

# Science of the Total Environment

## Pharmaceuticals and endocrine disrupting compounds modulate adverse effects of climate change on resource quality in freshwater food webs

--Manuscript Draft--

|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Manuscript Number:</b>     | STOTEN-D-23-17284R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Article Type:</b>          | Research Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Keywords:</b>              | climate change; Pollution; caddisflies; sex specific stress response; aquatic-terrestrial subsidies; ecosystem subsidies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Corresponding Author:</b>  | Ana Previsic, Ph.D.<br>University of Zagreb Faculty of Science<br>Zagreb, CROATIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>First Author:</b>          | Iva Kokotovic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Order of Authors:</b>      | Iva Kokotovic<br>Marina Veseli<br>Filip Lozek<br>Zrinka Karacic<br>Marko Rozman<br>Ana Previsic, Ph.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Abstract:</b>              | Freshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified freshwater food web containing moss ( <i>Bryophyta</i> ) and shredding caddisfly larvae of <i>Micropterna nycterobia</i> ( <i>Trichoptera</i> ). The experiment was conducted with four treatments; control (C), increased water temperature +4 °C (T2), emerging contaminants' mix (EC = 15 PhACs & 5 EDCs), and multiple stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their combination. Higher water temperature negatively affected development of <i>M. nycterobia</i> through causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs had higher impact on metabolism of all life stages of <i>M. nycterobia</i> than warming. Multiple stressor effect was recorded in <i>M. nycterobia</i> adults in metabolic response, lipidome profiles and as a decrease in total lipid content. Sex specific response to stressor effects was observed in adults, with impacts on metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights the variability of both single and multiple stressor impacts on different traits, different life stages and sexes of a single insect species. Furthermore, our research suggests that the combined impacts of warming, linked to climate change, and contamination with PhACs and EDCs could have adverse consequences on the population dynamics of aquatic insects. Additionally, these findings point to a potential decrease in the quality of resources available for both aquatic and potentially terrestrial food webs. |
| <b>Response to Reviewers:</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

**Revision**

MS ref. STOTEN-D-23-17284

Title: Pharmaceuticals and endocrine disrupting compounds modulate adverse effects of climate change on resource quality in freshwater food webs

Authors: Iva Kokotović, Marina Veseli, Filip Ložek, Zrinka Karačić, Marko Rožman, Ana Previšić  
Science of the Total Environment

Dear Prof. Sabater,

Thank you for the constructive comments that help to improve the manuscript. I would also like to thank the reviewer for time and effort invested in the second round, we really appreciate the constructive comments. We have integrated all the comments and suggestions and corrected the manuscript accordingly. More specifically, we have reanalysed parts of the data as suggested and subsequently rewritten parts of the manuscript.

We appreciate yours as well as the reviewer's feedback, which prompted us to revise and clarify our sampling strategy description. Hence, we have included a paragraph explaining the background of our sampling approach into the Methods section.

As instructed, we have added detailed clarifications to all comments, thus, please find attached the file with a point-by-point response on the queries provided to our submission.

Thank you for giving us the opportunity to revise our work and I am looking forward to receiving your reply.

Kind regards,



Ana Previšić on behalf of the authors

**Response letter**

MS ref. STOTEN-D-23-17284R1

Title: Pharmaceuticals and endocrine disrupting compounds modulate adverse effects of climate change on resource quality in freshwater food webs

Authors: Iva Kokotović, Marina Veseli, Filip Ložek, Zrinka Karačić, Marko Rožman, Ana Previšić

---

Following the suggestions of the reviewer, we have corrected the manuscript to improve the quality. All changes we made are listed and explained in detail following the reviewers' comments below (**reply in green colour**). Page and line numbers correspond to the revised (clean) manuscript, hence they may differ in the file with track changes (due to changes in the document).

**Reviewer #1:**

*General comments:*

The authors have made substantial modifications, according to the reviewers' comments, which greatly improve the manuscript's quality.

However, I have a significant concern regarding the differentiation between technical and biological replicates in the methodology employed in this study. To detect the effects of the treatments on the caddisfly population accurately, biological replicates are essential. While I understand that in some cases, pooling individuals may be necessary to obtain sufficient tissue for analysis, it is crucial to emphasize that biological replicates are vital for extrapolating observed effects on the samples to the entire population. Technical replicates, on the other hand, primarily assess the reliability of the analytical method. Pooling individuals to reduce variability, as mentioned in the paper, is an unconventional approach. Individual variation within biological replicates is essential for making meaningful extrapolations to the broader population. Unless the authors can provide robust justification for this method, with references to established practices or prior studies, it is challenging to validate such an approach.

Upon investigation, I found that in Previšić, et al. 2020, the authors employed 'at least two replicate samples' per treatment, which aligns with common biological replicate practices. However, in Previšić, et al. 2021, a departure from this approach is evident as samples were pooled also to reduce variability. This discrepancy raises concerns about the consistency and reliability of the methodology employed in this study.

To maintain the rigor and validity of the research, it is advisable to reconsider the approach to replicates and justify its use, especially when it deviates from widely accepted scientific practices. For further clarification on this topic, I recommend reviewing the following sources:

<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321166/>

<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825082/#:~:text=Broadly%20speaking%2C%20biological%20replicates%20are,the%20measuring%20equipment%20and%20protocols.>

<https://onlinelibrary.wiley.com/doi/pdf/10.1002/ejlt.201200260>

**Reply:** We are grateful to the reviewer for highlighting areas in need of improvement. The initial description of our sampling strategy was acknowledged as inappropriate, and we have rephrased it in response to the reviewer's valuable feedback. The phrase "pooling biological replicates" has been reworked, recognizing its intuitive illogicality. We aimed to avoid overemphasizing potential extreme effects of individual microcosms. Thus, we have added a paragraph explaining the background of our approach (P7-8; L195-207) and two relevant references (Kraufvelin, 1998 and Sanderson 2002).

In the context of working with micro and mesocosms, the conventional use of biological replicates for generalization, widely accepted in ecology, faces challenges. As pointed out by (Kraufvelin, 1998), the high variability in these

systems often makes it difficult or impossible to find statistically significant deviations from the controls, even with rigorous replication and large effect sizes. A review on replicability in pesticide studies found that 88% of test biological variables showed no statistical significance, despite a theoretically adequate number of replicates (Sanderson, 2002). Similar trends were observed across different systems and taxa groups (e.g. Knauer et al., 2005; Pandey et al., 2017), leading to the recognition of these challenges in guidance on aquatic ecotoxicology assessment (European Food Safety Authority, 2013). Moreover, the increasing complexity and duration of such test systems reveal problems like "aquarium individuality," where initially identical replicates diverge from one another due to random factors or chance events, even when no experimental errors are made (Kraufvelin, 1998).

In our current experiment, as well as in the experiment presented in Previšić et al. 2021 (ES&T), we incorporated simplified food webs, exposing parts of natural systems to treatments over 2 months and spanning different life stages. Despite efforts to achieve uniformity among individual microcosms, random effects leading to differences in the final stages cannot be fully excluded. However, we ensured replication by employing three replicates for each treatment, although we opted to pool tissue samples to address potential extreme effects. Additionally, the weight reduction of adult aquatic insects during metamorphosis posed a challenge, resulting in high tissue demand. The applied approach aims to strike a balance between providing ecologically meaningful results with non-model organisms and minimizing methodological constraints.

European Food Safety Authority, 2013. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA J. 11. <https://doi.org/10.2903/j.efsa.2013.3290>

Knauer, K., Maise, S., Thoma, G., Hommen, U., Gonzalez-Valero, J., 2005. Long-term variability of zooplankton populations in aquatic mesocosms. Environ. Toxicol. Chem. 24, 1182–1189. <https://doi.org/10.1897/04-010R.1>

Kraufvelin, P., 1998. Model ecosystem replicability challenged by the "soft" reality of a hard bottom mesocosm. J. Exp. Mar. Bio. Ecol. 222, 247–267. [https://doi.org/10.1016/S0022-0981\(97\)00143-3](https://doi.org/10.1016/S0022-0981(97)00143-3)

Pandey, L.K., Bergey, E.A., Lyu, J., Park, J., Choi, S., Lee, H., Depuydt, S., Oh, Y.T., Lee, S.M., Han, T., 2017. The use of diatoms in ecotoxicology and bioassessment: Insights, advances and challenges. Water Res. 118, 39–58. <https://doi.org/10.1016/j.watres.2017.01.062>

Sanderson, H., 2002. Pesticide studies: Replicability of micro/mesocosms. Environ. Sci. Pollut. Res. 9, 429–435. <https://doi.org/10.1007/BF02987597>

#### *Other comments:*

In reference to my previous comments on the use of PCA and PRC, I would like to clarify that I did not object to the application of PRC to your data. Instead, my concern was the absence of the y-axis in the PRC representation.

**Reply:** We thank the reviewer for these remarks. As we did not focus on a few particular metabolites/lipids the y axis would be filled with a lot of values representing m/z values as there are hundreds of metabolites/lipids extracted from the data and that would not give any additional information to the reader (as an example on appearance we added a raw figure with the y axis; Fig.1). Moreover, we were only able to identify some metabolites/lipids and those were putatively annotated. However, putative annotation does not provide definitive identification of a metabolite/lipid, and further verification is needed to confirm its identity using methods such as targeted metabolomics/lipidomics which is beyond the scope of our study. Thus, we have chosen to omit the y axis when presenting the current results.

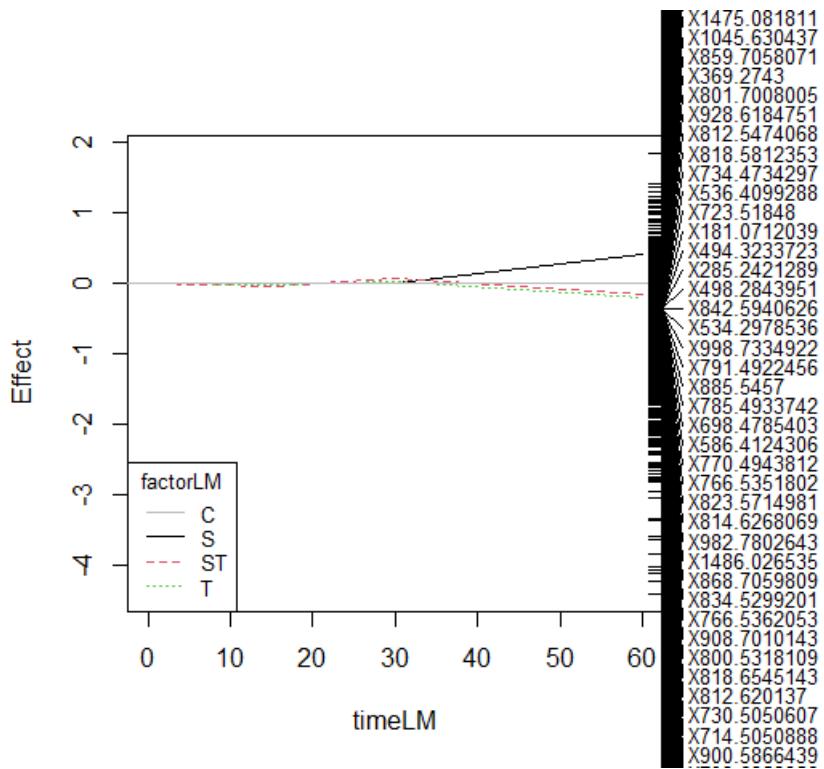



Fig.1. Lipidome profiles of the caddisfly *Micropterna nycterobia*; PRC of changes in the lipidome profiles of caddisfly life stages and female adults exposed to treatments in relation to control (please note that the figure is generated in R without any editing so color of lines and treatment abbreviations differ from those in the manuscript).

Additionally, I suggested to consider running RDA as an alternative to PCA for two reasons: 1) PCA is primarily a visual tool and not a formal statistical analysis; 2) given the notable time effect in your data, RDA would enable you to include time as a covariate, enhancing the analysis.

We agree with the reviewer that PCA is primarily a visualization tool and we used it primarily as a method of visualisation, moreover, formal statistical analysis was provided by the PRC (tables with statistics provided in supporting information). However, due to the missing data for metabolome and lipidome of moss at day 30 (treatment with ECs, as explained in the section 2.4.2. at P12) we did not run the PRC for that dataset. Therefore, in order to compensate for this oversight and include a formal statistical analysis for this dataset, we added the RDA analysis for moss metabolome and lipidome changes. Accordingly, parts of the text in materials and methods (P12 paragraph 2.4.2. Lines 295-299) as well as results (P13 Lines 328-331) and discussion (section 4.1. P21-22) were rewritten. In addition, new figures were created and integrated into the supporting information (Fig. S2).

However, as we wanted to emphasize the effect of time i.e. plant development and growth rather than the effects of treatment in moss, as the latter was not evident in HSP response or total lipid content changes, we decided to keep the previous PCA figures in the paper.

#### Introduction:

Line 112: a full stop is missing.

Line 117: shouldn't you say global warming then?

Line 127: aquatic organisms (plural)

**Reply:** Corrected as suggested.

Line 136: How do you want to address that? Or do you mean assess instead of address?

**Reply:** The sentence was rewritten as suggested (P4-5, Lines 115-118).

In your hypothesis, it is not explicitly stated that you also intend to test the response across the different stages. This omission was the basis of my earlier comment that comparing data between different dates and life stages seems incongruent with the study's objectives. It would be beneficial to explicitly include this in your hypothesis.

**Reply:** We thank the reviewer for pointing this out. We have added the information that changes in non-model organisms were evaluated across their life cycles into the hypothesis section (P6, Lines 146-149).

*Materials and methods:*

Please provide clarification in the description of the Generalized Linear Models (GzLM) regarding which data you analyzed using a normal distribution and which ones you analyzed using a gamma distribution.

**Reply:** Added as suggested, P11, Lines 277-279: "Normal distribution linear scale response was used for all data except for body weight of adults where gamma scale response with log link was used as the data did not achieve normal distribution."

*Discussion:*

The discussion is clear and very well-written.

1 **Pharmaceuticals and endocrine disrupting compounds modulate adverse effects of climate  
2 change on resource quality in freshwater food webs**

3

4 Iva, Kokotović<sup>1</sup>; Marina, Veseli<sup>1</sup>; Filip, Ložek<sup>1,2</sup>; Zrinka, Karačić<sup>3</sup>; Marko, Rožman<sup>3</sup>; Ana, Previšić<sup>1</sup>

5 <sup>1</sup> Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia

6 <sup>2</sup> South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of  
7 Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Czech  
8 Republic

9 <sup>3</sup> Ruđer Bošković Institute, Zagreb, Croatia

10

11 Iva Kokotović: [iva.kokotovic@biol.pmf.hr](mailto:iva.kokotovic@biol.pmf.hr)

12 Marina Veseli: [marina.veseli@biol.pmf.hr](mailto:marina.veseli@biol.pmf.hr)

13 Filip Ložek: [lozekf@frov.jcu.cz](mailto:lozekf@frov.jcu.cz)

14 Zrinka Karačić: [zrinka.karacic@irb.hr](mailto:zrinka.karacic@irb.hr)

15 Marko Rožman: [marko.rozman@irb.hr](mailto:marko.rozman@irb.hr)

16 Ana Previšić: [ana.previsic@biol.pmf.hr](mailto:ana.previsic@biol.pmf.hr)

17 \*Corresponding author:

18 Ana Previšić

19 Department of Biology, Zoology, Faculty of Science, University of Zagreb

20 Horvatovac 102a, 10000 Zagreb, Croatia

21 [ana.previsic@biol.pmf.hr](mailto:ana.previsic@biol.pmf.hr)

22

23 These two authors contributed equally: Ana Previšić and Marko Rožman

24 **Abstract**

25 Freshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to  
26 the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing  
27 individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting  
28 compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers  
29 and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified  
30 freshwater food web containing moss (*Bryophyta*) and shredding caddisfly larvae of *Micropterna*  
31 *nycterobia* (Trichoptera). The experiment was conducted with four treatments; control (C), increased  
32 water temperature +4 °C (T2), emerging contaminants' mix (EC = 15 PhACs & 5 EDCs), and multiple  
33 stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their  
34 combination. Higher water temperature negatively affected development of *M. nycterobia* through  
35 causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs  
36 had higher impact on metabolism of all life stages of *M. nycterobia* than warming. Multiple stressor effect  
37 was recorded in *M. nycterobia* adults in metabolic response, lipidome profiles and as a decrease in total  
38 lipid content. Sex specific response to stressor effects was observed in adults, with impacts on  
39 metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights  
40 the variability of both single and multiple stressor impacts on different traits, different life stages and  
41 sexes of a single insect species. Furthermore, our research suggests that the combined impacts of  
42 warming, linked to climate change, and contamination with PhACs and EDCs could have adverse  
43 consequences on the population dynamics of aquatic insects. Additionally, these findings point to a  
44 potential decrease in the quality of resources available for both aquatic and potentially terrestrial food  
45 webs.

46

47 **Keywords:**

48 climate change, pollution, caddisflies, sex specific stress response, aquatic-terrestrial subsidies, ecosystem  
49 subsidies

50 **Highlights:**

51     • warming was a dominant stressor for development-related traits of the caddisfly  
52     • negative effects of warming on lipids were increased by presence of PhACs&EDCs  
53     • pollution with PhACs & EDCs has higher impact on caddisfly metabolism than warming  
54     • trait-, sex- and life stage-specific responses to multiple stressors were observed  
55     • impacts of warming and PhACs & EDCs cross the aquatic-terrestrial interface

56

57

58

59 **1. INTRODUCTION**

60 Freshwater ecosystems are susceptible to various anthropogenic stressors (e.g. chemical  
61 pollution, climate change, habitat loss, invasive species) which mostly coincide. Pharmaceuticals  
62 (PhACs) and endocrine disrupting compounds (EDCs) are a diverse group of pollutants designed  
63 to be biologically active at low doses, targeting specific metabolic and molecular pathways in  
64 humans and animals, thus posing risk for aquatic organisms even at low environmental  
65 concentrations (Ebele et al., 2017; Tijani et al., 2013; Wilkinson et al., 2017). Moreover, EDCs  
66 encompass a wide range of chemicals (e.g. personal care products, cleaning products, food  
67 preservatives, etc.) that interfere with normal function(s) of the endocrine system (Ebele et al.,  
68 2017). PhACs and EDCs were shown to affect aquatic insects in many ways, causing changes in  
69 growth and development (Jarvis et al., 2014), biomass (López-Doval et al., 2012), enzymatic  
70 activity (Pestana et al., 2014), metabolome composition (Grgić et al., 2023; Previšić et al., 2020;  
71 Späth et al., 2022), behavior (Jarvis et al., 2014; Späth et al., 2022) and survival rate (López-Doval  
72 et al., 2012; Maenpaa and Kukkonen, 2006). Furthermore, PhACs and EDCs have the potential to  
73 bioaccumulate in aquatic insects (Grabicova et al., 2015; Lagesson et al., 2016; Previšić et al.,  
74 2021; Veseli et al., 2022) and to cross ecosystem boundaries through emerging aquatic insects  
75 and thus contaminate terrestrial habitats (Previšić et al., 2021; Veseli et al., 2022). Moreover, in  
76 freshwater ecosystems these compounds rarely occur one at a time but rather in complex  
77 mixtures of several different emerging contaminants, thus making it harder to investigate their  
78 effects (Wilkinson et al., 2017).

79 Climate change, with its long-term shifts in global weather patterns, poses significant challenges  
80 to freshwater ecosystems. Within freshwater ecosystems, aquatic insect groups, such as  
81 caddisflies, mayflies, and stoneflies, play a crucial role as inter-habitat linkages between aquatic  
82 and terrestrial ecosystems, facilitating the flow of energy and nutrients (Huryn and Wallace,  
83 2000). Additionally, they serve as valuable bioindicators for assessing the health of freshwater  
84 environments (Water Framework Directive (WFD) 2000/60/EC). Their vulnerability to climate  
85 change is influenced by their specific biological traits and ecological preferences, with a  
86 considerable proportion of them belonging to cold-adapted taxa (Conti et al., 2014; Hershkovitz

87 et al., 2015). The impact of climate change, characterized by rising temperatures and changes in  
88 precipitation levels (Webb et al., 2008), is particularly profound on these cold-adapted taxa in  
89 higher altitudes, making them highly vulnerable to warming (Krajick, 2004; Macadam et al.,  
90 2022). As a consequence of climate change, temperature increase affects various aspects of  
91 aquatic insects' lives. It directly impacts their growth, development, and body size (Cogo et al.,  
92 2020), as well as their emergence patterns (Finn et al., 2022). The anticipated rise in the  
93 frequency and extent of intermittent rivers and streams, which periodically cease flow or even  
94 completely dry, is a direct consequence of global climate change and the increasing human  
95 demand for freshwater resources (Blackman et al., 2021). This trend holds significant implications  
96 for aquatic insect communities, as considerably altered environmental conditions not only  
97 impact their geographic distribution (Cogo et al., 2020 and references therein), but also their  
98 population dynamics (Nukazawa et al., 2018), and community structure (Dorić et al., 2023).

99 Global warmingClimate change is likely to exacerbate impact of other anthropogenic stressors  
100 (Wrona et al., 2006). For instance, as temperature rises, the solubility and mobility of PhACs and  
101 EDCs in water can increase, leading to higher concentrations and potentially greater toxicity  
102 (Kazmi et al., 2022; Noyes et al., 2009). Temperature change may also alter degradation rates of  
103 some chemical contaminants, with increasing temperature usually shortening their half-life and  
104 reducing the overall risk (Bhangare et al., 2022; Noyes et al., 2009). While accelerated  
105 decomposition reduces the concentration of the parent compound, it increases the  
106 concentration of the degradation products, which in some cases could be even more toxic for  
107 aquatic organisms (Noyes et al., 2009). Warmer water usually increases the metabolic rate of  
108 aquatic organisms, thus leading to potentially increased uptake of these chemicals (Kazmi et al.,  
109 2022). In addition to increasing uptake, warming can also affect behaviour and physiology of  
110 aquatic organisms making them more susceptible to stressors (Polazzo et al., 2022). Toxicity of  
111 chemicals in water can depend on variety of abiotic (e.g. photolysis, hydrolysis, etc.) and biotic  
112 processes (e.g. biotransformation, biodegradation, etc.) (von Schiller et al., 2017). Moreover, the  
113 impact of warming on the toxicity of PhACs and EDCs in water is complex and can depend on a  
114 variety of factors, including the type of the chemical (Serra-Compte et al., 2018), aquatic species  
115 (Duchet et al., 2023, preprint), and life-stage tested (DeCourten and Brander, 2017). Due to the

116 increase in temperature caused by climate change, the temperature-dependent toxicity of PhACs  
117 and EDCs in water will become a matter of growing significance that warrants assessment an  
118 ~~increasingly important issue that needs to be addressed~~.

119 It is generally very challenging to gain empirical understanding of the effects of climate change  
120 in comparison with other stressors (Halsch et al., 2021), as well as their combined effects (Dinh  
121 et al., 2022). Consequently, there have been only a handful of studies investigating single and  
122 combined effects of increased water temperature and PhACs and EDCs in aquatic invertebrates  
123 (e.g. Barbosa et al., 2017; Cruzeiro et al., 2019; Heye et al., 2019). More specifically,  
124 carbamazepine and higher temperatures increased *Chironomus riparius* mortality (Heye et al.,  
125 2019); fluoxetine combined with higher temperature reduced reproductive success and  
126 population growth in *Daphnia magna* (Barbosa et al., 2017), whereas levonorgestrel and  
127 increased temperature did not cause DNA damage in *Gammarus locusta* cells (Cruzeiro et al.,  
128 2019). To address this knowledge gap, we conducted a study aimed at characterizing effects of  
129 increased water temperature and exposure to PhACs and EDCs on primary producers (non-  
130 vascular macrophytes; moss) and first level consumers (shredding aquatic insects) in freshwaters.  
131 Considering the importance of aquatic insects as fundamental links between aquatic and  
132 terrestrial food webs and reliable bioindicators to pollution (Erasmus et al., 2021; Muñoz et al.,  
133 2015) we chose caddisflies as our model organisms. Caddisflies are a species-rich and ecologically  
134 diverse insect order, that is well-suited to reflect effects of various stressors on aquatic  
135 ecosystems (Hering et al., 2009). Despite of the high ecological plasticity and thermal tolerance  
136 of intermittent rivers specialists (Stubbington et al., 2017) we hypothesized that the individual  
137 and combined stressor effects of both, increased water temperature and PhACs and EDCs, will  
138 trigger a stress response in an intermittent river caddisfly, *Micropterna nycterobia* (McLachlan,  
139 1875). Chronic *in situ* exposure to pollution with ECs results in measurable changes of metabolite  
140 levels in relatively pollution-tolerant caddisfly larvae (Previšić et al., 2020), whereas increased  
141 temperature results in depletion of lipids and reduces developmental period of mayfly larvae  
142 (Chou et al., 2018). Moreover, variable impacts on emergence and survival were observed in  
143 dragonflies and an aquatic heteropteran exposed to increased water temperature, PhACs and  
144 their combination (Duchet et al., 2023, preprint). Hence, we conducted a 78-day microcosm

145 experiment composed of a simplified freshwater food web exposed to a mixture of PhACs and  
146 EDCs and increased water temperature as a proxy for climate change using the randomized  
147 factorial design. We analyzed the physiological changes in caddisflies and moss via non-targeted  
148 metabolomics and lipidomics, i.e. by evaluating alterations in the metabolite and lipid profiles of  
149 non-model organisms across their life cycles, as well as changes in emergence patterns, body  
150 weight and total lipid content.

