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Abstract

The extracellular matrix (ECM) is a complex noncellular network of (macro-)molecules that
surrounds and supports diverse cells in tissues and organs. In cancer, ECM is a part of
the tumor microenvironment (TME) that embeds its cellular components including cancer
cells and the neighboring non-cancerous stromal cells such as fibroblasts, endothelial, and
immune cells. Given the complexity of players and interactions that the ECM participates
in and is exposed to in the TME, it does not come as a surprise that many of the processes
that drive cancer progression take part precisely in the ECM compartment of the TME.
Along with diverse glycoproteins and collagens, proteoglycans (PGs) are among the main
components of the core ECM. PGs are composed of a protein core to which glycosamino-
glycan chains are attached. Considering the structural diversity of these molecules and
their ‘hybrid’ nature, it is not surprising that they are involved in a variety of processes
that are vital for surrounding cells. Moreover, they are secreted by both cancer and stromal
cells, contributing to the complexity of interactions in the TME. In prostate cancer, PGs
have been shown to be involved in many steps of its progression; the most prominent
examples include the seemingly tumor-promoting roles of versican, perlecan, and biglycan,
and the tumor-suppressive roles of decorin and betaglycan. The role of syndecan 1 is a bit
more complex; namely, the nature of its role is context dependent. In this narrative review
article, the roles of PGs in prostate cancer progression and therapy resistance are discussed
in more detail.

Keywords: proteoglycan; prostate cancer; cancer progression; therapy resistance; biomarker;
extracellular matrix; tumor microenvironment

1. Introduction
The tumor microenvironment (TME) is a collective name for components found

in tissue surrounding tumors; it is composed of cancer cells and the neighboring non-
cancerous stromal cells such as fibroblasts, endothelial, and immune cells [1]. The cellular
components of the TME are embedded in the extracellular matrix (ECM), a complex
network of (macro-)molecules that surrounds and supports diverse cells in tissues and
organs [2,3]. The increasing knowledge on the importance of the TME in cancer progression
has led to recognition that most of the hallmarks of cancer are enabled and sustained by
TME components [4,5]. Since ECM is a vital part of the TME, it does not come as a surprise
that it is involved actively in many steps of tumor progression [6,7].

Along with many glycoproteins and collagens, proteoglycans (PGs) are among the
main components of the core ECM. PGs show ‘hybrid’ nature, that is, they are composed
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of a protein core to which glycosaminoglycan chains are attached. Their diverse struc-
ture enables numerous interactions and participation in a multitude of processes which
are, in particular, widely studied in reference to different steps of cancer progression
(reviewed in [8–11]).

Prostate cancer (PC) is among the leading cancers in terms of incidence and mortal-
ity [12]. PGs have been studied in the context of PC in order to better understand its routes
of progression and resistance to therapy and to suggest novel targets (reviewed in [13,14]).
This review article summarizes the current knowledge on the role of PGs in PC progression
and therapy resistance, with an emphasis on the most recent studies.

Search Strategy and Selection Criteria

For the purpose of this narrative review article, the PubMed database (accessed in
September 2025) has been searched with the following search terms: proteoglycan AND
prostate AND cancer; the name of each major and core matrisome proteoglycan AND prostate
AND cancer. The abbreviation and the full name of each proteoglycan were used. All of the
articles obtained in this way were screened and considered, but emphasis was given to more
recent articles (published within the last ten years). Articles reporting data obtained from
human subjects were prioritized, but articles with only in vitro data were also considered.

2. Proteoglycans
Proteoglycans are ‘hybrid’ molecules consisting of a core protein and glycosamino-

glycan (GAG) chains attached to it through a covalent bond. The GAG chains are made of
repeated disaccharide units that are negatively charged, which makes PGs attract and hold
large amounts of water within tissues. Four different types of GAG chains exist: heparan
sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and keratan sulfate (KS).
Although PGs are classified by the type of GAG chains involved, both the protein core and
the GAG chains determine the PG’s properties. Apart from their structure, the localization
of PGs also plays a role in their classification. In that regard, intracellular PGs (serglycin)
are known as well as cell-associated PGs, which include transmembrane syndecans and
the glycosylphosphatidylinositol-anchored glypicans. Moreover, extracellular PGs include
the hyalectans (aggrecan, versican, neurocan, and brevican) named according to their
association with hyaluronan in the ECM through their N-terminus and lectins through their
C-terminus. Extracellular PGs also include the small leucine-rich proteoglycans (decorin,
biglycan, and lumican), and, finally, the basement membrane proteoglycans (perlecan, agrin
and, collagen XVIII) [13]. More information on the form and function of PGs is available in
reference [15], which provides suggestions on the nomenclature and detailed classification
of proteoglycan gene families. Given the structural diversity of PGs, it is not surprising
that they participate in a variety of cellular processes [16].

Involvement of Proteoglycans in Cancer Progression

Cancer development and progression involve a multitude of intertwined processes
that act either simultaneously or in isolation, with the ultimate goal of cancer growth and
spread. During the last several decades of cancer research, cancer development and pro-
gression are increasingly well described and understood, and related processes are referred
to under a common name of the cancer hallmarks [17–19]. PGs regulate and are involved
in several cancer hallmarks [20]. Broken down to individual processes, a non-exhaustive
list of PG’s roles in cancer includes proliferation, survival, motility, migration, invasion,
morphogenesis, differentiation, cell metabolism, drug resistance, epithelial–mesenchymal
transition, cell plasticity, stemness, angiogenesis, metastasis formation, etc. [20–22]. For
example, it was shown that PGs, mainly through their GAG structural part, regulate cancer
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stem cell phenotypes [23] (discussed in [14]). Furthermore, PGs, again through their GAG
chains and their interactions with angiogenic factors, were shown to influence vascular
development [24]. Heparan sulfate proteoglycan 2 (HSPG2 or perlecan) is especially inter-
esting in this context, since its intact protein shows pro-angiogenic properties, while one
of its cleaved forms, the C-terminal fragment endorepellin, suppresses angiogenesis [25].
PGs were suggested to be involved in metastasis formation [26]; bones are among the main
secondary sites for PC and it is estimated that 90% of patients with advanced PC develop
secondary malignancy in the bones [27,28]. It has been known for a while that PGs are
involved in bone tumor development [29].

