterns of aquatic insects was already discussed as
toxicological endpoint for exposure to pesticides (Schulz and Liess, 2001), as timing of aquatic
insect emergence plays a crucial role for riparian predators (review in Bundschuh et al., 2020).
More precisely, insectivorous birds almost exclusively obtain the omega-3 long-chain
polyunsaturated fatty acids from emerging aquatic insects, thus shifts in the relative availability
and phenology of aquatic insects in response to a changing climate are likely to have major fitness
consequences for their breeding success (Shipley et al.,, 2022). Hence, such shifts can have
cascading effects on cross-ecosystem energy flow. This is of particular importance in intermittent
water bodies, like those inhabited by M. nycterobia, where mass emergence during short periods
is typical and riparian food webs are highly dependent on the aquatic subsidies (McIntosh et al.,

2017).

4.3. Multiple stressor impacts of warming and PhACs and EDCs on aquatic insects

A synergistic interactive effect was observed, leading to a decrease in total lipid content and
significant variation in lipid profiles in adults of both sexes under the MS treatment. Micropterna

nycterobia, a specialist in intermittent rivers, exhibits a behaviour where adults leave the water
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bodies upon emergence and migrate to cooler mountainous regions or nearby caves for a few
months until their gonads develop (Waringer and Graf, 2011). In autumn, after copulation, they
lay eggs in re-established surface flow. Therefore, the observed decrease in lipid reserves in
adults (8.9% and 10.7% decrease in total lipid content in males and females, respectively) could
have a major impact on their reproduction and population dynamics. Lipids serve as crucial
energy reserves for insects, especially during non-feeding life stages and long-distance flights
(Arrese and Soulages, 2010; Downer and Matthews, 1976). Maintaining metapopulation
dynamics is particularly important for inhabitants of intermittent water bodies (Datry et al.,
2017). Various pollutants, such as fungicides and copper, can decrease the lipid content of
limnephilid caddisflies (Konschak et al., 2019). However, this effect was not observed in the
current study as PhACs and EDCs did not influence the lipid content of M. nycterobia.
Furthermore, the negative effects of pollutants on lipids can be exacerbated by elevated water
temperatures (Yoon et al., 2022). However, in our study, increased water temperature primarily
influenced the lipids of caddisflies, and its adverse effects were amplified by pollution with PhACs
and EDCs. Additionally, warming indirectly contributed to the further deterioration of
environmental conditions in the T2 and MS treatments, as evidenced by increased conductivity

within these two treatments.

In terms of the timing of the strongest stress response, our results differ from a previous
experiment involving the same caddisfly species, where the effects of ECs and microplastic
particles were most pronounced in the first 15 days of exposure, both in single and combined
stressor treatments (Grgi¢ et al.,, 2023). Apart from the dominant impact of increased
temperature, these differences may also be attributed to variations in the mixture of ECs used,
as different compounds can have varying effects on biota (Mufioz et al., 2015; Nilsen et al., 2019).
Nevertheless, our study indicates that the adverse synergistic effects of warming events and
freshwater contamination with ECs could intensify throughout the life cycle of aquatic insects,
potentially leading to developmental impairments and disturbances in population dynamics
(Kazmi et al., 2022). However, in most environmental health assessment and monitoring
programs, only the aquatic stages of aquatic insects are considered (Water Framework Directive

(WFD) 2000/60/EC). Furthermore, the multiple stressor effects observed in the current study not

25



590

5901

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

only resulted in reduced resource quality for aquatic food webs but also affected the quality of
emergence, thus impacting the riparian food webs at the aquatic-terrestrial interface (Bundschuh

et al., 2020).

4.5. Differential response to stressor impacts of male and female caddisflies

Our study reveals sex-specific responses to both single and multiple stressors, with females
exhibiting more pronounced impacts on the metabolome while males show greater effects on
the lipidome. In the majority of insects, there is sexual dimorphism in lipid content due to distinct
roles played by lipids, such as egg production in females and flight behaviour in males (Lease and
Wolf, 2011). Certain aquatic insect species, characterized by specific male flight behaviour (Lease
and Wolf, 2011) or swarming (Sartori et al., 1992), experience negative impacts on population
fitness when males have decreased lipid content. Furthermore, this study identifies 4-
hydroxyestradiol, an endogenous metabolite of 17B-estradiol, from M. nycterobia, which has
been shown to have significant lipid-modulating effects in rats (Wang and Zhu, 2017).
Additionally, in Drosophila, sexual dimorphism has been observed in metabolic genes and

mechanisms involved in triglyceride homeostasis (Wat et al., 2020).

Likewise, the findings of this study highlight sex-dependent variation in metabolites induced by
stress, consistent with a previous study involving M. nycterobia exposed to microplastic particles
and a mixture of personal care products (Grgi¢ et al., 2023). Moreover, female insects generally
exhibit a stronger stress response across different taxa and under various stress conditions,
including parasite infections, predation, food quality, chemical stress, and the impacts of climate
change (Lindsey and Altizer, 2009; Slos et al., 2009; Stillwell and Davidowitz, 2010). This is likely
due to the different evolutionary roles of male and female insects, which have led to the
development of distinct stress-defence mechanisms. The fitness of females is closely linked to

their life expectancy and the number of offspring they produce.

Therefore, our study emphasizes the variability in the impacts of both single and multiple
stressors on various traits, different life stages, and sexes within a single species. Consequently,
it underscores the importance of developing a more comprehensive understanding of the
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sensitivity of freshwater organisms to the adverse effects of single and multiple stressors,

particularly when addressing the management of freshwater ecosystems in the context of global

change (Schéafer and Piggott, 2018).
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2. Negative effects of warming on lipids were increased by presence of PhACs&EDCs
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Abstract

Freshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to
the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing
individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting
compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers
and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified
freshwater food web containing moss (Bryophyta) and shredding caddisfly larvae of Micropterna
nycterobia (Trichoptera). The experiment was conducted with four treatments; control (C), increased
water temperature +4 °C (T2), emerging contaminants’ mix (EC = 15 PhACs & 5 EDCs), and multiple
stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their
combination. Higher water temperature negatively affected development of M. nycterobia through
causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs
had higher impact on metabolism of all life stages of M. nycterobia than warming. Multiple stressor effect
was recorded in M. nycterobia adults in metabolic response, lipidome profiles and as a decrease in total
lipid content. Sex specific response to stressor effects was observed in adults, with impacts on
metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights
the variability of both single and multiple stressor impacts on different traits, different life stages and
sexes of a single insect species. Furthermore, our research suggests that the combined impacts of
warming, linked to climate change, and contamination with PhACs and EDCs could have adverse
consequences on the population dynamics of aquatic insects. Additionally, these findings point to a
potential decrease in the quality of resources available for both aquatic and potentially terrestrial food
webs.