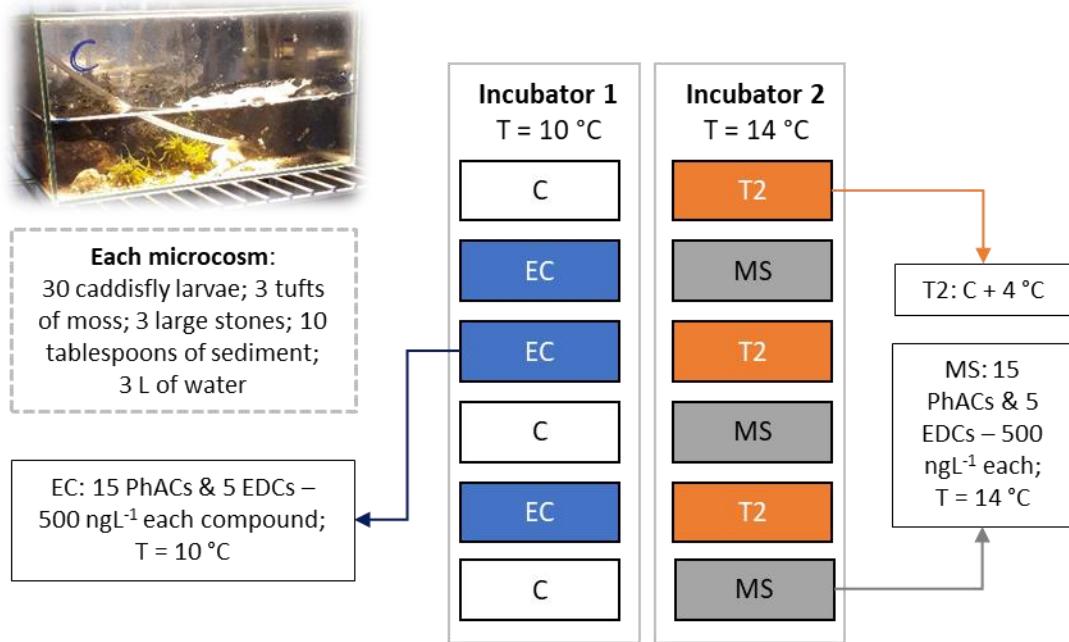
151

## 152 **2. MATERIALS AND METHODS**

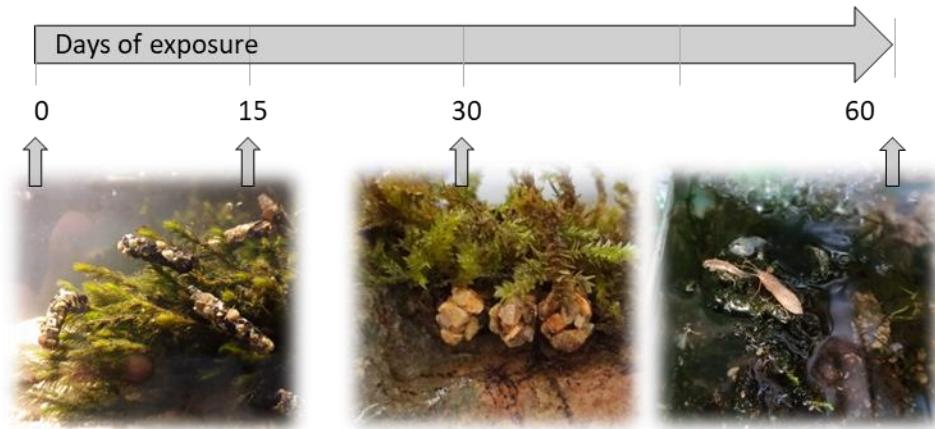
### 153 2.1 Microcosm Experiment: Experimental Design and Sample Collection

154 We conducted the microcosm experiment with a simplified freshwater food web containing  
155 nonvascular macrophytes (Bryophyta), hereafter moss and caddisfly larvae *Micropterna*  
156 *nycterobia* (McLachlan, 1875) (Limnephilidae, Trichoptera) feeding mainly as shredders.  
157 Trichoptera larvae, moss (*Cinclidotus aquaticus* (Hedw.) Bruch & Schimp and *Rhynchosstegium*  
158 *riparioides* (Hedw.) Cardot), water, sand and stones collected from the pristine Krčić River  
159 (N44.027321 E16.318936), minimally impacted by anthropogenic activity, were used for the  
160 experiment. Microcosm setup followed Previšić et al., 2021 with modifications in number of  
161 microcosms, temperature regime and mixture of moss species. Upon collection, 12 microcosms  
162 (aquaria 30 × 20 × 15 cm) were installed with 3 L of water, 10 tablespoons of sand, 3 large stones  
163 (> 10 cm), 10 small stones (2–5 cm), 3 tufts of moss (6–8 cm in diameter and plants up to 15 cm  
164 in length) and 5<sup>th</sup> instar *M. nycterobia* larvae (ca. 30 larvae per aquarium). Constant oxygen levels  
165 were kept using aquaria air pumps, and to minimize evaporation, each microcosm was covered  
166 with a glass cover. Natural light and day-night regime was supplemented with the artificial light  
167 (with sunlight's spectrum) in the regime of 12 hours of light followed by 12 hours without light.  
168 All microcosms were acclimatized for 10 days at 10 °C under aforementioned conditions  
169 preceding the start of the experiment. The experiment was conducted in the randomized  
170 factorial design, with treatments as follows: Control (C), Increased temperature (T2), ECs mix  
171 (EC), multiple stressor treatment = ECs mix + increased temperature (EC + T2 = MS), with three  
172 replicates of each. Subsequently, 6 of them were exposed to a mixture of 20 ECs over a 78-days

173 period. The composition of the ECs mixture was selected based on occurrence of particular  
174 compounds in freshwaters in Europe (Mandaric et al., 2015), and included 15 PhACs; azaperol,  
175 acetaminophen, thiabendazole, levamisol hydrochloride, dexamethasone, ketoprofen,  
176 naproxen, ranitidine hydrochloride, soltalol hydrochloride, valsartan, diphenhydramine,  
177 clopidogrel hydrogen sulfate, hydrochlorothiazide, sertraline hydrochloride, cimetidine and 5  
178 EDCs; benylparaben, ethylparaben, propylparaben, estriol, estradiol- $\beta$ . The volume of water was  
179 kept constant by adding fresh dechlorinated tap water (ca. 100 mL every week), and the  
180 concentration of each compound was kept at a pseudo-constant concentration of 500 ng L<sup>-1</sup>.  
181 Taking into consideration knowledge gained from our previous experiments (Cetinić et al., 2022;  
182 Grgić et al., 2023; Previšić et al., 2021), three stock solutions were prepared and 100  $\mu$ L of the  
183 solution was added each day, every three days or once a month, depending on the compound.  
184 In this way, abiotic attenuation (sorption and/or (photo)degradation) was taken in consideration  
185 and the nominal concentration of each compound was maintained, more details provided in  
186 Supporting information (SI 1). As different temperature regimes needed to be followed, aquaria  
187 were placed in two different incubators (POL-EKO APARATURA, Poland). "Natural" temperature  
188 regime (T1) mimicked the regime of the Krčić spring reach before the drying phase (10 °C) and  
189 temperature was successively increased 0.5 °C every 15 days. Increased temperature regime (T2)  
190 followed the same pattern but with temperature increased by 4 °C, in accordance with patterns  
191 of reduced flow observed in the selected river coupled with projections of temperature increase  
192 due to climate change in the Mediterranean montane regions (Bravo et al., 2008).


193 Biota sampling included initial (after the acclimatization period - day 0 (D0)) and several  
194 consecutive collections (ca. day 15 (D15), day 30 (D30) and day 60 (D60) of exposure) including  
195 different life stages (larvae, pupae and adult stage), in accordance with the life cycle of  
196 holometabolous caddisflies. At each sampling date, we collected replicate samples from each  
197 microcosm, consisting of 2 g of moss and 3–5 Trichoptera larvae/pupae. However, these samples  
198 were pooled per treatment to mitigate the potential extreme effects of individual microcosms  
199 (Kraufvelin, 1998). The complexity and extended duration of micro and mesocosm test systems  
200 exacerbate issues like "aquarium individuality," where initially identical replicates diverge due to  
201 random effects, introducing significant variability and complicating the identification of

202 statistically significant deviations (Kraufvelin, 1998; Sanderson, 2002). Additionally, the weight  
203 reduction of adult aquatic insects during metamorphosis (Huryn and Wallace, 2000) poses a  
204 challenge, leading to high tissue demand. Consequently, analytical replicates for each treatment  
205 per sampling date were created after homogenizing the pooled samples (details under 2.2, Biota  
206 Sample Processing). The chosen approach aims to strike a balance between providing ecologically  
207 meaningful results with non-model organisms and minimizing methodological constraints.


208 Trichoptera larvae were kept in clean aquaria for 24 h to allow for gut clearance prior to collection  
209 (Van Geest et al., 2010). Additionally, emerging adult *M. nycterobia* were collected as they  
210 emerged (daily), and sex of each individual was determined. These samples were pooled  
211 depending on sex for subsequent analyses due to tissue requirements and to match the overall  
212 sampling scheme, according to temperature treatments. Emergence following the „natural”  
213 temperature regime (T1) started ca. 2 weeks later than in T2, thus samples were pooled for dates  
214 45-60 and 60-75 days of exposure. Samples in elevated temperature regime (T2) were pooled for  
215 dates: 30-37 and 38-47 days of exposure. We combined adult *M. nycterobia* from 45-60 days of  
216 exposure in T1 and 38-47 days of exposure in T2 to one time point (day 60 of exposure) in order  
217 to have approximately the same time period of exposure to selected stressors. All samples were  
218 freeze-dried upon collection and stored at -80 °C until further processing.

219 Oxygen concentration (mg L<sup>-1</sup>), oxygen saturation (%), pH and electrical conductivity (mS cm<sup>-1</sup>)  
220 were measured in every microcosm at the beginning of the experiment (D0) and subsequently  
221 every two weeks (D15, D30, D45 and D60) using Hach HQ40D portable multi-parameter probe  
222 (Hach, Germany).

a)



b) Sampling



223

224 Figure 1. A) Experiment design with the following treatments: C - Control (T1 = 10 °C), T2 -  
225 Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (EC + T2) and b)  
226 sampling scheme with caddisfly larvae, pupae and adults sampled at various days of exposure.

227 2.2. Biota sample processing: extractions of metabolites and lipids

228 Within this study, the term “metabolome” refers to the complete set of low molecular weight  
229 molecules or metabolites present within an organism, while “lipidome” is used to describe the  
230 complete lipid profile within an organism (i.e. all lipids).

231 Biota samples processing, metabolite and protein extraction and metabolite profiling analyses  
232 followed (Grgić et al., 2023). In order to detect Hsp70 proteins, we performed Western blot  
233 analysis of protein samples, the details are provided in Supporting Information (SI 2). As there  
234 was no detection of the aforementioned proteins no results are shown.

235 The Folch lipid extraction method (Folch et al., 1957) was used and performed following the  
236 protocol of (Sarafian et al., 2014) with modifications. Briefly, for lipidome profiling and  
237 determination of the total lipid content (TLC), each sample (30 mg) was dissolved in 600 µL CHCl<sub>3</sub>  
238 : MeOH (2:1 v:v). Samples were vortexed at medium speed (IKA® Vortex Genius 3, Germany) for  
239 5 min. After 10 min of incubation at room temperature, samples were cooled at -20 °C for 10 min  
240 and additional lysis was done via ultrasonic probe (Sonoplus HD4050, Bandelin electronic GmbH,  
241 Germany) for 1 min at 50% of intensity. Samples were stored overnight at -20 °C to improve  
242 protein precipitation and then centrifuged at 14 000g for 20 min (Tehtnica-Centric 200R,  
243 Slovenia). The supernatant was collected (600 µL) in a previously weighed tube, filtered through  
244 a PVDF filer (MILLEX® - GV Syringe Filter 0.22 µm Hydrophilic PVDF, 13 mm, Sterile) and  
245 evaporated to dryness. The tube was weighed to determine the TLC. TLC was determined using  
246 the following equation; TLC = weight of "full" tube – empty tube. Samples were dissolved in 200µL  
247 IPA : ACN : H<sub>2</sub>O (2:1:1, v:v:v) for subsequent LCMSMS non-target analysis.

248 For both metabolome and lipidome analysis, set of quality control samples was prepared by  
249 taking small aliquot of the each sample solution from the entire set and pooling them together.  
250 Subaliquots of this pooled sample are regarded as set of quality control samples.

251

252 2.3 Non-target metabolome and lipidome analysis

253 Non-target analyses of the metabolome and lipidome samples were performed using a high-  
254 resolution mass spectrometry system; LTQ-Orbitrap VelosTM (Thermo Fisher Scientific, USA)  
255 coupled with an ultra-performance liquid chromatography (UPLC) system (Ultimate 3000  
256 RSLC nano system, Dionex, Amsterdam, Netherlands). Instrument parameters and UPLC gradients  
257 are provided in Supporting Information (SI). Data extraction, chromatographic deconvolution and  
258 final alignment were done using the MZmine program (Katajamaa et al., 2006). Steps and settings

259 used in the MZmine program are provided in Supporting information (SI 3). The exported .csv  
260 files were further filtered and sorted using modified parts of Bqunat script written in  
261 Mathematica (Wolfram Research Inc., Campaign, IL, USA) (Rožman et al., 2018). Data were  
262 cleaned by removing of all blank-related features. Feature was considered as blank related if an  
263 intensity ratio sample:blank was < 10. Quality acceptance criteria for each metabolite were:  
264 detection rate > 70%, relative standard deviation < 30% and dispersion ratio < 40%. Based on the  
265 exact mass match, metabolite and lipid identification was performed in  
266 <http://ceumass.eps.uspceu.es/> and by searching Metlin, Kegg, LipidMaps, PubChem, and HMDB  
267 databases. It is worth noting that the metabolites and lipids reported here are only the  
268 metabolites that were putatively annotated.

269

270 2.4 Statistical Analysis

271 2.4.1 Body weight changes & total lipid content of *Micropterna nycterobia* and non-vascular  
272 macrophytes, and physico-chemical water parameters

273 The effects of experimental treatments on body weight (evaluated individually in *M. nycterobia*  
274 specimens; N = 12 per treatment per collecting date) and total lipid content (TLC; evaluated in  
275 composite samples of *M. nycterobia* pooled per life stage and treatment; N = 3 per treatment  
276 per collection date) of different life stages of *M. nycterobia* were analysed using Generalized  
277 Linear Models (GZLMs) constructed in IBM SPSS Statistics 27.0 (IBM Corporation). Additionally,  
278 for adults the differences between the sexes were determined. Normal distribution linear scale  
279 response was used for all data except for body weight of adults where gamma scale response  
280 with log link was used as the data did not achieve normal distribution. Maximum likelihood  
281 estimate was used for parameter estimation. Pairwise contrasts of estimated means were  
282 performed using Wald's statistics.

283 The changes in total lipid content in moss, as well as changes in the physico-chemical water  
284 properties, between different treatments over time were tested using repeated measures  
285 ANOVA using the IBM SPSS Statistics 27.0 (IBM Corporation). Pairwise comparisons were

286 conducted with Bonferroni adjustment for multiple comparisons. Obtained data were analyzed  
287 and visualized using Principal Component Analysis (PCA) in Primer 7.

288

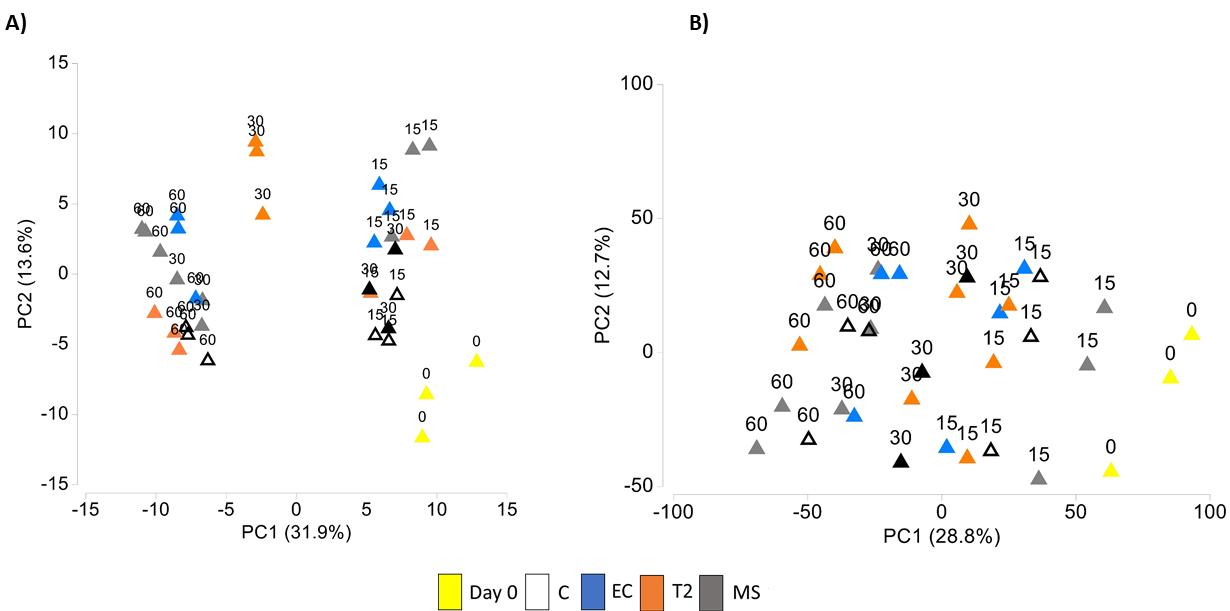
289 2.4.2. Data analysis of non-target metabolomic and lipidomic profiles of *Micropterna nycterobia*  
290 and non-vascular macrophytes

291 Obtained metabolomic and lipidomic data matrices were forth root transformed and was  
292 analyzed using Principal Component Analysis (PCA) and Principal Response Curves (PRC) in  
293 package vegan (version 2.5-7) RStudio version 4.1.2 (Oksanen et al., 2020). PRC analysis was  
294 performed using forth root transformed data. Additionally, significance of the results was tested  
295 using the Monte Carlo test in the 'permute' package, with 99 permutations, more specifically  
296 significance of the 1st canonical axis of the PRC and significance of sampling date/insect stage  
297 was tested. Due to the missing moss sample D30 EC, Redundancy Analysis (RDA) was performed  
298 instead of PRC for moss metabolome and lipidome data using CANOCO software (version  
299 5.11ter Braak and Šmilauer, 2012). We used treatment as the categorical explanatory variable,  
300 metabolites and lipids as response, respectively and time as a covariate. The RDA significances  
301 were tested using Monte Carlo test with 999 permutations. Values of MZ masses of the  
302 metabolome dataset were normalized and processed by Principal Component Analysis (PCA) in  
303 Rstudio. The PCA was visualized in Primer 7 (Clarke and Gorley, 2015). The first 100 variables (MZ  
304 masses) that contribute most to separation along certain PCs were selected for identification of  
305 metabolites.

306 **3. RESULTS**

307 3.1. Physico-chemical properties of water during microcosm experiment

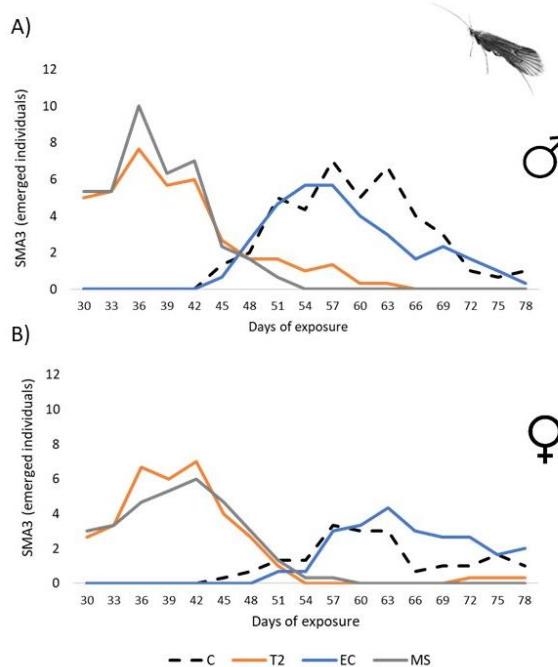
308 Oxygen concentration (mg L<sup>-1</sup>) and oxygen saturation (%) throughout the experiment did not  
309 differ significantly among treatments, they were impacted only by the day of measurement  
310 (repeated measures ANOVA, Table S1, S2; and PCA analysis, the total variance accounted by the  
311 two components shown was ~69 %; variance from [PC1, PC2]≈[46.4 %, 22.6 %]; Fig. S1). Day of  
312 measurement and interactive effects; temperature x ECs, temperature x time and ECs x time


313 caused changes in pH levels (repeated measures ANOVA, Table S3). Specifically, pH was higher  
314 on D15 and D60 in treatments with ECs mixture (EC and MS). Additionally, on D30 and D45 in  
315 treatments with elevated water temperature (T2 and MS) pH was higher and lower, respectively  
316 (repeated measures ANOVA, Table S3). Electrical conductivity differed between treatments, i.e.  
317 treatments with increased water temperature (T2 and MS) had higher conductivity compared to  
318 the “natural” temperature regime (C and ECs) (repeated measures ANOVA, Table S4). Moreover,  
319 electrical conductivity was generally rising throughout the whole experiment in all treatments,  
320 thus it was also impacted by the day of exposure (repeated measures ANOVA, Table S4).

321

### 322 3.2. Total lipid content, metabolome and lipidome profiles of non-vascular macrophytes

323 Principal component analysis (PCA) based on non-target metabolic profiles and lipidome profile  
324 of moss revealed clustering primarily based on the duration of the experiment rather than  
325 treatment (Fig. 2A&B). In the analysis of the metabolome and lipidome, the total variance  
326 accounted by the first two components was ~45.5 % (variance from [PC1, PC2]≈[31.9 %, 13.6 %])  
327 and ~41,5 % (variance from [PC1, PC2]≈[28.8 %, 12.7 %]), respectively. In both analyses, the first  
328 principal component (PC) axis separated the profiles between D0 and D15 from D60, with D30  
329 lacking a consistent grouping patterns (Fig. 2A&B; note however, that D30 EC samples are  
330 missing, as they were lost during the processing). In addition, RDA analyses shows that  
331 metabolome and lipidome profiles differed significantly among treatments (RDA: pseudo-F = 3.0,  
332 p = 0.002, explained variability = 12.1 %; Fig. S2A and RDA: pseudo-F = 2.2, p = 0.004, explained  
333 variability = 7.7 %; Fig. S2B, respectively). Majority of metabolite groups (17 in total) showing the  
334 most significant changes in abundance to stressor treatments were terpenoids, terpenes class  
335 (50%) followed by lipids and fatty acids (29%), amino acids, peptides and proteins (11%), carbonyl  
336 compounds (5%), organic acids, carboxylic acids and monocarboxylic acids (5%) (Fig. S3, Table  
337 S5). Within the lipidome, most significant changes in abundance of 51 lipids to stressor  
338 treatments were noticed in glycerophospholipids (51%) followed by glycerolipids (20%), sterol  
339 lipids (12%), sphingolipids (8%), prenol lipids (8%) and fatty acyls (2%) (Fig. S4, Table S6). The  
340 lowest total lipid content in all treatments was measured on D 15, however, no significant


341 changes in TLC was observed related to days of exposure or treatments (Fig. S5, repeated  
342 measures ANOVA, Table S7).



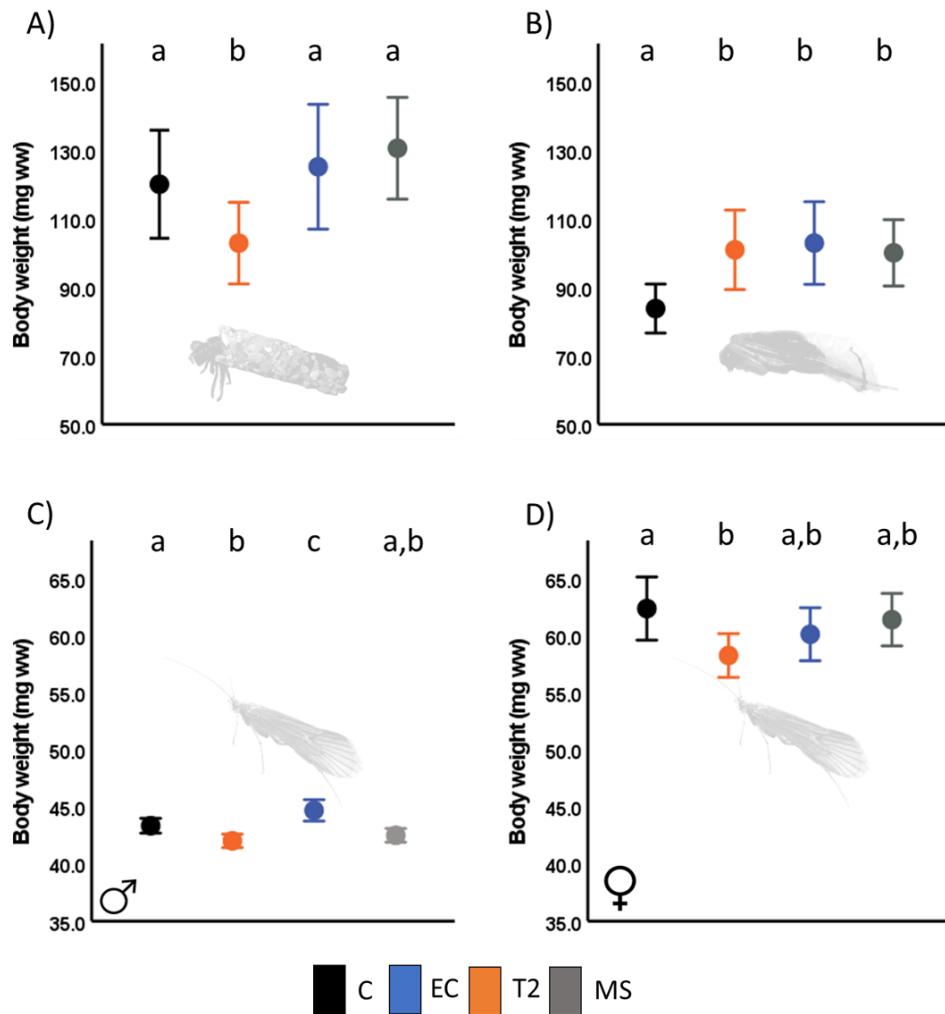
343  
344 Figure 2. PCA plot showing separation based on A) metabolome and B) lipidome of moss in  
345 different treatments. Abbreviations of treatments are as follows: C – Control ( $T = 10\text{ }^{\circ}\text{C}$ ), T2 –  
346 Increased temperature ( $14\text{ }^{\circ}\text{C}$ ), EC - ECs mix, MS - multiple stressor treatment (T2 + EC); Day 0 –  
347 pre-exposure sample.

348  
349 3.3. Phenology (emergence patterns) of the caddisfly *Micropterna nycterobia*  
350 Increased water temperature caused earlier emergence of both males and females, resulting in  
351 approximately three-week shift in peak emergence between the normal (C and EC) and elevated  
352 temperature (T2 and MS) treatments (Fig. 3). Overall, more males emerged throughout the  
353 experiment, however, the majority of pupae that did not emerge by the end of experiment were  
354 females. Only minor differences between emergence patterns of males and females were  
355 observed within treatments (Fig. 3).

356

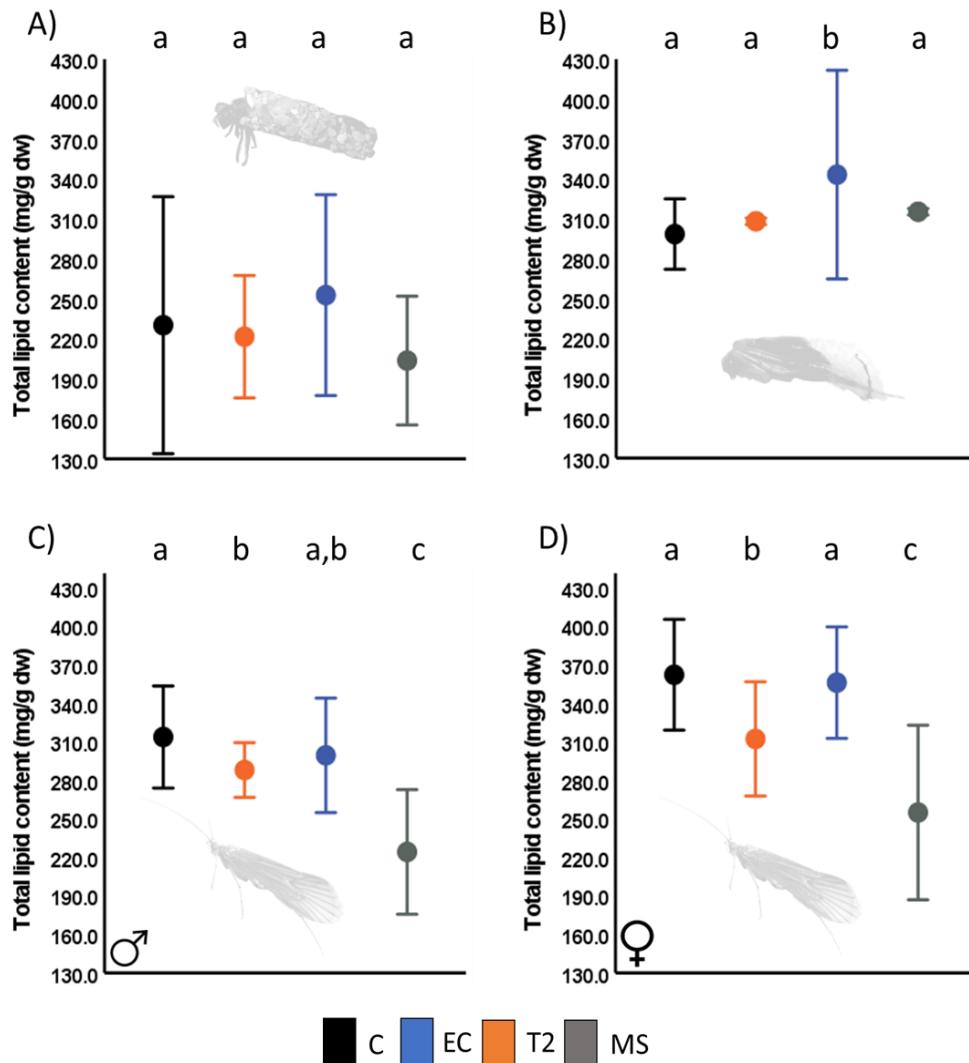


357


358 Figure 3. Three-day simple moving average (SMA3) of emerged A) male and B) female adults of  
 359 *Micropterna nycterobia* across treatments. Abbreviations of treatments are as follows: C - Control  
 360 (T = 10 °C), T2 - Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2  
 361 + EC).