Moreover, PGs have also been implicated in the process of autophagy, which affects
resistance to therapies [30]. Finally, PGs are involved in the regulation of the immune re-
sponse (discussed in [14]), an important venue to consider in attempts of cancer eradication.

These brief outlines give an overview of many of the roles of PGs in cancer progression;
their specific roles in PC biology and therapy resistance are discussed in further sections.

3. Role of (Major) Proteoglycans in Prostate Cancer Progression
According to the classification by Alexandra Naba et al. [31,32], there are 35 core

matrisome PGs (this does not include matrisome-associated PGs) in humans. However,
only a small subset of them are called major PGs, and they have important biological roles
that are known to a certain extent. Among hyalectans, versican (VCAN) and aggrecan
(ACAN) are the major PGs studied in the context of PC. VCAN is a large chondroitin
sulfate proteoglycan involved in cell adhesion, proliferation, migration, inflammation,
angiogenesis, and tissue morphogenesis and maintenance [33,34]. On the other hand,
ACAN is a component of the ECM in cartilaginous tissue [33].

Besides their localization, small leucine-rich PGs are classified also according to their
size, as the name suggests. Among them, biglycan (BGN) is important for bone growth [35]
and muscle development and regeneration. Just like other PGs from the family (decorin
(DCN), fibromodulin (FMOD) and possibly lumican (LUM)), BGN also plays a role in
collagen fibril assembly [33].

Perlecan (HSPG2), agrin (AGRN), and collagen XVIII belong to the basement mem-
brane (BM) PGs. HSPG2 is a major component of BM and among the best studied
PGs [36–38]. It is decorated with heparan sulfate or chondroitin sulfate GAGs. It in-
teracts with and cross-links many ECM proteins which reflects its many roles; for example,
it is involved in tissue development and in keeping the vascular homeostasis [33]. Agrin
(AGRN) and collagen XVIII are other members of the ECM heparan sulfate proteoglycan
family important for the development of the neuromuscular junction [33] and structural
integrity of the BMs, respectively. Collagen XVIII can be cleaved to yield endostatin, a
potent inhibitor of angiogenesis and, consecutively, an interesting tool in potential anti-
angiogenesis treatments [39,40].

Cell surface PGs include syndecans, glypicans, and betaglycan (BGCAN), also known
as transforming growth factor beta receptor 3, TGFβRIII. Syndecans are transmembrane
heparan sulfate proteoglycans involved in cell signaling, proliferation, and adhesion. They
have been shown to both promote and suppress tumor progression [41].

Glypicans are also heparan sulfate proteoglycans, but they do not span the membrane
like syndecans. Instead, glypicans are attached to the cell membrane via a glycosylphos-
phatidylinositol anchor. They are involved in cell proliferation and motility, and morpho-
genesis. Their aberrant expression in some cancer types shows biomarker potential [42].

BGCAN is also a transmembrane PG involved in cell survival, stemness, differen-
tiation, cancer metastasis, chemoresistance, and fibrosis [43]. It exerts many of its roles
through TGFβ signaling; namely, BGCAN is a coreceptor for TGFβ ligands.
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Finally, serglycin is the only intracellular PG that has been well studied. It is also the
only PG decorated with heparin side chains and it is best known as a hematopoietic cell
granule proteoglycan [33].

Taken together, these simple outlines suggest that the major PGs play important roles
in both healthy and diseased tissues and organs. In further sections, their role in PC
progression is discussed.

3.1. Hyalectans

The role of versican (VCAN) in prostate cancer biology is recognized in early stud-
ies [13,44] and has already been known for a while. Among the first articles on the role of
VCAN in PC biology are those by David J Horsfall and colleagues. In one of their articles,
the authors analyzed the expression of VCAN by immunohistochemistry in PC tissues [45].
The study showed that VCAN is expressed by periacinar and peritumoral fibromuscular
stroma in benign prostatic hyperplasia and human PC tissues. Moreover, its expression
was higher in the prostatic tissue of patients with early-stage PC than in non-cancer tissue.
The expression of VCAN was associated with progression-free survival; namely, patients
with low versican expression had significantly better prognoses. Other early studies from
the same authors showed that VCAN inhibits PC cell attachment to fibronectin in vitro [46]
and that VCAN was involved in PC cells crosstalk to stromal fibroblasts [47]. This gives
the PC cells the ability to remodel their pericellular matrix (PCM) through recruitment
of stromal VCAN, which in turn promotes their motility [47]. Besides these studies on
PC cell adhesion and motility-related processes, further articles established the role of
VCAN in organization of tumor spheroids, which indicated its role in cancer stem cells’
biology [48]. In accordance with this, a recent study analyzed splicing variants of versican
in CD133+/CD44+ PC stem cells and showed that they are differentially expressed in PC
stem cells in comparison to that of normal prostate cells [49]. Taken together, the cited
articles suggest a possible role of VCAN in prostate cancer biology, especially in promotion
of tumor cell motility and invasion. Additionally, there are indications that VCAN is also
possibly involved in the biology of PC stem cells.

While the roles of other hyalectans such as neurocan and brevican are not thoroughly
analyzed in PC, there is a study suggesting the role of aggrecan (ACAN) in formation of
structures that support PC cell motility [50]. According to that article, exogenously added
aggrecan stimulated thickness of the viscoelastic layer of the pericellular matrix (PCM)
and promoted filopodia-like protrusions in an experiment of microrheology on cultured
PC3 cells. However, the authors noted that the viscoelastic response of the PCM was not
affected. While this study just scratched the surface of the possible role of ACAN in PC
biology, more studies are needed to delineate its precise role.