Keywords:

climate change, pollution, caddisflies, sex specific stress response, aquatic-terrestrial subsidies, ecosystem
subsidies

Highlights:

e warming was a dominant stressor for development-related traits of the caddisfly

e negative effects of warming on lipids were increased by presence of PhACs&EDCs

e pollution with PhACs & EDCs has higher impact on caddisfly metabolism than warming
e trait-, sex- and life stage-specific responses to multiple stressors were observed

e impacts of warming and PhACs & EDCs cross the aquatic-terrestrial interface
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1. INTRODUCTION

Freshwater ecosystems are susceptible to various anthropogenic stressors (e.g. chemical
pollution, climate change, habitat loss, invasive species) which mostly coincide. Pharmaceuticals
(PhACs) and endocrine disrupting compounds (EDCs) are a diverse group of pollutants designed
to be biologically active at low doses, targeting specific metabolic and molecular pathways in
humans and animals, thus posing risk for aquatic organisms even at low environmental
concentrations (Ebele et al., 2017; Tijani et al., 2013; Wilkinson et al., 2017). Moreover, EDCs
encompass a wide range of chemicals (e.g. personal care products, cleaning products, food
preservatives, etc.) that interfere with normal function(s) of the endocrine system (Ebele et al.,
2017). PhACs and EDCs were shown to affect aquatic insects in many ways, causing changes in
growth and development (Jarvis et al., 2014), biomass (Lopez-Doval et al., 2012), enzymatic
activity (Pestana et al., 2014), metabolome composition (Grgi¢ et al., 2023; Previsi¢ et al., 2020;
Spath et al., 2022), behavior (Jarvis et al., 2014; Spath et al., 2022) and survival rate (Lopez-Doval
et al., 2012; Maenpaa and Kukkonen, 2006). Furthermore, PhACs and EDCs have the potential to
bioaccumulate in aquatic insects (Grabicova et al., 2015; Lagesson et al., 2016; Previsi¢ et al.,
2021; Veseli et al., 2022) and to cross ecosystem boundaries through emerging aquatic insects
and thus contaminate terrestrial habitats (Previsi¢ et al., 2021; Veseli et al., 2022). Moreover, in
freshwater ecosystems these compounds rarely occur one at a time but rather in complex
mixtures of several different emerging contaminants, thus making it harder to investigate their

effects (Wilkinson et al., 2017).

Climate change, with its long-term shifts in global weather patterns, poses significant challenges
to freshwater ecosystems. Within freshwater ecosystems, aquatic insect groups, such as
caddisflies, mayflies, and stoneflies, play a crucial role as inter-habitat linkages between aquatic
and terrestrial ecosystems, facilitating the flow of energy and nutrients (Huryn and Wallace,
2000). Additionally, they serve as valuable bioindicators for assessing the health of freshwater
environments (Water Framework Directive (WFD) 2000/60/EC). Their vulnerability to climate
change is influenced by their specific biological traits and ecological preferences, with a

considerable proportion of them belonging to cold-adapted taxa (Conti et al., 2014; Hershkovitz
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et al., 2015). The impact of climate change, characterized by rising temperatures and changes in
precipitation levels (Webb et al., 2008), is particularly profound on these cold-adapted taxa in
higher altitudes, making them highly vulnerable to warming (Krajick, 2004; Macadam et al.,
2022). As a consequence of climate change, temperature increase affects various aspects of
aquatic insects' lives. It directly impacts their growth, development, and body size (Cogo et al.,
2020), as well as their emergence patterns (Finn et al., 2022). The anticipated rise in the
frequency and extent of intermittent rivers and streams, which periodically cease flow or even
completely dry, is a direct consequence of global climate change and the increasing human
demand for freshwater resources (Blackman et al., 2021). This trend holds significant implications
for aquatic insect communities, as considerably altered environmental conditions not only
impact their geographic distribution (Cogo et al., 2020 and references therein), but also their

population dynamics (Nukazawa et al., 2018), and community structure (Dori¢ et al., 2023).

Global warming is likely to exacerbate impact of other anthropogenic stressors (Wrona et al.,
2006). For instance, as temperature rises, the solubility and mobility of PhACs and EDCs in water
can increase, leading to higher concentrations and potentially greater toxicity (Kazmi et al., 2022;
Noyes et al., 2009). Temperature change may also alter degradation rates of some chemical
contaminants, with increasing temperature usually shortening their half-life and reducing the
overall risk (Bhangare et al., 2022; Noyes et al., 2009). While accelerated decomposition reduces
the concentration of the parent compound, it increases the concentration of the degradation
products, which in some cases could be even more toxic for aquatic organisms (Noyes et al.,
2009). Warmer water usually increases the metabolic rate of aquatic organisms, thus leading to
potentially increased uptake of these chemicals (Kazmi et al., 2022). In addition to increasing
uptake, warming can also affect behaviour and physiology of aquatic organisms making them
more susceptible to stressors (Polazzo et al., 2022). Toxicity of chemicals in water can depend on
variety of abiotic (e.g. photolysis, hydrolysis, etc.) and biotic processes (e.g. biotransformation,
biodegradation, etc.) (von Schiller et al., 2017). Moreover, the impact of warming on the toxicity
of PhACs and EDCs in water is complex and can depend on a variety of factors, including the type
of the chemical (Serra-Compte et al., 2018), aquatic species (Duchet et al., 2023, preprint), and

life-stage tested (DeCourten and Brander, 2017). Due to the increase in temperature caused by
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climate change, the temperature-dependent toxicity of PhACs and EDCs in water will become a

matter of growing significance that warrants assessment.