362

363


364 3.4. Body weight and total lipid content changes of the caddisfly *Micropterna nycterobia*

365 Overall, a loss in body mass was recorded in *M. nycterobia* throughout the life cycle, with larvae  
 366 having the highest body weight and adults the lowest (Fig. 4A-D). A statistically significant drop  
 367 in body weight was observed in larvae in T2 compared to control (4A, Table S8). All experimental  
 368 treatments increased the body weight of pupae compared to control (Fig. 4B, Table S9). Adult  
 369 females had significantly higher body weight compared to males (Fig. 4C & 4D, Table S10),  
 370 however, in adults of both sexes a statistically significant drop in body weight was observed in T2  
 371 compared to control (Fig. 4C & 4D, Table S11 and S12).



372

373 Figure 4. Model predictions illustrating the effect of treatment on body weight of A) larvae B)  
 374 pupae C) adult males and D) adult females of *M. nycterobia*. Mean values of twelve replicates are  
 375 presented with 95% confidence intervals. Different letters indicate significant differences among  
 376 treatments ( $p < 0.05$ ). Abbreviations of treatments are as follows: C – Control ( $T = 10$  °C), T2 –  
 377 Increased temperature (14 °C), EC – ECs mix, MS – multiple stressor treatment (T2 + EC).



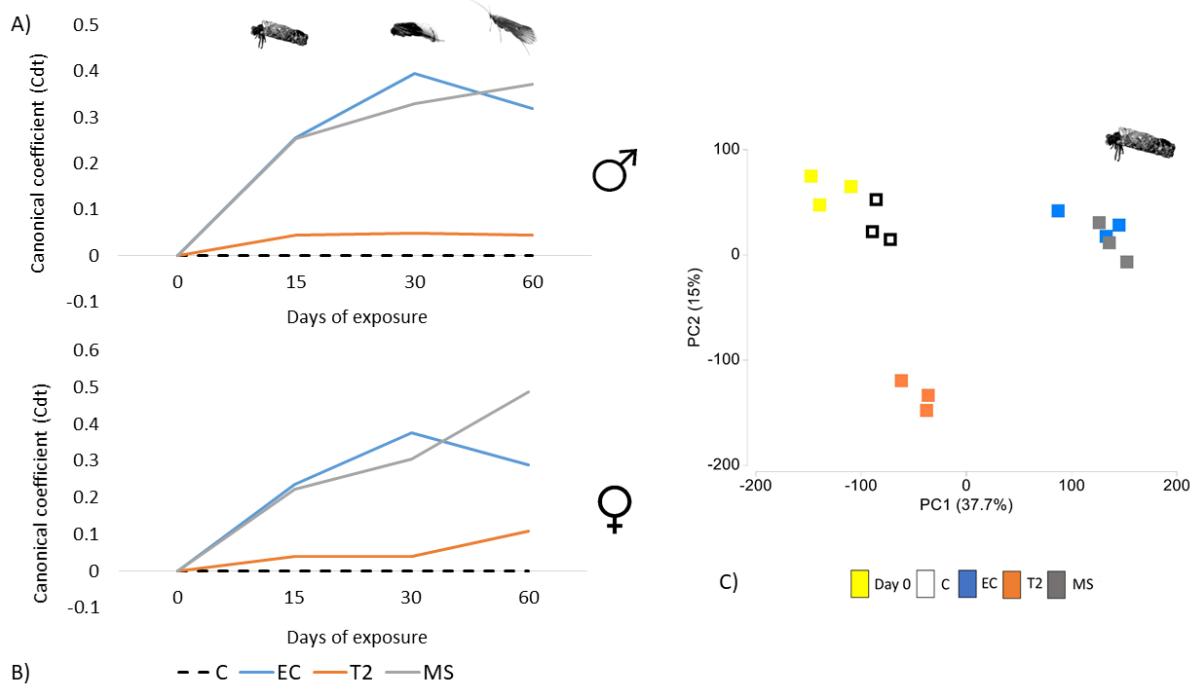
378

379 Figure 5. Model predictions illustrating the effect of treatment on total lipid content of A) larvae  
 380 B) pupae C) adult males and D) adult females of *M. nycterobia*. Mean values of three replicates  
 381 are presented with 95% confidence intervals. Different letters indicate significant differences  
 382 among treatments ( $p < 0.05$ ). Abbreviations of treatments are as follows: C – Control ( $T = 10$  °C),  
 383 T2 - Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2 + EC).

384

385 Changes in the TLC were more pronounced post-metamorphoses (Fig. 5A-D). Experimental  
 386 treatments had no effect on TLC on larvae (Fig. 5A, Table S13), while pupae exhibited an increase  
 387 in the EC treatment compared to control (Fig. 5B, Table S14). Total lipid content of adults was

388 lower compared to control in treatments with increased temperature (T2 and MS) (Fig. 5C & 5D,  
389 Table S15 & S16). Moreover, the greatest drop in TLC of adults was observed in the MS treatment  
390 ((Fig. 5C & 5D, Table S15 & S16), corresponding with the negative synergistic effect according to  
391 (Piggott et al., 2015). Females had significantly higher total lipid content compared to males  
392 (Figure 5C & 5D, Table S17).


393

394 3.5. Metabolome profiles of the caddisfly *Micropterna nycterobia*

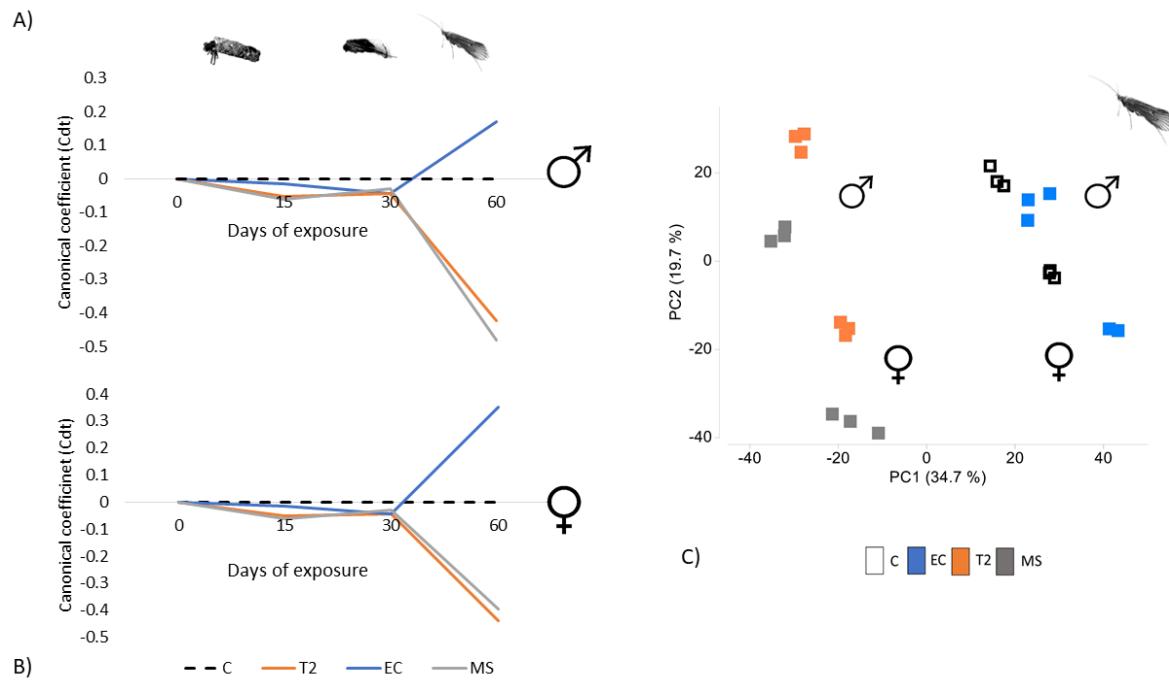
395 Principal Response Curves (PRC) of non-target metabolome profile of larvae, pupae and adult  
396 caddisflies show that the metabolome of all caddisfly life stages was mostly affected by the ECs  
397 mixture (EC and MS), as evident by the highest deviation from the control (Fig. 5A & B). Deviations  
398 were observed in larvae at D15 already, and further increased in pupae and adults. The MS  
399 treatment showed highest impact on metabolome of both male and female adult caddisflies (Fig.  
400 5A & B). Additionally, 62.6 % of total variance in males and 59.5 % in females could be attributed  
401 to time, whereas 22.1 % in males and 25.8 % in females could be attributed to the treatment  
402 (including its interaction with time, Table S18). The first PRC axis was significant (males –  $F (1, 32)$   
403 = 18.714  $p < 0.05$ , females –  $F (1, 32) = 28.172, p < 0.05$ ) and based on the Monte Carlo tests per  
404 sampling date, the treatment regime had a significant influence on all sampling dates.

405 Principal component (PCA) analysis based on non-target metabolic profiles of all life stages of *M.*  
406 *nycterobia* revealed clear separation of pre-metamorphosis larvae and post-metamorphosis  
407 pupae and adult imagines (Fig. S6, PC1). However, when particular life stages were analyzed  
408 separately, the PCA also revealed separation into distinct groups based on treatments. In larvae,  
409 for instance, PC1 axis separating larvae in ECs and MS treatments from D0, C and T2 treatments  
410 accounted for 37.7 % of variability (Fig. 4C; variance from [PC1, PC2]≈[37.7 %, 15 %]).

411 Majority of metabolite groups (18 in total) showing the most significant changes in abundance to  
412 stressor treatments in *M. nycterobia* were lipids and fatty acids (39%) followed by amino acids  
413 (22%), quinones (6%), acylcholine (6%), adrenergic agents (6%), lactones (6%), alcohols (5%),  
414 pyridines (5%), alkaloids (5%) (Fig. S7, Table S19).



415


416 Figure 5. Metabolome profiles of the caddisfly *Micropterna nycterobia*; PRC of changes in the  
 417 metabolic profiles along the caddisfly life cycle in A) male and B) female adults exposed to  
 418 treatments in relation to control. Numbers on x-axis denote days of exposure. C) PCA plot  
 419 showing separation based on metabolome of *M. nycterobia* larvae in different treatments at 15  
 420 days of exposure. Abbreviations of treatments are as follows: C – Control ( $T = 10\text{ }^{\circ}\text{C}$ ), T2 -  
 421 Increased temperature ( $14\text{ }^{\circ}\text{C}$ ), EC - ECs mix, MS - multiple stressor treatment (T2 + EC); Day 0 –  
 422 pre-exposure sample.

423

### 424 3.5. Lipidome profiles of the caddisfly *Micropterna nycterobia*

425 Principal Response Curves (PRC) of non-target lipidome profile of larvae, pupae and adult  
 426 caddisflies shows the highest deviation from the control in male and female adults, with an  
 427 opposing individual stressor effect (EC vs T2; Fig. 6A & B). In MS treatments, increased  
 428 temperature was the dominant stressor for both sexes, however, there were differences  
 429 between sexes, as male caddisflies lipidome was more affected in T2 and MS treatments,  
 430 whereas female caddisflies lipidome was more affected in the EC (Fig. 6A & 5B). Moreover, table  
 431 S20 shows that 79.8 % of total variance in male and 68.4 % in female caddisflies can be attributed

432 to time, whereas 13.3 % in male and 17.3% in female can be attributed to the treatment  
 433 (including its interaction with time). The first PRC axis was significant (males -  $F (1, 32) = 17.475$   
 434  $p < 0.05$ , females –  $F (1, 32) = 14.583, p < 0.05$ ) and based on the Monte Carlo tests per sampling  
 435 date, the treatment regime had a significant influence on all sampling dates.



436

437 Figure 6. Lipidome profiles of the caddisfly *Micropterna nycterobia*; PRC of changes in the  
 438 lipidome profiles of caddisfly life stages and A) male and B) female adults exposed to treatments  
 439 in relation to control. Numbers on x-axis denote days of exposure. C) PCA plot showing separation  
 440 adult *M. nycterobia* separated by sex in different treatments. Abbreviations of treatments are as  
 441 follows: C – Control ( $T = 10$  °C), T2 - Increased temperature (14 °C), EC - ECs mix, MS - multiple  
 442 stressor treatment (T2 + EC); Day 0 –pre-exposure sample.

443 Principal component (PCA) analysis based on non-target lipidome profiles of all life stages of *M.*  
 444 *nycterobia* showed clear separation of three major life stages, larvae, pupae and adults (Fig. S8).  
 445 The total variance accounted by the three clusters was ~68.8 % (variance from [PC1, PC2,  
 446 PC3]≈[47.7 %, 14.8 %, 6.3 %]). Clustering of particular treatments was particularly evident in  
 447 separate analyses of each life stage. The highest degree of clustering based on treatments was  
 448 inferred for adults, with the first principle component axis (PC1 = 34.7 %) separating adults based

449 on increased water temperature (T2 and MS treatments), whereas the second axis separated  
450 males from females (PC2 = 19.7 %, Fig. 6C).

451 Within the lipidome, most significant changes in abundance to stressor treatments were noticed  
452 in glycerophospholipids (67%) followed by fatty acyls (12%), sphingolipids (12%), glycerolipids  
453 (5%), prenol lipids (2%) and sterol lipids (1%) (Fig. S9, Table S21).

454

#### 455 **4. DISCUSSION**

456 Water pollution has far-reaching consequences for the ecosystem health and functioning, and it  
457 is important to understand these impacts, especially in a context of climate change. Here we used  
458 simplified freshwater food web exposed to a mixture of PhACs and EDCs and increased water  
459 temperature to broaden our understanding of the impacts of climate change and pollution on  
460 freshwater ecosystems.

##### 461 4.1. Warming and pollution with PhACs & EDCs triggered a mild response in moss

462 A mild response of the moss to both individual stressors (increased water temperature and  
463 contamination with ECs) and their combination suggests mosses' resilience. It has been shown  
464 that plants have specific temperature and pollution thresholds that trigger or inhibit certain  
465 physiological processes, allowing them to respond to stressful conditions (Firmansyah and  
466 Argosubekti, 2020; Gorovits et al., 2020; Sun et al., 2018; Zezulka et al., 2013). One of the most  
467 common physiological responses includes production of heat shock proteins (HSPs), and lack of  
468 observable change in regulation of HSPs may suggest that the thermal and pollution threshold  
469 necessary to trigger stress response in the moss was not reached. This observation is in  
470 agreement with established thermal threshold of plants of minimum 5 °C (Firmansyah and  
471 Argosubekti, 2020). Even though changes in metabolomic and lipidomic profiles among  
472 treatments were significant, one should keep in mind that changes in metabolite and lipid  
473 composition can be related to stress response but also developmental stages (Lu et al., 2019;  
474 Mikami and Hartmann, 2004). In addition, the biotic stress induced by the feeding of *M.*  
475 *nycterobia* larvae on the moss might have masked the impact of the pollution and increased

476 temperature. Plants can prioritize their responses to address individual stressors when exposed  
477 to multiple abiotic and/or biotic stressors (Rejeb et al., 2014; Suzuki et al., 2014). We argue that  
478 the moss in the current experiment might have prioritized biotic stress over abiotic stressors and  
479 activated different defence mechanisms to mitigate larval feeding. However, we could not test  
480 for the latter, since feeding of *M. nycterobia* larvae on the moss was also present in control  
481 treatments. Moreover, research has shown that different stress combinations activate different  
482 pathways and signals thus making it harder to predict multiple stressor effects (Rejeb et al., 2014;  
483 Suzuki et al., 2014; Vescio et al., 2022).

484

485 4.2. Single stressor impacts: effects of warming and pollution with PhACs and EDCs on *M.*  
486 *nycterobia*

487 In the current experiment, we recorded a body mass loss in *M. nycterobia* that is in line with the  
488 usual life cycle patterns of the holometabolous caddisflies, with larvae having the highest body  
489 weight and adults the lowest (Huryn and Wallace, 2000). Increased temperature during insect  
490 development typically leads to reduced adult body size, negatively influencing fecundity and  
491 longevity (Mirth and Riddiford, 2007), this effect was however, not observed in the current study.  
492 Our observations are in line with data on chronic exposure to pesticides in the caddisfly  
493 *Limnephilus lunatus*, where reduced body weight of adults was observed only if younger instar  
494 larvae were exposed, and not the fifth-instars (Liess and Schulz, 1996; Schulz and Liess, 2001,  
495 1995).

496 *M. nycterobia* inhabits clean crenal and rhithral sections and is therefore expected to be sensitive  
497 to presence of contaminants (Graf et al., 2023). Indeed, sensitivity is displayed through intense  
498 change in regulation of both metabolites and lipids in respect to control, however, the  
499 contaminants seem to have a more significant impact on metabolome than temperature. More  
500 precisely, the most pronounced metabolome response was post-metamorphosis, yet changes in  
501 metabolite regulation are already notable in larvae at D15. Notably, the sampled caddisflies'  
502 metabolome contained the biogenic amine octopamine, a significant neurotransmitter,  
503 neuromodulator, and neurohormone influencing various physiological functions, behaviour and

504 endocrine activity (Farooqui, 2012) Changes in octopamine levels due to PhACs and EDCs during  
505 metamorphosis could affect not only the subsequent life stage but potentially extend across  
506 multiple generations.

507 Observed difference in dynamics of regulation of metabolites vs lipids can be related to  
508 physiological roles of metabolites and lipids which response tends to differ depending on the  
509 type of stress and the metabolic pathways involved (Kainz and Fisk, 2009; Snart et al., 2015).  
510 Generally, lipids serve as a long-term energy source and are stored in lipid droplets, which can  
511 be mobilized to provide energy during times of starvation, embryogenesis, prolonged periods of  
512 flight and stress (Arrese and Soulages, 2010; Kainz and Fisk, 2009). Here, metabolites were more  
513 regulated than lipids in response to stress probably in order to maintain cellular homeostasis and  
514 ensure energy reserves (lipids) for the emerging adults (Arrese and Soulages, 2010). Glycerolipids  
515 such as triglycerides are stored in the core of the lipid droplets surrounded by  
516 glycerophospholipids (Arrese and Soulages, 2010). As glycerophospholipids were mostly affected  
517 by experimental treatments, this further supports the fact that lipid reserves were preserved for  
518 adults. However, changes in glycerophospholipids of insects can also be related to development  
519 and metamorphosis (Bashan et al., 2002; Cargill et al., 1985; Duarte, 2019) as well as food source  
520 (Hanson et al., 1985; Torres-Ruiz et al., 2010).

521 The lack of strong effects of increased water temperature on metabolite regulation, as well as  
522 absence of heat shock protein HSP70 expression, is most likely due to adaptation of *M. nycterobia*  
523 to thermal stress regularly occurring in intermittent streams (Qin et al., 2003). This finding  
524 suggests that *M. nycterobia* and possibly other intermittent habitats indicators may have  
525 metabolic flexibility to cope with thermal stress, allowing them to survive extreme climatic events  
526 characterised by fluctuating temperature regimes. In addition, the regulation of lipidome of *M.*  
527 *nycterobia* aquatic stages exhibited intriguing resilience to both increased water temperature  
528 and pollution with PhACs and EDCs. The limited impact on lipid regulation suggests that the stress  
529 response threshold triggering significant lipid mobilisation may not have been surpassed.  
530 Instead, the priority for the aquatic stages was directed towards lipid accumulation rather than  
531 mobilization in response to stress challenges (Arrese and Soulages, 2010; Hoppeler et al., 2018).  
532 Emphasis on lipid accumulation was evident through the observed increase in total lipid content

533 from larval to pupal stages, serving as a crucial energy source to sustain adult insects during non-  
534 feeding periods and fuel their flights (Arrese and Soulages, 2010; Hoppeler et al., 2018). While  
535 the anticipation of intense lipidome activity in adult insects is well-founded, it is surprising that  
536 so distinct regulatory mechanisms are operating in response to different stressors. However,  
537 lipidomic profiles of multiple stressor treatment were in both males and females congruent with  
538 those of increased temperature, implying the dominant impact of increased water temperature  
539 on regulation of lipids in aquatic insects.

540 Increased water temperature accelerated development of *M. nycterobia*, resulting in earlier  
541 adult emergence and lower total lipid content of all life stages in treatments with increased  
542 temperature. Similarly, the mayfly larvae chronically exposed to increased temperature used  
543 lipids and amino acids as alternative energy sources to support their growth and maintenance  
544 costs, ultimately resulting in reduced total lipid content (Chou et al., 2018). Furthermore,  
545 sensitivity of the temporal emergence patterns of aquatic insects was already discussed as  
546 toxicological endpoint for exposure to pesticides (Schulz and Liess, 2001), as timing of aquatic  
547 insect emergence plays a crucial role for riparian predators (review in Bundschuh et al., 2020).  
548 More precisely, insectivorous birds almost exclusively obtain the omega-3 long-chain  
549 polyunsaturated fatty acids from emerging aquatic insects, thus shifts in the relative availability  
550 and phenology of aquatic insects in response to a changing climate are likely to have major fitness  
551 consequences for their breeding success (Shipley et al., 2022). Hence, such shifts can have  
552 cascading effects on cross-ecosystem energy flow. This is of particular importance in intermittent  
553 water bodies, like those inhabited by *M. nycterobia*, where mass emergence during short periods  
554 is typical and riparian food webs are highly dependent on the aquatic subsidies (McIntosh et al.,  
555 2017).

556

#### 557 4.3. Multiple stressor impacts of warming and PhACs and EDCs on aquatic insects

558 A synergistic interactive effect was observed, leading to a decrease in total lipid content and  
559 significant variation in lipid profiles in adults of both sexes under the MS treatment. *Micropterna*  
560 *nycterobia*, a specialist in intermittent rivers, exhibits a behaviour where adults leave the water

561 bodies upon emergence and migrate to cooler mountainous regions or nearby caves for a few  
562 months until their gonads develop (Waringer and Graf, 2011). In autumn, after copulation, they  
563 lay eggs in re-established surface flow. Therefore, the observed decrease in lipid reserves in  
564 adults (8.9% and 10.7% decrease in total lipid content in males and females, respectively) could  
565 have a major impact on their reproduction and population dynamics. Lipids serve as crucial  
566 energy reserves for insects, especially during non-feeding life stages and long-distance flights  
567 (Arrese and Soulages, 2010; Downer and Matthews, 1976). Maintaining metapopulation  
568 dynamics is particularly important for inhabitants of intermittent water bodies (Datry et al.,  
569 2017). Various pollutants, such as fungicides and copper, can decrease the lipid content of  
570 limnephilid caddisflies (Konschak et al., 2019). However, this effect was not observed in the  
571 current study as PhACs and EDCs did not influence the lipid content of *M. nycterobia*.  
572 Furthermore, the negative effects of pollutants on lipids can be exacerbated by elevated water  
573 temperatures (Yoon et al., 2022). However, in our study, increased water temperature primarily  
574 influenced the lipids of caddisflies, and its adverse effects were amplified by pollution with PhACs  
575 and EDCs. Additionally, warming indirectly contributed to the further deterioration of  
576 environmental conditions in the T2 and MS treatments, as evidenced by increased conductivity  
577 within these two treatments.

578 In terms of the timing of the strongest stress response, our results differ from a previous  
579 experiment involving the same caddisfly species, where the effects of ECs and microplastic  
580 particles were most pronounced in the first 15 days of exposure, both in single and combined  
581 stressor treatments (Grgić et al., 2023). Apart from the dominant impact of increased  
582 temperature, these differences may also be attributed to variations in the mixture of ECs used,  
583 as different compounds can have varying effects on biota (Muñoz et al., 2015; Nilsen et al., 2019).  
584 Nevertheless, our study indicates that the adverse synergistic effects of warming events and  
585 freshwater contamination with ECs could intensify throughout the life cycle of aquatic insects,  
586 potentially leading to developmental impairments and disturbances in population dynamics  
587 (Kazmi et al., 2022). However, in most environmental health assessment and monitoring  
588 programs, only the aquatic stages of aquatic insects are considered (Water Framework Directive  
589 (WFD) 2000/60/EC). Furthermore, the multiple stressor effects observed in the current study not

590 only resulted in reduced resource quality for aquatic food webs but also affected the quality of  
591 emergence, thus impacting the riparian food webs at the aquatic-terrestrial interface (Bundschuh  
592 et al., 2020).

593

594 4.5. Differential response to stressor impacts of male and female caddisflies

595 Our study reveals sex-specific responses to both single and multiple stressors, with females  
596 exhibiting more pronounced impacts on the metabolome while males show greater effects on  
597 the lipidome. In the majority of insects, there is sexual dimorphism in lipid content due to distinct  
598 roles played by lipids, such as egg production in females and flight behaviour in males (Lease and  
599 Wolf, 2011). Certain aquatic insect species, characterized by specific male flight behaviour (Lease  
600 and Wolf, 2011) or swarming (Sartori et al., 1992), experience negative impacts on population  
601 fitness when males have decreased lipid content. Furthermore, this study identifies 4-  
602 hydroxyestradiol, an endogenous metabolite of 17 $\beta$ -estradiol, from *M. nycterobia*, which has  
603 been shown to have significant lipid-modulating effects in rats (Wang and Zhu, 2017).  
604 Additionally, in *Drosophila*, sexual dimorphism has been observed in metabolic genes and  
605 mechanisms involved in triglyceride homeostasis (Wat et al., 2020).

606 Likewise, the findings of this study highlight sex-dependent variation in metabolites induced by  
607 stress, consistent with a previous study involving *M. nycterobia* exposed to microplastic particles  
608 and a mixture of personal care products (Grgić et al., 2023). Moreover, female insects generally  
609 exhibit a stronger stress response across different taxa and under various stress conditions,  
610 including parasite infections, predation, food quality, chemical stress, and the impacts of climate  
611 change (Lindsey and Altizer, 2009; Slos et al., 2009; Stillwell and Davidowitz, 2010). This is likely  
612 due to the different evolutionary roles of male and female insects, which have led to the  
613 development of distinct stress-defence mechanisms. The fitness of females is closely linked to  
614 their life expectancy and the number of offspring they produce.

615 Therefore, our study emphasizes the variability in the impacts of both single and multiple  
616 stressors on various traits, different life stages, and sexes within a single species. Consequently,  
617 it underscores the importance of developing a more comprehensive understanding of the

618 sensitivity of freshwater organisms to the adverse effects of single and multiple stressors,  
619 particularly when addressing the management of freshwater ecosystems in the context of global  
620 change (Schäfer and Piggott, 2018).

621

## 622 **Acknowledgment**

623 We thank Dr Ruder Novak (Faculty of Medicine, University of Zagreb) for providing assistance in  
624 mass spectrometry analysis. This study is part of the outcomes of the Croatian Science  
625 Foundation project MUSE (PZS-2019-02-9479 [and DOK-2020-01-6998](#) to A.P.) and KLIMA-4HR  
626 project (KK.05.1.1.02.0006). M.R. acknowledges additional support from the Croatian Science  
627 Foundation (IP-2018-01-2298). Two anonymous reviewers are thanked for significantly  
628 improving the quality of earlier version of the manuscript.

629

630

## 631 **LITERATURE**

632 Arrese, E.L., Soulages, J.L., 2010. Insect Fat Body: Energy, Metabolism, and Regulation. Annu.  
633 Rev. Entomol. 55, 207–225. <https://doi.org/10.1146/annurev-ento-112408-085356>

634 Barbosa, M., Inocentes, N., Soares, A.M.V.M., Oliveira, M., 2017. Synergy effects of fluoxetine  
635 and variability in temperature lead to proportionally greater fitness costs in *Daphnia*: A  
636 multigenerational test. Aquat. Toxicol. 193, 268–275.  
637 <https://doi.org/10.1016/j.aquatox.2017.10.017>

638 Bashan, M., Akbas, H., Yurdakoc, K., 2002. Phospholipid and triacylglycerol fatty acid  
639 composition of major life stages of sunn pest, *Eurygaster integriceps* (Heteroptera:  
640 Scutelleridae). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 132, 375–380.  
641 [https://doi.org/10.1016/S1096-4959\(02\)00045-3](https://doi.org/10.1016/S1096-4959(02)00045-3)

642 Bhangare, D., Rajput, N., Jadav, T., Sahu, A.K., Tekade, R.K., Sengupta, P., 2022. Systematic  
643 strategies for degradation kinetic study of pharmaceuticals: an issue of utmost importance

644 concerning current stability analysis practices. *J. Anal. Sci. Technol.* 13, 7.