3.2. Small Leucine-Rich Proteoglycans

The important role of biglycan (BGN) in PC has also been known for a while. In early
gene expression studies, it was established that BGN is among the genes whose expression
is a part of a signature that is involved in an interaction between PC and bone cells [51,52],
suggesting its potential role in a metastatic milieu. In line with this, BGN is also among
the genes (including decorin, lumican, and fibromodulin) whose expression decreases in
stromal cells when grown in the presence of metastatic PC cell lines PC3 and DU145 [53].
Accordingly, a more recent gene expression study supported the potential involvement of
BGN in the crosstalk between PC cells and stromal cells; namely, the study suggests that
the BGN gene is also a part of a cancer-associated-fibroblasts (CAFs)-related prognostic
model in PC [54]. Further gene expression analyses showed an overexpression of the
BGN gene in prostate extra-capsular extension and lymph node invasion, and in clinically
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significant PC [55]. Moreover, its expression is part of a signature related to the worse
survival of PC patients [55,56]. Finally, it is important to note that information on BGN
gene expression is part of the commercial test Oncotype DX based on RT-PCR of 12 cancer
genes and 5 reference genes that is used with prostate needle biopsies to improve treatment
decisions for men diagnosed with early-stage PC [57].

Apart from the gene expression studies, other articles analyzed BGN protein expres-
sion in PC tissue. An article by Anastasia V Suhovskih and colleagues dealt with the
expression of proteoglycans in normal human prostate tissue and prostate cancer by using
the multiplex reverse transcription PCR and immunohistochemical analysis [58]. Eigh-
teen clinical samples of benign prostate hyperplasia and primary PC were analyzed in
total. The authors show that BGN is among the proteoglycans localized in prostate tissue
stroma. In another article, BGN expression was analyzed by immunohistochemistry on
a tissue microarray containing 12,427 cases of PC. The authors found that upregulation
of BGN was associated with poor prognosis and PTEN deletion in PC patients [59]. An
important piece of information gained from this article is that seventy-eight percent of
11,050 cancers showed BGN expression, either at low (47.7%) or high (31.1% of PCs) inten-
sity. In accordance with this article, a more recent immunohistochemistry retrospective
study on 60 cases of PC patients confirmed that BGN is expressed in cases with progression
to castration-resistant PC [60].

Recently, a very important role of BGN in PC was revealed in a study that used human
PC tissues and in vitro and in vivo (different mouse strains) experiments. In that study it
was shown that BGN is among the three secreted proteins released by PC cells that are
involved in recruitment of myeloid-derived suppressor cells (MDSCs). Therefore, this
study offers valuable information regarding the efforts to restore immune surveillance
in PC [61]. In line with the importance of BGN for PC growth, a recent study showed
that downregulation of BGN in cancer-associated fibroblasts (CAFs) suppresses their
proliferation, migration, and invasion in vitro. Moreover, in vivo xenograft assays of co-
injected DU145 cells and CAFs showed that BGN expressed by CAFs positively regulates
tumor growth in BALB/c nude mice [62]. Taken together, these studies suggest that BGN
is a potential therapeutic target in PC.

An early article on the role of decorin (DCN) in PC [63] suggested that DCN sup-
presses PC growth by inhibiting cell proliferation and survival. Consequently, two articles
detected lower levels of DCN in PC [64] and stromal tissue [65] compared to non-affected
counterparts. Furthermore, it was shown that a recombinant oncolytic adenovirus carry-
ing the human DCN gene suppressed tumor growth and skeletal metastases in a mouse
model [66]. In accordance with this, a recent study showed that high DCN expression
in the PC bone microenvironment indicates better prognosis after androgen deprivation
therapy [67]. In summary, these studies suggest tumor- and metastasis-suppressive roles of
DCN in PC. Additionally, it is worth noting that DCN is a myokine—a cytokine produced
by muscle and secreted into the bloodstream—whose expression increases with exercise.
There are publications that suggest the involvement of myokines and DCN specifically in
exercise-induced PC suppression (reviewed in [68]).

Similarly to DCN, lumican (LUM) was also shown to suppress PC progression. Al-
though real-time PCR and immunostaining of LUM showed its upregulation in the reactive
stroma surrounding prostate tumors, in vitro and in vivo studies showed that LUM sup-
presses migration and the invasion of metastatic PC cells. The effect was most probably
mediated through inhibition of lamellipodia and invadopodia formation [69]. In line with
this, Suhovskih and colleagues reported a trend towards decreased DCN and LUM ex-
pression in PC [58]. Three further consecutive studies analyzed the biomarker potential of
serum LUM in PC. The first study suggested that, among other proteins, higher plasma
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concentrations of LUM were associated with shorter progression-free survival in PC pa-
tients [70]. In addition to this, a more recent study that used serum samples and clinical
data of 557 men who underwent radical prostatectomy for PC suggested that LUM is part
of a serum biomarker quintet with a prognostic value in PC [71]. Furthermore, in the most
recent article, it was suggested that LUM serum expression is part of a predictive model
that is able to distinguish PC from benign prostatic hyperplasia [72].

Finally, increased expression of fibromodulin (FMOD) was reported in PC [73]. More-
over, several studies suggested its potential biomarker role in PC (for example [74–76])
based on the analysis of the FMOD gene and the expression of its mRNA and protein in
PC tissue (reviewed in [77]). Recently, The Cancer Genome Atlas prostate adenocarcinoma
mRNA expression data were analyzed using a recursive partitioning method and it was
found that low expression of the FMOD gene is associated with worse progression-free
survival of PC patients, with a Gleason score lower than 9 [78]. Taken together, these
studies suggest the biomarker potential for FMOD in PC.