It is generally very challenging to gain empirical understanding of the effects of climate change
in comparison with other stressors (Halsch et al., 2021), as well as their combined effects (Dinh
et al., 2022). Consequently, there have been only a handful of studies investigating single and
combined effects of increased water temperature and PhACs and EDCs in aquatic invertebrates
(e.g. Barbosa et al., 2017; Cruzeiro et al., 2019; Heye et al., 2019). More specifically,
carbamazepine and higher temperatures increased Chironomus riparius mortality (Heye et al.,
2019); fluoxetine combined with higher temperature reduced reproductive success and
population growth in Daphnia magna (Barbosa et al., 2017), whereas levonorgestrel and
increased temperature did not cause DNA damage in Gammarus locusta cells (Cruzeiro et al.,
2019). To address this knowledge gap, we conducted a study aimed at characterizing effects of
increased water temperature and exposure to PhACs and EDCs on primary producers (non-
vascular macrophytes; moss) and first level consumers (shredding aquatic insects) in freshwaters.
Considering the importance of aquatic insects as fundamental links between aquatic and
terrestrial food webs and reliable bioindicators to pollution (Erasmus et al., 2021; Mufioz et al.,
2015) we chose caddisflies as our model organisms. Caddisflies are a species-rich and ecologically
diverse insect order, that is well-suited to reflect effects of various stressors on aquatic
ecosystems (Hering et al., 2009). Despite of the high ecological plasticity and thermal tolerance
of intermittent rivers specialists (Stubbington et al., 2017) we hypothesized that the individual
and combined stressor effects of both, increased water temperature and PhACs and EDCs, will
trigger a stress response in an intermittent river caddisfly, Micropterna nycterobia (MclLachlan,
1875). Chronic in situ exposure to pollution with ECs results in measurable changes of metabolite
levels in relatively pollution-tolerant caddisfly larvae (Previsi¢ et al., 2020), whereas increased
temperature results in depletion of lipids and reduces developmental period of mayfly larvae
(Chou et al., 2018). Moreover, variable impacts on emergence and survival were observed in
dragonflies and an aquatic heteropteran exposed to increased water temperature, PhACs and
their combination (Duchet et al., 2023, preprint). Hence, we conducted a 78-day microcosm

experiment composed of a simplified freshwater food web exposed to a mixture of PhACs and
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EDCs and increased water temperature as a proxy for climate change using the randomized
factorial design. We analyzed the physiological changes in caddisflies and moss via non-targeted
metabolomics and lipidomics, i.e. by evaluating alterations in the metabolite and lipid profiles of
non-model organisms across their life cycles, as well as changes in emergence patterns, body

weight and total lipid content.

2. MATERIALS AND METHODS

2.1 Microcosm Experiment: Experimental Design and Sample Collection

We conducted the microcosm experiment with a simplified freshwater food web containing
nonvascular macrophytes (Bryophyta), hereafter moss and caddisfly larvae Micropterna
nycterobia (MclLachlan, 1875) (Limnephilidae, Trichoptera) feeding mainly as shredders.
Trichoptera larvae, moss (Cinclidotus aquaticus (Hedw.) Bruch & Schimp and Rhynchostegium
riparioides (Hedw.) Cardot), water, sand and stones collected from the pristine Krci¢ River
(N44.027321 E16.318936), minimally impacted by anthropogenic activity, were used for the
experiment. Microcosm setup followed Previsi¢ et al., 2021 with modifications in number of
microcosms, temperature regime and mixture of moss species. Upon collection, 12 microcosms
(aquaria 30 x 20 x 15 cm) were installed with 3 L of water,10 tablespoons of sand, 3 large stones
(> 10 cm),10 small stones (2—5 cm), 3 tufts of moss (6—8 cm in diameter and plants up to 15 cm
in length) and 5% instar M. nycterobia larvae (ca. 30 larvae per aquarium). Constant oxygen levels
were kept using aquaria air pumps, and to minimize evaporation, each microcosm was covered
with a glass cover. Natural light and day-night regime was supplemented with the artificial light
(with sunlight’s spectrum) in the regime of 12 hours of light followed by 12 hours without light.
All microcosms were acclimatized for 10 days at 10 °C under aforementioned conditions
preceding the start of the experiment. The experiment was conducted in the randomized
factorial design, with treatments as follows: Control (C), Increased temperature (T2), ECs mix
(EC), multiple stressor treatment = ECs mix + increased temperature (EC + T2 = MS), with three
replicates of each. Subsequently, 6 of them were exposed to a mixture of 20 ECs over a 78-days

period. The composition of the ECs mixture was selected based on occurrence of particular
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compounds in freshwaters in Europe (Mandaric et al., 2015), and included 15 PhACs; azaperol,
acetaminophen, thiabendazole, levamisol hydrochloride, dexamethasone, ketoprofen,
naproxen, ranitidine hydrochloride, soltalol hydrochloride, valsartan, diphenhydramine,
clopidogrel hydrogen sulfate, hydrochlorothiazide, sertraline hydrochloride, cimetidine and 5
EDCs; benylparaben, ethylparaben, propylparaben, estriol, estradiol-B. The volume of water was
kept constant by adding fresh dechlorinated tap water (ca. 100 mL every week), and the
concentration of each compound was kept at a pseudo-constant concentration of 500 ng L™.
Taking into consideration knowledge gained from our previous experiments (Cetinic et al., 2022;
Grgic et al., 2023; Previsi¢ et al., 2021), three stock solutions were prepared and 100 uL of the
solution was added each day, every three days or once a month, depending on the compound.
In this way, abiotic attenuation (sorption and/or (photo)degradation) was taken in consideration
and the nominal concentration of each compound was maintained, more details provided in
Supporting information (Sl 1). As different temperature regimes needed to be followed, aquaria
were placed in two different incubators (POL-EKO APARATURA, Poland). “Natural” temperature
regime (T1) mimicked the regime of the Krci¢ spring reach before the drying phase (10 °C) and
temperature was successively increased 0.5 °C every 15 days. Increased temperature regime (T2)
followed the same pattern but with temperature increased by 4 °C, in accordance with patterns
of reduced flow observed in the selected river coupled with projections of temperature increase

due to climate change in the Mediterranean montane regions (Bravo et al., 2008).