645 <https://doi.org/10.1186/s40543-022-00317-6>

646 Blackman, R.C., Altermatt, F., Foulquier, A., Lefébure, T., Gauthier, M., Bouchez, A.,

647 Stubbington, R., Weigand, A.M., Leese, F., Datry, T., 2021. Unlocking our understanding of

648 intermittent rivers and ephemeral streams with genomic tools. *Front. Ecol. Environ.* 19,

649 574–583. <https://doi.org/10.1002/fee.2404>

650 Bravo, D.N., Araújo, M.B., Lasanta, T., Moreno, J.I.L., 2008. Climate change in Mediterranean

651 mountains during the 21st century. *Ambio* 37, 280–285.

652 [https://doi.org/10.1579/00410.1579/0044-7447\(2008\)37\[280:ccimmd\]2.0.co;2](https://doi.org/10.1579/00410.1579/0044-7447(2008)37[280:ccimmd]2.0.co;2)

653 Bundschuh, M., Zubrod, J.P., Wieczorek, M. V., Schulz, R., 2020. Studying Effects of

654 Contaminants on Aquatic-Terrestrial Subsidies: Experimental Designs Using Outdoor and

655 Indoor Mesocosms and Microcosms, in: Contaminants and Ecological Subsidies. Springer

656 International Publishing, Cham, pp. 279–296. [https://doi.org/10.1007/978-3-030-49480-3\\_12](https://doi.org/10.1007/978-3-030-49480-3_12)

658 Cargill, A.S., Cummins, K.W., Hanson, B.J., Lowry, R.R., 1985. The role of lipids as feeding

659 stimulants for shredding aquatic insects. *Freshw. Biol.* 15, 455–464.

660 <https://doi.org/10.1111/j.1365-2427.1985.tb00215.x>

661 Cetinić, K.A., Grgić, I., Previšić, A., Rožman, M., 2022. The curious case of methylparaben:

662 Anthropogenic contaminant or natural origin? *Chemosphere* 294, 133781.

663 <https://doi.org/10.1016/j.chemosphere.2022.133781>

664 Chou, H., Pathmasiri, W., Deese-spruill, J., Sumner, S.J., Jima, D.D., Funk, D.H., Jackson, J.K.,

665 Sweeney, B.W., Buchwalter, D.B., 2018. The Good, the Bad, and the Lethal: Gene

666 Expression and Metabolomics Reveal Physiological Mechanisms Underlying Chronic

667 Thermal Effects in Mayfly Larvae (*Neocloeon triangulifer*). *Front. Ecol. Evol.* 6, 1–11.

668 <https://doi.org/10.3389/fevo.2018.00027>

669 Clarke, K.R., Gorley, R.N., 2015. PRIMER v7 : PRIMER-E Ltd Registered.

670 Cogo, G.B., Martínez, J., Santos, S., Graça, M.A.S., 2020. Caddisflies growth and size along an  
671 elevation/temperature gradient. *Hydrobiologia* 847, 207–216.  
672 <https://doi.org/10.1007/s10750-019-04082-3>

673 Conti, L., Schmidt-Kloiber, A., Grenouillet, G., Graf, W., 2014. A trait-based approach to assess  
674 the vulnerability of European aquatic insects to climate change. *Hydrobiologia* 721, 297–  
675 315. <https://doi.org/10.1007/s10750-013-1690-7>

676 Cruzeiro, C., Ramos, A., Loganimoce, E.M., Arenas, F., Rocha, E., Cardoso, P.G., 2019. Genotoxic  
677 effects of combined multiple stressors on *Gammarus locusta* haemocytes: Interactions  
678 between temperature, pCO<sub>2</sub> and the synthetic progestin levonorgestrel. *Environ. Pollut.*  
679 245, 864–872. <https://doi.org/10.1016/j.envpol.2018.11.070>

680 Datry, T., Corti, R., Heino, J., Hugueny, B., Rolls, R.J., Ruhí, A., 2017. Habitat Fragmentation and  
681 Metapopulation, Metacommunity, and Metaecosystem Dynamics in Intermittent Rivers  
682 and Ephemeral Streams, in: Intermittent Rivers and Ephemeral Streams. Elsevier, pp. 377–  
683 403. <https://doi.org/10.1016/B978-0-12-803835-2.00014-0>

684 DeCourten, B.M., Brander, S.M., 2017. Combined effects of increased temperature and  
685 endocrine disrupting pollutants on sex determination, survival, and development across  
686 generations. *Sci. Rep.* 7, 9310. <https://doi.org/10.1038/s41598-017-09631-1>

687 Dinh, K. V., Konestabo, H.S., Borgå, K., Hylland, K., Macaulay, S.J., Jackson, M.C., Verheyen, J.,  
688 Stoks, R., 2022. Interactive Effects of Warming and Pollutants on Marine and Freshwater  
689 Invertebrates. *Curr. Pollut. Reports* 8, 341–359. <https://doi.org/10.1007/s40726-022-00245-4>

691 Dorić, V., Ivković, M., Baranov, V., Pozojević, I., Mihaljević, Z., 2023. Extreme freshwater  
692 discharge events exacerbated by climate change influence the structure and functional  
693 response of the chironomid community in a biodiversity hotspot. *Sci. Total Environ.* 879.  
694 <https://doi.org/10.1016/j.scitotenv.2023.163110>

695 Downer, R.G.H., Matthews, J.R., 1976. Patterns of Lipid Distribution and Utilisation in Insects.  
696 Am. Zool. 16, 733–745. <https://doi.org/10.1093/icb/16.4.733>

697 Duarte, P.M., 2019. Unravelling the lipid profile of coastal insects from Ria de Aveiro, Portugal:  
698 implications for sustainable aquaculture. University of Aveiro.  
699 <https://doi.org/ria.ua.pt/bitstream/10773/28378/1/Pedro%20Martins%20Duarte.pdf>

700 Duchet, C., Grabicová, K., Kolar, V., Lepšová, O., Csercsa, A., Zdvihalova, B., Randák, T., Boukal,  
701 D., 2023. Combined effects of climate warming and environmentally relevant  
702 concentrations of pharmaceutical active compounds on a freshwater community. *bioRxiv*  
703 244, 2023.03.31.535078.

704 Ebele, A.J., Abou-Elwafa Abdallah, M., Harrad, S., 2017. Pharmaceuticals and personal care  
705 products (PPCPs) in the freshwater aquatic environment. *Emerg. Contam.* 3, 1–16.  
706 <https://doi.org/10.1016/j.emcon.2016.12.004>

707 Erasmus, J.H., Lorenz, A.W., Zimmermann, S., Wepener, V., Sures, B., Smit, N.J., Malherbe, W.,  
708 2021. A diversity and functional approach to evaluate the macroinvertebrate responses to  
709 multiple stressors in a small subtropical austral river. *Ecol. Indic.* 131, 108206.  
710 <https://doi.org/10.1016/j.ecolind.2021.108206>

711 Farooqui, T., 2012. Review of octopamine in insect nervous systems. *Open access insect physiol.*  
712 1. <https://doi.org/10.2147/OAIP.S20911>

713 Finn, D.S., Johnson, S.L., Gerth, W.J., Arismendi, I., Li, J.L., 2022. Spatiotemporal patterns of  
714 emergence phenology reveal complex species-specific responses to temperature in aquatic  
715 insects. *Divers. Distrib.* 28, 1524–1541. <https://doi.org/10.1111/ddi.13472>

716 Firmansyah, Argosubekti, N., 2020. A review of heat stress signaling in plants. *IOP Conf. Ser.*  
717 *Earth Environ. Sci.* 484, 012041. <https://doi.org/10.1088/1755-1315/484/1/012041>

718 Folch, J., Lees, M., Sloane Stanley, G.H., 1957. A simple method for the isolation and purification  
719 of total lipides from animal tissues. *J. Biol. Chem.* 226, 497–509.  
720 [https://doi.org/10.1016/S0021-9258\(18\)64849-5](https://doi.org/10.1016/S0021-9258(18)64849-5)

721 Gorovits, R., Sobol, I., Akama, K., Chefetz, B., Czosnek, H., 2020. Pharmaceuticals in treated  
722 wastewater induce a stress response in tomato plants. *Sci. Rep.* 10, 1856.

723 <https://doi.org/10.1038/s41598-020-58776-z>

724 Grabicova, K., Grabic, R., Blaha, M., Kumar, V., Cerveny, D., Fedorova, G., Randak, T., 2015.

725 Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent

726 from a municipal sewage treatment plant. *Water Res.* 72, 145–153.

727 <https://doi.org/10.1016/j.watres.2014.09.018>

728 Graf, W., Murphy, J., Dahl, J., Zamora-Munoz, C., Lopez-Rodriguez M.J. Schmidt-Kloiber., A.,

729 2023. Dataset “Trichoptera”. [www.freshwaterecology.info](http://www.freshwaterecology.info) - the taxa and autecology

730 database for freshwater organisms, version 8.0 (accessed on 06.06.2023) [WWW

731 Document]. <https://doi.org/https://www.freshwaterecology.info/index.php>

732 Grgić, I., Cetinić, K.A., Karačić, Z., Previšić, A., Rožman, M., 2023. Fate and effects of

733 microplastics in combination with pharmaceuticals and endocrine disruptors in

734 freshwaters: Insights from a microcosm experiment. *Sci. Total Environ.* 859.

735 <https://doi.org/10.1016/j.scitotenv.2022.160387>

736 Halsch, C.A., Shapiro, A.M., Fordyce, J.A., Nice, C.C., Thorne, J.H., Waetjen, D.P., Forister, M.L.,

737 2021. Insects and recent climate change. *Proc. Natl. Acad. Sci. U. S. A.* 118, 1–9.

738 <https://doi.org/10.1073/PNAS.2002543117>

739 Hanson, B.J., Cummins, K.W., Cargill, A.S., Lowry, R.R., 1985. Lipid content, fatty acid

740 composition, and the effect of diet on fats of aquatic insects. *Comp. Biochem. Physiol. Part*

741 *B Comp. Biochem.* 80, 257–276. [https://doi.org/10.1016/0305-0491\(85\)90206-8](https://doi.org/10.1016/0305-0491(85)90206-8)

742 Hering, D., Schmidt-Kloiber, A., Murphy, J., Lücke, S., Zamora-Muñoz, C., López-Rodríguez, M.J.,

743 Huber, T., Graf, W., 2009. Potential impact of climate change on aquatic insects: A

744 sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns

745 and ecological preferences. *Aquat. Sci.* 71, 3–14. <https://doi.org/10.1007/s00027-009-9159-5>

747 Hershkovitz, Y., Dahm, V., Lorenz, A.W., Hering, D., 2015. A multi-trait approach for the

748 identification and protection of European freshwater species that are potentially

749 vulnerable to the impacts of climate change. *Ecol. Indic.* 50, 150–160.

750 https://doi.org/10.1016/j.ecolind.2014.10.023

751 Heye, K., Lotz, T., Wick, A., Oehlmann, J., 2019. Interactive effects of biotic and abiotic  
752 environmental stressors on carbamazepine toxicity in the non-biting midge *Chironomus*  
753 *riparius*. *Water Res.* 156, 92–101. https://doi.org/10.1016/j.watres.2019.03.007

754 Hoppeler, F., Winkelmann, C., Becker, J., Pauls, S.U., 2018. Larval growth and metabolic energy  
755 storage of *Micropterna lateralis* (Trichoptera: Limnephilidae) in an intermittent stream:  
756 glycogen dominates in final instars. *Hydrobiologia* 806, 175–185.  
757 https://doi.org/10.1007/s10750-017-3354-5

758 Huryn, A.D., Wallace, J.B., 2000. LIFE HISTORY AND PRODUCTION OF STREAM INSECTS. *Annu.*  
759 *Rev. Entomol.* 83–110. https://doi.org/10.1146/annurev.ento.51.110104.151107

760 Jarvis, A.L., Bernot, M.J., Bernot, R.J., 2014. The effects of the pharmaceutical carbamazepine  
761 on life history characteristics of flat-headed mayflies (Heptageniidae) and aquatic resource  
762 interactions. *Ecotoxicology* 23, 1701–1712. https://doi.org/10.1007/s10646-014-1309-4

763 Kainz, M.J., Fisk, A.T., 2009. Integrating lipids and contaminants in aquatic ecology and  
764 ecotoxicology, in: *Lipids in Aquatic Ecosystems*. Springer New York, New York, NY, pp. 93–  
765 114. https://doi.org/10.1007/978-0-387-89366-2\_5

766 Katajamaa, M., Miettinen, J., Orešič, M., 2006. MZmine: Toolbox for processing and  
767 visualization of mass spectrometry based molecular profile data. *Bioinformatics* 22, 634–  
768 636. https://doi.org/10.1093/bioinformatics/btk039

769 Kazmi, S.S.U.H., Wang, Y.Y.L., Cai, Y.E., Wang, Z., 2022. Temperature effects in single or  
770 combined with chemicals to the aquatic organisms: An overview of thermo-chemical  
771 stress. *Ecol. Indic.* 143, 109354. https://doi.org/10.1016/j.ecolind.2022.109354

772 Konschak, M., Zubrod, J.P., Baudy, P., Englert, D., Herrmann, B., Schulz, R., Bundschuh, M.,  
773 2019. Waterborne and diet-related effects of inorganic and organic fungicides on the  
774 insect leaf shredder *Chaetopteryx villosa* (Trichoptera). *Aquat. Toxicol.* 206, 33–42.  
775 https://doi.org/10.1016/j.aquatox.2018.10.021

776 Krajick, K., 2004. All Downhill From Here? *Science* (80-). 303, 1600–1602.

777 <https://doi.org/10.1126/science.303.5664.1600>

778 Kraufvelin, P., 1998. Model ecosystem replicability challenged by the “soft” reality of a hard  
779 bottom mesocosm. *J. Exp. Mar. Bio. Ecol.* 222, 247–267. [https://doi.org/10.1016/S0022-0981\(97\)00143-3](https://doi.org/10.1016/S0022-0981(97)00143-3)

780

781 Lagesson, A., Fahlman, J., Brodin, T., Fick, J., Jonsson, M., Byström, P., Klaminder, J., 2016.  
782 Bioaccumulation of five pharmaceuticals at multiple trophic levels in an aquatic food web -  
783 Insights from a field experiment. *Sci. Total Environ.* 568, 208–215.  
784 <https://doi.org/10.1016/j.scitotenv.2016.05.206>

785 Lease, H.M., Wolf, B.O., 2011. Lipid content of terrestrial arthropods in relation to body size,  
786 phylogeny, ontogeny and sex. *Physiol. Entomol.* 36, 29–38.  
787 <https://doi.org/10.1111/j.1365-3032.2010.00767.x>

788 Liess, M., Schulz, R., 1996. Chronic effects of short-term contamination with the pyrethroid  
789 insecticide fenvalerate on the caddisfly *Limnephilus lunatus*. *Hydrobiologia* 324, 99–106.  
790 <https://doi.org/10.1007/BF00018170>

791 Lindsey, E., Altizer, S., 2009. Sex differences in immune defenses and response to parasitism in  
792 monarch butterflies. *Evol. Ecol.* 23, 607–620. <https://doi.org/10.1007/s10682-008-9258-0>

793 López-Doval, J.C., Kukkonen, J.V.K., Rodrigo, P., Muñoz, I., 2012. Effects of indomethacin and  
794 propranolol on *Chironomus riparius* and *Physella (Costatella) acuta*. *Ecotoxicol. Environ.*  
795 Saf. 78, 110–115. <https://doi.org/10.1016/j.ecoenv.2011.11.004>

796 Lu, Eiriksson, Thorsteinsdóttir, Simonsen, 2019. Valuable Fatty Acids in Bryophytes—  
797 Production, Biosynthesis, Analysis and Applications. *Plants* 8, 524.  
798 <https://doi.org/10.3390/plants8110524>

799 Macadam, C.R., England, J., Chadd, R., 2022. The vulnerability of British aquatic insects to  
800 climate change. *Knowl. Manag. Aquat. Ecosyst.* 2022-Janua, 3.  
801 <https://doi.org/10.1051/kmae/2022003>

802 Maenpaa, K., Kukkonen, J., 2006. Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-  
803 (2-dodecyl)-benzene sulfonate (LAS) in *Lumbriculus variegatus* (Oligochaeta) and  
804 *Chironomus riparius* (Insecta). *Aquat. Toxicol.* 77, 329–338.  
805 <https://doi.org/10.1016/j.aquatox.2006.01.002>

806 Mandaric, L., Celic, M., Marcé, R., Petrovic, M., 2015. Introduction on Emerging Contaminants  
807 in Rivers and Their Environmental Risk, in: *Handbook of Environmental Chemistry*. pp. 3–  
808 25. [https://doi.org/10.1007/698\\_2015\\_5012](https://doi.org/10.1007/698_2015_5012)

809 McIntosh, A.R., Leigh, C., Boersma, K.S., McHugh, P.A., Febria, C., García-Berthou, E., 2017. Food  
810 Webs and Trophic Interactions in Intermittent Rivers and Ephemeral Streams, in:  
811 *Intermittent Rivers and Ephemeral Streams*. Elsevier, pp. 323–347.  
812 <https://doi.org/10.1016/B978-0-12-803835-2.00012-7>

813 Mikami, K., Hartmann, E., 2004. Lipid Metabolism in Mosses, in: *New Frontiers in Bryology*.  
814 Springer Netherlands, Dordrecht, pp. 133–155. [https://doi.org/10.1007/978-0-306-48568-8\\_8](https://doi.org/10.1007/978-0-306-48568-8_8)

816 Mirth, C.K., Riddiford, L.M., 2007. Size assessment and growth control: how adult size is  
817 determined in insects. *BioEssays* 29, 344–355. <https://doi.org/10.1002/bies.20552>

818 Muñoz, I., López-Doval, J.C., De Castro-Català, N., Kuzmanovic, M., Ginebreda, A., Sabater, S.,  
819 2015. Effects of Emerging Contaminants on Biodiversity, Community Structure, and  
820 Adaptation of River Biota, in: *Handbook of Environmental Chemistry*. pp. 79–119.  
821 [https://doi.org/10.1007/698\\_2015\\_5013](https://doi.org/10.1007/698_2015_5013)

822 Nilsen, E., Smalling, K.L., Ahrens, L., Gros, M., Miglioranza, K.S.B., Picó, Y., Schoenfuss, H.L.,  
823 2019. Critical review: Grand challenges in assessing the adverse effects of contaminants of  
824 emerging concern on aquatic food webs. *Environ. Toxicol. Chem.* 38, 46–60.  
825 <https://doi.org/10.1002/etc.4290>

826 Noyes, P.D., McElwee, M.K., Miller, H.D., Clark, B.W., Van Tiem, L.A., Walcott, K.C., Erwin, K.N.,  
827 Levin, E.D., 2009. The toxicology of climate change: Environmental contaminants in a  
828 warming world. *Environ. Int.* 35, 971–986. <https://doi.org/10.1016/j.envint.2009.02.006>

829 Nukazawa, K., Arai, R., Kazama, S., Takemon, Y., 2018. Projection of invertebrate populations in  
830 the headwater streams of a temperate catchment under a changing climate. *Sci. Total  
831 Environ.* 642, 610–618. <https://doi.org/10.1016/j.scitotenv.2018.06.109>

832 Oksanen, J., Simpson, G.L., Blanchet, F.G., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H.,  
833 Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Durand, S.,  
834 Beatriz, H., Evangelista, A., Friendly, M., Hannigan, G., Hill, M.O., Lahti, L., Mcglinn, D.,  
835 Ribeiro, E., Smith, T., Stier, A., Ter, C.J.F., Weedon, J., 2020. Title *Community Ecology*  
836 *Package*. *Vegan* *Community Ecol. Packag.* R Packag. version 2.5-7.  
837 <https://doi.org/https://github.com/vegandevs/vegan>

838 Pestana, J.L.T., Novais, S.C., Lemos, M.F.L., Soares, A.M.V.M., 2014. Cholinesterase activity in  
839 the caddisfly *Sericostoma vittatum*: Biochemical enzyme characterization and in vitro  
840 effects of insecticides and psychiatric drugs. *Ecotoxicol. Environ. Saf.* 104, 263–268.  
841 <https://doi.org/10.1016/j.ecoenv.2014.03.012>

842 Piggott, J.J., Townsend, C.R., Matthaei, C.D., 2015. Reconceptualizing synergism and  
843 antagonism among multiple stressors. *Ecol. Evol.* 5, 1538–1547.  
844 <https://doi.org/10.1002/ece3.1465>

845 Polazzo, F., Roth, S.K., Hermann, M., Mangold-Döring, A., Rico, A., Sobek, A., Van den Brink, P.J.,  
846 Jackson, M.C., 2022. Combined effects of heatwaves and micropollutants on freshwater  
847 ecosystems: Towards an integrated assessment of extreme events in multiple stressors  
848 research. *Glob. Chang. Biol.* <https://doi.org/10.1111/gcb.15971>

849 Previšić, A., Rožman, M., Mor, J.R., Acuña, V., Serra-Compte, A., Petrović, M., Sabater, S., 2020.  
850 Aquatic macroinvertebrates under stress: Bioaccumulation of emerging contaminants and  
851 metabolomics implications. *Sci. Total Environ.* 704, 135333.  
852 <https://doi.org/10.1016/j.scitotenv.2019.135333>

853 Previšić, A., Vilenica, M., Vučković, N., Petrović, M., Rožman, M., 2021. Aquatic Insects Transfer  
854 Pharmaceuticals and Endocrine Disruptors from Aquatic to Terrestrial Ecosystems. *Environ.  
855 Sci. Technol.* 55, 3736–3746. <https://doi.org/10.1021/acs.est.0c07609>

856 Qin, W., Tyshenko, M.G., Wu, B.S., Walker, V.K., Robertson, R.M., 2003. Cloning and  
857 characterization of a member of the hsp70 gene family from *Locusta migratoria*, a highly  
858 thermotolerant insect. *Cell Stress Chaperones* 8, 144. [https://doi.org/10.1379/1466-1268\(2003\)008<0144:CACOAM>2.0.CO;2](https://doi.org/10.1379/1466-1268(2003)008<0144:CACOAM>2.0.CO;2)

860 Rejeb, I., Pastor, V., Mauch-Mani, B., 2014. Plant Responses to Simultaneous Biotic and Abiotic  
861 Stress: Molecular Mechanisms. *Plants* 3, 458–475. <https://doi.org/10.3390/plants3040458>

862 Rožman, M., Acuña, V., Petrović, M., 2018. Effects of chronic pollution and water flow  
863 intermittency on stream biofilms biodegradation capacity. *Environ. Pollut.* 233, 1131–  
864 1137. <https://doi.org/10.1016/j.envpol.2017.10.019>

865 Sanderson, H., 2002. Pesticide studies: Replicability of micro/mesocosms. *Environ. Sci. Pollut.  
866 Res.* 9, 429–435. <https://doi.org/10.1007/BF02987597>

867 Sarafian, M.H., Gaudin, M., Lewis, M.R., Martin, F.P., Holmes, E., Nicholson, J.K., Dumas, M.E.,  
868 2014. Objective set of criteria for optimization of sample preparation procedures for ultra-  
869 high throughput untargeted blood plasma lipid profiling by ultra performance liquid  
870 chromatography-mass spectrometry. *Anal. Chem.* 86, 5766–5774.  
871 <https://doi.org/10.1021/ac500317c>

872 Sartori, M., Keller, L., Thomas, A.G.B., Passera, L., 1992. Flight energetics in relation to sexual  
873 differences in the mating behaviour of a mayfly, *Siphlonurus aestivalis*. *Oecologia* 92, 172–  
874 176. <https://doi.org/10.1007/BF00317360>

875 Schäfer, R.B., Piggott, J.J., 2018. Advancing understanding and prediction in multiple stressor  
876 research through a mechanistic basis for null models. *Glob. Chang. Biol.* 24, 1817–1826.  
877 <https://doi.org/10.1111/gcb.14073>

878 Schulz, R., Liess, M., 2001. Toxicity of Aqueous-Phase and Suspended Particle-Associated  
879 Fenvalerate: Chronic Effects After Pulse-Dosed Exposure of *Limnephilus lunatus*  
880 (Trichoptera). *Environ. Toxicol. Chem.* 20, 185. [https://doi.org/10.1897/1551-5028\(2001\)020<0185:toapas>2.0.co;2](https://doi.org/10.1897/1551-5028(2001)020<0185:toapas>2.0.co;2)

882 Schulz, R., Liess, M., 1995. Chronic effects of low insecticide concentrations on freshwater  
883 caddisfly larvae. *Hydrobiologia* 299, 103–113. <https://doi.org/10.1007/BF00017562>

884 Serra-Compte, A., Maulvault, A.L., Camacho, C., Álvarez-Muñoz, D., Barceló, D., Rodríguez-  
885 Mozaz, S., Marques, A., 2018. Effects of water warming and acidification on  
886 bioconcentration, metabolism and depuration of pharmaceuticals and endocrine  
887 disrupting compounds in marine mussels (*Mytilus galloprovincialis*). *Environ. Pollut.* 236,  
888 824–834. <https://doi.org/10.1016/j.envpol.2018.02.018>

889 Shipley, J.R., Twining, C.W., Mathieu-Resuge, M., Parmar, T.P., Kainz, M., Martin-Creuzburg, D.,  
890 Weber, C., Winkler, D.W., Graham, C.H., Matthews, B., 2022. Climate change shifts the  
891 timing of nutritional flux from aquatic insects. *Curr. Biol.* 32, 1342–1349.e3.  
892 <https://doi.org/10.1016/j.cub.2022.01.057>

893 Slos, S., De Meester, L., Stoks, R., 2009. Food level and sex shape predator-induced  
894 physiological stress: immune defence and antioxidant defence. *Oecologia* 161, 461–467.  
895 <https://doi.org/10.1007/s00442-009-1401-2>

896 Snart, C.J.P., Hardy, I.C.W., Barrett, D.A., 2015. Entometabolomics: applications of modern  
897 analytical techniques to insect studies. *Entomol. Exp. Appl.* 155, 1–17.  
898 <https://doi.org/10.1111/eea.12281>

899 Späth, J., Fick, J., McCallum, E., Cerveny, D., Nording, M.L., Brodin, T., 2022. Wastewater  
900 effluent affects behaviour and metabolomic endpoints in damselfly larvae. *Sci. Rep.* 12, 1–  
901 14. <https://doi.org/10.1038/s41598-022-10805-9>

902 Stillwell, R.C., Davidowitz, G., 2010. Sex differences in phenotypic plasticity of a mechanism that  
903 controls body size: implications for sexual size dimorphism. *Proc. R. Soc. B Biol. Sci.* 277,  
904 3819–3826. <https://doi.org/10.1098/rspb.2010.0895>

905 Stubbington, R., Bogan, M.T., Bonada, N., Boulton, A.J., Datry, T., Leigh, C., Vander Vorste, R.,  
906 2017. The Biota of Intermittent Rivers and Ephemeral Streams: Aquatic Invertebrates,  
907 Intermittent Rivers and Ephemeral Streams: Ecology and Management. Elsevier Inc.  
908 <https://doi.org/10.1016/B978-0-12-803835-2.00007-3>

909 Sun, C., Dudley, S., Trumble, J., Gan, J., 2018. Pharmaceutical and personal care products-  
910 induced stress symptoms and detoxification mechanisms in cucumber plants. *Environ.*  
911 *Pollut.* 234, 39–47. <https://doi.org/10.1016/j.envpol.2017.11.041>

912 Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E., Mittler, R., 2014. Abiotic and biotic stress  
913 combinations. *New Phytol.* 203, 32–43. <https://doi.org/10.1111/nph.12797>

914 ter Braak, C.J.F., Šmilauer, P., 2012. Canoco reference manual and user's guide: software for  
915 ordination, version 5.0. Microcomputer Power.