3.3. Basement Membrane Proteoglycans

Perlecan or heparan sulfate proteoglycan 2 (HSPG2) is a basement membrane protein
that belongs to a group of ECM proteins that can be cleaved by proteolytic enzymes to
release bioactive fragments that promote specific cellular responses. For example, it was
shown that matrix metalloproteinase-7 (MMP7) cleaves HSPG2 in PC to give rise to frag-
ments that act as potent ‘molecular switches’ which favor PC spread and invasiveness [79].
A consecutive article by the same authors based on the analyses of 288 patients who under-
went radical prostatectomy revealed that HSPG2 fragments in sera and MMP-7 in tissues
of PC patients are associated with PC invasiveness [80]. In continuation of these analyses,
the molecular mechanisms that lead to increased invasiveness were delineated; namely, in
their further research articles on this topic, Mary C. Farach-Carson and colleagues revealed
that, along with released HSPG2 fragments, semaphorin 3A, focal adhesion kinase, plexin
A1, and neuropilin-1 are involved in stromal invasion by PC cells [81,82]. The importance
of these studies is reviewed in [83] with an interesting notion that degradation of the
HSPG2-abundant stroma converts the ‘hostile’ stroma into a supporting environment that
sustains cancer spread.

In another direction of research, HSPG2 and other components of the basement
membrane such as diverse laminins, collagen XVIII and its cleaved endostatin-containing
isoforms, were shown to be produced in an interaction between PC cells and prostate
fibroblasts grown in 3D coculture spheroids [84]. It is important to note that their release
is the product of a crosstalk, since separately grown PC cells and fibroblast spheroids
could not recapitulate these effects. Finally, in our recent article, we studied the role of
HSPG2 in prostate cancer radioresistance (more information is presented in the following
sections) and we showed that high HSPG2 expression in The Cancer Genome Atlas prostate
adenocarcinoma patients is correlated with worse biochemical recurrence-free survival [85],
supporting the articles that suggested its potential biomarker role in PC [86].

The literature on the role of agrin (AGRN) in PC is not extensive. There is an article
delineating the role of the long noncoding RNA nuclear-enriched abundant transcript
1 (NEAT1) in PC. The article showed that AGRN is a part of the signaling axis that is
involved in tumor-promoting function (suppression of DNA damage, cell-cycle dysregula-
tion, and proliferation arrest) of NEAT1 in PC cells [87].

In contrast to AGRN, the role of collagen XVIII and especially its cleaved form en-
dostatin in PC is a bit more extensively studied. While collagen type XVIII shows both
collagen and proteoglycan characteristics, endostatin itself is not a proteoglycan, but a
small (20 kDa) anti-angiogenic fragment formed by a collagen XVIII cleavage. As its name
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suggests, endostatin is involved in the inhibition of angiogenesis, and it was shown to
suppress PC growth and metastases [88–92].

While the studies on endostatin in PC are by far more abundant, there is a study
that showed that collagen XVIII is a part of a core in vivo prostate matrisome in mass
spectrometry experiments performed on tissue samples obtained from the non-cancerous
areas of the surgically removed prostates [93]. This suggests its essential role in the
prostate matrisome.

The roles of major hyalectans, small leucine-rich proteoglycans, and basement mem-
brane proteoglycans in PC are summarized in Figure 1.

Figure 1. Summary of the roles of proteoglycans (PGs) in prostate cancer (PC) biology. Major PGs
(hyalectans, small leucine-rich PGs, and basement membrane (BM) PGs) studied in PC are considered.
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Red rectangles indicate the answer is yes or has positive associations, and the green rectangles
indicate negative associations or the opposite of what is written on the left side; for example, VCAN
inhibits PC cell attachment to fibronectin in vitro, and DCN suppresses PC growth by inhibiting
cell proliferation and survival in vitro and tumor growth and skeletal metastases in a mouse model;
DCN and LUM have decreased expression in PC, etc. By looking globally, the emerging pattern
suggests that DCN and LUM suppress PC progression, while all other studied PGs seem to promote
it. DCN levels could potentially be increased by exercise; therefore, it is possible to enhance its levels
to suppress PC.

3.4. Cell Surface Proteoglycans

Syndecan 1 (SDC1) is the best studied proteoglycan in PC from the syndecan family.
Early studies showed that it is involved in several processes that are part of PC progression
such as stabilization of tumor-initiating cells [94] and promotion of epithelial–mesenchymal
transition (EMT) [95]. Moreover, its expression identifies a previously unreported cell type
that is found in the stroma of PC and surrounding normal tissue but not in the healthy
prostate. The authors emphasize that a subset of poor prognosis high Gleason grade PCs
had a particularly high number of these cells [96]. Another article on SDC1 expression
analyzed its levels in serum of PC patients and found that high levels of soluble SDC1
are an independent factor of worse PC patients’ survival [97]. The potential use of SDC1
expression as a PC biomarker was suggested also in recent studies that show that SDC1 is a
part of the Appl1, Sortilin, and SDC1 biomarker panel [98–103]. In addition to this, a very
recent article found that SDC1 is expressed in PC extracellular vesicles, supporting its role
in PC cell communication within the body of PC patients [104]. However, it needs to be
mentioned that not all articles on the role of SDC1 in PC are in unison; for example, a recent
study showed that SDC1 is a part (a ligand) of a signaling axis that leads to eradication of
neuroendocrine PC (NEPC) cells. NEPC is an aggressive form of PC that usually emerges
as PCs become resistant to therapies [105]. This ‘dual role’ of SDC1 was noted early on;
for example, Iris J. Edwards suggested in 2012 that SDC1 might have both an antagonist
and agonist role in PC depending on disease stage and enzymatic conditions [13]. This
was based on early articles on SDC1 expression and role in PC, all reviewed by Edwards
in 2012 [13].