Biota sampling included initial (after the acclimatization period - day 0 (DO)) and several
consecutive collections (ca. day 15 (D15), day 30 (D30) and day 60 (D60) of exposure) including
different life stages (larvae, pupae and adult stage), in accordance with the life cycle of
holometabolous caddisflies. At each sampling date, we collected replicate samples from each
microcosm, consisting of 2 g of moss and 3-5 Trichoptera larvae/pupae. However, these samples
were pooled per treatment to mitigate the potential extreme effects of individual microcosms
(Kraufvelin, 1998). The complexity and extended duration of micro and mesocosm test systems
exacerbate issues like "aquarium individuality," where initially identical replicates diverge due to
random effects, introducing significant variability and complicating the identification of

statistically significant deviations (Kraufvelin, 1998; Sanderson, 2002). Additionally, the weight
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reduction of adult aquatic insects during metamorphosis (Huryn and Wallace, 2000) poses a
challenge, leading to high tissue demand. Consequently, analytical replicates for each treatment
per sampling date were created after homogenizing the pooled samples (details under 2.2, Biota
Sample Processing). The chosen approach aims to strike a balance between providing ecologically
meaningful results with non-model organisms and minimizing methodological constraints.
Trichoptera larvae were kept in clean aquaria for 24 h to allow for gut clearance prior to collection
(Van Geest et al., 2010). Additionally, emerging adult M. nycterobia were collected as they
emerged (daily), and sex of each individual was determined. These samples were pooled
depending on sex for subsequent analyses due to tissue requirements and to match the overall
sampling scheme, according to temperature treatments. Emergence following the ,natural”
temperature regime (T1) started ca. 2 weeks later than in T2, thus samples were pooled for dates
45-60 and 60-75 days of exposure. Samples in elevated temperature regime (T2) were pooled for
dates: 30-37 and 38-47 days of exposure. We combined adult M. nycterobia from 45-60 days of
exposure in T1 and 38-47 days of exposure in T2 to one time point (day 60 of exposure) in order

to have approximately the same time period of exposure to selected stressors. All samples were

freeze-dried upon collection and stored at —80 °C until further processing.

Oxygen concentration (mg L), oxygen saturation (%), pH and electrical conductivity (mS cm™)
were measured in every microcosm at the beginning of the experiment (D0O) and subsequently
every two weeks (D15, D30, D45 and D60) using Hach HQ40D portable multi-parameter probe

(Hach, Germany).
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Figure 1. A) Experiment design with the following treatments: C - Control (T1 = 10 °C), T2 -
Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (EC + T2) and b)

sampling scheme with caddisfly larvae, pupae and adults sampled at various days of exposure.

2.2. Biota sample processing: extractions of metabolites and lipids

Within this study, the term “metabolome” refers to the complete set of low molecular weight
molecules or metabolites present within an organism, while “lipidome” is used to describe the

complete lipid profile within an organism (i.e. all lipids).
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Biota samples processing, metabolite and protein extraction and metabolite profiling analyses
followed (Grgi¢ et al., 2023). In order to detect Hsp70 proteins, we performed Western blot
analysis of protein samples, the details are provided in Supporting Information (SI 2). As there

was no detection of the aforementioned proteins no results are shown.

The Folch lipid extraction method (Folch et al., 1957) was used and performed following the
protocol of (Sarafian et al., 2014) with modifications. Briefly, for lipidome profiling and
determination of the total lipid content (TLC), each sample (30 mg) was dissolved in 600 pL CHCl3
: MeOH (2:1 v:v). Samples were vortexed at medium speed (IKA® Vortex Genius 3, Germany) for
5 min. After 10 min of incubation at room temperature, samples were cooled at -20 °C for 10 min
and additional lysis was done via ultrasonic probe (Sonoplus HD4050, Bandelin electronic GmbH,
Germany) for 1 min at 50% of intensity. Samples were stored overnight at -20 °C to improve
protein precipitation and then centrifuged at 14 000g for 20 min (Tehtnica-Centric 200R,
Slovenia). The supernatant was collected (600 uL) in a previously weighed tube, filtered through
a PVDF filer (MILLEX® - GV Syringe Filter 0.22 um Hydrophilic PVDF, 13 mm, Sterile) and
evaporated to dryness. The tube was weighed to determine the TLC.TLC was determined using
the following equation; TLC = weight of “full” tube —empty tube. Samples were dissolved in 200uL
IPA : ACN : H20 (2:1:1, v:v:v) for subsequent LCMSMS non-target analysis.

For both metabolome and lipidome analysis, set of quality control samples was prepared by
taking small aliquot of the each sample solution from the entire set and pooling them together.

Subaliquots of this pooled sample are regarded as set of quality control samples.

2.3 Non-target metabolome and lipidome analysis

Non-target analyses of the metabolom and lipidome samples were performed using a high-
resolution mass spectrometry system; LTQ-Orbitrap VelosTM (Thermo Fisher Scientific, USA)
coupled with an ultra-performance liquid chromatography (UPLC) system (Ultimate 3000
RSLCnano system, Dionex, Amsterdam, Netherlands). Instrument parameters and UPLC gradients
are provided in Supporting Information (Sl). Data extraction, chromatographic deconvolution and
final alignment were done using the MZmine program (Katajamaa et al., 2006). Steps and settings
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used in the MZmine program are provided in Supporting information (Sl 3). The exported .csv
files were further filtered and sorted using modified parts of Bqunat script written in
Mathematica (Wolfram Research Inc.,Campaign, IL, USA) (RoZman et al., 2018). Data were
cleaned by removing of all blank-related features. Feature was considered as blank related if an
intensity ratio sample:blank was < 10. Quality acceptance criteria for each metabolite were:
detection rate > 70%, relative standard deviation < 30% and dispersion ratio < 40%. Based on the
exact mass match, metabolite and lipid identification was performed in

http://ceumass.eps.uspceu.es/ and by searching Metlin, Kegg, LipidMaps, PubChem, and HMDB

databases. It is worth noting that the metabolites and lipids reported here are only the

metabolites that were putatively annotated.

2.4 Statistical Analysis

2.4.1 Body weight changes & total lipid content of Micropterna nycterobia and non-vascular

macrophytes, and physico-chemical water parameters

The effects of experimental treatments on body weight (evaluated individually in M. nycterobia
specimens; N = 12 per treatment per collecting date) and total lipid content (TLC; evaluated in
composite samples of M. nycterobia pooled per life stage and treatment; N = 3 per treatment
per collection date) of different life stages of M. nycterobia were analysed using Generalized
Linear Models (GZLMs) constructed in IBM SPSS Statistics 27.0 (IBM Corporation). Additionally,
for adults the differences between the sexes were determined. Normal distribution linear scale
response was used for all data except for body weight of adults where gamma scale response
with log link was used as the data did not achieve normal distribution. Maximum likelihood
estimate was used for parameter estimation. Pairwise contrasts of estimated means were

performed using Wald’s statistics.