916 Tijani, J.O., Fatoba, O.O., Petrik, L.F., 2013. A Review of Pharmaceuticals and Endocrine-  
917 Disrupting Compounds: Sources, Effects, Removal, and Detections. *Water, Air, Soil Pollut.*  
918 224, 1770. <https://doi.org/10.1007/s11270-013-1770-3>

919 Torres-Ruiz, M., Wehr, J.D., Perrone, A.A., 2010. Are net-spinning caddisflies what they eat? An  
920 investigation using controlled diets and fatty acids. *J. North Am. Benthol. Soc.* 29, 803–813.  
921 <https://doi.org/10.1899/09-162.1>

922 Van Geest, J.L., Poirier, D.G., Sibley, P.K., Solomon, K.R., 2010. Measuring bioaccumulation of  
923 contaminants from field-collected sediment in freshwater organisms: A critical review of  
924 laboratory methods. *Environ. Toxicol. Chem.* 29, 2391–2401.  
925 <https://doi.org/10.1002/etc.326>

926 Vescio, R., Caridi, R., Laudani, F., Palmeri, V., Zappalà, L., Badiani, M., Sorgonà, A., 2022. Abiotic  
927 and Herbivory Combined Stress in Tomato: Additive, Synergic and Antagonistic Effects and  
928 Within-Plant Phenotypic Plasticity. *Life* 12, 1804. <https://doi.org/10.3390/life12111804>

929 Veseli, M., Rožman, M., Vilenica, M., Petrović, M., Previšić, A., 2022. Bioaccumulation and  
930 bioamplification of pharmaceuticals and endocrine disruptors in aquatic insects. *Sci. Total  
931 Environ.* 838. <https://doi.org/10.1016/j.scitotenv.2022.156208>

932 von Schiller, D., Acuña, V., Aristi, I., Arroita, M., Basaguren, A., Bellin, A., Boyero, L., Butturini,  
933 A., Ginebreda, A., Kalogianni, E., Larrañaga, A., Majone, B., Martínez, A., Monroy, S.,  
934 Muñoz, I., Paunović, M., Pereda, O., Petrovic, M., Pozo, J., Rodríguez-Mozaz, S., Rivas, D.,

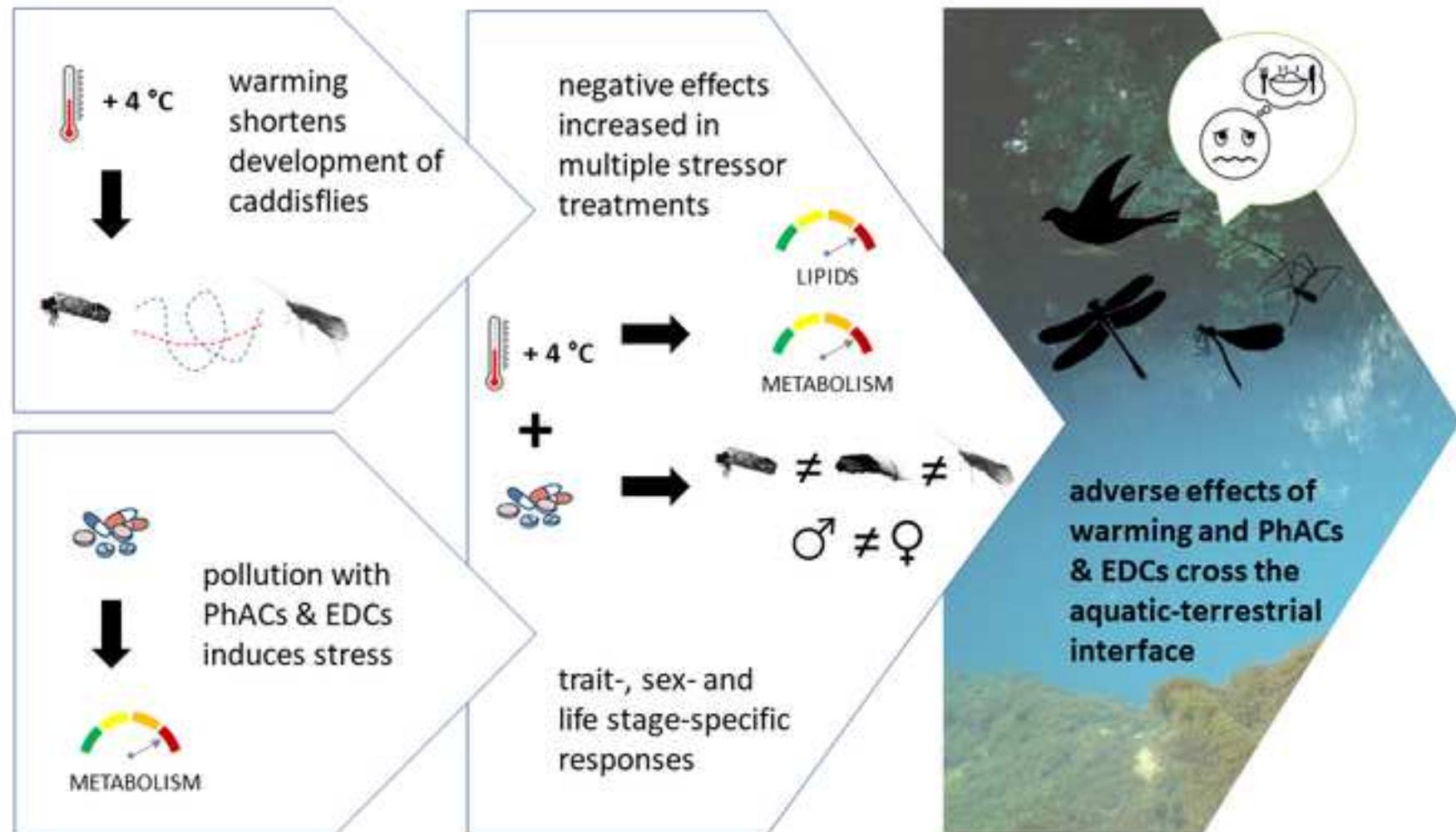
935 Sabater, S., Sabater, F., Skoulikidis, N., Solagaistua, L., Vardakas, L., Elosegi, A., 2017. River  
936 ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to  
937 environmental stressors. *Sci. Total Environ.* 596–597, 465–480.  
938 <https://doi.org/10.1016/j.scitotenv.2017.04.081>

939 Wang, P., Zhu, B.-T., 2017. Unique effect of 4-hydroxyestradiol and its methylation metabolites  
940 on lipid and cholesterol profiles in ovariectomized female rats. *Eur. J. Pharmacol.* 800,  
941 107–117. <https://doi.org/10.1016/j.ejphar.2017.02.032>

942 Waringer, J., Graf, W., 2011. *Atlas of Central European Trichoptera Larvae*. Erik Mauch Verlag,  
943 Dinkelscherben.

944 Wat, L.W., Chao, C., Bartlett, R., Buchanan, J.L., Millington, J.W., Chih, H.J., Chowdhury, Z.S.,  
945 Biswas, P., Huang, V., Shin, L.J., Wang, L.C., Gauthier, M.-P.L., Barone, M.C., Montooth,  
946 K.L., Welte, M.A., Rideout, E.J., 2020. A role for triglyceride lipase brummer in the  
947 regulation of sex differences in *Drosophila* fat storage and breakdown. *PLOS Biol.* 18,  
948 e3000595. <https://doi.org/10.1371/journal.pbio.3000595>

949 Webb, B.W., Hannah, D.M., Moore, R.D., Brown, L.E., Nobilis, F., 2008. Recent advances in  
950 stream and river temperature research. *Hydrol. Process.* 22, 902–918.  
951 <https://doi.org/10.1002/hyp.6994>


952 Wilkinson, J., Hooda, P.S., Barker, J., Barton, S., Swinden, J., 2017. Occurrence, fate and  
953 transformation of emerging contaminants in water: An overarching review of the field.  
954 *Environ. Pollut.* 231, 954–970. <https://doi.org/10.1016/j.envpol.2017.08.032>

955 Wrona, F.J., Prowse, T.D., Reist, J.D., Hobbie, J.E., Lévesque, L.M.J., Vincent, W.F., 2006. Climate  
956 change effects on aquatic biota, ecosystem structure and function. *Ambio* 35, 359–369.  
957 [https://doi.org/10.1579/0044-7447\(2006\)35\[359:CCEOAB\]2.0.CO;2](https://doi.org/10.1579/0044-7447(2006)35[359:CCEOAB]2.0.CO;2)

958 Yoon, D.S., Byeon, E., Kim, D.H., Lee, M.C., Shin, K.H., Hagiwara, A., Park, H.G., Lee, J.S., 2022.  
959 Effects of temperature and combinational exposures on lipid metabolism in aquatic  
960 invertebrates. *Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol.* 262, 109449.  
961 <https://doi.org/10.1016/j.cbpc.2022.109449>

962 Zezulka, Š., Kummerová, M., Babula, P., Váňová, L., 2013. *Lemna minor* exposed to  
963 fluoranthene: Growth, biochemical, physiological and histochemical changes. *Aquat.*  
964 *Toxicol.* 140–141, 37–47. <https://doi.org/10.1016/j.aquatox.2013.05.011>

965  
966



## Highlights

1. Warming was a dominant stressor for development-related traits of the caddisfly
2. Negative effects of warming on lipids were increased by presence of PhACs&EDCs
3. Pollution with PhACs & EDCs has higher impact on caddisfly metabolism than warming
4. Trait-, sex- and life stage-specific responses to multiple stressors were observed
5. Impacts of warming and PhACs & EDCs cross the aquatic-terrestrial interface

1 **Pharmaceuticals and endocrine disrupting compounds modulate adverse effects of climate  
2 change on resource quality in freshwater food webs**

3

4 Iva, Kokotović<sup>1</sup>; Marina, Veseli<sup>1</sup>; Filip, Ložek<sup>1,2</sup>; Zrinka, Karačić<sup>3</sup>; Marko, Rožman<sup>3</sup>; Ana, Previšić<sup>1</sup>

5 <sup>1</sup> Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia

6 <sup>2</sup> South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of  
7 Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Czech  
8 Republic

9 <sup>3</sup> Ruđer Bošković Institute, Zagreb, Croatia

10

11 Iva Kokotović: [iva.kokotovic@biol.pmf.hr](mailto:iva.kokotovic@biol.pmf.hr)

12 Marina Veseli: [marina.veseli@biol.pmf.hr](mailto:marina.veseli@biol.pmf.hr)

13 Filip Ložek: [lozekf@frov.jcu.cz](mailto:lozekf@frov.jcu.cz)

14 Zrinka Karačić: [zrinka.karacic@irb.hr](mailto:zrinka.karacic@irb.hr)

15 Marko Rožman: [marko.rozman@irb.hr](mailto:marko.rozman@irb.hr)

16 Ana Previšić: [ana.previsic@biol.pmf.hr](mailto:ana.previsic@biol.pmf.hr)

17 \*Corresponding author:

18 Ana Previšić

19 Department of Biology, Zoology, Faculty of Science, University of Zagreb

20 Horvatovac 102a, 10000 Zagreb, Croatia

21 [ana.previsic@biol.pmf.hr](mailto:ana.previsic@biol.pmf.hr)

22

23 These two authors contributed equally: Ana Previšić and Marko Rožman

24 **Abstract**

25 Freshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to  
26 the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing  
27 individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting  
28 compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers  
29 and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified  
30 freshwater food web containing moss (*Bryophyta*) and shredding caddisfly larvae of *Micropterna*  
31 *nycterobia* (Trichoptera). The experiment was conducted with four treatments; control (C), increased  
32 water temperature +4 °C (T2), emerging contaminants' mix (EC = 15 PhACs & 5 EDCs), and multiple  
33 stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their  
34 combination. Higher water temperature negatively affected development of *M. nycterobia* through  
35 causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs  
36 had higher impact on metabolism of all life stages of *M. nycterobia* than warming. Multiple stressor effect  
37 was recorded in *M. nycterobia* adults in metabolic response, lipidome profiles and as a decrease in total  
38 lipid content. Sex specific response to stressor effects was observed in adults, with impacts on  
39 metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights  
40 the variability of both single and multiple stressor impacts on different traits, different life stages and  
41 sexes of a single insect species. Furthermore, our research suggests that the combined impacts of  
42 warming, linked to climate change, and contamination with PhACs and EDCs could have adverse  
43 consequences on the population dynamics of aquatic insects. Additionally, these findings point to a  
44 potential decrease in the quality of resources available for both aquatic and potentially terrestrial food  
45 webs.

46

47 **Keywords:**

48 climate change, pollution, caddisflies, sex specific stress response, aquatic-terrestrial subsidies, ecosystem  
49 subsidies

50 **Highlights:**

51     • warming was a dominant stressor for development-related traits of the caddisfly  
52     • negative effects of warming on lipids were increased by presence of PhACs&EDCs  
53     • pollution with PhACs & EDCs has higher impact on caddisfly metabolism than warming  
54     • trait-, sex- and life stage-specific responses to multiple stressors were observed  
55     • impacts of warming and PhACs & EDCs cross the aquatic-terrestrial interface

56

57

58

59 **1. INTRODUCTION**

60 Freshwater ecosystems are susceptible to various anthropogenic stressors (e.g. chemical  
61 pollution, climate change, habitat loss, invasive species) which mostly coincide. Pharmaceuticals  
62 (PhACs) and endocrine disrupting compounds (EDCs) are a diverse group of pollutants designed  
63 to be biologically active at low doses, targeting specific metabolic and molecular pathways in  
64 humans and animals, thus posing risk for aquatic organisms even at low environmental  
65 concentrations (Ebele et al., 2017; Tijani et al., 2013; Wilkinson et al., 2017). Moreover, EDCs  
66 encompass a wide range of chemicals (e.g. personal care products, cleaning products, food  
67 preservatives, etc.) that interfere with normal function(s) of the endocrine system (Ebele et al.,  
68 2017). PhACs and EDCs were shown to affect aquatic insects in many ways, causing changes in  
69 growth and development (Jarvis et al., 2014), biomass (López-Doval et al., 2012), enzymatic  
70 activity (Pestana et al., 2014), metabolome composition (Grgić et al., 2023; Previšić et al., 2020;  
71 Späth et al., 2022), behavior (Jarvis et al., 2014; Späth et al., 2022) and survival rate (López-Doval  
72 et al., 2012; Maenpaa and Kukkonen, 2006). Furthermore, PhACs and EDCs have the potential to  
73 bioaccumulate in aquatic insects (Grabicova et al., 2015; Lagesson et al., 2016; Previšić et al.,  
74 2021; Veseli et al., 2022) and to cross ecosystem boundaries through emerging aquatic insects  
75 and thus contaminate terrestrial habitats (Previšić et al., 2021; Veseli et al., 2022). Moreover, in  
76 freshwater ecosystems these compounds rarely occur one at a time but rather in complex  
77 mixtures of several different emerging contaminants, thus making it harder to investigate their  
78 effects (Wilkinson et al., 2017).

79 Climate change, with its long-term shifts in global weather patterns, poses significant challenges  
80 to freshwater ecosystems. Within freshwater ecosystems, aquatic insect groups, such as  
81 caddisflies, mayflies, and stoneflies, play a crucial role as inter-habitat linkages between aquatic  
82 and terrestrial ecosystems, facilitating the flow of energy and nutrients (Huryn and Wallace,  
83 2000). Additionally, they serve as valuable bioindicators for assessing the health of freshwater  
84 environments (Water Framework Directive (WFD) 2000/60/EC). Their vulnerability to climate  
85 change is influenced by their specific biological traits and ecological preferences, with a  
86 considerable proportion of them belonging to cold-adapted taxa (Conti et al., 2014; Hershkovitz

87 et al., 2015). The impact of climate change, characterized by rising temperatures and changes in  
88 precipitation levels (Webb et al., 2008), is particularly profound on these cold-adapted taxa in  
89 higher altitudes, making them highly vulnerable to warming (Krajick, 2004; Macadam et al.,  
90 2022). As a consequence of climate change, temperature increase affects various aspects of  
91 aquatic insects' lives. It directly impacts their growth, development, and body size (Cogo et al.,  
92 2020), as well as their emergence patterns (Finn et al., 2022). The anticipated rise in the  
93 frequency and extent of intermittent rivers and streams, which periodically cease flow or even  
94 completely dry, is a direct consequence of global climate change and the increasing human  
95 demand for freshwater resources (Blackman et al., 2021). This trend holds significant implications  
96 for aquatic insect communities, as considerably altered environmental conditions not only  
97 impact their geographic distribution (Cogo et al., 2020 and references therein), but also their  
98 population dynamics (Nukazawa et al., 2018), and community structure (Dorić et al., 2023).

99 Global warming is likely to exacerbate impact of other anthropogenic stressors (Wrona et al.,  
100 2006). For instance, as temperature rises, the solubility and mobility of PhACs and EDCs in water  
101 can increase, leading to higher concentrations and potentially greater toxicity (Kazmi et al., 2022;  
102 Noyes et al., 2009). Temperature change may also alter degradation rates of some chemical  
103 contaminants, with increasing temperature usually shortening their half-life and reducing the  
104 overall risk (Bhangare et al., 2022; Noyes et al., 2009). While accelerated decomposition reduces  
105 the concentration of the parent compound, it increases the concentration of the degradation  
106 products, which in some cases could be even more toxic for aquatic organisms (Noyes et al.,  
107 2009). Warmer water usually increases the metabolic rate of aquatic organisms, thus leading to  
108 potentially increased uptake of these chemicals (Kazmi et al., 2022). In addition to increasing  
109 uptake, warming can also affect behaviour and physiology of aquatic organisms making them  
110 more susceptible to stressors (Polazzo et al., 2022). Toxicity of chemicals in water can depend on  
111 variety of abiotic (e.g. photolysis, hydrolysis, etc.) and biotic processes (e.g. biotransformation,  
112 biodegradation, etc.) (von Schiller et al., 2017). Moreover, the impact of warming on the toxicity  
113 of PhACs and EDCs in water is complex and can depend on a variety of factors, including the type  
114 of the chemical (Serra-Compte et al., 2018), aquatic species (Duchet et al., 2023, preprint), and  
115 life-stage tested (DeCourten and Brander, 2017). Due to the increase in temperature caused by

116 climate change, the temperature-dependent toxicity of PhACs and EDCs in water will become a  
117 matter of growing significance that warrants assessment.

118 It is generally very challenging to gain empirical understanding of the effects of climate change  
119 in comparison with other stressors (Halsch et al., 2021), as well as their combined effects (Dinh  
120 et al., 2022). Consequently, there have been only a handful of studies investigating single and  
121 combined effects of increased water temperature and PhACs and EDCs in aquatic invertebrates  
122 (e.g. Barbosa et al., 2017; Cruzeiro et al., 2019; Heye et al., 2019). More specifically,  
123 carbamazepine and higher temperatures increased *Chironomus riparius* mortality (Heye et al.,  
124 2019); fluoxetine combined with higher temperature reduced reproductive success and  
125 population growth in *Daphnia magna* (Barbosa et al., 2017), whereas levonorgestrel and  
126 increased temperature did not cause DNA damage in *Gammarus locusta* cells (Cruzeiro et al.,  
127 2019). To address this knowledge gap, we conducted a study aimed at characterizing effects of  
128 increased water temperature and exposure to PhACs and EDCs on primary producers (non-  
129 vascular macrophytes; moss) and first level consumers (shredding aquatic insects) in freshwaters.  
130 Considering the importance of aquatic insects as fundamental links between aquatic and  
131 terrestrial food webs and reliable bioindicators to pollution (Erasmus et al., 2021; Muñoz et al.,  
132 2015) we chose caddisflies as our model organisms. Caddisflies are a species-rich and ecologically  
133 diverse insect order, that is well-suited to reflect effects of various stressors on aquatic  
134 ecosystems (Hering et al., 2009). Despite of the high ecological plasticity and thermal tolerance  
135 of intermittent rivers specialists (Stubbington et al., 2017) we hypothesized that the individual  
136 and combined stressor effects of both, increased water temperature and PhACs and EDCs, will  
137 trigger a stress response in an intermittent river caddisfly, *Micropterna nycterobia* (McLachlan,  
138 1875). Chronic *in situ* exposure to pollution with ECs results in measurable changes of metabolite  
139 levels in relatively pollution-tolerant caddisfly larvae (Previšić et al., 2020), whereas increased  
140 temperature results in depletion of lipids and reduces developmental period of mayfly larvae  
141 (Chou et al., 2018). Moreover, variable impacts on emergence and survival were observed in  
142 dragonflies and an aquatic heteropteran exposed to increased water temperature, PhACs and  
143 their combination (Duchet et al., 2023, preprint). Hence, we conducted a 78-day microcosm  
144 experiment composed of a simplified freshwater food web exposed to a mixture of PhACs and

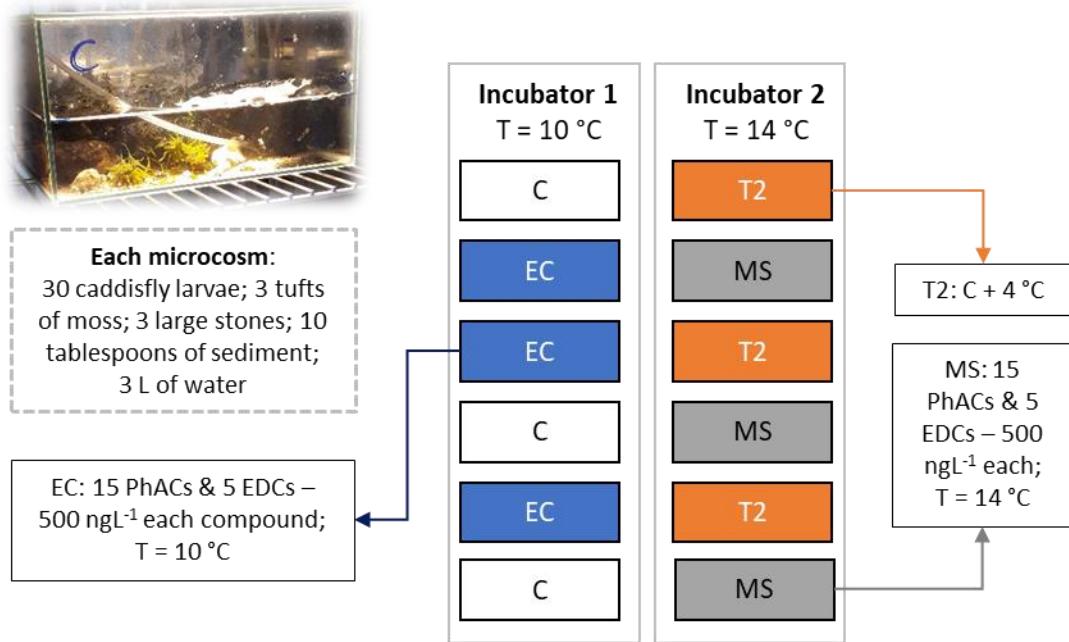
145 EDCs and increased water temperature as a proxy for climate change using the randomized  
146 factorial design. We analyzed the physiological changes in caddisflies and moss via non-targeted  
147 metabolomics and lipidomics, i.e. by evaluating alterations in the metabolite and lipid profiles of  
148 non-model organisms across their life cycles, as well as changes in emergence patterns, body  
149 weight and total lipid content.

150

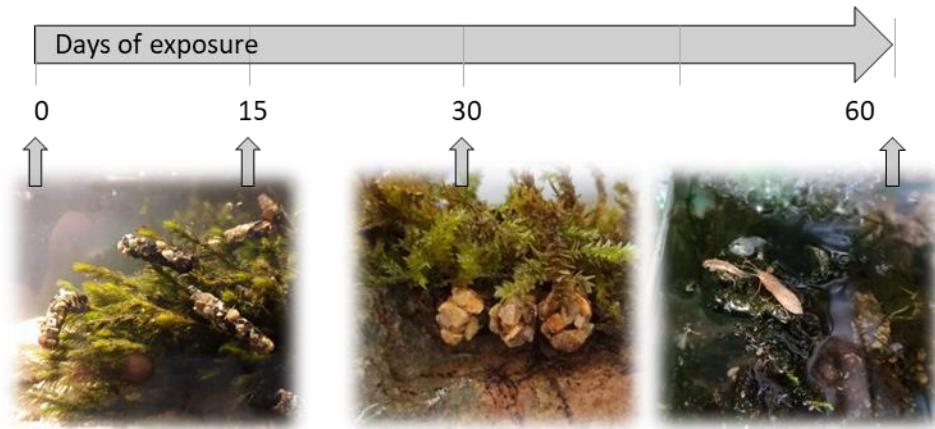
151 **2. MATERIALS AND METHODS**

152 2.1 Microcosm Experiment: Experimental Design and Sample Collection

153 We conducted the microcosm experiment with a simplified freshwater food web containing  
154 nonvascular macrophytes (Bryophyta), hereafter moss and caddisfly larvae *Micropterna*  
155 *nycterobia* (McLachlan, 1875) (Limnephilidae, Trichoptera) feeding mainly as shredders.  
156 Trichoptera larvae, moss (*Cinclidotus aquaticus* (Hedw.) Bruch & Schimp and *Rhynchosstegium*  
157 *riparioides* (Hedw.) Cardot), water, sand and stones collected from the pristine Krčić River  
158 (N44.027321 E16.318936), minimally impacted by anthropogenic activity, were used for the  
159 experiment. Microcosm setup followed Previšić et al., 2021 with modifications in number of  
160 microcosms, temperature regime and mixture of moss species. Upon collection, 12 microcosms  
161 (aquaria 30 × 20 × 15 cm) were installed with 3 L of water, 10 tablespoons of sand, 3 large stones  
162 (> 10 cm), 10 small stones (2–5 cm), 3 tufts of moss (6–8 cm in diameter and plants up to 15 cm  
163 in length) and 5<sup>th</sup> instar *M. nycterobia* larvae (ca. 30 larvae per aquarium). Constant oxygen levels  
164 were kept using aquaria air pumps, and to minimize evaporation, each microcosm was covered  
165 with a glass cover. Natural light and day-night regime was supplemented with the artificial light  
166 (with sunlight's spectrum) in the regime of 12 hours of light followed by 12 hours without light.  
167 All microcosms were acclimatized for 10 days at 10 °C under aforementioned conditions  
168 preceding the start of the experiment. The experiment was conducted in the randomized  
169 factorial design, with treatments as follows: Control (C), Increased temperature (T2), ECs mix  
170 (EC), multiple stressor treatment = ECs mix + increased temperature (EC + T2 = MS), with three  
171 replicates of each. Subsequently, 6 of them were exposed to a mixture of 20 ECs over a 78-days  
172 period. The composition of the ECs mixture was selected based on occurrence of particular


173 compounds in freshwaters in Europe (Mandaric et al., 2015), and included 15 PhACs; azaperol,  
174 acetaminophen, thiabendazole, levamisol hydrochloride, dexamethasone, ketoprofen,  
175 naproxen, ranitidine hydrochloride, soltalol hydrochloride, valsartan, diphenhydramine,  
176 clopidogrel hydrogen sulfate, hydrochlorothiazide, sertraline hydrochloride, cimetidine and 5  
177 EDCs; benylparaben, ethylparaben, propylparaben, estriol, estradiol- $\beta$ . The volume of water was  
178 kept constant by adding fresh dechlorinated tap water (ca. 100 mL every week), and the  
179 concentration of each compound was kept at a pseudo-constant concentration of 500 ng L<sup>-1</sup>.  
180 Taking into consideration knowledge gained from our previous experiments (Cetinić et al., 2022;  
181 Grgić et al., 2023; Previšić et al., 2021), three stock solutions were prepared and 100  $\mu$ L of the  
182 solution was added each day, every three days or once a month, depending on the compound.  
183 In this way, abiotic attenuation (sorption and/or (photo)degradation) was taken in consideration  
184 and the nominal concentration of each compound was maintained, more details provided in  
185 Supporting information (SI 1). As different temperature regimes needed to be followed, aquaria  
186 were placed in two different incubators (POL-EKO APARATURA, Poland). "Natural" temperature  
187 regime (T1) mimicked the regime of the Krčić spring reach before the drying phase (10 °C) and  
188 temperature was successively increased 0.5 °C every 15 days. Increased temperature regime (T2)  
189 followed the same pattern but with temperature increased by 4 °C, in accordance with patterns  
190 of reduced flow observed in the selected river coupled with projections of temperature increase  
191 due to climate change in the Mediterranean montane regions (Bravo et al., 2008).