The articles on syndecan 2 (SDC2) in PC mainly analyzed its expression. For example,
it was shown that the expression of SDC1 and SDC2 are associated with Gleason score
and EMT markers in PC [106]. Moreover, SDC2 is expressed preferentially in basal cells
in non-affected prostate (benign prostatic hyperplasia); however, in PC, the expression
pattern shifts to granular-cytoplasmic localisation. PC patients with altered expression of
SDC1 and SDC2 have worse PSA (prostate specific antigen) recurrence-free survival [107].

The expression of syndecans 3 (SDC3) and 4 (SDC4) was also studied in PC. SDC3
expression is associated with more aggressive PC tumors and a worse prognosis while
SDC4 expression is associated with a better prognosis in PC patients [108]. Taken together,
these studies show diverse roles and expression patterns for the members of the syndecan
family in PC.

Glypican 1 (GPC1) was also suggested to be a potential biomarker in PC [109–111].
However, its role in PC is cell type-specific; namely, inhibition of GPC1 expression in
PC-3 cells decreased their in vitro proliferation and migration while having an opposing
effect in DU-145 cells. Moreover, discrepancy between the in vitro and in vivo data (GPC1
inhibition increased PC-3 tumor size in mice xenografts) was suggested to be possibly
mediated by stromal cells in the tumor microenvironment [112]. Another recent article on
the crosstalk with stromal cells showed that GPC1 influences the biology of human bone
marrow-derived stromal cells (BSCs). More precisely, it partially regulates the phenotype of
human BSCs and their transformation into activated fibroblasts, suggesting that GPC1 may
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be a novel target in anti-CAF therapy [113]. Other articles that dealt with GPC1 potential as
a target in PC treatment [114–117] showed that Miltuximab, an antibody against GPC1, has
promising safety and efficacy effects in radioimmunotherapy models of PC. This would
suggest the use of GPC1 as a diagnostic molecule and a therapy target simultaneously in
PC, for example, to deliver 177Lu to PC cells [116].

While glypican 2 (GPC2) was shown to promote PC proliferation, migration, and
invasion [118], glypican 3 (GPC3) was suggested to be a potential target for NEPC in very
recent publications [119,120]. Finally, glypican 5 (GPC5) showed a biomarker potential
in PC (lower expression in PC tissue, especially in high-risk PC) [121] and inhibited PC
cell proliferation and invasion. Suppression of EMT and WNT/β-catenin signaling were
suggested to play a role [122]. Taken together, these articles suggest a diverse role of
glypicans in PC; however, it seems that the majority of studied members of a family
(excluding GPC5) have a potential to be therapeutic targets in PC.

While early studies suggested that betaglycan (BGCAN) inhibits PC growth and angio-
genesis [13,123,124], more recent studies suggest its role in PC bone metastasis. First, it was
shown that BGCAN is part of the signaling axis that mediates dormancy of metastatic PC
in the bone. Moreover, lower BGCAN expression in PC patients correlated with increased
metastatic potential and decreased survival [125], suggesting its suppressive roles in PC
progression. However, a successive article suggested that BGCAN-WNT5A signaling
axis stimulates PC-induced osteogenesis which contributes to PC patient morbidity and
mortality [126]. This would suggest that targeting the BGCAN-WNT5A axis in PC would
alleviate PC-induced osteogenesis. Further studies are needed to address these contradic-
tory notions and to shed more light on the role of BGCAN in PC and especially its role in a
bone microenvironment.

The roles of major cell surface proteoglycans in PC are summarized in Figure 2.

3.5. Intracellular Proteoglycans

Serglycin (SRGN) is among the group of proteoglycans which are under-studied in
PC. However, there is an article that analyzed SRGN expression in PC and found that
both the neoplastic and the normal prostatic epithelia express SRGN in cytoplasm in a
granular and diffuse manner [127]. The SRGN expression was increased in high-grade
adenocarcinoma in comparison to low- or moderate-grade PC cases. Additionally, the
authors note that endothelial cells in tumor stroma had elevated SRGN levels [127]. While
this study provides the basic information on the SRGN expression in PC, further studies
are needed to dissect its precise role.

An overview of all major and core matrisome protoglycans (according to the Ed-
wards [13] and Naba et al. [31,32] classification) and their roles in PC are given in Table 1.
Additionally, the examples of the major signaling pathways that PGs interact with in PC
are depicted in Figure 3.

3.6. Proteoglycans and Prostate Cancer Bone Metastasis Biology

Since 90% of patients with advanced PC develop secondary malignancy in the
bones [27,28], molecular processes that lead to bone metastasis formation are of utmost
clinical importance. The involvement of PGs in bone tumor development has been known
for a while [29], and this brief section summarizes their roles in PC bone metastasis. Several
PGs have already been mentioned in that context; for example, BGN has a role in bone
growth [35] and potentially promotes PC bone metastases, as revealed by its participation
in gene signatures that indicate the interaction between PC and bone cells [51,52]. In
contrast to BGN, DCN has been implicated in inhibition of bone metastases in a study that
used mouse models [66]. Furthermore, clinical studies showed that high DCN expression
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in the PC bone microenvironment indicated better prognosis after androgen deprivation
therapy [67]. Taken together, these studies would suggest the favorable role of DCN in
suppression of PC bone metastases and the unfavorable role for BGN. However, the role of
BGCAN in PC bone metastases is more complex, since two studies indicated its context-
dependent roles. Namely, first it was shown that BGCAN is a part of a signaling axis that
mediates dormancy of metastatic PC in bone [125], while the second study [126] found that
BGCAN promotes PC-induced osteogenesis. Further studies are needed to shed more light
on these complex roles. Finally, it was shown that GPC1 influences the biology of human
bone marrow-derived stromal cells (BSCs) [113], confirming the involvement of PGs in
different aspects of PC bone metastases biology.