The changes in total lipid content in moss, as well as changes in the physico-chemical water
properties, between different treatments over time were tested using repeated measures

ANOVA using the IBM SPSS Statistics 27.0 (IBM Corporation). Pairwise comparisons were
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conducted with Bonferroni adjustment for multiple comparisons. Obtained data were analyzed

and visualized using Principal Component Analysis (PCA) in Primer 7.

2.4.2. Data analysis of non-target metabolomic and lipidomic profiles of Micropterna nycterobia

and non-vascular macrophytes

Obtained metabolomic and lipidomic data matrices were forth root transformed and analyzed
using Principal Component Analysis (PCA) and Principal Response Curves (PRC) in package vegan
(version 2.5-7) RStudio version 4.1.2 (Oksanen et al., 2020). Additionally, significance of the
results was tested using the Monte Carlo test in the 'permute' package, with 99 permutations,
more specifically significance of the 1st canonical axis of the PRC and significance of sampling
date/insect stage was tested. Due to the missing moss sample D30 EC, Redundancy Analysis
(RDA) was performed instead of PRC for moss metabolome and lipidome data using CANOCCO
software (version 5.11,ter Braak and Smilauer, 2012). We used treatment as the categorical
explanatory variable, metabolites and lipids as response, respectively and time as a covariate.
The RDA significances were tested using Monte Carlo test with 999 permutations. Values of MZ
masses of the metabolome dataset were normalized and processed by Principal Component
Analysis (PCA) in Rstudio. The PCA was visualized in Primer 7 (Clarke and Gorley, 2015). The first
100 variables (MZ masses) that contribute most to separation along certain PCs were selected

for identification of metabolites.
3. RESULTS

3.1. Physico-chemical properties of water during microcosm experiment

Oxygen concentration (mg L-1) and oxygen saturation (%) throughout the experiment did not
differ significantly among treatments, they were impacted only by the day of measurement
(repeated measures ANOVA, Table S1, S2; and PCA analysis, the total variance accounted by the
two components shown was ~69 %; variance from [PC1, PC2]=[46.4 %, 22.6 %]; Fig. S1). Day of
measurement and interactive effects; temperature x ECs, temperature x time and ECs x time

caused changes in pH levels (repeated measures ANOVA, Table S3). Specifically, pH was higher
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on D15 and D60 in treatments with ECs mixture (EC and MS). Additionally, on D30 and D45 in
treatments with elevated water temperature (T2 and MS) pH was higher and lower, respectively
(repeated measures ANOVA, Table S3). Electrical conductivity differed between treatments, i.e.
treatments with increased water temperature (T2 and MS) had higher conductivity compared to

III

the “natural” temperature regime (C and ECs) (repeated measures ANOVA, Table S4). Moreover,
electrical conductivity was generally rising throughout the whole experiment in all treatments,

thus it was also impacted by the day of exposure (repeated measures ANOVA, Table S4).

3.2. Total lipid content, metabolome and lipidome profiles of non-vascular macrophytes

Principal component analysis (PCA) based on non-target metabolic profiles and lipidome profile
of moss revealed clustering primarily based on the duration of the experiment rather than
treatment (Fig. 2A&B). In the analysis of the metabolome and lipidome, the total variance
accounted by the first two components was ~45.5 % (variance from [PC1, PC2]=[31.9 %, 13.6 %]
and ~41,5 % (variance from [PC1, PC2]=[28.8 %, 12.7 %]), respectively. In both analyses, the first
principal component (PC) axis separated the profiles between DO and D15 from D60, with D30
lacking a consistent grouping patterns (Fig. 2A&B; note however, that D30 EC samples are
missing, as they were lost during the processing). In addition, RDA analyses shows that
metabolome and lipidome profiles differed significantly among treatments (RDA: pseudo-F = 3.0,
p = 0.002, explained variability = 12.1 %; Fig. S2A and RDA: pseudo-F = 2.2, p = 0.004, explained
variability = 7.7 %; Fig. S2B, respectively). Majority of metabolite groups (17 in total) showing the
most significant changes in abundance to stressor treatments were terpenoids, terpenes class
(50%) followed by lipids and fatty acids (29%), amino acids, peptides and proteins (11%), carbonyl
compounds (5%), organic acids, carboxylic acids and monocarboxylic acids (5%) (Fig. S3, Table
S5). Within the lipidome, most significant changes in abundance of 51 lipids to stressor
treatments were noticed in glycerophospholipids (51%) followed by glycerolipids (20%), sterol
lipids (12%), sphingolipids (8%), prenol lipids (8%) and fatty acyls (2%) (Fig. S4, Table S6). The

lowest total lipid content in all treatments was measured on D 15, however, no significant
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changes in TLC was observed related to days of exposure or treatments (Fig. S5, repeated

measures ANOVA, Table S7).
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Figure 2. PCA plot showing separation based on A) metabolome and B) lipidome of moss in
different treatments. Abbreviations of treatments are as follows: C — Control (T = 10 °C), T2 -
Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2 + EC); Day 0 —

pre-exposure sample.

3.3. Phenology (emergence patterns) of the caddisfly Micropterna nycterobia

Increased water temperature caused earlier emergence of both males and females, resulting in
approximately three-week shift in peak emergence between the normal (C and EC) and elevated
temperature (T2 and MS) treatments (Fig. 3). Overall, more males emerged throughout the
experiment, however, the majority of pupae that did not emerge by the end of experiment were
females. Only minor differences between emergence patterns of males and females were

observed within treatments (Fig. 3).

14



355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

=

SMA3 (emerged individuals)
o

30 33 36 39 42 45 48 51 5S4 57 60 63 66 69 72 75 78
Days of exposure

L

SMA3 (emerged individuals)
o

30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78
Days of exposure

- -C T2 w———mfC =—MS

Figure 3. Three-day simple moving average (SMA3) of emerged A) male and B) female adults of
Micropterna nycterobia across treatments. Abbreviations of treatments are as follows: C - Control

(T=10°C), T2 - Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2
+ EC).