192 Biota sampling included initial (after the acclimatization period - day 0 (D0)) and several  
193 consecutive collections (ca. day 15 (D15), day 30 (D30) and day 60 (D60) of exposure) including  
194 different life stages (larvae, pupae and adult stage), in accordance with the life cycle of  
195 holometabolous caddisflies. At each sampling date, we collected replicate samples from each  
196 microcosm, consisting of 2 g of moss and 3–5 Trichoptera larvae/pupae. However, these samples  
197 were pooled per treatment to mitigate the potential extreme effects of individual microcosms  
198 (Kraufvelin, 1998). The complexity and extended duration of micro and mesocosm test systems  
199 exacerbate issues like "aquarium individuality," where initially identical replicates diverge due to  
200 random effects, introducing significant variability and complicating the identification of  
201 statistically significant deviations (Kraufvelin, 1998; Sanderson, 2002). Additionally, the weight


202 reduction of adult aquatic insects during metamorphosis (Huryn and Wallace, 2000) poses a  
203 challenge, leading to high tissue demand. Consequently, analytical replicates for each treatment  
204 per sampling date were created after homogenizing the pooled samples (details under 2.2, Biota  
205 Sample Processing). The chosen approach aims to strike a balance between providing ecologically  
206 meaningful results with non-model organisms and minimizing methodological constraints.  
207 Trichoptera larvae were kept in clean aquaria for 24 h to allow for gut clearance prior to collection  
208 (Van Geest et al., 2010). Additionally, emerging adult *M. nycterobia* were collected as they  
209 emerged (daily), and sex of each individual was determined. These samples were pooled  
210 depending on sex for subsequent analyses due to tissue requirements and to match the overall  
211 sampling scheme, according to temperature treatments. Emergence following the „natural”  
212 temperature regime (T1) started ca. 2 weeks later than in T2, thus samples were pooled for dates  
213 45-60 and 60-75 days of exposure. Samples in elevated temperature regime (T2) were pooled for  
214 dates: 30-37 and 38-47 days of exposure. We combined adult *M. nycterobia* from 45-60 days of  
215 exposure in T1 and 38-47 days of exposure in T2 to one time point (day 60 of exposure) in order  
216 to have approximately the same time period of exposure to selected stressors. All samples were  
217 freeze-dried upon collection and stored at -80 °C until further processing.

218 Oxygen concentration (mg L<sup>-1</sup>), oxygen saturation (%), pH and electrical conductivity (mS cm<sup>-1</sup>)  
219 were measured in every microcosm at the beginning of the experiment (D0) and subsequently  
220 every two weeks (D15, D30, D45 and D60) using Hach HQ40D portable multi-parameter probe  
221 (Hach, Germany).

a)



b) Sampling



222

223 Figure 1. A) Experiment design with the following treatments: C - Control (T1 = 10 °C), T2 -  
224 Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (EC + T2) and b)  
225 sampling scheme with caddisfly larvae, pupae and adults sampled at various days of exposure.

## 226 2.2. Biota sample processing: extractions of metabolites and lipids

227 Within this study, the term “metabolome” refers to the complete set of low molecular weight  
228 molecules or metabolites present within an organism, while “lipidome” is used to describe the  
229 complete lipid profile within an organism (i.e. all lipids).

230 Biota samples processing, metabolite and protein extraction and metabolite profiling analyses  
231 followed (Grgić et al., 2023). In order to detect Hsp70 proteins, we performed Western blot  
232 analysis of protein samples, the details are provided in Supporting Information (SI 2). As there  
233 was no detection of the aforementioned proteins no results are shown.

234 The Folch lipid extraction method (Folch et al., 1957) was used and performed following the  
235 protocol of (Sarafian et al., 2014) with modifications. Briefly, for lipidome profiling and  
236 determination of the total lipid content (TLC), each sample (30 mg) was dissolved in 600 µL CHCl<sub>3</sub>  
237 : MeOH (2:1 v:v). Samples were vortexed at medium speed (IKA® Vortex Genius 3, Germany) for  
238 5 min. After 10 min of incubation at room temperature, samples were cooled at -20 °C for 10 min  
239 and additional lysis was done via ultrasonic probe (Sonoplus HD4050, Bandelin electronic GmbH,  
240 Germany) for 1 min at 50% of intensity. Samples were stored overnight at -20 °C to improve  
241 protein precipitation and then centrifuged at 14 000g for 20 min (Tehtnica-Centric 200R,  
242 Slovenia). The supernatant was collected (600 µL) in a previously weighed tube, filtered through  
243 a PVDF filer (MILLEX® - GV Syringe Filter 0.22 µm Hydrophilic PVDF, 13 mm, Sterile) and  
244 evaporated to dryness. The tube was weighed to determine the TLC. TLC was determined using  
245 the following equation; TLC = weight of "full" tube – empty tube. Samples were dissolved in 200µL  
246 IPA : ACN : H<sub>2</sub>O (2:1:1, v:v:v) for subsequent LCMSMS non-target analysis.

247 For both metabolome and lipidome analysis, set of quality control samples was prepared by  
248 taking small aliquot of the each sample solution from the entire set and pooling them together.  
249 Subaliquots of this pooled sample are regarded as set of quality control samples.

250

251 2.3 Non-target metabolome and lipidome analysis

252 Non-target analyses of the metabolome and lipidome samples were performed using a high-  
253 resolution mass spectrometry system; LTQ-Orbitrap VelosTM (Thermo Fisher Scientific, USA)  
254 coupled with an ultra-performance liquid chromatography (UPLC) system (Ultimate 3000  
255 RSLC nano system, Dionex, Amsterdam, Netherlands). Instrument parameters and UPLC gradients  
256 are provided in Supporting Information (SI). Data extraction, chromatographic deconvolution and  
257 final alignment were done using the MZmine program (Katajamaa et al., 2006). Steps and settings

258 used in the MZmine program are provided in Supporting information (SI 3). The exported .csv  
259 files were further filtered and sorted using modified parts of Bqunat script written in  
260 Mathematica (Wolfram Research Inc., Campaign, IL, USA) (Rožman et al., 2018). Data were  
261 cleaned by removing of all blank-related features. Feature was considered as blank related if an  
262 intensity ratio sample:blank was < 10. Quality acceptance criteria for each metabolite were:  
263 detection rate > 70%, relative standard deviation < 30% and dispersion ratio < 40%. Based on the  
264 exact mass match, metabolite and lipid identification was performed in  
265 <http://ceumass.eps.uspceu.es/> and by searching Metlin, Kegg, LipidMaps, PubChem, and HMDB  
266 databases. It is worth noting that the metabolites and lipids reported here are only the  
267 metabolites that were putatively annotated.

268

269 2.4 Statistical Analysis

270 2.4.1 Body weight changes & total lipid content of *Micropterna nycterobia* and non-vascular  
271 macrophytes, and physico-chemical water parameters

272 The effects of experimental treatments on body weight (evaluated individually in *M. nycterobia*  
273 specimens; N = 12 per treatment per collecting date) and total lipid content (TLC; evaluated in  
274 composite samples of *M. nycterobia* pooled per life stage and treatment; N = 3 per treatment  
275 per collection date) of different life stages of *M. nycterobia* were analysed using Generalized  
276 Linear Models (GZLMs) constructed in IBM SPSS Statistics 27.0 (IBM Corporation). Additionally,  
277 for adults the differences between the sexes were determined. Normal distribution linear scale  
278 response was used for all data except for body weight of adults where gamma scale response  
279 with log link was used as the data did not achieve normal distribution. Maximum likelihood  
280 estimate was used for parameter estimation. Pairwise contrasts of estimated means were  
281 performed using Wald's statistics.

282 The changes in total lipid content in moss, as well as changes in the physico-chemical water  
283 properties, between different treatments over time were tested using repeated measures  
284 ANOVA using the IBM SPSS Statistics 27.0 (IBM Corporation). Pairwise comparisons were

285 conducted with Bonferroni adjustment for multiple comparisons. Obtained data were analyzed  
286 and visualized using Principal Component Analysis (PCA) in Primer 7.

287

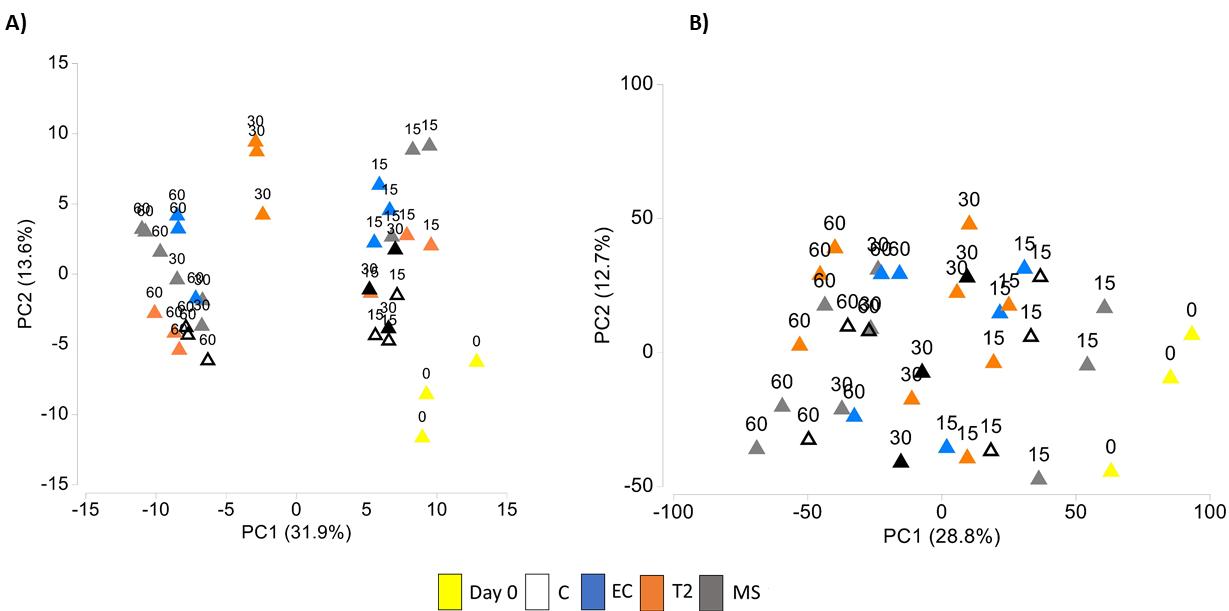
288 2.4.2. Data analysis of non-target metabolomic and lipidomic profiles of *Micropterna nycterobia*  
289 and non-vascular macrophytes

290 Obtained metabolomic and lipidomic data matrices were forth root transformed and analyzed  
291 using Principal Component Analysis (PCA) and Principal Response Curves (PRC) in package vegan  
292 (version 2.5-7) RStudio version 4.1.2 (Oksanen et al., 2020). Additionally, significance of the  
293 results was tested using the Monte Carlo test in the 'permute' package, with 99 permutations,  
294 more specifically significance of the 1st canonical axis of the PRC and significance of sampling  
295 date/insect stage was tested. Due to the missing moss sample D30 EC, Redundancy Analysis  
296 (RDA) was performed instead of PRC for moss metabolome and lipidome data using CANOCO  
297 software (version 5.11,ter Braak and Šmilauer, 2012). We used treatment as the categorical  
298 explanatory variable, metabolites and lipids as response, respectively and time as a covariate.  
299 The RDA significances were tested using Monte Carlo test with 999 permutations. Values of MZ  
300 masses of the metabolome dataset were normalized and processed by Principal Component  
301 Analysis (PCA) in Rstudio. The PCA was visualized in Primer 7 (Clarke and Gorley, 2015). The first  
302 100 variables (MZ masses) that contribute most to separation along certain PCs were selected  
303 for identification of metabolites.

304 **3. RESULTS**

305 3.1. Physico-chemical properties of water during microcosm experiment

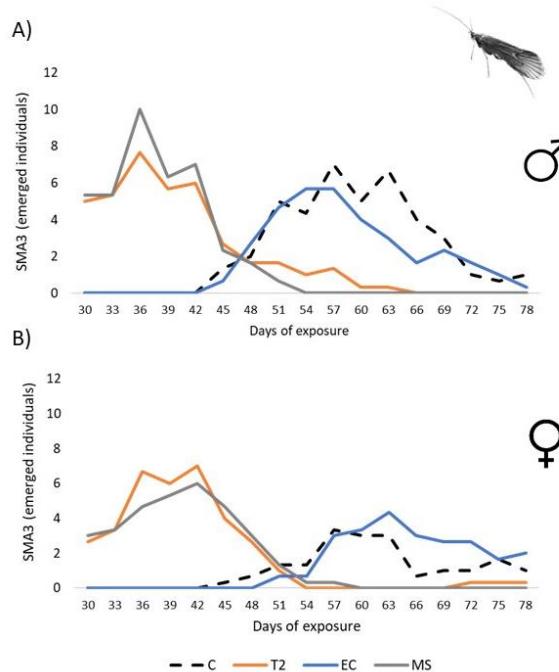
306 Oxygen concentration (mg L<sup>-1</sup>) and oxygen saturation (%) throughout the experiment did not  
307 differ significantly among treatments, they were impacted only by the day of measurement  
308 (repeated measures ANOVA, Table S1, S2; and PCA analysis, the total variance accounted by the  
309 two components shown was ~69 %; variance from [PC1, PC2]≈[46.4 %, 22.6 %]; Fig. S1). Day of  
310 measurement and interactive effects; temperature x ECs, temperature x time and ECs x time  
311 caused changes in pH levels (repeated measures ANOVA, Table S3). Specifically, pH was higher


312 on D15 and D60 in treatments with ECs mixture (EC and MS). Additionally, on D30 and D45 in  
313 treatments with elevated water temperature (T2 and MS) pH was higher and lower, respectively  
314 (repeated measures ANOVA, Table S3). Electrical conductivity differed between treatments, i.e.  
315 treatments with increased water temperature (T2 and MS) had higher conductivity compared to  
316 the “natural” temperature regime (C and ECs) (repeated measures ANOVA, Table S4). Moreover,  
317 electrical conductivity was generally rising throughout the whole experiment in all treatments,  
318 thus it was also impacted by the day of exposure (repeated measures ANOVA, Table S4).

319

### 320 3.2. Total lipid content, metabolome and lipidome profiles of non-vascular macrophytes

321 Principal component analysis (PCA) based on non-target metabolic profiles and lipidome profile  
322 of moss revealed clustering primarily based on the duration of the experiment rather than  
323 treatment (Fig. 2A&B). In the analysis of the metabolome and lipidome, the total variance  
324 accounted by the first two components was ~45.5 % (variance from [PC1, PC2]≈[31.9 %, 13.6 %])  
325 and ~41,5 % (variance from [PC1, PC2]≈[28.8 %, 12.7 %]), respectively. In both analyses, the first  
326 principal component (PC) axis separated the profiles between D0 and D15 from D60, with D30  
327 lacking a consistent grouping patterns (Fig. 2A&B; note however, that D30 EC samples are  
328 missing, as they were lost during the processing). In addition, RDA analyses shows that  
329 metabolome and lipidome profiles differed significantly among treatments (RDA: pseudo-F = 3.0,  
330  $p = 0.002$ , explained variability = 12.1 %; Fig. S2A and RDA: pseudo-F = 2.2,  $p = 0.004$ , explained  
331 variability = 7.7 %; Fig. S2B, respectively). Majority of metabolite groups (17 in total) showing the  
332 most significant changes in abundance to stressor treatments were terpenoids, terpenes class  
333 (50%) followed by lipids and fatty acids (29%), amino acids, peptides and proteins (11%), carbonyl  
334 compounds (5%), organic acids, carboxylic acids and monocarboxylic acids (5%) (Fig. S3, Table  
335 S5). Within the lipidome, most significant changes in abundance of 51 lipids to stressor  
336 treatments were noticed in glycerophospholipids (51%) followed by glycerolipids (20%), sterol  
337 lipids (12%), sphingolipids (8%), prenol lipids (8%) and fatty acyls (2%) (Fig. S4, Table S6). The  
338 lowest total lipid content in all treatments was measured on D 15, however, no significant


339 changes in TLC was observed related to days of exposure or treatments (Fig. S5, repeated  
340 measures ANOVA, Table S7).



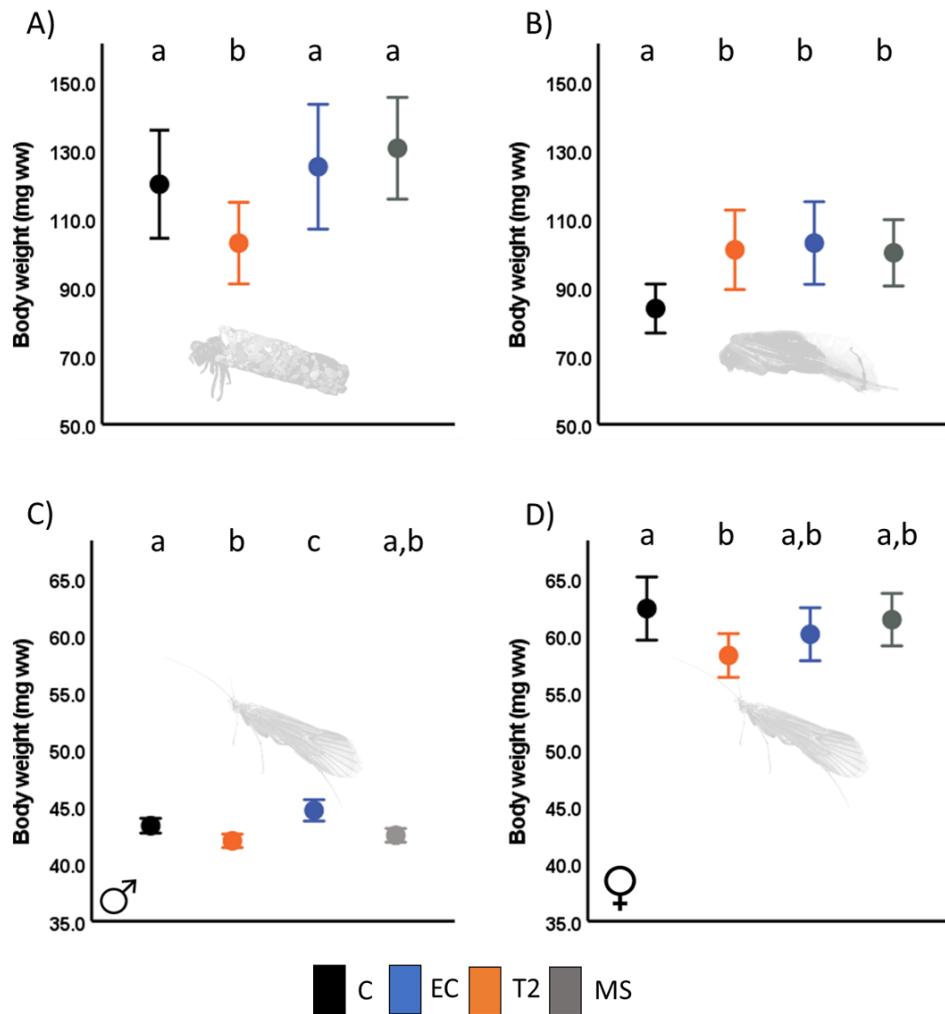
341  
342 Figure 2. PCA plot showing separation based on A) metabolome and B) lipidome of moss in  
343 different treatments. Abbreviations of treatments are as follows: C – Control ( $T = 10\text{ }^{\circ}\text{C}$ ), T2 -  
344 Increased temperature ( $14\text{ }^{\circ}\text{C}$ ), EC - ECs mix, MS - multiple stressor treatment (T2 + EC); Day 0 –  
345 pre-exposure sample.

346  
347 3.3. Phenology (emergence patterns) of the caddisfly *Micropterna nycterobia*  
348 Increased water temperature caused earlier emergence of both males and females, resulting in  
349 approximately three-week shift in peak emergence between the normal (C and EC) and elevated  
350 temperature (T2 and MS) treatments (Fig. 3). Overall, more males emerged throughout the  
351 experiment, however, the majority of pupae that did not emerge by the end of experiment were  
352 females. Only minor differences between emergence patterns of males and females were  
353 observed within treatments (Fig. 3).

354

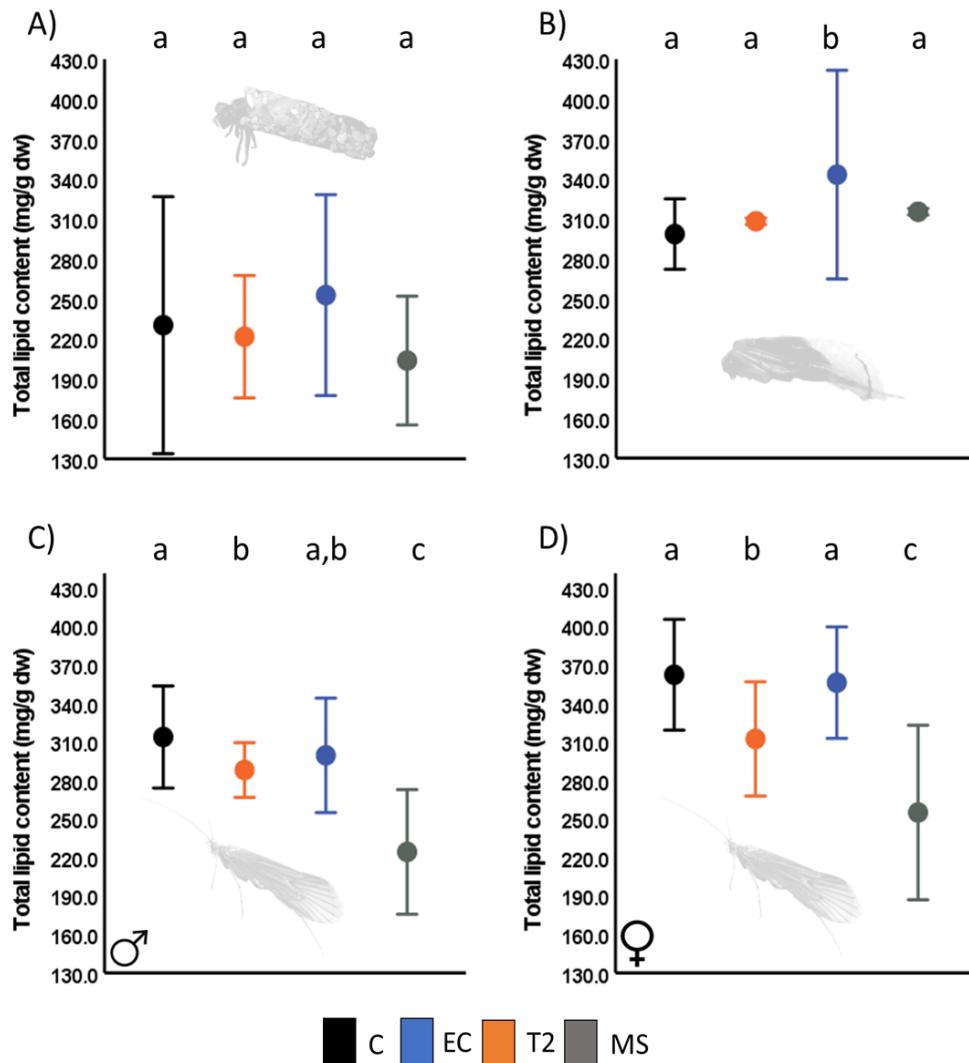


355


356 Figure 3. Three-day simple moving average (SMA3) of emerged A) male and B) female adults of  
 357 *Micropterna nycterobia* across treatments. Abbreviations of treatments are as follows: C - Control  
 358 (T = 10 °C), T2 - Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2  
 359 + EC).

360

361


362 3.4. Body weight and total lipid content changes of the caddisfly *Micropterna nycterobia*

363 Overall, a loss in body mass was recorded in *M. nycterobia* throughout the life cycle, with larvae  
 364 having the highest body weight and adults the lowest (Fig. 4A-D). A statistically significant drop  
 365 in body weight was observed in larvae in T2 compared to control (4A, Table S8). All experimental  
 366 treatments increased the body weight of pupae compared to control (Fig. 4B, Table S9). Adult  
 367 females had significantly higher body weight compared to males (Fig. 4C & 4D, Table S10),  
 368 however, in adults of both sexes a statistically significant drop in body weight was observed in T2  
 369 compared to control (Fig. 4C & 4D, Table S11 and S12).



370

371 Figure 4. Model predictions illustrating the effect of treatment on body weight of A) larvae B)  
 372 pupae C) adult males and D) adult females of *M. nycterobia*. Mean values of twelve replicates are  
 373 presented with 95% confidence intervals. Different letters indicate significant differences among  
 374 treatments ( $p < 0.05$ ). Abbreviations of treatments are as follows: C – Control ( $T = 10$  °C), T2 –  
 375 Increased temperature (14 °C), EC – ECs mix, MS – multiple stressor treatment (T2 + EC).



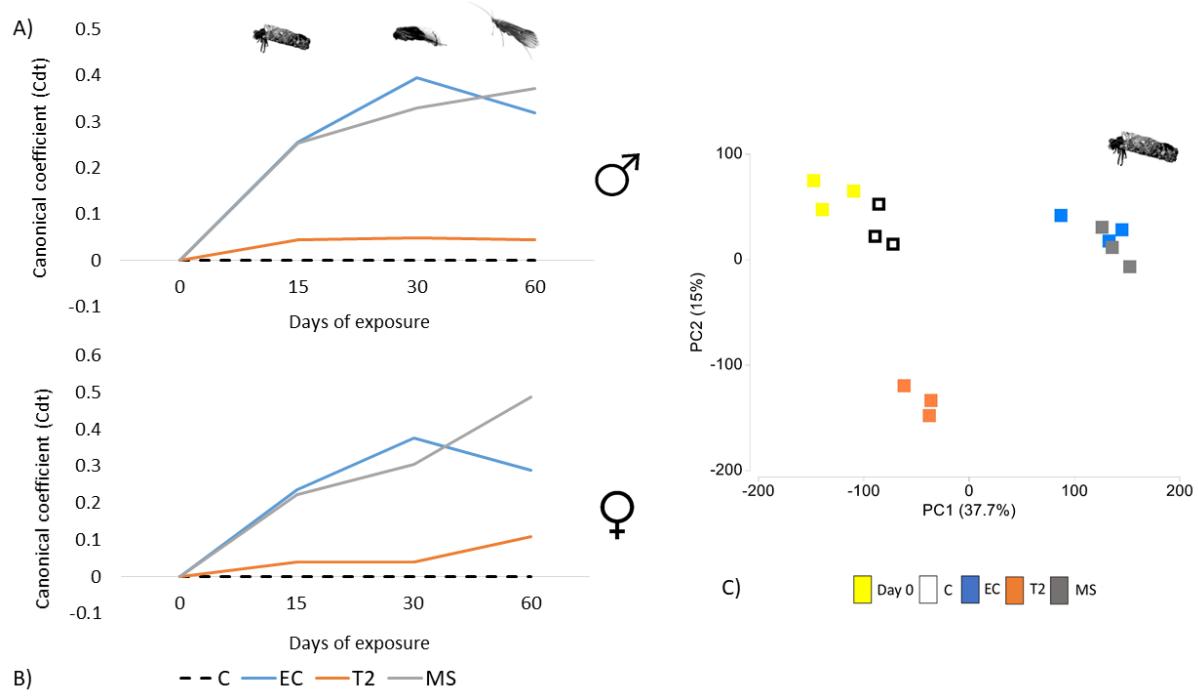
376

377 Figure 5. Model predictions illustrating the effect of treatment on total lipid content of A) larvae  
 378 B) pupae C) adult males and D) adult females of *M. nycterobia*. Mean values of three replicates  
 379 are presented with 95% confidence intervals. Different letters indicate significant differences  
 380 among treatments ( $p < 0.05$ ). Abbreviations of treatments are as follows: C – Control ( $T = 10$  °C),  
 381 T2 - Increased temperature (14 °C), EC - ECs mix, MS - multiple stressor treatment (T2 + EC).

382

383 Changes in the TLC were more pronounced post-metamorphoses (Fig. 5A-D). Experimental  
 384 treatments had no effect on TLC on larvae (Fig. 5A, Table S13), while pupae exhibited an increase  
 385 in the EC treatment compared to control (Fig. 5B, Table S14). Total lipid content of adults was

386 lower compared to control in treatments with increased temperature (T2 and MS) (Fig. 5C & 5D,  
387 Table S15 & S16). Moreover, the greatest drop in TLC of adults was observed in the MS treatment  
388 ((Fig. 5C & 5D, Table S15 & S16), corresponding with the negative synergistic effect according to  
389 (Piggott et al., 2015). Females had significantly higher total lipid content compared to males  
390 (Figure 5C & 5D, Table S17).