Figure 2. Summary of the roles of major cell surface PGs studied in PC. Red rectangles indicate the
answer yes or positive associations, and the green rectangles indicate negative associations or the
opposite of what is written on the left side. The gray rectangles indicate both types of association
(contradicting roles reported). It is clear from the figure that SDC1 and GPC1 have been studied a
little more than the rest of the proteoglycans from the family.
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Table 1. Role of major and core matrisome proteoglycans (according to the Edwards [13] and
Naba et al. [31,32] classification) in prostate cancer progression and their possible biomarker potential.
The potential of proteoglycans as PC biomarkers is just briefly outlined; a more in-depth overview is
presented in [77].

Proteoglycan Reported Findings Year Reference

Aggrecan (ACAN) Stimulates motility-related processes in an experiment of
microrheology on cultured PC3 cells. 2012 [50]

Agrin (AGRN) CDC5L-AGRN signaling mediates the PC-promoting function of the
long noncoding RNA NEAT1. 2018 [87]

Asporin (ASPN)

Promotes PC metastasis through the Wnt/β-catenin signaling
pathway; enhanced stemness and epithelial–mesenchymal transition

(EMT) are involved.
2025 [128]

Promotes PC metastatic progression; restriction of mesenchymal
stromal cell differentiation and alteration of the tumor

microenvironment are involved.
2019 [129]

In a cohort of 326 PC patients, increased expression of ASPN was
correlated with decreased time to biochemical recurrence. 2017 [130]

Betaglycan (BGCAN)

Drives PC-induced osteogenesis. 2019 [126]

Part of the signaling axis that mediates dormancy of metastatic PC in
the bone. 2018 [125]

Inhibits PC growth and angiogenesis. 2012, 2007, 2005 [13,123,124]

Biglycan (BGN)

Downregulation of BGN in cancer-associated fibroblasts suppresses
cell proliferation, migration, and invasion in vitro, and in vivo

xenograft assays.
2025 [62]

Among the key secretome factors that regulate recruitment of
myeloid-derived suppressor cells in PC. 2023 [61]

Upregulation associated with poor prognosis and PTEN deletion in
PC patients. 2023, 2017 [59,60]

Potentially promotes PC bone metastasis. 2006 [51]

Decorin (DCN)

High DCN expression in the PC bone microenvironment indicates
better prognosis after androgen deprivation therapy. 2025 [67]

Lower expression in PC than benign prostatic hyperplasia tissue has a
potential prognostic value. 2020 [64]

Inhibits bone metastasis. 2015 [66]

Reduced expression in PC stroma compared to non-malignant
prostate stroma. 2012 [65]

Suppresses PC growth. 2009 [63]

Endocan (ESM1)

Interaction of β-catenin with nuclear ESM1 promotes stemness of
metastatic PC. 2021 [131]

Tissue endocan expression level is higher in PC patients compared to
those with benign prostate hyperplasia. 2021 [132]

Overexpression of ESM1 in PC correlates with Gleason score and
androgen receptor expression. 2017 [133]

ESM1 downregulation decreases migration in PC cells. 2017 [134]

Loss of ESM1 expression promotes PC tumorigenicity and metastasis. 2017 [135]

Associated with tumor recurrence in PC. 2017 [136]

Fibromodulin (FMOD) Potential biomarker in PC. 2024, 2023 [76–78]
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Table 1. Cont.

Proteoglycan Reported Findings Year Reference

Glypican 1 (GPC1)

PC target. 2021, 2020, 2016 [114–117]

Expressed in PC cell lines; interacts with WNT3A. 2021 [137]

Influences the biology of human bone marrow-derived stromal cells
and PC cell aggressiveness. 2021 [113]

Part of a MiCheck test for aggressive PC. 2020 [111]

The role of GPC-1 in PC is cell type-specific; discrepancy between the
in vitro and in vivo data possibly mediated by stromal cells in the

tumor microenvironment.
2019 [112]

PC biomarker. 2018, 2018 [109,110]

Glypican 2 (GPC2) Promotes PC proliferation, migration, and invasion. 2024 [118]

Glypican 3 (GPC3) Potential target for neuroendocrine PC. 2025, 2023 [119,120]

Glypican 5 (GPC5)

Inhibits PC cell proliferation and invasion; suppression of EMT and
WNT/β-catenin signaling are involved. 2018 [122]

Potential diagnostic and prognostic PC biomarker (lower expression
in PC tissue, especially in high-risk PC). 2016 [121]

Lumican (LUM)

Part of a serum biomarker signature to (a) distinguish PC from benign
prostatic hyperplasia and (b) predict biochemical recurrence and

adverse pathology.
2023, 2021, 2020 [70–72]

LUM in the reactive stroma has a suppressive role on the PC
progression. 2013 [53,69]

Osteoglycin (OGN) PC patients with high OGN expression show better survival. 2024 [138]

Perlecan (HSPG2)

High expression correlates with worse survival of The Cancer
Genome Atlas prostate adenocarcinoma patients. 2024 [85]

HSPG2 cleavage triggers PC cell dyscohesion, migration, and tissue
invasion.

2021, 2018, 2016,
2014 [79–82]

HSPG2 expression in PC tissues correlates with a high Gleason score
and rapid cell proliferation; inhibition of HSPG2 expression in PC cell

lines decreases cell growth and Sonic Hedgehog signaling.
2006 [139]

Serglycin (SRGN) Detected in both the neoplastic and the normal prostatic epithelia. 2015 [127]

Syndecan 1 (SDC1)

Found in PC extracellular vesicles. 2025 [104]

Potential PC biomarker (part of the Appl1, Sortilin, and SDC1
biomarker panel). 2024, 2023 [98–103]

Part of the signaling axis that promotes the release of TNFα by mast
cells to suppress neuroendocrine PC. 2024 [105]

SDC1 expression identifies a previously unreported cell type that is
frequent in a subset of poor prognosis high Gleason grade tumors. 2017 [96]

Soluble SDC1 serum level is an independent pre-operative predictor
of cancer-specific survival in PC. 2016 [97]

Mediates EMT in PC. 2016 [95]

Contributes to PC progression by stabilizing tumor-initiating cells. 2013 [94]

Syndecan 2 (SDC2)

SDC2 is expressed preferentially in basal cells in non-affected prostate;
in PC the expression pattern shifts to granular-cytoplasmic

localization, and PC patients with altered expression have worse PSA
recurrence-free survival.