3.4. Body weight and total lipid content changes of the caddisfly Micropterna nycterobia

Overall, a loss in body mass was recorded in M. nycterobia throughout the life cycle, with larvae
having the highest body weight and adults the lowest (Fig. 4A-D). A statistically significant drop
in body weight was observed in larvae in T2 compared to control (4A, Table S8). All experimental
treatments increased the body weight of pupae compared to control (Fig. 4B, Table S9). Adult
females had significantly higher body weight compared to males (Fig. 4C & 4D, Table S10),
however, in adults of both sexes a statistically significant drop in body weight was observed in T2

compared to control (Fig. 4C & 4D, Table S11 and S12).
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Figure 4. Model predictions illustrating the effect of treatment on body weight of A) larvae B)
pupae C) adult males and D) adult females of M. nycterobia. Mean values of twelve replicates are
presented with 95% confidence intervals. Different letters indicate significant differences among
treatments (p < 0.05). Abbreviations of treatments are as follows: C — Control (T = 10 °C), T2 -

Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2 + EC).
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Figure 5. Model predictions illustrating the effect of treatment on total lipid content of A) larvae
B) pupae C) adult males and D) adult females of M. nycterobia. Mean values of three replicates
are presented with 95% confidence intervals. Different letters indicate significant differences
among treatments (p < 0.05). Abbreviations of treatments are as follows: C— Control (T = 10 °C),

T2 - Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2 + EC).

Changes in the TLC were more pronounced post-metamorphoses (Fig. 5A-D). Experimental
treatments had no effect on TLC on larvae (Fig. 5A, Table $S13), while pupae exhibited an increase

in the EC treatment compared to control (Fig. 5B, Table S14). Total lipid content of adults was
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lower compared to control in treatments with increased temperature (T2 and MS) (Fig. 5C & 5D,
Table S15 & S16). Moreover, the greatest drop in TLC of adults was observed in the MS treatment
((Fig. 5C & 5D, Table S15 & S16), corresponding with the negative synergistic effect according to
(Piggott et al., 2015). Females had significantly higher total lipid content compared to males
(Figure 5C & 5D, Table S17).

3.5. Metabolome profiles of the caddisfly Micropterna nycterobia

Principal Response Curves (PRC) of non-target metabolome profile of larvae, pupae and adult
caddisflies show that the metabolome of all caddisfly life stages was mostly affected by the ECs
mixture (EC and MS), as evident by the highest deviation from the control (Fig. 5A & B). Deviations
were observed in larvae at D15 already, and further increased in pupae and adults. The MS
treatment showed highest impact on metabolome of both male and female adult caddisflies (Fig.
5A & B). Additionally, 62.6 % of total variance in males and 59.5 % in females could be attributed
to time, whereas 22.1 % in males and 25.8 % in females could be attributed to the treatment
(including its interaction with time, Table S18). The first PRC axis was significant (males —F (1, 32)
=18.714 p < 0.05, females — F (1, 32) = 28.172, p < 0.05) and based on the Monte Carlo tests per

sampling date, the treatment regime had a significant influence on all sampling dates.

Principal component (PCA) analysis based on non-target metabolic profiles of all life stages of M.
nycterobia revealed clear separation of pre-metamorphosis larvae and post-metamorphosis
pupae and adult imagines (Fig. S6, PC1). However, when particular life stages were analyzed
separately, the PCA also revealed separation into distinct groups based on treatments. In larvae,
for instance, PC1 axis separating larvae in ECs and MS treatments from DO, C and T2 treatments

accounted for 37.7 % of variability (Fig. 4C; variance from [PC1, PC2]=[37.7 %, 15 %]).

Majority of metabolite groups (18 in total) showing the most significant changes in abundance to
stressor treatments in M. nycterobia were lipids and fatty acids (39%) followed by amino acids
(22%), quinones (6%), acylcholine (6%), adrenergic agents (6%), lactones (6%), alcohols (5%),
pyridines (5%), alkaloids (5%) (Fig. S7, Table S19.
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Figure 5. Metabolome profiles of the caddisfly Micropterna nycterobia; PRC of changes in the
metabolic profiles along the caddisfly life cycle in A) male and B) female adults exposed to
treatments in relation to control. Numbers on x-axis denote days of exposure. C) PCA plot
showing separation based on metabolome of M. nycterobia larvae in different treatments at 15
days of exposure. Abbreviations of treatments are as follows: C — Control (T = 10 °C), T2 -
Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2 + EC); Day 0 —

pre-exposure sample.

3.5. Lipidome profiles of the caddisfly Micropterna nycterobia

Principal Response Curves (PRC) of non-target lipidome profile of larvae, pupae and adult
caddisflies shows the highest deviation from the control in male and female adults, with an
opposing individual stressor effect (EC vs T2; Fig. 6A & B). In MS treatments, increased
temperature was the dominant stressor for both sexes, however, there were differences
between sexes, as male caddisflies lipidome was more affected in T2 and MS treatments,
whereas female caddisflies lipidome was more affected in the EC (Fig. 6A & 5B). Moreover, table

S$20 shows that 79.8 % of total variance in male and 68.4 % in female caddisflies can be attributed
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to time, whereas 13.3 % in male and 17.3% in female can be attributed to the treatment
(including its interaction with time). The first PRC axis was significant (males - F (1, 32) = 17.475
p <0.05, females — F (1, 32) = 14.583, p < 0.05) and based on the Monte Carlo tests per sampling

date, the treatment regime had a significant influence on all sampling dates.
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Figure 6. Lipidome profiles of the caddisfly Micropterna nycterobia; PRC of changes in the
lipidome profiles of caddisfly life stages and A) male and B) female adults exposed to treatments
in relation to control. Numbers on x-axis denote days of exposure. C) PCA plot showing separation
adult M. nycterobia separated by sex in different treatments. Abbreviations of treatments are as
follows: C — Control (T = 10 °C), T2 - Increased temperature (14 °C), EC - ECs mix, MS - multiple

stressor treatment (T2 + EC); Day 0 —pre-exposure sample.

Principal component (PCA) analysis based on non-target lipidome profiles of all life stages of M.
nycterobia showed clear separation of three major life stages, larvae, pupae and adults (Fig. S8).
The total variance accounted by the three clusters was ~68.8 % (variance from [PC1, PC2,
PC3]=[47.7 %, 14.8 %, 6.3 %]). Clustering of particular treatments was particularly evident in
separate analyses of each life stage. The highest degree of clustering based on treatments was

inferred for adults, with the first principle component axis (PC1 = 34.7 %) separating adults based
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on increased water temperature (T2 and MS treatments), whereas the second axis separated

males from females (PC2 = 19.7 %, Fig. 6C).