391

392 3.5. Metabolome profiles of the caddisfly *Micropterna nycterobia*

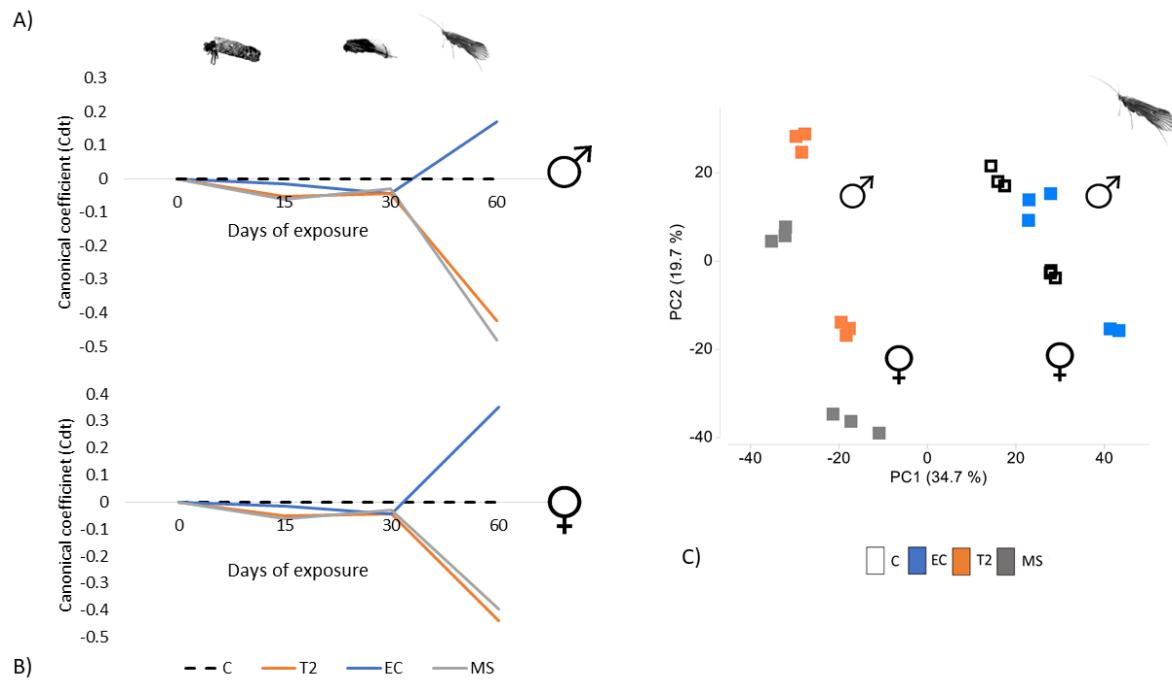
393 Principal Response Curves (PRC) of non-target metabolome profile of larvae, pupae and adult  
394 caddisflies show that the metabolome of all caddisfly life stages was mostly affected by the ECs  
395 mixture (EC and MS), as evident by the highest deviation from the control (Fig. 5A & B). Deviations  
396 were observed in larvae at D15 already, and further increased in pupae and adults. The MS  
397 treatment showed highest impact on metabolome of both male and female adult caddisflies (Fig.  
398 5A & B). Additionally, 62.6 % of total variance in males and 59.5 % in females could be attributed  
399 to time, whereas 22.1 % in males and 25.8 % in females could be attributed to the treatment  
400 (including its interaction with time, Table S18). The first PRC axis was significant (males –  $F (1, 32)$   
401 = 18.714  $p < 0.05$ , females –  $F (1, 32) = 28.172, p < 0.05$ ) and based on the Monte Carlo tests per  
402 sampling date, the treatment regime had a significant influence on all sampling dates.

403 Principal component (PCA) analysis based on non-target metabolic profiles of all life stages of *M.*  
404 *nycterobia* revealed clear separation of pre-metamorphosis larvae and post-metamorphosis  
405 pupae and adult imagines (Fig. S6, PC1). However, when particular life stages were analyzed  
406 separately, the PCA also revealed separation into distinct groups based on treatments. In larvae,  
407 for instance, PC1 axis separating larvae in ECs and MS treatments from D0, C and T2 treatments  
408 accounted for 37.7 % of variability (Fig. 4C; variance from [PC1, PC2]≈[37.7 %, 15 %]).

409 Majority of metabolite groups (18 in total) showing the most significant changes in abundance to  
410 stressor treatments in *M. nycterobia* were lipids and fatty acids (39%) followed by amino acids  
411 (22%), quinones (6%), acylcholine (6%), adrenergic agents (6%), lactones (6%), alcohols (5%),  
412 pyridines (5%), alkaloids (5%) (Fig. S7, Table S19).



413


414 Figure 5. Metabolome profiles of the caddisfly *Micropterna nycterobia*; PRC of changes in the  
 415 metabolic profiles along the caddisfly life cycle in A) male and B) female adults exposed to  
 416 treatments in relation to control. Numbers on x-axis denote days of exposure. C) PCA plot  
 417 showing separation based on metabolome of *M. nycterobia* larvae in different treatments at 15  
 418 days of exposure. Abbreviations of treatments are as follows: C – Control ( $T = 10\text{ }^{\circ}\text{C}$ ), T2 -  
 419 Increased temperature ( $14\text{ }^{\circ}\text{C}$ ), EC - ECs mix, MS - multiple stressor treatment (T2 + EC); Day 0 –  
 420 pre-exposure sample.

421

### 422 3.5. Lipidome profiles of the caddisfly *Micropterna nycterobia*

423 Principal Response Curves (PRC) of non-target lipidome profile of larvae, pupae and adult  
 424 caddisflies shows the highest deviation from the control in male and female adults, with an  
 425 opposing individual stressor effect (EC vs T2; Fig. 6A & B). In MS treatments, increased  
 426 temperature was the dominant stressor for both sexes, however, there were differences  
 427 between sexes, as male caddisflies lipidome was more affected in T2 and MS treatments,  
 428 whereas female caddisflies lipidome was more affected in the EC (Fig. 6A & 5B). Moreover, table  
 429 S20 shows that 79.8 % of total variance in male and 68.4 % in female caddisflies can be attributed

430 to time, whereas 13.3 % in male and 17.3% in female can be attributed to the treatment  
 431 (including its interaction with time). The first PRC axis was significant (males -  $F (1, 32) = 17.475$   
 432  $p < 0.05$ , females –  $F (1, 32) = 14.583, p < 0.05$ ) and based on the Monte Carlo tests per sampling  
 433 date, the treatment regime had a significant influence on all sampling dates.



434

435 Figure 6. Lipidome profiles of the caddisfly *Micropterna nycterobia*; PRC of changes in the  
 436 lipidome profiles of caddisfly life stages and A) male and B) female adults exposed to treatments  
 437 in relation to control. Numbers on x-axis denote days of exposure. C) PCA plot showing separation  
 438 adult *M. nycterobia* separated by sex in different treatments. Abbreviations of treatments are as  
 439 follows: C – Control ( $T = 10$  °C), T2 - Increased temperature (14 °C), EC - ECs mix, MS - multiple  
 440 stressor treatment (T2 + EC); Day 0 –pre-exposure sample.

441 Principal component (PCA) analysis based on non-target lipidome profiles of all life stages of *M.*  
 442 *nycterobia* showed clear separation of three major life stages, larvae, pupae and adults (Fig. S8).  
 443 The total variance accounted by the three clusters was ~68.8 % (variance from [PC1, PC2,  
 444 PC3]≈[47.7 %, 14.8 %, 6.3 %]). Clustering of particular treatments was particularly evident in  
 445 separate analyses of each life stage. The highest degree of clustering based on treatments was  
 446 inferred for adults, with the first principle component axis (PC1 = 34.7 %) separating adults based

447 on increased water temperature (T2 and MS treatments), whereas the second axis separated  
448 males from females (PC2 = 19.7 %, Fig. 6C).

449 Within the lipidome, most significant changes in abundance to stressor treatments were noticed  
450 in glycerophospholipids (67%) followed by fatty acyls (12%), sphingolipids (12%), glycerolipids  
451 (5%), prenol lipids (2%) and sterol lipids (1%) (Fig. S9, Table S21).

452

#### 453 **4. DISCUSSION**

454 Water pollution has far-reaching consequences for the ecosystem health and functioning, and it  
455 is important to understand these impacts, especially in a context of climate change. Here we used  
456 simplified freshwater food web exposed to a mixture of PhACs and EDCs and increased water  
457 temperature to broaden our understanding of the impacts of climate change and pollution on  
458 freshwater ecosystems.

##### 459 4.1. Warming and pollution with PhACs & EDCs triggered a mild response in moss

460 A mild response of the moss to both individual stressors (increased water temperature and  
461 contamination with ECs) and their combination suggests mosses' resilience. It has been shown  
462 that plants have specific temperature and pollution thresholds that trigger or inhibit certain  
463 physiological processes, allowing them to respond to stressful conditions (Firmansyah and  
464 Argosubekti, 2020; Gorovits et al., 2020; Sun et al., 2018; Zezulka et al., 2013). One of the most  
465 common physiological responses includes production of heat shock proteins (HSPs), and lack of  
466 observable change in regulation of HSPs may suggest that the thermal and pollution threshold  
467 necessary to trigger stress response in the moss was not reached. This observation is in  
468 agreement with established thermal threshold of plants of minimum 5 °C (Firmansyah and  
469 Argosubekti, 2020). Even though changes in metabolomic and lipidomic profiles among  
470 treatments were significant, one should keep in mind that changes in metabolite and lipid  
471 composition can be related to stress response but also developmental stages (Lu et al., 2019;  
472 Mikami and Hartmann, 2004). In addition, the biotic stress induced by the feeding of *M.*  
473 *nycterobia* larvae on the moss might have masked the impact of the pollution and increased

474 temperature. Plants can prioritize their responses to address individual stressors when exposed  
475 to multiple abiotic and/or biotic stressors (Rejeb et al., 2014; Suzuki et al., 2014). We argue that  
476 the moss in the current experiment might have prioritized biotic stress over abiotic stressors and  
477 activated different defence mechanisms to mitigate larval feeding. However, we could not test  
478 for the latter, since feeding of *M. nycterobia* larvae on the moss was also present in control  
479 treatments. Moreover, research has shown that different stress combinations activate different  
480 pathways and signals thus making it harder to predict multiple stressor effects (Rejeb et al., 2014;  
481 Suzuki et al., 2014; Vescio et al., 2022).

482

483 4.2. Single stressor impacts: effects of warming and pollution with PhACs and EDCs on *M.*  
484 *nycterobia*

485 In the current experiment, we recorded a body mass loss in *M. nycterobia* that is in line with the  
486 usual life cycle patterns of the holometabolous caddisflies, with larvae having the highest body  
487 weight and adults the lowest (Huryn and Wallace, 2000). Increased temperature during insect  
488 development typically leads to reduced adult body size, negatively influencing fecundity and  
489 longevity (Mirth and Riddiford, 2007), this effect was however, not observed in the current study.  
490 Our observations are in line with data on chronic exposure to pesticides in the caddisfly  
491 *Limnephilus lunatus*, where reduced body weight of adults was observed only if younger instar  
492 larvae were exposed, and not the fifth-instars (Liess and Schulz, 1996; Schulz and Liess, 2001,  
493 1995).

494 *M. nycterobia* inhabits clean crenal and rhithral sections and is therefore expected to be sensitive  
495 to presence of contaminants (Graf et al., 2023). Indeed, sensitivity is displayed through intense  
496 change in regulation of both metabolites and lipids in respect to control, however, the  
497 contaminants seem to have a more significant impact on metabolome than temperature. More  
498 precisely, the most pronounced metabolome response was post-metamorphosis, yet changes in  
499 metabolite regulation are already notable in larvae at D15. Notably, the sampled caddisflies'  
500 metabolome contained the biogenic amine octopamine, a significant neurotransmitter,  
501 neuromodulator, and neurohormone influencing various physiological functions, behaviour and

502 endocrine activity (Farooqui, 2012) Changes in octopamine levels due to PhACs and EDCs during  
503 metamorphosis could affect not only the subsequent life stage but potentially extend across  
504 multiple generations.

505 Observed difference in dynamics of regulation of metabolites vs lipids can be related to  
506 physiological roles of metabolites and lipids which response tends to differ depending on the  
507 type of stress and the metabolic pathways involved (Kainz and Fisk, 2009; Snart et al., 2015).  
508 Generally, lipids serve as a long-term energy source and are stored in lipid droplets, which can  
509 be mobilized to provide energy during times of starvation, embryogenesis, prolonged periods of  
510 flight and stress (Arrese and Soulages, 2010; Kainz and Fisk, 2009). Here, metabolites were more  
511 regulated than lipids in response to stress probably in order to maintain cellular homeostasis and  
512 ensure energy reserves (lipids) for the emerging adults (Arrese and Soulages, 2010). Glycerolipids  
513 such as triglycerides are stored in the core of the lipid droplets surrounded by  
514 glycerophospholipids (Arrese and Soulages, 2010). As glycerophospholipids were mostly affected  
515 by experimental treatments, this further supports the fact that lipid reserves were preserved for  
516 adults. However, changes in glycerophospholipids of insects can also be related to development  
517 and metamorphosis (Bashan et al., 2002; Cargill et al., 1985; Duarte, 2019) as well as food source  
518 (Hanson et al., 1985; Torres-Ruiz et al., 2010).

519 The lack of strong effects of increased water temperature on metabolite regulation, as well as  
520 absence of heat shock protein HSP70 expression, is most likely due to adaptation of *M. nycterobia*  
521 to thermal stress regularly occurring in intermittent streams (Qin et al., 2003). This finding  
522 suggests that *M. nycterobia* and possibly other intermittent habitats indicators may have  
523 metabolic flexibility to cope with thermal stress, allowing them to survive extreme climatic events  
524 characterised by fluctuating temperature regimes. In addition, the regulation of lipidome of *M.*  
525 *nycterobia* aquatic stages exhibited intriguing resilience to both increased water temperature  
526 and pollution with PhACs and EDCs. The limited impact on lipid regulation suggests that the stress  
527 response threshold triggering significant lipid mobilisation may not have been surpassed.  
528 Instead, the priority for the aquatic stages was directed towards lipid accumulation rather than  
529 mobilization in response to stress challenges (Arrese and Soulages, 2010; Hoppeler et al., 2018).  
530 Emphasis on lipid accumulation was evident through the observed increase in total lipid content

531 from larval to pupal stages, serving as a crucial energy source to sustain adult insects during non-  
532 feeding periods and fuel their flights (Arrese and Soulages, 2010; Hoppeler et al., 2018). While  
533 the anticipation of intense lipidome activity in adult insects is well-founded, it is surprising that  
534 so distinct regulatory mechanisms are operating in response to different stressors. However,  
535 lipidomic profiles of multiple stressor treatment were in both males and females congruent with  
536 those of increased temperature, implying the dominant impact of increased water temperature  
537 on regulation of lipids in aquatic insects.

538 Increased water temperature accelerated development of *M. nycterobia*, resulting in earlier  
539 adult emergence and lower total lipid content of all life stages in treatments with increased  
540 temperature. Similarly, the mayfly larvae chronically exposed to increased temperature used  
541 lipids and amino acids as alternative energy sources to support their growth and maintenance  
542 costs, ultimately resulting in reduced total lipid content (Chou et al., 2018). Furthermore,  
543 sensitivity of the temporal emergence patterns of aquatic insects was already discussed as  
544 toxicological endpoint for exposure to pesticides (Schulz and Liess, 2001), as timing of aquatic  
545 insect emergence plays a crucial role for riparian predators (review in Bundschuh et al., 2020).  
546 More precisely, insectivorous birds almost exclusively obtain the omega-3 long-chain  
547 polyunsaturated fatty acids from emerging aquatic insects, thus shifts in the relative availability  
548 and phenology of aquatic insects in response to a changing climate are likely to have major fitness  
549 consequences for their breeding success (Shipley et al., 2022). Hence, such shifts can have  
550 cascading effects on cross-ecosystem energy flow. This is of particular importance in intermittent  
551 water bodies, like those inhabited by *M. nycterobia*, where mass emergence during short periods  
552 is typical and riparian food webs are highly dependent on the aquatic subsidies (McIntosh et al.,  
553 2017).

554

#### 555 4.3. Multiple stressor impacts of warming and PhACs and EDCs on aquatic insects

556 A synergistic interactive effect was observed, leading to a decrease in total lipid content and  
557 significant variation in lipid profiles in adults of both sexes under the MS treatment. *Micropterna*  
558 *nycterobia*, a specialist in intermittent rivers, exhibits a behaviour where adults leave the water

559 bodies upon emergence and migrate to cooler mountainous regions or nearby caves for a few  
560 months until their gonads develop (Waringer and Graf, 2011). In autumn, after copulation, they  
561 lay eggs in re-established surface flow. Therefore, the observed decrease in lipid reserves in  
562 adults (8.9% and 10.7% decrease in total lipid content in males and females, respectively) could  
563 have a major impact on their reproduction and population dynamics. Lipids serve as crucial  
564 energy reserves for insects, especially during non-feeding life stages and long-distance flights  
565 (Arrese and Soulages, 2010; Downer and Matthews, 1976). Maintaining metapopulation  
566 dynamics is particularly important for inhabitants of intermittent water bodies (Datry et al.,  
567 2017). Various pollutants, such as fungicides and copper, can decrease the lipid content of  
568 limnephilid caddisflies (Konschak et al., 2019). However, this effect was not observed in the  
569 current study as PhACs and EDCs did not influence the lipid content of *M. nycterobia*.  
570 Furthermore, the negative effects of pollutants on lipids can be exacerbated by elevated water  
571 temperatures (Yoon et al., 2022). However, in our study, increased water temperature primarily  
572 influenced the lipids of caddisflies, and its adverse effects were amplified by pollution with PhACs  
573 and EDCs. Additionally, warming indirectly contributed to the further deterioration of  
574 environmental conditions in the T2 and MS treatments, as evidenced by increased conductivity  
575 within these two treatments.

576 In terms of the timing of the strongest stress response, our results differ from a previous  
577 experiment involving the same caddisfly species, where the effects of ECs and microplastic  
578 particles were most pronounced in the first 15 days of exposure, both in single and combined  
579 stressor treatments (Grgić et al., 2023). Apart from the dominant impact of increased  
580 temperature, these differences may also be attributed to variations in the mixture of ECs used,  
581 as different compounds can have varying effects on biota (Muñoz et al., 2015; Nilsen et al., 2019).  
582 Nevertheless, our study indicates that the adverse synergistic effects of warming events and  
583 freshwater contamination with ECs could intensify throughout the life cycle of aquatic insects,  
584 potentially leading to developmental impairments and disturbances in population dynamics  
585 (Kazmi et al., 2022). However, in most environmental health assessment and monitoring  
586 programs, only the aquatic stages of aquatic insects are considered (Water Framework Directive  
587 (WFD) 2000/60/EC). Furthermore, the multiple stressor effects observed in the current study not

588 only resulted in reduced resource quality for aquatic food webs but also affected the quality of  
589 emergence, thus impacting the riparian food webs at the aquatic-terrestrial interface (Bundschuh  
590 et al., 2020).

591

592 4.5. Differential response to stressor impacts of male and female caddisflies

593 Our study reveals sex-specific responses to both single and multiple stressors, with females  
594 exhibiting more pronounced impacts on the metabolome while males show greater effects on  
595 the lipidome. In the majority of insects, there is sexual dimorphism in lipid content due to distinct  
596 roles played by lipids, such as egg production in females and flight behaviour in males (Lease and  
597 Wolf, 2011). Certain aquatic insect species, characterized by specific male flight behaviour (Lease  
598 and Wolf, 2011) or swarming (Sartori et al., 1992), experience negative impacts on population  
599 fitness when males have decreased lipid content. Furthermore, this study identifies 4-  
600 hydroxyestradiol, an endogenous metabolite of 17 $\beta$ -estradiol, from *M. nycterobia*, which has  
601 been shown to have significant lipid-modulating effects in rats (Wang and Zhu, 2017).  
602 Additionally, in *Drosophila*, sexual dimorphism has been observed in metabolic genes and  
603 mechanisms involved in triglyceride homeostasis (Wat et al., 2020).

604 Likewise, the findings of this study highlight sex-dependent variation in metabolites induced by  
605 stress, consistent with a previous study involving *M. nycterobia* exposed to microplastic particles  
606 and a mixture of personal care products (Grgić et al., 2023). Moreover, female insects generally  
607 exhibit a stronger stress response across different taxa and under various stress conditions,  
608 including parasite infections, predation, food quality, chemical stress, and the impacts of climate  
609 change (Lindsey and Altizer, 2009; Slos et al., 2009; Stillwell and Davidowitz, 2010). This is likely  
610 due to the different evolutionary roles of male and female insects, which have led to the  
611 development of distinct stress-defence mechanisms. The fitness of females is closely linked to  
612 their life expectancy and the number of offspring they produce.

613 Therefore, our study emphasizes the variability in the impacts of both single and multiple  
614 stressors on various traits, different life stages, and sexes within a single species. Consequently,  
615 it underscores the importance of developing a more comprehensive understanding of the

616 sensitivity of freshwater organisms to the adverse effects of single and multiple stressors,  
617 particularly when addressing the management of freshwater ecosystems in the context of global  
618 change (Schäfer and Piggott, 2018).

619

620 **Acknowledgment**

621 We thank Dr Ruder Novak (Faculty of Medicine, University of Zagreb) for providing assistance in  
622 mass spectrometry analysis. This study is part of the outcomes of the Croatian Science  
623 Foundation project MUSE (PZS-2019-02-9479 and DOK-2020-01-6998 to A.P.) and KLIMA-4HR  
624 project (KK.05.1.1.02.0006). M.R. acknowledges additional support from the Croatian Science  
625 Foundation (IP-2018-01-2298). Two anonymous reviewers are thanked for significantly  
626 improving the quality of earlier version of the manuscript.

627

628

629 **LITERATURE**

630 Arrese, E.L., Soulages, J.L., 2010. Insect Fat Body: Energy, Metabolism, and Regulation. Annu.  
631 Rev. Entomol. 55, 207–225. <https://doi.org/10.1146/annurev-ento-112408-085356>

632 Barbosa, M., Inocentes, N., Soares, A.M.V.M., Oliveira, M., 2017. Synergy effects of fluoxetine  
633 and variability in temperature lead to proportionally greater fitness costs in *Daphnia*: A  
634 multigenerational test. Aquat. Toxicol. 193, 268–275.  
635 <https://doi.org/10.1016/j.aquatox.2017.10.017>

636 Bashan, M., Akbas, H., Yurdakoc, K., 2002. Phospholipid and triacylglycerol fatty acid  
637 composition of major life stages of sunn pest, *Eurygaster integriceps* (Heteroptera:  
638 Scutelleridae). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 132, 375–380.  
639 [https://doi.org/10.1016/S1096-4959\(02\)00045-3](https://doi.org/10.1016/S1096-4959(02)00045-3)

640 Bhangare, D., Rajput, N., Jadav, T., Sahu, A.K., Tekade, R.K., Sengupta, P., 2022. Systematic  
641 strategies for degradation kinetic study of pharmaceuticals: an issue of utmost importance

642 concerning current stability analysis practices. *J. Anal. Sci. Technol.* 13, 7.

643 <https://doi.org/10.1186/s40543-022-00317-6>

644 Blackman, R.C., Altermatt, F., Foulquier, A., Lefébure, T., Gauthier, M., Bouchez, A.,  
645 Stubbington, R., Weigand, A.M., Leese, F., Datry, T., 2021. Unlocking our understanding of  
646 intermittent rivers and ephemeral streams with genomic tools. *Front. Ecol. Environ.* 19,  
647 574–583. <https://doi.org/10.1002/fee.2404>

648 Bravo, D.N., Araújo, M.B., Lasanta, T., Moreno, J.I.L., 2008. Climate change in Mediterranean  
649 mountains during the 21st century. *Ambio* 37, 280–285.  
650 [https://doi.org/10.1579/00410.1579/0044-7447\(2008\)37\[280:ccimmd\]2.0.co;2](https://doi.org/10.1579/00410.1579/0044-7447(2008)37[280:ccimmd]2.0.co;2)

651 Bundschuh, M., Zubrod, J.P., Wieczorek, M. V., Schulz, R., 2020. Studying Effects of  
652 Contaminants on Aquatic-Terrestrial Subsidies: Experimental Designs Using Outdoor and  
653 Indoor Mesocosms and Microcosms, in: Contaminants and Ecological Subsidies. Springer  
654 International Publishing, Cham, pp. 279–296. [https://doi.org/10.1007/978-3-030-49480-3\\_12](https://doi.org/10.1007/978-3-030-49480-3_12)

655

656 Cargill, A.S., Cummins, K.W., Hanson, B.J., Lowry, R.R., 1985. The role of lipids as feeding  
657 stimulants for shredding aquatic insects. *Freshw. Biol.* 15, 455–464.  
658 <https://doi.org/10.1111/j.1365-2427.1985.tb00215.x>

659 Cetinić, K.A., Grgić, I., Previšić, A., Rožman, M., 2022. The curious case of methylparaben:  
660 Anthropogenic contaminant or natural origin? *Chemosphere* 294, 133781.  
661 <https://doi.org/10.1016/j.chemosphere.2022.133781>

662 Chou, H., Pathmasiri, W., Deese-spruill, J., Sumner, S.J., Jima, D.D., Funk, D.H., Jackson, J.K.,  
663 Sweeney, B.W., Buchwalter, D.B., 2018. The Good, the Bad, and the Lethal: Gene  
664 Expression and Metabolomics Reveal Physiological Mechanisms Underlying Chronic  
665 Thermal Effects in Mayfly Larvae (*Neocloeon triangulifer*). *Front. Ecol. Evol.* 6, 1–11.  
666 <https://doi.org/10.3389/fevo.2018.00027>

667 Clarke, K.R., Gorley, R.N., 2015. PRIMER v7 : PRIMER-E Ltd Registered.

668 Cogo, G.B., Martínez, J., Santos, S., Graça, M.A.S., 2020. Caddisflies growth and size along an  
669 elevation/temperature gradient. *Hydrobiologia* 847, 207–216.  
670 <https://doi.org/10.1007/s10750-019-04082-3>

671 Conti, L., Schmidt-Kloiber, A., Grenouillet, G., Graf, W., 2014. A trait-based approach to assess  
672 the vulnerability of European aquatic insects to climate change. *Hydrobiologia* 721, 297–  
673 315. <https://doi.org/10.1007/s10750-013-1690-7>

674 Cruzeiro, C., Ramos, A., Loganimoce, E.M., Arenas, F., Rocha, E., Cardoso, P.G., 2019. Genotoxic  
675 effects of combined multiple stressors on *Gammarus locusta* haemocytes: Interactions  
676 between temperature, pCO<sub>2</sub> and the synthetic progestin levonorgestrel. *Environ. Pollut.*  
677 245, 864–872. <https://doi.org/10.1016/j.envpol.2018.11.070>

678 Datry, T., Corti, R., Heino, J., Hugueny, B., Rolls, R.J., Ruhí, A., 2017. Habitat Fragmentation and  
679 Metapopulation, Metacommunity, and Metaecosystem Dynamics in Intermittent Rivers  
680 and Ephemeral Streams, in: Intermittent Rivers and Ephemeral Streams. Elsevier, pp. 377–  
681 403. <https://doi.org/10.1016/B978-0-12-803835-2.00014-0>

682 DeCourten, B.M., Brander, S.M., 2017. Combined effects of increased temperature and  
683 endocrine disrupting pollutants on sex determination, survival, and development across  
684 generations. *Sci. Rep.* 7, 9310. <https://doi.org/10.1038/s41598-017-09631-1>

685 Dinh, K. V., Konestabo, H.S., Borgå, K., Hylland, K., Macaulay, S.J., Jackson, M.C., Verheyen, J.,  
686 Stoks, R., 2022. Interactive Effects of Warming and Pollutants on Marine and Freshwater  
687 Invertebrates. *Curr. Pollut. Reports* 8, 341–359. <https://doi.org/10.1007/s40726-022-00245-4>

688

689 Dorić, V., Ivković, M., Baranov, V., Pozojević, I., Mihaljević, Z., 2023. Extreme freshwater  
690 discharge events exacerbated by climate change influence the structure and functional  
691 response of the chironomid community in a biodiversity hotspot. *Sci. Total Environ.* 879.  
692 <https://doi.org/10.1016/j.scitotenv.2023.163110>

693 Downer, R.G.H., Matthews, J.R., 1976. Patterns of Lipid Distribution and Utilisation in Insects.  
694 Am. Zool. 16, 733–745. <https://doi.org/10.1093/icb/16.4.733>

695 Duarte, P.M., 2019. Unravelling the lipid profile of coastal insects from Ria de Aveiro, Portugal:  
696 implications for sustainable aquaculture. University of Aveiro.  
697 <https://doi.org/ria.ua.pt/bitstream/10773/28378/1/Pedro%20Martins%20Duarte.pdf>

698 Duchet, C., Grabicová, K., Kolar, V., Lepšová, O., Csercsa, A., Zdvihalova, B., Randák, T., Boukal,  
699 D., 2023. Combined effects of climate warming and environmentally relevant  
700 concentrations of pharmaceutical active compounds on a freshwater community. *bioRxiv*  
701 244, 2023.03.31.535078.