2011 [107]

The expression of SDC2 is associated with Gleason score and EMT
markers in PC. 2010 [106]

Syndecan 3 (SDC3) SDC3 expression is associated with more aggressive PC tumors and a
worse prognosis. 2021 [108]
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Table 1. Cont.

Proteoglycan Reported Findings Year Reference

Syndecan 4 (SDC4) SDC4 expression is associated with a better prognosis in PC patients. 2021 [108]

Testican 1 (SPOCK1)

Extrachromosomal circular DNA-related SPOCK1 contributes to the
development of PC; regulation of epithelial–mesenchymal transition

(EMT) is involved.
2024 [140]

High SPOCK1 expression is associated with advanced PC. 2019 [141]

SPOCK1-snail/slug axis is involved in EMT; its targeting contributes
to inhibition of PC metastasis. 2019 [142]

Promotes tumor growth and metastasis in human PC. 2016 [143]

Upregulation of SPOCK1 mRNA and protein in PC samples. 2015 [144]

Testican 2 (SPOCK2) Upregulation of SPOCK2 inhibits the invasion and migration of PC
cells; MT1-MMP/MMP2 pathway is involved. 2019 [145]

Testican 3 (SPOCK3)

SPOCK3 expression is associated with immune cell infiltration; PC
patients with higher SPOCK3 expression show better disease-free

survival.
2023 [146]

Lower expression in bone metastasis than in primary PC. 2022 [147]

Among the genes with the most downregulated expression in PC
lymph node and liver metastases compared to primary tumors. 2021 [148]

Versican (VCAN Promotes PC cell motility and invasion. 2012, 2007 [13,47]

Figure 3. The examples of the major signaling pathways that proteoglycans interact with in prostate
cancer. (1) Endostatin inhibits the androgen receptor (AR) signaling pathway, just like (3) decorin,
which also inhibits the epidermal growth factor receptor (EGFR) pathway. The interaction of (2) be-
taglycan with AR is hypothesized. The (4) perlecan-semaphorin 3A-plexin A1-neuropilin-1 (PSPN)
complex leads to focal adhesion kinase (FAK) inhibition and integrin deactivation. During PC
progression, MMPs can cleave perlecan and/or Sema3A, which re-activates the integrin signaling,
leading to progression to metastasis. (5) Glypican 1 was suggested to interact with WNT3A, while
glypican 5 was suggested to inhibit signaling that leads to β-catenin activation. Betaglycan (6) was
shown to increase WNT5A (considered to be a non-canonical WNT ligand) levels and β-catenin
signaling. Finally, asporin (7) was shown to increase the expression of β-catenin and its accumulation
in the nucleus.
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4. Role of Proteoglycans in Prostate Cancer Therapy Resistance
Since the ultimate goal of cancer research is to find therapies that would eradicate

the cancer cells or at least keep them under control, it is reasonable that the section on
the role of proteoglycans in PC therapy resistance is singled out from the rest of the
sections that describe their role in PC. Although not many articles have studied the role of
proteoglycans in PC therapy resistance, there have been several reports in the last several
years suggesting their involvement. Mechanistically, the results from these reports can
be classified under several separate axes that lead to PC cell eradication: the action of
docetaxel (ASPN, SDC1, and VCAN), the interference with AR signaling (BGCAN, BGN,
and SPOCK1), and the effects of radiotherapy (HSPG2). For example, in a very recent
article, the role of ASPN in PC and its involvement in docetaxel resistance were analyzed
in in vitro and in vivo experiments [128]. Docetaxel is a taxane that binds to microtubules
and subsequently triggers cell-cycle arrest and apoptosis. It is used as a part of therapy
for PC patients, especially for cases with high tumor burden [149]. Additionally, there
are also suggestions that docetaxel should be used in earlier stages of PC [150]. In an
article on ASPN involvement, it was shown that ASPN is activated by TGFβ, and when it
interacts with STMN1, it promotes PC docetaxel chemoresistance and metastasis formation.
Enhanced stemness and promotion of epithelial–mesenchymal transition (EMT) were
shown to be involved. Upregulation of the WNT/β-catenin signaling pathway was shown
to take a part in this molecular circuitry [128]. The authors suggest that targeting the
ASPN/STMN1/β-catenin axis might be a promising strategy for PC treatment.

Two earlier publications also dealt with PC resistance to docetaxel and the specific
roles of SDC1 [151] and VCAN [152]. The first article showed that the levels of circulating
SDC1 protein are associated with chemotherapy-resistance in 75 patients with castration-
resistant PC, suggesting its biomarker role in predicting docetaxel resistance [151]. This
would suggest that SDC1 levels could be possibly used to predict docetaxel resistance risk,
which calls for a prospective validation. The second article investigated the role of VCAN
in docetaxel-resistant PC by using in vitro models, cDNA microarray, and quantitative
RT-PCR. The authors found that targeting VCAN is a potential therapeutic strategy in
docetaxel-resistant PC [152].

In a more recent article, the expression of BGCAN was studied in patients with
metastatic castration-resistant PC, as part of the PROMOTE study. The authors analyzed
the resistance mechanisms to abiraterone acetate/prednisone (AA/P) therapy. AA/P is
a combination therapy for advanced PC, in which abiraterone acetate blocks androgen
production, and prednisone, a steroid, is added to prevent side effects from therapy. In a
cited article, by using the RNA seq-technology on biopsy tissues from 83 patients before and
after AA/P treatment, the authors found that nonresponders to therapy had low expression
of BGCAN, suggesting BGCAN as a most prominent ‘nonresponder biomarker‘ [153]. Al-
though the mechanisms of action of BGCAN have not been delineated, given the frequent
role of TGFβ signaling in crosstalk with different signaling pathways, it could be possible
that BGCAN might be involved in a crosstalk with androgen receptor and intersect with
androgen receptor plasticity [154]. Regardless of the mechanism, a window-of-opportunity
biopsy study would be helpful to further analyze the suitability of BGCAN as a ‘nonre-
sponder biomarker‘.