Within the lipidome, most significant changes in abundance to stressor treatments were noticed
in glycerophospholipids (67%) followed by fatty acyls (12%), sphingolipids (12%), glycerolipids
(5%), prenol lipids (2%) and sterol lipids (1%) (Fig. S9, Table S21).

4. DISCUSSION

Water pollution has far-reaching consequences for the ecosystem health and functioning, and it
is important to understand these impacts, especially in a context of climate change. Here we used
simplified freshwater food web exposed to a mixture of PhACs and EDCs and increased water
temperature to broaden our understanding of the impacts of climate change and pollution on

freshwater ecosystems.

4.1. Warming and pollution with PhACs & EDCs triggered a mild response in moss

A mild response of the moss to both individual stressors (increased water temperature and
contamination with ECs) and their combination suggests mosses’ resilience. It has been shown
that plants have specific temperature and pollution thresholds that trigger or inhibit certain
physiological processes, allowing them to respond to stressful conditions (Firmansyah and
Argosubekti, 2020; Gorovits et al., 2020; Sun et al., 2018; Zezulka et al., 2013). One of the most
common physiological responses includes production of heat shock proteins (HSPs), and lack of
observable change in regulation of HSPs may suggest that the thermal and pollution threshold
necessary to trigger stress response in the moss was not reached. This observation is in
agreement with established thermal threshold of plants of minimum 5 °C (Firmansyah and
Argosubekti, 2020). Even though changes in metabolomic and lipidomic profiles among
treatments were significant, one should keep in mind that changes in metabolite and lipid
composition can be related to stress response but also developmental stages (Lu et al., 2019;
Mikami and Hartmann, 2004). In addition, the biotic stress induced by the feeding of M.

nycterobia larvae on the moss might have masked the impact of the pollution and increased
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temperature. Plants can prioritize their responses to address individual stressors when exposed
to multiple abiotic and/or biotic stressors (Rejeb et al., 2014; Suzuki et al., 2014). We argue that
the moss in the current experiment might have prioritized biotic stress over abiotic stressors and
activated different defence mechanisms to mitigate larval feeding. However, we could not test
for the latter, since feeding of M. nycterobia larvae on the moss was also present in control
treatments. Moreover, research has shown that different stress combinations activate different
pathways and signals thus making it harder to predict multiple stressor effects (Rejeb et al., 2014;

Suzuki et al., 2014; Vescio et al., 2022).

4.2. Single stressor impacts: effects of warming and pollution with PhACs and EDCs on M.

nycterobia

In the current experiment, we recorded a body mass loss in M. nycterobia that is in line with the
usual life cycle patterns of the holometabolous caddisflies, with larvae having the highest body
weight and adults the lowest (Huryn and Wallace, 2000). Increased temperature during insect
development typically leads to reduced adult body size, negatively influencing fecundity and
longevity (Mirth and Riddiford, 2007), this effect was however, not observed in the current study.
Our observations are in line with data on chronic exposure to pesticides in the caddisfly
Limnephilus lunatus, where reduced body weight of adults was observed only if younger instar
larvae were exposed, and not the fifth-instars (Liess and Schulz, 1996; Schulz and Liess, 2001,

1995).

M. nycterobia inhabits clean crenal and rhithral sections and is therefore expected to be sensitive
to presence of contaminants (Graf et al., 2023). Indeed, sensitivity is displayed through intense
change in regulation of both metabolites and lipids in respect to control, however, the
contaminants seem to have a more significant impact on metabolome than temperature. More
precisely, the most pronounced metabolome response was post-metamorphosis, yet changes in
metabolite regulation are already notable in larvae at D15. Notably, the sampled caddisflies'
metabolome contained the biogenic amine octopamine, a significant neurotransmitter,

neuromodulator, and neurohormone influencing various physiological functions, behaviour and

22



502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

endocrine activity (Farooqui, 2012) Changes in octopamine levels due to PhACs and EDCs during
metamorphosis could affect not only the subsequent life stage but potentially extend across

multiple generations.

Observed difference in dynamics of regulation of metabolites vs lipids can be related to
physiological roles of metabolites and lipids which response tends to differ depending on the
type of stress and the metabolic pathways involved (Kainz and Fisk, 2009; Snart et al., 2015).
Generally, lipids serve as a long-term energy source and are stored in lipid droplets, which can
be mobilized to provide energy during times of starvation, embryogenesis, prolonged periods of
flight and stress (Arrese and Soulages, 2010; Kainz and Fisk, 2009). Here, metabolites were more
regulated than lipids in response to stress probably in order to maintain cellular homeostasis and
ensure energy reserves (lipids) for the emerging adults (Arrese and Soulages, 2010). Glycerolipids
such as triglycerides are stored in the core of the lipid droplets surrounded by
glycerophospholipids (Arrese and Soulages, 2010). As glycerophospholipids were mostly affected
by experimental treatments, this further supports the fact that lipid reserves were preserved for
adults. However, changes in glycerophospholipids of insects can also be related to development
and metamorphosis (Bashan et al., 2002; Cargill et al., 1985; Duarte, 2019) as well as food source

(Hanson et al., 1985; Torres-Ruiz et al., 2010).

The lack of strong effects of increased water temperature on metabolite regulation, as well as
absence of heat shock protein HSP70 expression, is most likely due to adaptation of M. nycterobia
to thermal stress regularly occurring in intermittent streams (Qin et al., 2003). This finding
suggests that M. nycterobia and possibly other intermittent habitats indicators may have
metabolic flexibility to cope with thermal stress, allowing them to survive extreme climatic events
characterised by fluctuating temperature regimes. In addition, the regulation of lipidome of M.
nycterobia aquatic stages exhibited intriguing resilience to both increased water temperature
and pollution with PhACs and EDCs. The limited impact on lipid regulation suggests that the stress
response threshold triggering significant lipid mobilisation may not have been surpassed.
Instead, the priority for the aquatic stages was directed towards lipid accumulation rather than
mobilization in response to stress challenges (Arrese and Soulages, 2010; Hoppeler et al., 2018).