702 Ebele, A.J., Abou-Elwafa Abdallah, M., Harrad, S., 2017. Pharmaceuticals and personal care  
703 products (PPCPs) in the freshwater aquatic environment. *Emerg. Contam.* 3, 1–16.  
704 <https://doi.org/10.1016/j.emcon.2016.12.004>

705 Erasmus, J.H., Lorenz, A.W., Zimmermann, S., Wepener, V., Sures, B., Smit, N.J., Malherbe, W.,  
706 2021. A diversity and functional approach to evaluate the macroinvertebrate responses to  
707 multiple stressors in a small subtropical austral river. *Ecol. Indic.* 131, 108206.  
708 <https://doi.org/10.1016/j.ecolind.2021.108206>

709 Farooqui, T., 2012. Review of octopamine in insect nervous systems. *Open access insect physiol.*  
710 1. <https://doi.org/10.2147/OAIP.S20911>

711 Finn, D.S., Johnson, S.L., Gerth, W.J., Arismendi, I., Li, J.L., 2022. Spatiotemporal patterns of  
712 emergence phenology reveal complex species-specific responses to temperature in aquatic  
713 insects. *Divers. Distrib.* 28, 1524–1541. <https://doi.org/10.1111/ddi.13472>

714 Firmansyah, Argosubekti, N., 2020. A review of heat stress signaling in plants. *IOP Conf. Ser.*  
715 *Earth Environ. Sci.* 484, 012041. <https://doi.org/10.1088/1755-1315/484/1/012041>

716 Folch, J., Lees, M., Sloane Stanley, G.H., 1957. A simple method for the isolation and purification  
717 of total lipides from animal tissues. *J. Biol. Chem.* 226, 497–509.  
718 [https://doi.org/10.1016/S0021-9258\(18\)64849-5](https://doi.org/10.1016/S0021-9258(18)64849-5)

719 Gorovits, R., Sobol, I., Akama, K., Chefetz, B., Czosnek, H., 2020. Pharmaceuticals in treated  
720 wastewater induce a stress response in tomato plants. *Sci. Rep.* 10, 1856.

721 <https://doi.org/10.1038/s41598-020-58776-z>

722 Grabicova, K., Grabic, R., Blaha, M., Kumar, V., Cerveny, D., Fedorova, G., Randak, T., 2015.

723 Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent

724 from a municipal sewage treatment plant. *Water Res.* 72, 145–153.

725 <https://doi.org/10.1016/j.watres.2014.09.018>

726 Graf, W., Murphy, J., Dahl, J., Zamora-Munoz, C., Lopez-Rodriguez M.J. Schmidt-Kloiber., A.,

727 2023. Dataset “Trichoptera”. [www.freshwaterecology.info](http://www.freshwaterecology.info) - the taxa and autecology

728 database for freshwater organisms, version 8.0 (accessed on 06.06.2023) [WWW

729 Document]. <https://doi.org/https://www.freshwaterecology.info/index.php>

730 Grgić, I., Cetinić, K.A., Karačić, Z., Previšić, A., Rožman, M., 2023. Fate and effects of

731 microplastics in combination with pharmaceuticals and endocrine disruptors in

732 freshwaters: Insights from a microcosm experiment. *Sci. Total Environ.* 859.

733 <https://doi.org/10.1016/j.scitotenv.2022.160387>

734 Halsch, C.A., Shapiro, A.M., Fordyce, J.A., Nice, C.C., Thorne, J.H., Waetjen, D.P., Forister, M.L.,

735 2021. Insects and recent climate change. *Proc. Natl. Acad. Sci. U. S. A.* 118, 1–9.

736 <https://doi.org/10.1073/PNAS.2002543117>

737 Hanson, B.J., Cummins, K.W., Cargill, A.S., Lowry, R.R., 1985. Lipid content, fatty acid

738 composition, and the effect of diet on fats of aquatic insects. *Comp. Biochem. Physiol. Part*

739 *B Comp. Biochem.* 80, 257–276. [https://doi.org/10.1016/0305-0491\(85\)90206-8](https://doi.org/10.1016/0305-0491(85)90206-8)

740 Hering, D., Schmidt-Kloiber, A., Murphy, J., Lücke, S., Zamora-Muñoz, C., López-Rodríguez, M.J.,

741 Huber, T., Graf, W., 2009. Potential impact of climate change on aquatic insects: A

742 sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns

743 and ecological preferences. *Aquat. Sci.* 71, 3–14. <https://doi.org/10.1007/s00027-009-9159-5>

745 Hershkovitz, Y., Dahm, V., Lorenz, A.W., Hering, D., 2015. A multi-trait approach for the

746 identification and protection of European freshwater species that are potentially

747 vulnerable to the impacts of climate change. *Ecol. Indic.* 50, 150–160.

748 <https://doi.org/10.1016/j.ecolind.2014.10.023>

749 Heye, K., Lotz, T., Wick, A., Oehlmann, J., 2019. Interactive effects of biotic and abiotic  
750 environmental stressors on carbamazepine toxicity in the non-biting midge *Chironomus*  
751 *riparius*. *Water Res.* 156, 92–101. <https://doi.org/10.1016/j.watres.2019.03.007>

752 Hoppeler, F., Winkelmann, C., Becker, J., Pauls, S.U., 2018. Larval growth and metabolic energy  
753 storage of *Micropterna lateralis* (Trichoptera: Limnephilidae) in an intermittent stream:  
754 glycogen dominates in final instars. *Hydrobiologia* 806, 175–185.  
755 <https://doi.org/10.1007/s10750-017-3354-5>

756 Huryn, A.D., Wallace, J.B., 2000. LIFE HISTORY AND PRODUCTION OF STREAM INSECTS. *Annu.*  
757 *Rev. Entomol.* 83–110. <https://doi.org/10.1146/annurev.ento.51.110104.151107>

758 Jarvis, A.L., Bernot, M.J., Bernot, R.J., 2014. The effects of the pharmaceutical carbamazepine  
759 on life history characteristics of flat-headed mayflies (Heptageniidae) and aquatic resource  
760 interactions. *Ecotoxicology* 23, 1701–1712. <https://doi.org/10.1007/s10646-014-1309-4>

761 Kainz, M.J., Fisk, A.T., 2009. Integrating lipids and contaminants in aquatic ecology and  
762 ecotoxicology, in: *Lipids in Aquatic Ecosystems*. Springer New York, New York, NY, pp. 93–  
763 114. [https://doi.org/10.1007/978-0-387-89366-2\\_5](https://doi.org/10.1007/978-0-387-89366-2_5)

764 Katajamaa, M., Miettinen, J., Orešič, M., 2006. MZmine: Toolbox for processing and  
765 visualization of mass spectrometry based molecular profile data. *Bioinformatics* 22, 634–  
766 636. <https://doi.org/10.1093/bioinformatics/btk039>

767 Kazmi, S.S.U.H., Wang, Y.Y.L., Cai, Y.E., Wang, Z., 2022. Temperature effects in single or  
768 combined with chemicals to the aquatic organisms: An overview of thermo-chemical  
769 stress. *Ecol. Indic.* 143, 109354. <https://doi.org/10.1016/j.ecolind.2022.109354>

770 Konschak, M., Zubrod, J.P., Baudy, P., Englert, D., Herrmann, B., Schulz, R., Bundschuh, M.,  
771 2019. Waterborne and diet-related effects of inorganic and organic fungicides on the  
772 insect leaf shredder *Chaetopteryx villosa* (Trichoptera). *Aquat. Toxicol.* 206, 33–42.  
773 <https://doi.org/10.1016/j.aquatox.2018.10.021>

774 Krajick, K., 2004. All Downhill From Here? *Science* (80-). 303, 1600–1602.

775 <https://doi.org/10.1126/science.303.5664.1600>

776 Kraufvelin, P., 1998. Model ecosystem replicability challenged by the “soft” reality of a hard  
777 bottom mesocosm. *J. Exp. Mar. Bio. Ecol.* 222, 247–267. [https://doi.org/10.1016/S0022-0981\(97\)00143-3](https://doi.org/10.1016/S0022-0981(97)00143-3)

779 Lagesson, A., Fahlman, J., Brodin, T., Fick, J., Jonsson, M., Byström, P., Klaminder, J., 2016.  
780 Bioaccumulation of five pharmaceuticals at multiple trophic levels in an aquatic food web -  
781 Insights from a field experiment. *Sci. Total Environ.* 568, 208–215.  
782 <https://doi.org/10.1016/j.scitotenv.2016.05.206>

783 Lease, H.M., Wolf, B.O., 2011. Lipid content of terrestrial arthropods in relation to body size,  
784 phylogeny, ontogeny and sex. *Physiol. Entomol.* 36, 29–38.  
785 <https://doi.org/10.1111/j.1365-3032.2010.00767.x>

786 Liess, M., Schulz, R., 1996. Chronic effects of short-term contamination with the pyrethroid  
787 insecticide fenvalerate on the caddisfly *Limnephilus lunatus*. *Hydrobiologia* 324, 99–106.  
788 <https://doi.org/10.1007/BF00018170>

789 Lindsey, E., Altizer, S., 2009. Sex differences in immune defenses and response to parasitism in  
790 monarch butterflies. *Evol. Ecol.* 23, 607–620. <https://doi.org/10.1007/s10682-008-9258-0>

791 López-Doval, J.C., Kukkonen, J.V.K., Rodrigo, P., Muñoz, I., 2012. Effects of indomethacin and  
792 propranolol on *Chironomus riparius* and *Physella (Costatella) acuta*. *Ecotoxicol. Environ.*  
793 Saf. 78, 110–115. <https://doi.org/10.1016/j.ecoenv.2011.11.004>

794 Lu, Eiriksson, Thorsteinsdóttir, Simonsen, 2019. Valuable Fatty Acids in Bryophytes—  
795 Production, Biosynthesis, Analysis and Applications. *Plants* 8, 524.  
796 <https://doi.org/10.3390/plants8110524>

797 Macadam, C.R., England, J., Chadd, R., 2022. The vulnerability of British aquatic insects to  
798 climate change. *Knowl. Manag. Aquat. Ecosyst.* 2022-Janua, 3.  
799 <https://doi.org/10.1051/kmae/2022003>

800 Maenpaa, K., Kukkonen, J., 2006. Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-  
801 (2-dodecyl)-benzene sulfonate (LAS) in *Lumbriculus variegatus* (Oligochaeta) and  
802 *Chironomus riparius* (Insecta). *Aquat. Toxicol.* 77, 329–338.  
803 <https://doi.org/10.1016/j.aquatox.2006.01.002>

804 Mandaric, L., Celic, M., Marcé, R., Petrovic, M., 2015. Introduction on Emerging Contaminants  
805 in Rivers and Their Environmental Risk, in: *Handbook of Environmental Chemistry*. pp. 3–  
806 25. [https://doi.org/10.1007/698\\_2015\\_5012](https://doi.org/10.1007/698_2015_5012)

807 McIntosh, A.R., Leigh, C., Boersma, K.S., McHugh, P.A., Febria, C., García-Berthou, E., 2017. Food  
808 Webs and Trophic Interactions in Intermittent Rivers and Ephemeral Streams, in:  
809 *Intermittent Rivers and Ephemeral Streams*. Elsevier, pp. 323–347.  
810 <https://doi.org/10.1016/B978-0-12-803835-2.00012-7>

811 Mikami, K., Hartmann, E., 2004. Lipid Metabolism in Mosses, in: *New Frontiers in Bryology*.  
812 Springer Netherlands, Dordrecht, pp. 133–155. [https://doi.org/10.1007/978-0-306-48568-8\\_8](https://doi.org/10.1007/978-0-306-48568-8_8)

814 Mirth, C.K., Riddiford, L.M., 2007. Size assessment and growth control: how adult size is  
815 determined in insects. *BioEssays* 29, 344–355. <https://doi.org/10.1002/bies.20552>

816 Muñoz, I., López-Doval, J.C., De Castro-Català, N., Kuzmanovic, M., Ginebreda, A., Sabater, S.,  
817 2015. Effects of Emerging Contaminants on Biodiversity, Community Structure, and  
818 Adaptation of River Biota, in: *Handbook of Environmental Chemistry*. pp. 79–119.  
819 [https://doi.org/10.1007/698\\_2015\\_5013](https://doi.org/10.1007/698_2015_5013)

820 Nilsen, E., Smalling, K.L., Ahrens, L., Gros, M., Miglioranza, K.S.B., Picó, Y., Schoenfuss, H.L.,  
821 2019. Critical review: Grand challenges in assessing the adverse effects of contaminants of  
822 emerging concern on aquatic food webs. *Environ. Toxicol. Chem.* 38, 46–60.  
823 <https://doi.org/10.1002/etc.4290>

824 Noyes, P.D., McElwee, M.K., Miller, H.D., Clark, B.W., Van Tiem, L.A., Walcott, K.C., Erwin, K.N.,  
825 Levin, E.D., 2009. The toxicology of climate change: Environmental contaminants in a  
826 warming world. *Environ. Int.* 35, 971–986. <https://doi.org/10.1016/j.envint.2009.02.006>

827 Nukazawa, K., Arai, R., Kazama, S., Takemon, Y., 2018. Projection of invertebrate populations in  
828 the headwater streams of a temperate catchment under a changing climate. *Sci. Total  
829 Environ.* 642, 610–618. <https://doi.org/10.1016/j.scitotenv.2018.06.109>

830 Oksanen, J., Simpson, G.L., Blanchet, F.G., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H.,  
831 Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Durand, S.,  
832 Beatriz, H., Evangelista, A., Friendly, M., Hannigan, G., Hill, M.O., Lahti, L., Mcglinn, D.,  
833 Ribeiro, E., Smith, T., Stier, A., Ter, C.J.F., Weedon, J., 2020. Title *Community Ecology  
834 Package*. *Vegan* *Community Ecol. Packag.* R Packag. version 2.5-7.  
835 <https://doi.org/https://github.com/vegandevs/vegan>

836 Pestana, J.L.T., Novais, S.C., Lemos, M.F.L., Soares, A.M.V.M., 2014. Cholinesterase activity in  
837 the caddisfly *Sericostoma vittatum*: Biochemical enzyme characterization and in vitro  
838 effects of insecticides and psychiatric drugs. *Ecotoxicol. Environ. Saf.* 104, 263–268.  
839 <https://doi.org/10.1016/j.ecoenv.2014.03.012>

840 Piggott, J.J., Townsend, C.R., Matthaei, C.D., 2015. Reconceptualizing synergism and  
841 antagonism among multiple stressors. *Ecol. Evol.* 5, 1538–1547.  
842 <https://doi.org/10.1002/ece3.1465>

843 Polazzo, F., Roth, S.K., Hermann, M., Mangold-Döring, A., Rico, A., Sobek, A., Van den Brink, P.J.,  
844 Jackson, M.C., 2022. Combined effects of heatwaves and micropollutants on freshwater  
845 ecosystems: Towards an integrated assessment of extreme events in multiple stressors  
846 research. *Glob. Chang. Biol.* <https://doi.org/10.1111/gcb.15971>

847 Previšić, A., Rožman, M., Mor, J.R., Acuña, V., Serra-Compte, A., Petrović, M., Sabater, S., 2020.  
848 Aquatic macroinvertebrates under stress: Bioaccumulation of emerging contaminants and  
849 metabolomics implications. *Sci. Total Environ.* 704, 135333.  
850 <https://doi.org/10.1016/j.scitotenv.2019.135333>

851 Previšić, A., Vilenica, M., Vučković, N., Petrović, M., Rožman, M., 2021. Aquatic Insects Transfer  
852 Pharmaceuticals and Endocrine Disruptors from Aquatic to Terrestrial Ecosystems. *Environ.  
853 Sci. Technol.* 55, 3736–3746. <https://doi.org/10.1021/acs.est.0c07609>

854 Qin, W., Tyshenko, M.G., Wu, B.S., Walker, V.K., Robertson, R.M., 2003. Cloning and  
855 characterization of a member of the hsp70 gene family from *Locusta migratoria*, a highly  
856 thermotolerant insect. *Cell Stress Chaperones* 8, 144. [https://doi.org/10.1379/1466-1268\(2003\)008<0144:CACOAM>2.0.CO;2](https://doi.org/10.1379/1466-1268(2003)008<0144:CACOAM>2.0.CO;2)

858 Rejeb, I., Pastor, V., Mauch-Mani, B., 2014. Plant Responses to Simultaneous Biotic and Abiotic  
859 Stress: Molecular Mechanisms. *Plants* 3, 458–475. <https://doi.org/10.3390/plants3040458>

860 Rožman, M., Acuña, V., Petrović, M., 2018. Effects of chronic pollution and water flow  
861 intermittency on stream biofilms biodegradation capacity. *Environ. Pollut.* 233, 1131–  
862 1137. <https://doi.org/10.1016/j.envpol.2017.10.019>

863 Sanderson, H., 2002. Pesticide studies: Replicability of micro/mesocosms. *Environ. Sci. Pollut.  
864 Res.* 9, 429–435. <https://doi.org/10.1007/BF02987597>

865 Sarafian, M.H., Gaudin, M., Lewis, M.R., Martin, F.P., Holmes, E., Nicholson, J.K., Dumas, M.E.,  
866 2014. Objective set of criteria for optimization of sample preparation procedures for ultra-  
867 high throughput untargeted blood plasma lipid profiling by ultra performance liquid  
868 chromatography-mass spectrometry. *Anal. Chem.* 86, 5766–5774.  
869 <https://doi.org/10.1021/ac500317c>

870 Sartori, M., Keller, L., Thomas, A.G.B., Passera, L., 1992. Flight energetics in relation to sexual  
871 differences in the mating behaviour of a mayfly, *Siphlonurus aestivalis*. *Oecologia* 92, 172–  
872 176. <https://doi.org/10.1007/BF00317360>

873 Schäfer, R.B., Piggott, J.J., 2018. Advancing understanding and prediction in multiple stressor  
874 research through a mechanistic basis for null models. *Glob. Chang. Biol.* 24, 1817–1826.  
875 <https://doi.org/10.1111/gcb.14073>

876 Schulz, R., Liess, M., 2001. Toxicity of Aqueous-Phase and Suspended Particle-Associated  
877 Fenvalerate: Chronic Effects After Pulse-Dosed Exposure of *Limnephilus lunatus*  
878 (Trichoptera). *Environ. Toxicol. Chem.* 20, 185. [https://doi.org/10.1897/1551-5028\(2001\)020<0185:toapas>2.0.co;2](https://doi.org/10.1897/1551-5028(2001)020<0185:toapas>2.0.co;2)

880 Schulz, R., Liess, M., 1995. Chronic effects of low insecticide concentrations on freshwater  
881 caddisfly larvae. *Hydrobiologia* 299, 103–113. <https://doi.org/10.1007/BF00017562>

882 Serra-Compte, A., Maulvault, A.L., Camacho, C., Álvarez-Muñoz, D., Barceló, D., Rodríguez-  
883 Mozaz, S., Marques, A., 2018. Effects of water warming and acidification on  
884 bioconcentration, metabolism and depuration of pharmaceuticals and endocrine  
885 disrupting compounds in marine mussels (*Mytilus galloprovincialis*). *Environ. Pollut.* 236,  
886 824–834. <https://doi.org/10.1016/j.envpol.2018.02.018>

887 Shipley, J.R., Twining, C.W., Mathieu-Resuge, M., Parmar, T.P., Kainz, M., Martin-Creuzburg, D.,  
888 Weber, C., Winkler, D.W., Graham, C.H., Matthews, B., 2022. Climate change shifts the  
889 timing of nutritional flux from aquatic insects. *Curr. Biol.* 32, 1342–1349.e3.  
890 <https://doi.org/10.1016/j.cub.2022.01.057>

891 Slos, S., De Meester, L., Stoks, R., 2009. Food level and sex shape predator-induced  
892 physiological stress: immune defence and antioxidant defence. *Oecologia* 161, 461–467.  
893 <https://doi.org/10.1007/s00442-009-1401-2>

894 Snart, C.J.P., Hardy, I.C.W., Barrett, D.A., 2015. Entometabolomics: applications of modern  
895 analytical techniques to insect studies. *Entomol. Exp. Appl.* 155, 1–17.  
896 <https://doi.org/10.1111/eea.12281>

897 Späth, J., Fick, J., McCallum, E., Cerveny, D., Nording, M.L., Brodin, T., 2022. Wastewater  
898 effluent affects behaviour and metabolomic endpoints in damselfly larvae. *Sci. Rep.* 12, 1–  
899 14. <https://doi.org/10.1038/s41598-022-10805-9>

900 Stillwell, R.C., Davidowitz, G., 2010. Sex differences in phenotypic plasticity of a mechanism that  
901 controls body size: implications for sexual size dimorphism. *Proc. R. Soc. B Biol. Sci.* 277,  
902 3819–3826. <https://doi.org/10.1098/rspb.2010.0895>

903 Stubbington, R., Bogan, M.T., Bonada, N., Boulton, A.J., Datry, T., Leigh, C., Vander Vorste, R.,  
904 2017. The Biota of Intermittent Rivers and Ephemeral Streams: Aquatic Invertebrates,  
905 Intermittent Rivers and Ephemeral Streams: Ecology and Management. Elsevier Inc.  
906 <https://doi.org/10.1016/B978-0-12-803835-2.00007-3>

907 Sun, C., Dudley, S., Trumble, J., Gan, J., 2018. Pharmaceutical and personal care products-  
908 induced stress symptoms and detoxification mechanisms in cucumber plants. Environ.  
909 Pollut. 234, 39–47. <https://doi.org/10.1016/j.envpol.2017.11.041>

910 Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E., Mittler, R., 2014. Abiotic and biotic stress  
911 combinations. New Phytol. 203, 32–43. <https://doi.org/10.1111/nph.12797>

912 ter Braak, C.J.F., Šmilauer, P., 2012. Canoco reference manual and user's guide: software for  
913 ordination, version 5.0. Microcomputer Power.

914 Tijani, J.O., Fatoba, O.O., Petrik, L.F., 2013. A Review of Pharmaceuticals and Endocrine-  
915 Disrupting Compounds: Sources, Effects, Removal, and Detections. Water, Air, Soil Pollut.  
916 224, 1770. <https://doi.org/10.1007/s11270-013-1770-3>

917 Torres-Ruiz, M., Wehr, J.D., Perrone, A.A., 2010. Are net-spinning caddisflies what they eat? An  
918 investigation using controlled diets and fatty acids. J. North Am. Benthol. Soc. 29, 803–813.  
919 <https://doi.org/10.1899/09-162.1>

920 Van Geest, J.L., Poirier, D.G., Sibley, P.K., Solomon, K.R., 2010. Measuring bioaccumulation of  
921 contaminants from field-collected sediment in freshwater organisms: A critical review of  
922 laboratory methods. Environ. Toxicol. Chem. 29, 2391–2401.  
923 <https://doi.org/10.1002/etc.326>

924 Vescio, R., Caridi, R., Laudani, F., Palmeri, V., Zappalà, L., Badiani, M., Sorgonà, A., 2022. Abiotic  
925 and Herbivory Combined Stress in Tomato: Additive, Synergic and Antagonistic Effects and  
926 Within-Plant Phenotypic Plasticity. Life 12, 1804. <https://doi.org/10.3390/life12111804>

927 Veseli, M., Rožman, M., Vilenica, M., Petrović, M., Previšić, A., 2022. Bioaccumulation and  
928 bioamplification of pharmaceuticals and endocrine disruptors in aquatic insects. Sci. Total  
929 Environ. 838. <https://doi.org/10.1016/j.scitotenv.2022.156208>

930 von Schiller, D., Acuña, V., Aristi, I., Arroita, M., Basaguren, A., Bellin, A., Boyero, L., Butturini,  
931 A., Ginebreda, A., Kalogianni, E., Larrañaga, A., Majone, B., Martínez, A., Monroy, S.,  
932 Muñoz, I., Paunović, M., Pereda, O., Petrovic, M., Pozo, J., Rodríguez-Mozaz, S., Rivas, D.,

933 Sabater, S., Sabater, F., Skoulikidis, N., Solagaistua, L., Vardakas, L., Elosegi, A., 2017. River  
934 ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to  
935 environmental stressors. *Sci. Total Environ.* 596–597, 465–480.  
936 <https://doi.org/10.1016/j.scitotenv.2017.04.081>

937 Wang, P., Zhu, B.-T., 2017. Unique effect of 4-hydroxyestradiol and its methylation metabolites  
938 on lipid and cholesterol profiles in ovariectomized female rats. *Eur. J. Pharmacol.* 800,  
939 107–117. <https://doi.org/10.1016/j.ejphar.2017.02.032>

940 Waringer, J., Graf, W., 2011. *Atlas of Central European Trichoptera Larvae*. Erik Mauch Verlag,  
941 Dinkelscherben.

942 Wat, L.W., Chao, C., Bartlett, R., Buchanan, J.L., Millington, J.W., Chih, H.J., Chowdhury, Z.S.,  
943 Biswas, P., Huang, V., Shin, L.J., Wang, L.C., Gauthier, M.-P.L., Barone, M.C., Montooth,  
944 K.L., Welte, M.A., Rideout, E.J., 2020. A role for triglyceride lipase brummer in the  
945 regulation of sex differences in *Drosophila* fat storage and breakdown. *PLOS Biol.* 18,  
946 e3000595. <https://doi.org/10.1371/journal.pbio.3000595>

947 Webb, B.W., Hannah, D.M., Moore, R.D., Brown, L.E., Nobilis, F., 2008. Recent advances in  
948 stream and river temperature research. *Hydrol. Process.* 22, 902–918.  
949 <https://doi.org/10.1002/hyp.6994>

950 Wilkinson, J., Hooda, P.S., Barker, J., Barton, S., Swinden, J., 2017. Occurrence, fate and  
951 transformation of emerging contaminants in water: An overarching review of the field.  
952 *Environ. Pollut.* 231, 954–970. <https://doi.org/10.1016/j.envpol.2017.08.032>

953 Wrona, F.J., Prowse, T.D., Reist, J.D., Hobbie, J.E., Lévesque, L.M.J., Vincent, W.F., 2006. Climate  
954 change effects on aquatic biota, ecosystem structure and function. *Ambio* 35, 359–369.  
955 [https://doi.org/10.1579/0044-7447\(2006\)35\[359:CCEOAB\]2.0.CO;2](https://doi.org/10.1579/0044-7447(2006)35[359:CCEOAB]2.0.CO;2)

956 Yoon, D.S., Byeon, E., Kim, D.H., Lee, M.C., Shin, K.H., Hagiwara, A., Park, H.G., Lee, J.S., 2022.  
957 Effects of temperature and combinational exposures on lipid metabolism in aquatic  
958 invertebrates. *Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol.* 262, 109449.  
959 <https://doi.org/10.1016/j.cbpc.2022.109449>

960 Zezulka, Š., Kummerová, M., Babula, P., Váňová, L., 2013. *Lemna minor* exposed to  
961 fluoranthene: Growth, biochemical, physiological and histochemical changes. *Aquat.*  
962 *Toxicol.* 140–141, 37–47. <https://doi.org/10.1016/j.aquatox.2013.05.011>

963

[Click here to access/download](#)

**Supplementary Material**

**FoS Micropterna MS\_Supplementary material\_R1\_for  
submission.docx**

**Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

**CRediT authorship contribution statement**

**Iva Kokotović:** Data curation, Investigation, Methodology, Visualization, Writing - original draft, Writing - review & editing. **Marina Veseli:** Investigation, Methodology. **Filip Ložek:** Investigation, Methodology, Visualization, Writing - original draft. **Zrinka Karačić:** Investigation, Methodology. **Marko Rožman:** Conceptualization, Investigation, Methodology, Writing - original draft, Writing - review & editing. **Ana Previšić:** Conceptualization, Investigation, Methodology, Funding acquisition, Writing - original draft, Writing - review & editing.