Another recent article analyzed the composition of proteomes from the biopsies of
PC patients that rapidly progress from hormone-sensitive PC to more severe castration-
resistant PC, as a part of a retrospective study [155]. The authors found that BGN is
one of the two proteins associated with a fast progression from hormone-sensitive to
castration-resistant PC.
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Another recent article investigated the role of extrachromosomal circular DNA
(eccDNA)-related gene SPOCK1 in PC enzalutamide resistance [140]. Enzalutamide is
a hormone therapy drug (an androgen receptor inhibitor) used to treat different types of PC.
The authors showed that the SPOCK1-associated eccDNA contributes to PC enzalutamide
resistance and that the mechanism of regulation of EMT is involved.

Finally, our group has recently studied the composition of integrin adhesion complexes
of DU145 radiation sensitive (parental) and radioresistant cell lines by using proteomics [85].
Slightly less than half of patients with localized PC are treated with radiotherapy. However,
depending on the clinical stage, it is estimated that 20–40% of PC patients will develop
recurrence after treatment. Therefore, PC radioresistance is an obstacle for successful PC
treatment. In our article, we found that the radioresistant DU145 cell line re-organizes the
composition of its ECM proteins. Among the many ECM proteins that change expression in
DU145 radioresistant cell line, we singled out HSPG2 protein; its downregulation sensitizes
DU145 radioresistant cells to irradiation while leaving the sensitivity of DU145 parental
cells unchanged. This suggests that HSPG2 might be a potential therapeutic target in PC.
Further studies on the analysis of HSPG2 protein expression combined with radiotherapy
to build up the radioresistance score are necessary.

In conclusion, diverse proteoglycans seem to be involved in PC resistance to major
lines of therapies that are used to eradicate PC. Their potential roles as therapeutic targets
in different diseases are reviewed in [156]. Table 2 lists the related publications discussing
the role of proteoglycans in PC therapy resistance.

Table 2. Role of proteoglycans (according to the Edwards [13] and Naba et al. [31,32] classification) in
prostate cancer therapy resistance.

Proteoglycan Reported Findings Year Ref.

Asporin (ASPN) Promotes PC docetaxel chemoresistance through the
Wnt/β-catenin signaling pathway. 2025 [128]

Betaglycan (BGCAN)
Among other characteristics, patients with castration-resistant
PC non-responding to abiraterone/prednisone treatment had

low expression of BGCAN.
2022 [153]

Biglycan (BGN) One of the two proteins associated with a fast progression from
hormone-sensitive to castration-resistant PC. 2023 [155]

Perlecan (HSPG2) Regulates radioresistance in PC DU145 cells. 2024 [85]

Syndecan 1 (SDC1) Circulating SDC1 is associated with chemotherapy-resistance
in castration-resistant PC. 2018 [151]

Testican 1 (SPOCK1)
Extrachromosomal circular DNA-related gene SPOCK1

contributes to PC enzalutamide resistance; regulation of EMT
is involved.

2024 [140]

Versican (VCAN) Potential therapeutic target in docetaxel-resistant PC. 2015 [152]

5. Conclusions
PGs are a major constituent of the ECM, and as such, an important part of the TME.

Given their structural diversity and the plentitude of interacting proteins, as well as their
strategic location within the TME, it is not surprising that these molecules play important
roles during cancer progression. Although the therapeutic potential of PGs is, in general,
considered underexploited [156], there is a considerable body of evidence in the literature
suggesting that this class of molecules could be used as both biomarkers and therapy
targets (Table 3) in different cancer types. In this review article, several PGs emerged as
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potential biomarkers and/or therapy targets in PC. However, further studies are needed in
order to bridge the gap between these initial suggestions and their use in clinics.

Table 3. Examples of emerging treatment strategies targeting proteoglycans.

Strategy Example Comment

Antibodies against PGs Antibodies against different glypicans Targeting cell surface PGs.

Interference with enzymes that
process PGs Heparanase inhibitors Block the activity of enzymes that modify,

e.g., heparan sulfate chains.

Modification of PGs Enzymatic glycosaminoglycan
(GAG) editing

Methods include synthesis of new GAG
chains, degradation of existing GAGs or

production of GAGs with specific
characteristics.
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Abbreviations
The following abbreviations are used in this manuscript:

ECM Extracellular matrix
TME Tumor microenvironment
PGs Proteoglycans
PC Prostate cancer
GAG Glycosaminoglycan
HS Heparan sulfate
CS Chondroitin sulfate
DS Dermatan sulfate
KS Keratan sulfate
HSPG2 Heparan sulfate proteoglycan 2
VCAN Versican
ACAN Aggrecan
BGN Biglycan
DCN Decorin
FMOD Fibromodulin
LUM Lumican
AGRN Agrin
BM Basement membrane
BGCAN Betaglycan (also known as transforming growth factor beta receptor 3, TGFβRIII)
PCM Pericellular matrix
CAFs Cancer-associated-fibroblasts
PTEN Phosphatase and tensin homolog
MDSCs Myeloid-derived suppressor cells
MMP7 Matrix metalloproteinase-7
NEAT1 Nuclear-enriched abundant transcript 1
SDC1 Syndecan 1
EMT Epithelial–mesenchymal transition
NEPC Neuroendocrine prostate cancer
PSA Prostate specific antigen
GPC1 Glypican 1
BSCs Bone marrow-derived stromal cells
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WNT Wingless-related integration site
SRGN Serglycin
AA/P Abiraterone acetate/prednisone therapy
eccDNA Extrachromosomal circular DNA
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