Emphasis on lipid accumulation was evident through the observed increase in total lipid content
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from larval to pupal stages, serving as a crucial energy source to sustain adult insects during non-
feeding periods and fuel their flights (Arrese and Soulages, 2010; Hoppeler et al., 2018). While
the anticipation of intense lipidome activity in adult insects is well-founded, it is surprising that
so distinct regulatory mechanisms are operating in response to different stressors. However,
lipidomic profiles of multiple stressor treatment were in both males and females congruent with
those of increased temperature, implying the dominant impact of increased water temperature

on regulation of lipids in aquatic insects.

Increased water temperature accelerated development of M. nycterobia, resulting in earlier
adult emergence and lower total lipid content of all life stages in treatments with increased
temperature. Similarly, the mayfly larvae chronically exposed to increased temperature used
lipids and amino acids as alternative energy sources to support their growth and maintenance
costs, ultimately resulting in reduced total lipid content (Chou et al., 2018). Furthermore,
sensitivity of the temporal emergence patterns of aquatic insects was already discussed as
toxicological endpoint for exposure to pesticides (Schulz and Liess, 2001), as timing of aquatic
insect emergence plays a crucial role for riparian predators (review in Bundschuh et al., 2020).
More precisely, insectivorous birds almost exclusively obtain the omega-3 long-chain
polyunsaturated fatty acids from emerging aquatic insects, thus shifts in the relative availability
and phenology of aquatic insects in response to a changing climate are likely to have major fitness
consequences for their breeding success (Shipley et al.,, 2022). Hence, such shifts can have
cascading effects on cross-ecosystem energy flow. This is of particular importance in intermittent
water bodies, like those inhabited by M. nycterobia, where mass emergence during short periods
is typical and riparian food webs are highly dependent on the aquatic subsidies (McIntosh et al.,

2017).

4.3. Multiple stressor impacts of warming and PhACs and EDCs on aquatic insects

A synergistic interactive effect was observed, leading to a decrease in total lipid content and
significant variation in lipid profiles in adults of both sexes under the MS treatment. Micropterna

nycterobia, a specialist in intermittent rivers, exhibits a behaviour where adults leave the water
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bodies upon emergence and migrate to cooler mountainous regions or nearby caves for a few
months until their gonads develop (Waringer and Graf, 2011). In autumn, after copulation, they
lay eggs in re-established surface flow. Therefore, the observed decrease in lipid reserves in
adults (8.9% and 10.7% decrease in total lipid content in males and females, respectively) could
have a major impact on their reproduction and population dynamics. Lipids serve as crucial
energy reserves for insects, especially during non-feeding life stages and long-distance flights
(Arrese and Soulages, 2010; Downer and Matthews, 1976). Maintaining metapopulation
dynamics is particularly important for inhabitants of intermittent water bodies (Datry et al.,
2017). Various pollutants, such as fungicides and copper, can decrease the lipid content of
limnephilid caddisflies (Konschak et al., 2019). However, this effect was not observed in the
current study as PhACs and EDCs did not influence the lipid content of M. nycterobia.
Furthermore, the negative effects of pollutants on lipids can be exacerbated by elevated water
temperatures (Yoon et al., 2022). However, in our study, increased water temperature primarily
influenced the lipids of caddisflies, and its adverse effects were amplified by pollution with PhACs
and EDCs. Additionally, warming indirectly contributed to the further deterioration of
environmental conditions in the T2 and MS treatments, as evidenced by increased conductivity

within these two treatments.

In terms of the timing of the strongest stress response, our results differ from a previous
experiment involving the same caddisfly species, where the effects of ECs and microplastic
particles were most pronounced in the first 15 days of exposure, both in single and combined
stressor treatments (Grgi¢ et al.,, 2023). Apart from the dominant impact of increased
temperature, these differences may also be attributed to variations in the mixture of ECs used,
as different compounds can have varying effects on biota (Mufioz et al., 2015; Nilsen et al., 2019).
Nevertheless, our study indicates that the adverse synergistic effects of warming events and
freshwater contamination with ECs could intensify throughout the life cycle of aquatic insects,
potentially leading to developmental impairments and disturbances in population dynamics
(Kazmi et al., 2022). However, in most environmental health assessment and monitoring
programs, only the aquatic stages of aquatic insects are considered (Water Framework Directive

(WFD) 2000/60/EC). Furthermore, the multiple stressor effects observed in the current study not
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only resulted in reduced resource quality for aquatic food webs but also affected the quality of
emergence, thus impacting the riparian food webs at the aquatic-terrestrial interface (Bundschuh

et al., 2020).

4.5. Differential response to stressor impacts of male and female caddisflies

Our study reveals sex-specific responses to both single and multiple stressors, with females
exhibiting more pronounced impacts on the metabolome while males show greater effects on
the lipidome. In the majority of insects, there is sexual dimorphism in lipid content due to distinct
roles played by lipids, such as egg production in females and flight behaviour in males (Lease and
Wolf, 2011). Certain aquatic insect species, characterized by specific male flight behaviour (Lease
and Wolf, 2011) or swarming (Sartori et al., 1992), experience negative impacts on population
fitness when males have decreased lipid content. Furthermore, this study identifies 4-
hydroxyestradiol, an endogenous metabolite of 17B-estradiol, from M. nycterobia, which has
been shown to have significant lipid-modulating effects in rats (Wang and Zhu, 2017).
Additionally, in Drosophila, sexual dimorphism has been observed in metabolic genes and

mechanisms involved in triglyceride homeostasis (Wat et al., 2020).

Likewise, the findings of this study highlight sex-dependent variation in metabolites induced by
stress, consistent with a previous study involving M. nycterobia exposed to microplastic particles
and a mixture of personal care products (Grgi¢ et al., 2023). Moreover, female insects generally
exhibit a stronger stress response across different taxa and under various stress conditions,
including parasite infections, predation, food quality, chemical stress, and the impacts of climate
change (Lindsey and Altizer, 2009; Slos et al., 2009; Stillwell and Davidowitz, 2010). This is likely
due to the different evolutionary roles of male and female insects, which have led to the
development of distinct stress-defence mechanisms. The fitness of females is closely linked to

their life expectancy and the number of offspring they produce.

Therefore, our study emphasizes the variability in the impacts of both single and multiple
stressors on various traits, different life stages, and sexes within a single species. Consequently,
it underscores the importance of developing a more comprehensive understanding of the
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sensitivity of freshwater organisms to the adverse effects of single and multiple stressors,

particularly when addressing the management of freshwater ecosystems in the context of global

change (Schéafer and Piggott, 2018).
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